October 1, 2008 RFC THG 2008-07-28.v5

RFC: Native Time Types in HDF5

Neil Fortner

Introduction

This document examines the current implementation of time datatypes in HDF5, and illustrates the
additions and enhancements provided by Dan Anov’s native time patch. The native time patch
implements a native UNIX time type for the hdf5 library, as well as functions to convert between
different time types. It is mostly complete, and even includes modifications to some of the tools to
allow them to display time datatypes. This could be very useful to users who want to write portable
code to save times obtained from time() or similar system calls, and to allow them to easily share
hdf5 files with time datatypes between different machines.

1 Motivation

Time types in HDF5 could be useful for anyone that wants to save standard UNIX time data to an
HDF5 file. The native time patch allows users to directly use time_t data obtained through standard C
library calls with the introduction of the H5T _NATIVE_TIME_T predefined type. While it could be
argued that it would be more appropriate to use integer (or floating point) types to represent time,
with attributes describing the way it should be interpreted, the fact is that UNIX time types are
already included in the library and people are using them.

2 Current Status

The library currently supports the UNIX time types H5T_UNIX_D32LE, H5T_UNIX_D32BE,
H5T_UNIX_D64LE, and H5T _UNIX_D64BE. It however, is incapable of converting between these
types and does not support a native time type. Therefore, anyone who wishes to use these must
manually match the type with the current size and byte order of time_t, and must save to the file in
the same type. If a user wishes to share such files between machines with different time_t, they
must read the non-native data directly into memory and implement their own conversion function to
retrieve native time_t.

3 Patch Details

The patch sets H5T_NATIVE_TIME_T based on the native byte order and sizeof(time_t). Times
written by a patched version of the library can be read by an unpatched version, though the same
limitations apply as above. Even times written as H5T_NATIVE_TIME_T can be read provided the
application reading knows exactly which UNIX type H5T_NATIVE_TIME_T was mapped to when
written, or takes the time to manually retrieve the size and byte order and use the appropriate UNIX
time type. The patch as it currently stands in no way modifies the file format or breaks existing
functionality. Conversions between the different UNIX types are handled in the same way as
integers. Although it is not required by the ISO C standard (though it is required by POSIX), most

I.T Page 1 of 6

The HDF Group

October 1, 2008 RFC THG 2008-07-28.v5

compilers will return time_t as UNIX time from calls to the time.h library, regardless of the system
being run or its truly “native” time.

4 Limitations of the Patch

Unfortunately some non-POSIX compilers return time_t as an unsigned value, or as a signed value
with negative values considered an error (as in MS Visual C++). As there is no distinction in the patch
between signed and unsigned, this could cause ambiguity. The patch also does not include support
for languages other than C; these would have to be added if desired. Finally, the output format of the
tools would have to be decided upon. Currently the patch causes h5Is to output time according to
the current locale (as found by setlocale(LC_ALL, “”)). If the user wants to specify the locale at run
time, the environmental variable LC_ALL can be set. H5dump does not display time data at all,
though it displays information about the type. Fortunately, a test routine for time types is already
mostly written (though disabled) and would only need minor modifications to test all of the features
included in this patch., though additional tests for the tools should be written.

5 Outstanding Issues

At the developers meeting it was suggested that development of this time patch be placed in a
branch. It was also more or less agreed upon that the patch should be feature complete before it is
merged back into the trunk. We decided that we should only support UNIX (POSIX) time, and go
ahead with the implementation of the remaining features. Outstanding issues include:

1) Should we implement a test to check if time t is UNIX time before enabling use of
H5T_NATIVE_TIME_T? If so should we check if time_t is signed and can have negative values?

Pro Con

* Maximum compatibility * Adds to the already substantial

* Guarantees that configure script

H5T_NATIVE_TIME_T is truly * May not work on systems that don’t
“native” use configure

* |nthe second case this check could
prevent some legitimate and correct
uses of the native time type

2) Should we add support for native times to the C++ and Fortran API’s?

Pro Con

* Allows more users to use the new * The standard Fortran time type is a

features provided by this patch string, so Fortran support is unlikely
unless we want to rely on system calls
on UNIX systems

¢ Similar situation with Java

I.T Page 2 of 6

The HDF Group

October 1, 2008 RFC THG 2008-07-28.v5

* Time required to implement

3) Should we define an “HDF5 time” type to be the same as UNIX time?

Pro Con

* Consistency in labeling (UNIX time is * Potentially confusing

not only used on UNIX systems) e Would need to retain the old names

in the code for compatibility

4) Should we leave the feature marked as “unsupported”?

Pro Con

* Makes it clear that this feature is not * The feature would be otherwise
as platform independent as the rest complete and ready for use

B e * Why go through all the effort of

* Helps resist any pressure to add implementing an unsupported
support for many different time feature?
types, which is beyond the scope of
the library

Overall, the minimum implementation of this patch would make some changes to the tools, but
provide no checking to see if the native time type is POSIX compliant. The responsibility would then
be placed in the hands of the users to ensure that the times they are saving will be interpreted
correctly when read.

6 Examples

Here we show a few simplified examples to help illustrate the current support of time types, and
show how this time patch improves the handling of time data.

