[bookmark: _GoBack]HDF5 File Space Management

1. Introduction
The space within an HDF5 file is called its file space. When a user first creates an HDF5 file, the HDF5 library immediately allocates space to store information called file metadata. File metadata is information the library uses to describe the HDF5 file and to identify its associated objects. When a user subsequently creates HDF5 objects, the HDF5 library allocates space to store data values, as well as the necessary additional file metadata. When a user removes HDF5 objects from an HDF5 file, the space associated with those objects becomes free space. The HDF5 library manages this free space.
The HDF5 library file space management activities encompass both the allocation of space and the management of free space. The HDF5 library implements several file space management strategies, and the strategy used for a given HDF5 file is set when the file is created. Depending on the file’s usage patterns, one strategy may be better than the others; an inappropriate strategy can lead to file size and access performance issues. HDF5 files that will have objects added or deleted in later sessions, or that will never have objects deleted, may benefit from the use of a non-default strategy.	Comment by Ruth Aydt: I (currently) think this is true. Confirm after doc & perf tests done.	Comment by Quincey Koziol: Yes, I agree with this (and Vailin’s benchmarks should show this).
This document describes how the file space management strategies affect file size and access time for various HDF5 file usage patterns. It also presents the HDF5 utilities and HDF5 library public routines that help users select appropriate file space management strategies for their specific needs.

2. Basic HDF5 File Space Management
Audience:
A user who handles HDF5 files and has knowledge of the HDF5 data model,
but who may not be familiar with the HDF5 library API or internals.
The HDF5 library manages the allocation of space in an HDF5 file for storing file metadata and HDF5 dataset values. It also manages free space that results from the manipulation of the file’s HDF5 objects. The HDF5 library uses one of several available file space management strategies in performing these management activities for a given HDF5 file.

HDF5 command line utilities are available that allow users to view any HDF5 file’s contents, obtain information about its file space and file space management, and create a copy of the file with a different file space management strategy. 	Comment by Mike Folk: A short section describing the different strategies would be helpful here.

It would also be nice to have a section describing briefly the concepts that are described in the subsequent scenarios. Things like “session”, “tracked space” and “unaccounted space.” May not work because it may have to be too detailed. Pictures would help, maybe.

Also maybe have a section describing file space management that occurs during a session vs. what occurs outside of a session. Just a synopsis, so they have a sense of what’s possible during those times.	Comment by Quincey Koziol: Yes, I agree with Mike, it would be good to define these terms.

The following examples describe various HDF5 file usage patterns and illustrate how different file space management strategies can affect the HDF5 file size.
Scenario A: Default File Space Management Strategy	Comment by Mike Folk: I think you’re packing too much information into this pair of scenarios. Recommend much shorter scenarios initially, in which you, for instance, create and replace just one dataset. Feels like too much information in one example. Other scenarios can then introduce the other ideas without so much verbiage per example.
Session 1: Create an Empty File
In the first session, a user creates an HDF5 file named no_persist_A.h5 and closes the file without adding any HDF5 objects to it. No file space management strategy is specified, so the file is created with the default file space management strategy (H5F_FILE_SPACE_ALL, defined elsewhere).	Comment by Mike Folk: “Session” is clear to me. However, it might be useful to describe this concept in a separate section, prior to these scenarios, and in the process define the term.	Comment by Ruth Aydt: I use the notion of a “session” as the time between when a file is opened and closed. This concept is important in discussing the file space management strategies & their related free space tracking behavior. Wanted some consistent way to discuss these things. Curious to know if this is clear to other readers.	Comment by Ruth Aydt: I changed this from not_persist.h; not_persistant.h5 would be okay too, but “not_persist” seems odd to me. I went with no_persist because it was shorter	Comment by Frank Baker: See related comment on page 4.	Comment by Mike Folk: Suggest removing parenthetic remark. Not needed for understanding.
The h5dump utility displays the contents of a given HDF5 file. Running h5dump shows the initial contents of no_persist_A.h5: 	Comment by Mike Folk: Suggest new wording to shorten and make similar to subsequent text. Suggest similar revisions for other utility calls.
h5dump no_persist_A.h5’
HDF5 "no_persist_A.h5" {
GROUP "/" {
}
}
This reveals that the HDF5 library automatically created the root group and allocated space for initial file metadata when no_persist_A.h5 was created. This empty HDF5 file does not yet contain any user-created HDF5 objects.

The h5stat –S command reports information on the file space for a given HDF5 file. The report for the file no_persist_A.h5 is shown:	Comment by Ruth Aydt: Think we may want to show strategy here too.	Comment by Frank Baker: Or list the strategy *if* one was explicitly set? That is, list the strategy only when the application is not relying on HDF5 defaults.
Filename: no_persist_A.h5
Summary of file space information:	Comment by Ruth Aydt: I changed this from “storage” – I think use of file space here makes it more consistent throughout. h5stat output will need to be updated.
 File metadata: 800 bytes
 Raw data: 0 bytes
 Amount/Percent of tracked free space: 0 bytes/0.0%
 Unaccounted space: 0 bytes
Total space: 800 bytes
Note that no_persist_A.h5 contains 800 bytes of file metadata and nothing else; there is no user data and no free space in the file. The file size of the empty HDF5 file no_persist_A.h5 equals the size of the file metadata.
Session 2: Add Datasets
In this session, a user opens the empty HDF5 file no_persist_A.h5, adds four datasets (dset1, dset2, dset3, and dset4) of different sizes, and closes the file.
Running h5dump –H on the updated file produces the following output:
HDF5 "no_persist_A.h5" {
GROUP "/" {
 DATASET "dset1" {
 DATATYPE H5T_STD_I32LE
 DATASPACE SIMPLE { (10) / (10) }
 }
 DATASET "dset2" {
 DATATYPE H5T_STD_I32LE
 DATASPACE SIMPLE { (30000) / (30000) }
 }
 DATASET "dset3" {
 DATATYPE H5T_STD_I32LE
 DATASPACE SIMPLE { (50) / (50) }
 }
 DATASET "dset4" {
 DATATYPE H5T_STD_I32LE
 DATASPACE SIMPLE { (100) / (100) }
 }
}
}

