
Modified Region Writes

The Core virtual file driver allows the manipulating of HDF5 files in memory instead of in
physical storage. In previous versions, changing any part of a file in memory meant the
entire file would be written to storage on file close or flush. To improve the
performance of the writing to storage operation, a new feature, modified region writes,
has been added. With modified region writes, only the changed regions of the file are
written to storage.

The intended audience for this feature is advanced users of the Core virtual file driver.

Introduced with

HDF5-1.8.13

May 15, 2014

Page 2 of 8

Copyright 2014 by The HDF Group.

All rights reserved.

For more information about The HDF Group, see www.hdfgroup.org.

http://www.hdfgroup.org/

Modified Region Writes Contents

Page 3 of 8

Contents

1. Introduction to Modified Region Writes ... 4
1.1. How the Core VFD Tracks File Modifications ... 4
1.2. Using the New Feature... 5
1.3. Performance ... 6

2. References .. 7
2.1. The Virtual File Layer and Virtual File Drivers .. 7

3. Revision History .. 8

Modified Region Writes Introduction to Modified Region Writes

Page 4 of 8

1. Introduction to Modified Region Writes
In the 1.8.13 release of the HDF5 Library, a feature called modified region writes was added to improve
the performance of writes to storage. The purpose of this document is to describe the feature and how
to use it. The intended audience for this feature is advanced users of the Core virtual file driver (VFD).

The Core (or Memory) VFD allows HDF5 files to be created or opened in memory instead of in physical
storage. If an existing file is opened in memory, the entire contents of the file are copied into memory
on open. All subsequent manipulations of created or opened files occur in memory. The advantage of
working on files in memory is the file operations go much faster, but the disadvantage is significant
memory resources may be required when working with large files. On file close or flush, the changes can
optionally be propagated to physical storage.

The Core VFD is configured via the following API call:

herr_t H5Pset_fapl_core(hid_t fapl_id, size_t increment,

hbool_t backing_store)

The backing_store parameter sets whether or not changes are propagated to physical storage on
close. If this parameter is set to 0 (FALSE), then all changes will be lost when the file is closed. If set to 1
(TRUE), then the changes are written to storage on file close or flush. In previous versions of the library
when a file was closed, the entire file would be written out if even a single byte has changed. This can be
inefficient when very large files are written out after minimal changes have been made.

If files being worked on in memory will be written to disk, the modified region writes feature can be
enabled.

1.1. How the Core VFD Tracks File Modifications

When modified region writes are enabled, the Core VFD will track any changes made to the file. On file
close or flush, the tracked changes will be written to storage.

As write calls pass through the Core VFD, a list of “start address-end address” pairs representing the
writes is updated. This list serves as a map of modified regions in the file. Overlapping or abutting
regions are merged as they are inserted into the list.

As a further optimization, a write page size can be set. This feature expands any dirty regions (regions
with changed bytes) to the nearest page boundaries. Using write pages can minimize seeks and small,
inefficient writes when a large number of small non-adjacent writes occur. See the figure below.

Note that these marked regions are at the granularity of the write calls that the library makes. In other
words, an entire metadata object or dataset chunk will be marked dirty if even a single byte is changed
since the library uses a single write call when metadata objects or dataset chunks are evicted from their

Modified Region Writes Introduction to Modified Region Writes

Page 5 of 8

respective caches. The Core VFD will make no effort to determine the particular bytes that were
modified with respect to the original data.

Figure 1. Effect of the paging feature
When the paging feature has been enabled, the in-memory "file" is conceptually divided into multiple
pages (dashed lines). Dirtying (modifying) any part of a page marks the entire page as dirty.

1.2. Using the New Feature

The modified region writes feature is turned off by default. Setting the backing_store flag to TRUE
will not turn modified region writes on.

The modified region writes feature is controlled via the H5Pget/set_core_write_tracking() HDF5
API calls. The signatures of these function calls are the following:

herr_t H5Pset_core_write_tracking(hid_t fapl_id, hbool_t is_enabled,

size_t page_size)

herr_t H5Pget_core_write_tracking(hid_t fapl_id, hbool_t *is_enabled,

size_t *page_size)

Setting the page size to a value greater than 1 turns write tracking on at that page size. Setting a page
size of 1 byte disables paging.

Modified Region Writes Introduction to Modified Region Writes

Page 6 of 8

More information for these function calls can be found in the HDF5 Reference Manual.

1.3. Performance

The performance benefits of the feature will depend heavily on the data access patterns of the
application and will have to be evaluated on a case-by-case basis. In cases where the majority of the
data would be written out (for example, creating and writing data to a new file), the new feature will
likely not impart a significant performance benefit. In cases where a small amount of data will be added
or changed (for example, opening an existing file and modifying a small amount of existing data), the
performance benefits could be significant.

When performance tuning, the following parameters are likely to have significant effects on I/O
throughput:

 The size of the backing store pages (see H5Pset_core_write_tracking)

 Dataset layout and chunk size (see H5Pset_layout and H5Pset_chunk)

 Metadata aggregation size (see H5Pset_meta_block_size)

 Using the latest file format (see H5Pset_libver_bounds)

 Data layout considerations (arrangement of groups, datasets, and datatypes)

In general, anything that promotes the aggregation of changes made to the file will enhance the
performance of this feature. Unfortunately, empirical testing will typically be required to determine the
“sweet spot” between reducing the number of seeks and minimizing the amount of data written out.

More information for these function calls can be found in the HDF5 Reference Manual.

Modified Region Writes References

Page 7 of 8

2. References
For more information, see the entries for the H5Pset_fapl_core, H5Pget_core_write_tracking,
and H5Pset_core_write_tracking function calls in the HDF5 Reference Manual at
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html.

2.1. The Virtual File Layer and Virtual File Drivers

The HDF5 Library uses a layered architecture. The lowest layer is the virtual file layer (VFL). The VFL
handles low-level file I/O via virtual file drivers (VFDs). The VFL is an abstraction layer in the HDF5 Library
that maps I/O operations such as “read” to concrete I/O calls like the POSIX read() call or the Win32
ReadFile() call. Each VFD implements a different I/O scheme: some examples are MPI-I/O, POSIX I/O,
and in-memory I/O. This VFL/VFD scheme allows abstract HDF5 file manipulations to be separated from
storage I/O operations.

For more information, see “HDF5 Virtual File Layer” at
http://www.hdfgroup.org/HDF5/doc/TechNotes/VFL.html.

For more information on virtual file drivers, see the “Alternate File Storage Layouts and Low-level File
Drivers” section in “The File” chapter in the HDF5 User’s Guide at
http://www.hdfgroup.org/HDF5/doc/UG/index.html.

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html
http://www.hdfgroup.org/HDF5/doc/TechNotes/VFL.html
http://www.hdfgroup.org/HDF5/doc/UG/index.html

Modified Region Writes Revision History

Page 8 of 8

3. Revision History

May 5, 2014 Initial version of this document. This document is based on the Core VFD
enhancements described in the core CFD paging v5.docx file.

