

Copying Committed Datatypes with H5Ocopy

HDF5 Release 1.8.9

May 2012

http://www.HDFGroup.org

http://www.hdfgroup.org/�

Page 2 of 6

Copyright Notice and License Terms for HDF5 (Hierarchical Data Format 5) Software Library and Utilities

HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 2006-2012 by The HDF Group.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2006 by the Board of Trustees of the University of Illinois.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted for any purpose (including commercial
purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer

in the documentation and/or materials provided with the distribution.
3. In addition, redistributions of modified forms of the source or binary code must carry prominent notices stating that the

original code was changed and the date of the change.
4. All publications or advertising materials mentioning features or use of this software are asked, but not required, to

acknowledge that it was developed by The HDF Group and by the National Center for Supercomputing Applications at the
University of Illinois at Urbana-Champaign and credit the contributors.

5. Neither the name of The HDF Group, the name of the University, nor the name of any Contributor may be used to endorse or
promote products derived from this software without specific prior written permission from The HDF Group, the University,
or the Contributor, respectively.

DISCLAIMER: THIS SOFTWARE IS PROVIDED BY THE HDF GROUP AND THE CONTRIBUTORS "AS IS" WITH NO WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED. In no event shall The HDF Group or the Contributors be liable for any damages suffered by the users
arising out of the use of this software, even if advised of the possibility of such damage.

Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illinois, Fortner Software, Unidata Program
Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly and Mark Adler (gzip), and Digital Equipment Corporation (DEC).

Portions of HDF5 were developed with support from the Lawrence Berkeley National Laboratory (LBNL) and the United States
Department of Energy under Prime Contract No. DE-AC02-05CH11231.

Portions of HDF5 were developed with support from the University of California, Lawrence Livermore National Laboratory (UC LLNL).
The following statement applies to those portions of the product and must be retained in any redistribution of source code, binaries,
documentation, and/or accompanying materials:

This work was partially produced at the University of California, Lawrence Livermore National Laboratory (UC LLNL) under
contract no. W-7405-ENG-48 (Contract 48) between the U.S. Department of Energy (DOE) and The Regents of the University
of California (University) for the operation of UC LLNL.

DISCLAIMER: This work was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any warranty,
express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately- owned rights. Reference
herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for advertising or product endorsement
purposes.

Contents

Page 3 of 6

Contents
1. Copying Committed Datatypes with H5Ocopy ... 4

1.1. Callback Function ... 5
1.2. Function Summary ... 6
1.3. Resources ... 6

Copying Committed Datatypes with H5Ocopy

Page 4 of 6

1. Copying Committed Datatypes with H5Ocopy
Committed datatypes can be a powerful feature in HDF5. They can be used to share a single datatype
description among multiple datasets, to save space or ensure that the datatypes are truly identical, and to
assign a name to that datatype within the HDF5 group structure. The object copy API, H5Ocopy, can be used
to copy HDF5 objects from one file to another, including committed datatypes and objects that use them.
However, problems can occur when a dataset using a committed datatype or an object with an attribute that
uses a committed datatype is copied to another file with H5Ocopy.

When copying a dataset that uses a committed datatype or an object with an attribute that uses a committed
datatype between files, the library by default does not look for a matching committed datatype in the
destination file. The library creates a new committed datatype in the destination file without any links to it (an
anonymous committed datatype) and then links the dataset to the anonymous committed datatype. This
means that, when copying multiple datasets in separate calls to H5Ocopy, a new committed datatype is
created for each H5Ocopy call. While it is possible to have all of the copied datasets share the same
committed datatype by copying them in a single call to H5Ocopy, this is not always attainable.

For example, imagine that a user has an application that automatically creates many data files, each with many
datasets that all use a single committed datatype. At the end of a project, the user wants to merge all of these
files into a single file. The HDF5 Library can have all of the datasets in the combined file use the same
committed datatype, but the default behavior of the library is to create an anonymous committed datatype
for each dataset.

To make sure that shared committed datatypes in the source are shared in the copy, use the
H5Pset_copy_object property list API routine to set the H5O_COPY_MERGE_COMMITTED_DTYPE_FLAG
flag. When this flag is set and H5Ocopy encounters an object or attribute that uses a committed datatype,
H5Ocopy will search for a matching committed datatype in the destination file. If a matching committed
datatype is found, then it will be used by the copied dataset or attribute. The next few paragraphs describe in
more detail the process that H5Ocopy goes through.

When the H5O_COPY_MERGE_COMMITTED_DTYPE_FLAG flag is set, H5Ocopy will search the destination file
for committed datatypes and build a temporary list in memory of all the committed datatypes it finds. Then,
whenever H5Ocopy encounters a dataset that uses a committed datatype or an object with an attribute that
uses a committed datatype in the source, it will check that list to see if it contains a datatype equal to the
source datatype. If H5Ocopy finds an equal datatype, it will modify the copied object or attribute to use the
found committed datatype as its datatype. H5Ocopy will then update the list if a new committed datatype is
created in the destination file as a result of the copy. When later datasets and attributes using committed
datatypes are encountered, the library will again check to see if the list contains a matching datatype.