h5stat –S for the updated no_persist_A.h5 reports:
Filename: no_persist_A.h5
Summary of file space information:
 File metadata: 2216 bytes
 Raw data: 120640 bytes
 Amount/Percent of tracked free space: 0 bytes/0.0%
 Unaccounted space: 1976 bytes
Total space: 124832 bytes
[bookmark: OLE_LINK2][bookmark: OLE_LINK1]The data values in the four new dataset objects occupy the 120640 bytes of raw data space. The amount of tracked free space in the file is 0 bytes, while there are 1976 bytes of unaccounted space. The unaccounted space is due to the file space management strategy in use for the no_persist_A.h5 HDF5 file.
The HDF5 library’s default file space management strategy does not retain tracked free space information across multiple sessions with an HDF5 file. This means the information about free space that is collected by the library during the current session (since the file was opened) is not saved when the file is closed. With the default strategy, free space that is incurred during a particular session can be reused during that session, but is unavailable for reuse in all future sessions. This unavailable file free space is reported as “unaccounted space” in the h5stat -S output.
As demonstrated in this example, file free space can be created not only when HDF5 objects are deleted from a file, but also when they are added. This is because adding an object may introduce gaps in the file as new space is allocated for file metadata and HDF5 dataset values. HDF5 files that might develop large amounts of unaccounted space are candidates for non-default file space management strategies if file size is a concern.
Session 3: Add One Dataset and Delete Another
In session 3 with no_persist_A.h5, a user opens the file, adds a new dataset (dset5), and then deletes an existing dataset (dset2) before closing it. After the file is closed, h5dump –H outputs the following:
HDF5 "./no_persist_A.h5" {
GROUP "/" {
 DATASET "dset1" {
 DATATYPE H5T_STD_I32LE
 DATASPACE SIMPLE { (10) / (10) }
 }
 DATASET "dset3" {
 DATATYPE H5T_STD_I32LE
 DATASPACE SIMPLE { (50) / (50) }
 }
 DATASET "dset4" {
 DATATYPE H5T_STD_I32LE
 DATASPACE SIMPLE { (100) / (100) }
 }
 DATASET "dset5" {
 DATATYPE H5T_STD_I32LE
 DATASPACE SIMPLE { (1000) / (1000) }
 }
}
}
h5stat –S reports:
Filename: ./no_persist_A.h5
Summary of file space information:
 File metadata: 2216 bytes
 Raw data: 4640 bytes
 Amount/Percent of tracked free space: 0 bytes/0.0%
 Unaccounted space: 124024 bytes
Total space: 130880 bytes
At this point, the amount of unaccounted space consists of the 1976 bytes that were there when the user opened the file, and the additional free space incurred in the latest session due to the addition of dset5 and the deletion of dset2. The HDF5 file no_persist_A.h5 now contains fragments of lost space resulting from the manipulation of the HDF5 objects in the file and the use of the default file space management strategy. Notice that there is still no tracked free space.
Note that the no_persist_A.h5 file space is now almost 95% unaccounted space and the 120000 bytes of space that originally stored the data values for dset2 make up a substantial fraction of that. HDF5 files that will have dataset objects deleted from them are candidates for non-default file space management strategies if file size is a concern.
Scenario B: Alternative File Space Management Strategy
Session 1: Create an Empty File
In the first session of this scenario, a user creates an HDF5 file named persist_B.h5 using a non-default file space management strategy (H5F_FILE_SPACE_ALL_PERSIST, defined elsewhere). The file is closed before any HDF5 objects are added to it.	Comment by Frank Baker: Suggest specifying the non-default strategy that is used. Only one strategy will produce the behavior described in this scenario. For simplicity, the strategy used could be identified and briefly discussed in a second paragraph of one or two sentences. (Though my proposed text here is clumsier than I would like.)	Comment by Mike Folk: If possible, it would be better to give it a name than to give the flag.