6.1 Examplel

Example 1 shows how to write time data using the current library. Notice that both the file and
memory type must be explicitly specified, and must be identical. If the file type (specified in the call
to H5Dcreate) were different from the memory type (from H5Dwrite), H5SDwrite would fail. This code
would only produce correct results on a little endian machine with 32 bit time_t.

time_t wdata = time (NULL);

dset = H5Dcreate (file, name, H5T_UNIX D32LE, ...);
H5Dwrite (dset, HS5T_UNIX_D32LE, ..., &wdata);

6.2 Example 2

Example 2 shows how to read a file using the current library. In order for this code to work, the
dataset must have a type of H5T_UNIX_D32LE and the machine must again be little endian with 32 bit
time_t.

I.T Page 3 of 6

The HDF Group

October 1, 2008 RFC THG 2008-07-28.v5

time_t rdata;
H5Dread (dset, H5T_UNIX _D32LE, ..., &rdata);
printf (“time read is: %s\n”, ctime (&rdata));

6.3 Example3

Example 3 shows how to write time data with the patched library. This code is completely portable
across all compilers which use UNIX time and will always produce correct datasets with type
H5T_UNIX_D32LE regardless of the native type. It is also possible to save as a native type or to
convert between two standard types.

time_t wdata = time (NULL);

dset = H5Dcreate (file, name, H5T_UNIX D32LE, ...);
H5Dwrite (dset, HS5T_NATIVE_TIME_ T, ..., &wdata);

6.4 Example 4

Example 4 shows how to read data with the patched library. This will always produce correct results
regardless of the file type or the processor architecture.
time_t rdata;

H5Dread (dset, H5T _NATIVE TIME T, ..., &rdata);
printf (“time read is: %s\n”, ctime (&rdata));

6.5 Example5

Example 5 shows how to save data as the native type. The dataset produced will be different
depending on the machine, but will always be readable by patched versions of the library using code
similar to example 4. Unpatched versions will need to specify the exact standard type saved to the
file.

time_t wdata = time (NULL);

dset = H5Dcreate (file, name, HS5T_NATIVE_TIME_T, ...);
H5Dwrite (dset, HS5T_NATIVE_TIME T, ..., &wdata);

7 Resolved Issues

These issues were previously listed under “outstanding issues”, but have been decided upon. They
are listed here for reference and to help explain the exact direction we plan to take with this patch.

1) Should we apply the patch at all? Though the necessity of having a time type in the library may
be questionable, the fact that it is already in the library prevents us from removing it. Should we
put the effort into finishing the patch or should we simply leave it as an unsupported feature?

Pro Con
* Finishes a half-implemented feature * Development time
* Allows users to more easily store and * Specifies a method of interpretation
retrieve time data for data

We have decided to implement the patch.

I.u: Page 4 of 6

The HDF Group

October 1, 2008

RFC THG 2008-07-28.v5

2) Should we implement checks when converting time types to a lower precision to ensure that
overflow does not occur or should we leave the responsibility in the hands of the users? Should

this be the default behavior?

Pro

Con

* Will catch some errors related to the
“Y2k38” problem

* Adds to conversion overhead

The user can implement such checks using the already existing function
H5Pset_type_conv_cb(). No new functionality will be added here.

3) Should we make a distinction between signed and unsigned time types? While this would not
affect any conversions (unless we implemented overflow checking as above), it would allow users
to specify how to interpret times beginning with a (binary) 1. This would require another test for
the native type, and would require an update to the file format. It would, however not require a
new datatype version as old versions of the library could still read signed and unsigned times —
there is plenty of reserved space in the time datatype message currently.

Pro

Con

* Prevents potential ambiguity of
times before 1/1/1970

* Requires update to file format

* Unsigned times are not truly “UNIX”
(POSIX) times

We have decided there will be no new updates to the file type, and the time type represented
will be POSIX time. Therefore, the time type is assumed to be signed.

4) Similarly, should we support the “signed but only positive” type used by MS Visual C++?

Pro

Con

* When paired with overflow checking
would prevent erroneous times from
being used by MSVC

* Requires update to file format

* Not a standard time type

See above, this type will not be explicitly supported.

5) Should h5dump display time data? If so, how should it be displayed?

Pro

Con

e Allows users to view time data using
h5dump

® ASCII time strings could take up too
much space in the output

Yes, h5dump will display time data.

The HDF Group

Page 5 of 6

October 1, 2008 RFC THG 2008-07-28.v5

Acknowledgements

The native time patch was written by Dan Anov of the Danish Technological Institute
(dan.anov.dk@gmail.com).

Revision History

June 30, 2008: Version 1 circulated for comment within The HDF Group.
August 1, 2008: Version 2 incorporates feedback; circulated for internal comment.
August 15, 2008: Version 3 was a temporary version which was made obsolete by the arrival of

the RFC template.

September 24, 2008: Version 4 circulated for comment within The HDF Group, final call for
comments before public release.

October 1, 2008: Version 5 is published and posted for public comment. Comments should be
sent to nfortne2@hdfgroup.org or help@hdfgroup.org

I.T Page 6 of 6

The HDF Group