To determine if two committed datatypes are equal, the library will compare their descriptions in a manner
similar to H5Tequal. In addition, if either committed datatype has one or more attributes, then all attributes
must be present in both committed datatypes, and the attributes must all be identical. Each attribute’s
datatype description, dataspace, and raw data must be identical. However, if an attribute uses a committed
datatype, then the attributes of the attribute’s committed datatype will not be compared.

When H5Ocopy encounters a committed datatype object in the source file, it will similarly search for a
matching committed datatype in the destination file. If a match is found, the library will create a hard link in

Copying Committed Datatypes with H5Ocopy

Page 5 of 6

the destination file to the found datatype. If a match is not found, the library will copy the committed datatype
normally and add it to the temporary list of committed datatypes in the destination file.

By default, H5Ocopy will search the entire destination file for a matching committed datatype. It is possible to
focus where H5Ocopy will search. This focusing should result in a faster search. If there are locations in the
destination file where a matching committed datatype might be found, then those locations can be specified
with the H5Padd_merge_committed_dtype_path property.

The example below shows how to enable the feature described above for use with H5Ocopy.

hid_t ocpypl_id;

ocpypl_id = H5Pcreate(H5P_OBJECT_COPY);
status = H5Pset_copy_object(ocpypl_id, H5O_COPY_MERGE_COMMITTED_DT_FLAG);
status = H5Ocopy(file1_id, src_name, file2_id, dst_name, ocpypl_id,
H5P_DEFAULT);

Example 1. Setting the object copy property list

1.1. Callback Function
If no matching datatype is found in the locations specified by the call to
H5Padd_merge_committed_dtype_path, then H5Ocopy will by default search the entire destination file. In
some cases, this may not be desirable. For instance, the user may expect the datatype to always have a match
in the specified locations and may wish to return an error if a match is not found. The user may also have a
very large file for which the full search incurs a substantial performance penalty. In this instance, the user may
wish to log these events so that other datatypes can be added with
H5Padd_merge_committed_dtype_path, or the user may wish to abort the search and copy the datatype
normally.

To support these use cases, the functions H5Pset_mcdt_search_cb and H5Pget_mcdt_search_cb have
been added. These functions allow the user to define a callback function that will be called every time the list
of paths added by H5Padd_merge_committed_dtype_path has been exhausted but before beginning the
full search of the file. The prototype for the callback function is defined by H5O_mcdt_search_cb_t. The
only argument to the callback function is a user supplied user data pointer, and the return value is an enum,
defined by H5O_mndt_search_ret_t, which tells the library to either continue with the full file search, abort
the search and copy the datatype normally (create a new committed datatype in the destination file), or
return an error.

Copying Committed Datatypes with H5Ocopy

Page 6 of 6

1.2. Function Summary
Functions used in committed datatype copying operations are listed below.

Function Listing 1. Committed datatype copying related functions
C Function
Fortran

Purpose

H5Ocopy
H5ocopy_f

Allows an application to copy an object within an
HDF5 file or to another HDF5 file.

H5Pset_copy_object
h5pset_copy_object_f

Allows an application to set properties to be used
when an object is copied.

H5Padd_merge_committed_dtype_path
(none)

Allows an application to add a path to the list of
paths that will be searched in the destination file for
a matching committed datatype.

H5Pfree_merge_committed_dtype_paths
(none)

Allows an application to clear the list of paths stored
in the object copy property list ocpypl_id.

H5Pset_mcdt_search_cb
(none)

Allows an application to set the callback function
that H5Ocopy will invoke before searching the
entire destination file for a matching committed
datatype.

H5Pget_mcdt_search_cb
(none)

Allows an application to retrieve the callback
function from the specified object copy property
list.

H5O_mcdt_search_cb_t
(none)

Definition of the callback function set by
H5Pset_mcdt_search_cb. Provides the
mechanism by which a user application may set an
action for H5Ocopy to take after checking all
suggested paths for a matching committed datatype
but before starting the global search of the
destination file.

1.3. Resources
See the following for more information.

See the “HDF5 Datatypes” chapter in the HDF5 User’s Guide.

See these entries in the HDF5 Reference Manual:

• H5Ocopy
• H5Pset_copy_object
• H5Padd_merge_committed_dtype_path
• H5Pfree_merge_committed_dtype_paths
• H5Pset_mcdt_search_cb
• H5Pget_mcdt_search_cb

	1. Copying Committed Datatypes with H5Ocopy
	1.1. Callback Function
	1.2. Function Summary
	1.3. Resources