Tells them what this option is supposed to do.	Comment by Quincey Koziol: Is the output from h5dump and h5stat –S the same as after session 1 in scenario A? (I think so for h5dump and I think that h5stat would be different, but we should at least mention it if both are the same)
Session 2: Add Datasets
The HDF5 file persist_B.h5 is re-opened and the same four datasets (dset1, dset2, dset3, and dset4) that were added to no_persist_A.h5 in Scenario A, Session 2 are added to persist_B.h5 before it is closed.
h5stat –S for the updated persist_B.h5 reports:
Filename: ./persist_B.h5
Summary of file space information:
 File metadata: 2391 bytes
 Raw data: 120640 bytes
 Amount/Percent of tracked free space: 1854 bytes/1.5%
 Unaccounted space: 0 bytes
Total space: 124885 bytes
In contrast to no_persist_A.h5 after Session2, persist_B.h5 contains no unaccounted space. It does, however, contain 1854 bytes of tracked free space. The amount of file metadata in persist_B.h5 (2391 bytes) is slightly larger than what was in no_persist_A.h5 (2216 bytes). This increase is due to the extra metadata used by the library to save the tracked free space information.
The h5stat –s command shows more detail about the distribution of tracked free space persist_B.h5: 	Comment by Ruth Aydt: should we also show thresholds? (and strategy?)	Comment by Quincey Koziol: No, that’s not the purpose of h5stat.
Filename: persist_B.h5
Small size free-space sections (< 10 bytes):
 Total # of small size sections: 0
Free-space section bins:
 # of sections of size 10 - 99: 1
 # of sections of size 1000 - 9999: 1
 Total # of sections: 2
There are two free-space sections in persist_B.h5; one section contains between 10 and 99 bytes and the second contains between 1000 and 9999 bytes.
Session 3: Add One Dataset and Delete Another
A user reopens persist_B.h5, adds dset5, deletes dset2, and closes the file. After the file is closed h5stat –S reports:
Filename: ./persist_B.h5
Summary of file space information:
 File metadata: 2427 bytes
 Raw data: 4640 bytes
 Amount/Percent of tracked free space: 121854 bytes/94.5%
 Unaccounted space: 0 bytes
Total space: 128921 bytes
The amount of tracked free space after the addition of dset5 and deletion of dset2 reflects the 1854 bytes of tracked free space that was previously in the file and the free space adjustments resulting from the changes in Session 3.
In this scenario, the HDF5 library allocated space for the file metadata for dset5 from the pool of tracked free space; the free space in the pool resulted from activities in Session 2. When dset2 was deleted, the bytes that were used for that dataset’s raw data and file metadata were added to the file’s tracked free space by the HDF5 library. The tracked free space information was saved (persisted) when the file was closed. Although the file persist_B.h5 still contains unused bytes in the form of tracked free space, it is 5995 bytes smaller than the file no_persist_A.h5 was after Session 3 in Scenario A because the HDF5 library was able to reuse free space incurred in Session 2.
 h5stat –s shows the distribution of free space in persist_B.h5 at the end of Session 3:
Filename: ./persist_B.h5
Small size free-space sections (< 10 bytes):
 Total # of small size sections: 0
Free-space section bins:
 # of sections of size 10 - 99: 1
 # of sections of size 100 - 999: 1
 # of sections of size 1000 - 9999: 1
 # of sections of size 100000 - 999999: 1
 Total # of sections: 4
Note that persist_B.h5 now has two additional free-space sections resulting from the manipulation of the HDF5 objects in the file during Session 3. 	Comment by Frank Baker: How about adding a Session 4 in both scenarios (and possibly Scenarios C through F), adding a single, relatively large dset6 (slightly smaller than the original dset2)? The purpose would be to explicitly illustrate how the file grows by the size of [dset6 plus metadata] in Scenario 1, retaining all of the unaccounted space, but does not grow (at all or only a tiny bit?) in Scenario 2 because everything is stored in reclaimed free space. Just a thought. Yes, it’s an obvious deduction to us, but perhaps a useful illustration for those who need a bit more tutelage. This might also additionally highlight performance differences with the AGGR_VFD and VFD strategies.	Comment by Quincey Koziol: I think this would be useful for users/readers.
Changing the File Space Management Strategy
The file space management strategy for a given HDF5 file is specified when the file is created; it cannot be changed thereafter.
As demonstrated in the previous scenarios, some usage patterns can benefit from non-default file space management strategies. It is not always possible to know in advance how a file will be used, and h5stat –S may show that a given file has a large amount of unaccounted space.
The HDF5 utility h5repack can be used to copy the contents of an existing HDF5 file to a new HDF5 file, reclaiming unaccounted space and tracked free space in the process. In addition to reclaiming space, h5repack -S allows the user to specify a different file space management strategy for the new HDF5 file. While this does not change the strategy used to manage file space in the original file, subsequent sessions with the new file will utilize the new file’s specified file space management strategy.
For example, the user can repack no_persist_A.h5 with a non-default strategy that always allocates file space from the end of file, coded VFD. The new file is no_persist_outvfd.h5:
h5repack –S VFD no_persist_A.h5 no_persist_outvfd.h5
h5stat –S shows the following:
Filename: no_persist_outvfd.h5
Summary of file space information:
 File metadata: 1632 bytes
 Raw data: 4640 bytes
 Amount/Percent of tracked free space: 0 bytes/0.0%
 Unaccounted space: 0 bytes
Total space: 6272 bytes
Comparing this output with the h5stat –S output for no_persist_A.h5 in Scenario A, Session 3 shows several differences. After repacking, there is no unaccounted space, the file metadata is smaller, and there is a substantial decrease in file size.
Although not apparent from the h5stat output, the file management strategy for no_persist_outvfd.h5 is different from the default strategy used for no_persist_A.h5. Subsequent sessions that manipulate HDF5 objects in the new file, no_persist_outvfd.h5, will always operate under the “allocate file space from the end of file” file management strategy.	Comment by Ruth Aydt: Would it be worth showing the strategy with the –S output? I think it might, and perhaps the threshold as well (or maybe show that with –s), as it will help the user decide if they want to repack the file. Now it seems they must turn to h5dump to get that info.
The next section discusses the file space management strategies supported by the HDF5 library and describes the public routines used to specify a non-default strategy or to learn what strategy is being used for an existing file.

3. HDF5 File Space Allocation and Tuning
Audience:
 An HDF5 application developer who has knowledge of the HDF5 library API.
The HDF5 library performs file space management activities related to tracking free space and allocating space to store file metadata and raw data, the data values in HDF5 dataset objects. Every HDF5 file has an associated file space management strategy that determines how the HDF5 library carries out these activities for the file.
3.1 File Space Allocation
The HDF5 library includes three different mechanisms for allocating space to store file metadata and raw data:	Comment by Ruth Aydt: Trying to consistently talk about ‘allocating file space’, because sometimes the space is allocated from bytes that are already in the file (free space for example).
· Free-Space Managers 	Comment by Ruth Aydt: Decided to say managers here, since there are multiple. Think we can say this without going into detail.	Comment by Quincey Koziol: Hmm, I think there is really only one, unless you mean something in particular…
The HDF5 library’s free-space managers track sections in the HDF5 file that are not being used to store file metadata or raw data. These sections will be of various sizes. When the library needs to allocate space, the free-space managers search the tracked free space for a section of the appropriate size to fulfill the request. If a suitable section is found, the allocation can be made from the file’s existing free space. If the free-space manager cannot fulfill the request, the request falls through to the aggregator level.
· Aggregators
The HDF5 library has two aggregators. Each aggregator manages a block of contiguous bytes in the file that have not been allocated previously. One aggregator allocates space for file metadata from the block it manages; the other aggregator handles allocations for raw data. The maximum number of bytes in each aggregator’s block is tunable.	Comment by Ruth Aydt: went into this a bit more based on conversation w/ Vailin. Think it will be important later to know there are 2, and the controls related to them will affect the access patterns a strategy may be appropriate for. Hopefully this isn’t too much detail for this section of the doc.
[bookmark: OLE_LINK3]If the library’s allocation request exceeds the maximum number of bytes an aggregator’s block can contain, the aggregator cannot fulfill the request and the request falls through to the virtual file driver level. After space has been allocated from an aggregator’s block, that space is no longer managed by the aggregator (i.e. if it was freed later, the free-space manager would be in charge of it). Unallocated bytes in the block continue to be managed by the aggregator.
When an aggregator cannot fulfill an allocation request from the remaining space in its block, it requests a new block of contiguous bytes and any unallocated blocks that remain in the existing block become free space.	Comment by Ruth Aydt: added this because it is relevant to understanding what can be lost if free space not tracked.
· Virtual File Driver
The HDF5 library’s virtual file driver interface dispatches requests for additional space to the allocation routine of the file driver associated with an HDF5 file. For example, if the H5FD_SEC2 file driver is being used, its allocation routine will increase the size of the single file on disk that stores the HDF5 file contents to accommodate the additional space that was requested.

File Space Management Strategies
The HDF5 library provides several file space management strategies that control how it tracks free space and uses the free-space managers, aggregators, and virtual file driver to allocate space for file metadata and raw data. The strategies are:
	Use all space allocation mechanisms.
Track file free space across sessions.
	H5F_FILE_SPACE_ALL_PERSIST (or ALL_PERSIST)

	Use all space allocation mechanisms.
Track file free space only in current session.
	H5F_FILE_SPACE_ALL (or ALL)

	Use only aggregator and VFD mechanisms.
Never track free space.
	H5F_FILE_SPACE_AGGR_VFD (or AGGR_VFD)

	Use only VFD mechanism.
Never track free space.
	H5F_FILE_SPACE_VFD (or VFD)

Strategy 1: H5F_FILE_SPACE_ALL_PERSIST (also called ALL_PERSIST)	Comment by Quincey Koziol: I think this “also called …” for each strategy is somewhat confusing and doesn’t add value.
With this strategy, the HDF5 library’s free-space managers track the free space that results from manipulating HDF5 objects in an HDF5 file. The tracked free space information is saved when the HDF5 file is closed, and reloaded when the file is re-opened. The tracked free space information persists across HDF5 file sessions, and the free space managers remain aware of free space sections that became available in any file session.
With this strategy, when space is needed for file metadata or raw data, the HDF5 library first requests space from the free-space managers. If the request is not satisfied, the library requests space from the aggregators. If the request is still not satisfied, the library requests space from the virtual file driver. That is, the library will use all of the mechanisms for allocating space.
The H5F_FILE_SPACE_ALL_PERSIST strategy offers every possible opportunity for reusing free space. The HDF5 file will contain extra file metadata information about tracked free space. The HDF5 library will perform additional “accounting” operations to track free space, and to search the free space sections when allocating space for file metadata and raw data.
Strategy 2: H5F_FILE_SPACE_ALL (also called ALL)
This strategy is the HDF5 library’s default file space management strategy. Prior to HDF5 Release 1.9.x, it was the only file space management strategy directly supported by the library.	Comment by Ruth Aydt: Confirm
With this strategy, the HDF5 library’s free-space managers track the free space that results from manipulating HDF5 objects in an HDF5 file. The free space managers are aware of free space sections that became available in the current file session, but the tracked free space information is not saved when the HDF5 file is closed. Free space that exists when the file is closed becomes unaccounted space in the HDF5 file. Unallocated space in the aggregators’ blocks may also become unaccounted space when the session ends.
As with the strategy ALL_PERSIST, the library will try all of the mechanisms for allocating space with the ALL strategy. When space is needed for file metadata or raw data, the HDF5 library first requests space from the free-space managers. If the request is not satisfied, the library requests space from the aggregators. If the request is still not satisfied, the library requests space from the virtual file driver.
The H5F_FILE_SPACE_ALL strategy allows free space incurred in the current session to be reused in the current session. There is no extra file metadata information about tracked free space in the HDF5 file. However, if free space exists when the file is closed the HDF5 file will contain unaccounted space that can never be reused. The HDF5 library will perform some additional “accounting” operations to track free space, but the amount of free space tracked and searched will usually be less than with the ALL_PERSIST strategy, so the number of operations should be less.	Comment by Ruth Aydt: Confirm	Comment by Quincey Koziol: I don’t know what this means…
Strategy 3: H5F_FILE_SPACE_AGGR_VFD (also called AGGR_VFD)
With this strategy, the HDF5 library does not track the free space that results from manipulating HDF5 objects in an HDF5 file. All free space immediately becomes unaccounted space. Unallocated bytes in the aggregators’ blocks when the file is closed may also become unaccounted space.
With this strategy, when space is needed for file metadata or raw data, the HDF5 library first requests space from the aggregators. If the request is not satisfied, the library requests space from the virtual file driver. That is, the library will try the aggregator and virtual file driver mechanisms for allocating space.
The H5F_FILE_SPACE_AGGR_VFD strategy never reuses free space. Because small allocation requests can be satisfied from the aggregators’ blocks of contiguous bytes, this strategy will deliver better access performance for some file usage patterns. It may be appropriate when access performance is the highest priority and there are many small writes. Because there are different aggregators for file metadata and raw data, this strategy tends to co-locate file metadata more than some other strategies that can reuse free space scattered throughout the file.	Comment by Ruth Aydt: confirm	Comment by Quincey Koziol: Probably true.
Strategy 4: H5F_FILE_SPACE_VFD (also called VFD)
With this strategy, the HDF5 library does not track the free space that results from the manipulation of HDF5 objects in an HDF5 file. All free space immediately becomes unaccounted space.
With this strategy, when space is needed for file metadata or raw data, the HDF5 library requests space from the virtual file driver.
The H5F_FILE_SPACE_VFD strategy never reuses free space. Because allocation requests go directly to the virtual file driver, this strategy is best suited for HDF5 files whose primary file usage pattern consists of writing large amounts of raw data to extend dataset object(s). 	Comment by Ruth Aydt: confirm	Comment by Quincey Koziol: Probably true.

	Summary of File Space Management Strategies	Comment by Quincey Koziol: Should there be some sort of section header to introduce this table?

	Full Name
used with H5Pset_file_space
	Short Name
used with HDF5 repack
	Track Free Space
	Allocate Space Using

	
	
	across multiple sessions
	within single session
	free-space managers
	aggregators
	virtual file driver

	H5F_FILE_SPACE_ALL_PERSIST
	ALL_PERSIST
	Y
	Y
	Y
	Y
	Y

	H5F_FILE_SPACE_ALL
	ALL
	N
	Y
	Y
	Y
	Y

	H5F_FILE_SPACE_AGGR_VFD
	AGGR_VFD
	N
	N
	N
	Y
	Y

	H5F_FILE_SPACE_VFD
	SPACE_VFD
	N
	N
	N
	N
	Y

Specifying a File Space Management Strategy
The strategy for a given HDF5 file is specified when the file is created; it cannot be changed thereafter.
The HDF5 library provides the H5Pset_file_space file creation property routine so that users can specify the file space management strategy that should be used when a new HDF5 file is created (see entry in HDF5 Reference Manual). The signature for the routine is:	Comment by Frank Baker: This will be a link in the online version of the document.

herr_t H5Pset_file_space(hid_t fcpl_id, H5F_file_space_t strategy, hsize_t threshold)
The first H5Pset_file_space parameter, fcpl_id, is the file creation property list identifier that will be used when the HDF5 file is created. The second parameter, strategy, is one of the four strategies described above. The third parameter, threshold, is the free-space section threshold used by the library’s free-space managers. This parameter is mainly for performance tuning purposes, and is discussed in more detail elsewhere. Passing a value of zero for either strategy or threshold indicates that the file’s corresponding existing value should not be modified as a result of the call. 	Comment by Frank Baker: Does this discussion exist yet?	Comment by Ruth Aydt: Not thrilled w/ my phasing here either.
The library provides a companion routine that retrieves the file space management information for an HDF5 file (see entry in HDF5 Reference Manual):	Comment by Frank Baker: This will be a link in the online version of the document.

herr_t H5Pget_file_space(hid_t fcpl_id, H5F_file_space_t * strategy, hsize_t *threshold)
The first parameter, fcpl_id, is the file creation property list identifier associated with the HDF5 file. If the second parameter, strategy, is not NULL, the library will retrieve the existing file space management strategy in use for the file and store it in strategy. If the third parameter, threshold, is not NULL, the library will retrieve the existing free-space section threshold used by the library’s free-space manager and store it in threshold.	Comment by Ruth Aydt: this is confusing to me. if it’s a file creation property list, then it doesn’t make sense to me (because I’m not great at PLs) how it would get associated w/ a file I might open later and want to get this info about. I think it’s only in terms of FCPL that might already be around and that I want to know how it’s set – but, that’s not yet associated w/ a file.

The following code sample shows how these two public routines are used to create an empty HDF5 file, persist.h5, with the file space management strategy ALL_PERSIST: 	Comment by Ruth Aydt: only the set is used to create the file… I think get should be taken out of the example, and dicussion in prev paragrapn moved after the example... not really relevant to the creation side and breaks the flow.

/* Create a file creation property list template */
fcpl_id = H5Pcreate(H5P_FILE_CREATE);

/* Set the file space management strategy */
/* Don’t update the free-space section threshold */
H5Pset_file_space(fcpl_id, H5P_FILE_SPACE_ALL_PERSIST, (hsize_t)0);

/* Create an HDF5 file with the file creation property list fcpl_id */
fid = H5Fcreate(“persist.h5”, H5F_ACC_TRUNC, fcpl_id, H5P_DEFAULT);

/* The strategy retrieved will be #1 H5F_FILE_SPACE_ALL_PERSIST */	Comment by Quincey Koziol: Yes, I agree with Ruth here (can drop the query from the example)	Comment by Ruth Aydt: This doesn’t seem very useful to me. Since I just created the file why would I need to find out info about the strategy used? Seems more relevant if I’m opening a file (but then I can’t change the strategy anyway… can I change the threshold?). Maybe we don’t need to talk about get_file_space here at all, only mention that a companion get_ exists to go with the set_.
/* The threshold retrieved will be 1 which is the library default */
H5Pget_file_space(fcpl_id, &strategy, &threshold);

/* Close the file */
H5Fclose(fid);
The h5dump command line utility reports the file space management information for an HDF5 file. See the following h5dump –B output for the file persist.h5:	Comment by Ruth Aydt: I wonder if this should be moved into the primer section. Especially if this info isn’t provided in an updated output of h5stat. I think for sure strategy would be good there. Maybe free space threshold with –s (not –S) but I don’t know enough about what thresholds do to judge at this point.

HDF5 "persist.h5" {
SUPER_BLOCK {
 SUPERBLOCK_VERSION 2
 :
 :
 :
 FILE_SPACE_STRATEGY H5F_FILE_SPACE_ALL_PERSIST
 FREE_SPACE_THRESHOLD 1
}
 :
 :
The output indicates that the HDF5 library will use the file space management strategy H5F_FILE_SPACE_ALL_PERSIST and a free-space section threshold of 1 (which is the default) when performing free space management activities on the HDF5 file persist.h5.

3.2 Tuning File Space Management	Comment by Frank Baker: I think I agree that this is further detail rather than a separate piece. Suggestion: Replace the section title and audience statement with a heading such as “Tuning File Space Management.”
Each of the four file space management strategies has benefits and drawbacks. The appropriate strategy depends on the HDF5 file’s usage pattern. In this section we cover the pros and cons of the various strategies in more detail, and use additional scenarios to demonstrate their effect on file size.	Comment by Ruth Aydt: Ah… I’m realizing that I put a lot of what Vailin had in this section into the previous sections as I edited. Keeping it here too, as I didn’t cover it all. Will need to decide what audience it’s appropriate for. I think maybe okay sooner, and more detail here, but not a resolved question. Will see as more of the doc gets done.
Recall the two HDF5 files no_persist_A.h5 and persist_B.h5, used in Section 2 Scenario A, “Default File Space Management Strategy.” By using the default file creation property identifier (H5P_DEFAULT) when creating no_persist_A.h5, the HDF5 library will automatically use the file space management strategy H5F_FILE_SPACE_ALL for the file. The code sample in the previous section demonstrated how to create the file persist.h5 that would be managed using the H5F_FILE_SPACE_ALL_PERSIST strategy.
The prior sections have shown that strategy ALL_PERSIST has the benefit of reusing the tracked free space in the file across multiple file sessions, while strategy ALL has the drawback of accumulating unaccounted space in the file over multiple sessions. The key factor contributing to the benefit of strategy ALL_PERSIST is the usage pattern of manipulating (adding/deleting) HDF5 objects across multiple sessions. The fragmentation and unaccounted space with strategy ALL increases with the manipulation of HDF5 objects across sessions.
The H5F_FILE_SPACE_AGGR_VFD and H5F_FILE_SPACE_VFD strategies never use the HDF5 library’s free-space manager to track released file space. Therefore, any unused space that results from the manipulation of HDF5 objects will be unaccounted space that can never be reused. For the AGGR_VFD and VFD strategies, the number of sessions in which manipulations occur has negligible (AGGR_VFD) or no (VFD) effect on the file size.	Comment by Ruth Aydt: Confirm. I think with AGGR there may be a little effect if blocks are not fully used and can’t be freed. Are there any alignment issues in VFD that would cause a (small) effect there?
Discussions of the scenarios presented earlier in the Primer are expanded below, and HDF5 files with AGGR_VFD and VFD management policies are also shown. The datasets in this section are identical to those used in the previous scenarios.
Scenario C: ALL_PERSIST Strategy in Single Session
Session 1: Create file, manipulate objects
In the only session of this scenario, a user creates an HDF5 file named persist_C.h5 using the H5F_FILE_SPACE_ALL_PERSIST strategy. The user then adds four datasets (dset1, dset2, dset3, and dset4), deletes dset2, and adds dset5 before closing the file. 	Comment by Ruth Aydt: Okay, decided I needed to carry the Scenario in the name. Started using persist2 here, but later things just got too hard to track.
The file management strategy is the same strategy that was used in Scenario B. The HDF5 objects are manipulated in the same order as they were in Sessions 1-3 of Scenario B.
h5stat –S for persist_C.h5 shows the following:

Filename: ./persist_C.h5
Summary of file space information:
 File metadata: 2409 bytes
 Raw data: 4640 bytes
 Amount/Percent of tracked free space: 117854 bytes/94.4%
 Unaccounted space: 0 bytes
Total space: 124903 bytes
The file size for persist_C.h5 is about 4000 bytes smaller than the file size for persist_B.h5 after Session 3 of Scenario B. This is because there are some space savings, in both free space and file metadata (fewer free space sections to track), when the HDF5 object manipulations occur in a single session.
Scenario D: ALL Strategy in Single Session
Session 1: Create file, manipulate objects
In the only session of this scenario, a user creates an HDF5 file named no_persist_D.h5 using the H5F_FILE_SPACE_ALL strategy. The user then adds four datasets (dset1, dset2, dset3, and dset4), deletes dset2, and adds dset5 before closing the file.
The file management strategy is the same strategy that was used in Scenario A. The HDF5 objects are manipulated in the same order as they were in Sessions 1-3 of Scenario A.
h5stat –S for no_persist_D.h5 shows the following:
Filename: ./no_persist_D.h5
Summary of file space information:
 File metadata: 2216 bytes
 Raw data: 4640 bytes
 Amount/Percent of tracked free space: 0 bytes/0.0%
 Unaccounted space: 117976 bytes
Total space: 124832 bytes
The file size for no_persist_D.h5 is about 6000 bytes smaller than the file size for no_persist_A.h5 after Session 3 of Scenario A. This is because the HDF5 library was able to reuse some of the free space it was tracking when all of the object manipulations took place in a single session. no_persist_D.h5, created in Scenario D, still has a substantial amount of unaccounted space (117976 bytes) – almost 95% of the total file space.	Comment by Ruth Aydt: Hmm. this makes me wonder if we should report Amount/Percent of unaccounted space like you do for free space.
Comparing file space information for persist_C.h5 (Scenario C) and no_persist_D.h5 (Scenario D), the file size of no_persist_D.h5 is a bit smaller. For both files, the library’s free-space manager tracks the free space resulting from the deletion of dset2, and reuses the free space for the addition of dset5. Looking at the size of the file metadata for the two files, the greater amount of file metadata in persist_C.h5 is due to the extra metadata needed to keep free space information persistent when the file is closed. This demonstrates that using strategy ALL, as was done for no_persist_D.h5, has some saving in file space compared to strategy ALL_PERSIST when the HDF5 object manipulation occurs in a single session. The exact amount of space savings will depend on the number and size of HDF5 objects that are added and deleted, as well as on the value of the free-space section threshold and other advanced tuning parameters.	Comment by Frank Baker: Besides strategy and threshold, what other relevant advanced tuning parameters are there? Or am I just not seeing something?
Scenario E: AGGR_VFD Strategy in Single Session
Session 1: Create file, manipulate objects	Comment by Quincey Koziol: This needs some discussion of the results (as for earlier scenarios in this section).
In the only session of this scenario, a user creates an HDF5 file named aggrvfd_E.h5 using the H5F_FILE_SPACE_AGGR_VFD strategy. The user then adds four datasets (dset1, dset2, dset3, and dset4), deletes dset2, and adds dset5 before closing the file.
h5stat –S output shows:

Filename: ./aggrvfd_E.h5
Summary of file space information:
 File metadata: 2208 bytes
 Raw data: 4640 bytes
 Amount/Percent of tracked free space: 0 bytes/0.0%
 Unaccounted space: 121936 bytes
Total space: 128784 bytes
Scenario F: VFD Strategy in Single Session
Session 1: Create file, manipulate objects	Comment by Quincey Koziol: This needs some discussion of the results (as for earlier scenarios in this section).
In the only session of this scenario, a user creates an HDF5 file named vfd_F.h5 using the VFD strategy. The user then adds four datasets (dset1, dset2, dset3, and dset4), deletes dset2, and adds dset5 before closing the file.
h5stat –S output shows:
Filename: ./vfd_F.h5
Summary of file space information:
 File metadata: 2208 bytes
 Raw data: 4640 bytes
 Amount/Percent of tracked free space: 0 bytes/0.0%
 Unaccounted space: 120272 bytes
Total space: 127120 bytes

Comparison of HDF5 Files from Scenarios A-F after HDF5 Object Manipulation
	Scenario /
 # Sessions
	Strategy
	File Name
	File Size	Comment by Frank Baker: The numbers in this column and in the last two columns might have more impact with the aforementioned “Session 4.” At least, I would expect the file size and tracked space numbers to be more dramatically different for persist_B.h5.
(bytes)
	File Metadata
(bytes)
	Raw Data (bytes)

	Tracked Free Space (bytes)
	Unaccounted Space (bytes)

	A / 3
	ALL
	no_persist_A.h5
	130880
	2216
	4640
	0
	124024

	B / 3
	ALL_PERSIST
	persist_B.h5
	128921
	2427
	4640
	121854
	0

	C / 1
	ALL_PERSIST
	persist_C.h5
	124903
	2409
	4640
	117854
	0

	D / 1
	ALL
	no_persist_D.h5
	124832
	2216
	4640
	0
	117976

	E / 1
	AGGR_VFD
	aggrvfd_E.h5
	128784
	2208
	4640
	0
	121936

	F / 1
	VFD
	vfd_F.h5
	127120
	2208
	4640
	0
	120272

Files no_persist_A.h5 and persist_B.h5, which were written over three sessions, have the largest file sizes. Since the unused space in persist_B.h5 is tracked free space, it may be reused in later sessions if more HDF5 objects are added to the file, or if new data values are added to existing dataset objects. 	Comment by Ruth Aydt: don’t think this is possible here because not extensible objects. Maybe a new (as yet not discussed) dset object would be extensible and then this could happen… hmm…	Comment by Quincey Koziol: Yes, I think this would be a good idea.

The file sizes of aggrvfd_E.h5 and vfd_F.h5 are larger than persist_C.h5 and no_persist_D.h5 – files that were also created in a single session. This is because strategies AGGR_VFD and VFD do not track free space, even within a single session, and therefore do not reuse any space that is released as HDF5 objects are manipulated. aggrvfd_E.h5 is larger than vfd_F.h5 because bytes in the aggregators’ blocks have become unaccounted in the process of managing space. The VFD strategy does not use the aggregators, but allocates space directly from the file driver.

The final Scenarios G and H illustrate that the strategies AGGR_VFD and VFD have the benefit of saving file space when the usage pattern is adding HDF5 objects without deletion. They may also be faster, because no time is spent tracking free space in the file.	Comment by Quincey Koziol: I think an example of the results from using these two strategies over multiple sessions might be useful.	Comment by Ruth Aydt: I suspect there needs to be more discussion on this (which I added). Maybe faster for large writes. Or maybe for small if AGGR. Can we say more?

Scenario G: AGGR_VFD Strategy in Single Session, no Objects Deleted
Session 1: Create file, add objects
In the only session of this scenario, a user creates an HDF5 file named aggrvfd_G.h5 using the H5F_FILE_SPACE_AGGR_VFD strategy. The user then adds four datasets (dset1, dset2, dset3, and dset4) and closes the file.
h5stat –S shows:
Filename: ./aggrvfd_G.h5
Summary of file space information:
 File metadata: 2208 bytes
 Raw data: 120640 bytes
 Amount/Percent of tracked free space: 0 bytes/0.0%
 Unaccounted space: 1936 bytes
Total space: 124784 bytes
Scenario H: VFD Strategy in Single Session, no Objects Deleted
Session 1: Create file, add objects
In the only session of this scenario, a user creates an HDF5 file named vfd_H.h5 using the H5F_FILE_SPACE_VFD strategy. The user then adds four datasets (dset1, dset2, dset3, and dset4) and closes the file.
h5stat –S shows:
Filename: ./vfd_H.h5
Summary of file space information:
 File metadata: 2208 bytes
 Raw data: 120640 bytes
 Amount/Percent of tracked free space: 0 bytes/0.0%
 Unaccounted space: 0 bytes
Total space: 122848 bytes

Comparison of HDF5 Files from Scenarios A, B, G, H after HDF5 Objects Added
	Scenario /
 # Sessions
	Strategy
	File Name
	File Size
(bytes)
	File Metadata
(bytes)
	Raw Data (bytes)

	Tracked Free Space (bytes)
	Unaccounted Space (bytes)

	A / 2
	ALL
	no_persist_A.h5
	124832
	2216
	120640
	0
	1976

	B / 2
	ALL_PERSIST
	persist_B.h5
	124885
	2319
	120640
	1854
	0

	G / 1
	AGGR_VFD
	aggrvfd_G.h5
	124784
	1936
	120640
	0
	1936

	H / 1
	VFD
	vfd_H.h5
	122848
	2208
	120640
	0
	0

The table above shows the file space information for HDF5 files after four datasets have been added. This corresponds to the state of the files after Session 2 in Scenarios A and B.
The aggrvfd_G.h5 and vfd_H.h5 files are smaller than no_persist_A.h5 and persist_B.h5. The HDF file vfd_H.h5, managed with the VFD strategy, has the smallest size with no tracked free space or unaccounted space. Even though the file aggrvfd_G.h5 has less saving in file space than vfd_H.h5, it will have the benefit of better I/O performance due to the use of aggregators for servicing space allocation requests. Metadata in aggrvfd_G.h5 will also tend to be more concentrated in contiguous blocks than in vfd_H.h5.
The section Performance Report for File Space Management provides more information about selecting file space management strategies to optimize access performance. 	Comment by Frank Baker: Still in development

Particularly aggravated when all within one setting all_one_setting () (~4k, 2k) or 	Comment by Ruth Aydt: Suspect this is either Note to Self or cut/paste error.
add_close_adddelete() (this one is worser?hm…not really diff 2k but I have the bug in this one for VFD) : for #3, then #4
Bug in add_close_adddelete() for VFD

21

