
HDF5 Dimension Scale Specification and Design Notes

Version 1.0
March 1, 2005

Contents
1 Introduction and overview...1
2 The HDF5 Standard for Dimension Scales..2
3 Conceptual model ..3

3.1 Definitions ...3
3.2 Entity Relationship Diagrams..3
3.3 What types of scales should be implemented?...5
3.4 Limitations of this Specification..5

4 The HDF5 Dimension Scale Specification..6
4.1 Brief Summary ..6
4.2 Storage Profile ...7

4.2.1 Dimension Scale Dataset ...7
4.2.2 Attributes of a Dataset with a Dimension Scale...9

4.3 Dimension Scale Names and Labels..9
4.4 Shared Dimension Scales...10
4.5 Example ...11

5 Programming Model and API..14
5.1 Programming Model..14

5.1.1 Create new Dimension Scale with Initial Values...14
5.1.2 Attach Dimension Scale to Dataset..14
5.1.3 Read Dimension Scale values..14
5.1.4 Write or Update Dimension Scale values ..15
5.1.5 Create a label for a dimension ...15
5.1.6 Extending a Dimension with a Dimension Scale attached...15
5.1.7 Detach Dimension Scale from Dataset ..15
5.1.8 Delete a Dimension Scale Dataset ...15
5.1.9 Clean up Dimension Scales when deleting a Dataset ..16

5.2 Programming API: H5DS..16
6 Other Language Interfaces...22
7 References ...22
8 Appendix 1: Implications for tools ..23
9 Appendix 2: HDF4 to HDF5 Mapping ..24
10 Appendix 3: netCDF-4 Dimensions ..26
11 Appendix 4: HDF-EOS5 Issues...27

1 Introduction and overview
This specification describes an implementation of dimension scales for HDF5 based on [5], which summarized
earlier discussions in [1] [2] [3] and [4]. This earlier work covered different use cases, along with different proposals
for implementation strategy.

In the design discussions, the most difficult issue has been the extent to which dimension scales should be defined
and implemented as high level objects (as with images, tables, and unstructured grids), versus the extent to which
they should be defined and implemented as part of the basic HDF5 data model, format and library.

This issue arises because in one sense dimension scales are application-specific constructs, and in another they are
application-independent data structure constructs. They are application-specific in the sense that their meaning
derives from how they help us understand the scientific space to which they apply – for example, they help locate

 - 1 -

information in a geographic space. They are application-independent in the sense that they provide relevant
information about a dataset’s dataspace – for example, a dataspace includes information about each dimension, and
it is useful to extend that information to include a dimension name.

Sharability is another concept that can fall on either side of the issue. When an application wants two dimensions to
share a dimension scale, it might have different ideas about what that sharing means. For instance, one dimension
might map to the entire scale, and another to a subset of the scale. On the other side, sharability for HDF5 means
that two or more objects share another object that provides structural metadata, such as a datatype or a dataspace,
and the relationships are strictly defined in the HDF5 model.

Basic or high level? If we have to choose, which do we choose? Are we to think of dimension scales as just another
use of datasets, like images, tables and unstructured grids? Or are we to think of them as fundamental components
of datasets that can be shared.

If it is the former (“another use of datasets”), then a high level library seems like the best approach, with no changes
to the format. This approach also has the advantage that we can treat the first implementation as a prototype that
can be changed later with no harm done to the format or base library. On the other hand, if we choose the high level
approach and then later change our mind, we will be stuck with legacy applications that depend on this approach,
and new applications that depend on the new approach, leading to confusion and maintenance headaches.

If the answer is “fundamental components,” then the format will have to be changed in certain ways, such as
including more dimension information in dataspaces (dimension names, links to dimension scales, etc.), and perhaps
also in the headers of datasets that are sub-classed as dimension scales. These changes have the same disadvantages
as do those of the higher level approach, and they become even harder to alter later than those in a high level
approach.

This specification implements the first option – to think of dimension scales as a high level use of datasets that have
no special meaning in the HDF5 data model or library. One significant consequence of this design decision is that
Dimension Scales will be visible as regular (albeit distinguishable) HDF5 Datasets, accessible through APIs that do
not implement the profile defined here. For some uses this will be an advantage, and for others it is a disadvantage.

Perhaps the biggest difference between [1] and [3] is in the requirement in [3] that a coordinate system support be
available. We argued in [4] that we felt it was premature to support coordinate systems in HDF5 at this time. In a
similar vein, support for units has been requested. As in the case of coordinates, this would seem to be beyond the
scope of the current task.

2 The HDF5 Standard for Dimension Scales
Dimension scales are stored as datasets, with additional metadata indicating that they are to be treated as dimension
scales. Each dimension scale has an optional name. There is no requirement as to where dimension scales should
be stored in the file. Dimension Scale names are not required to be unique within a file.1

Datasets are linked to dimension scales. Each dimension of a Dataset may optionally have one or more associated
Dimension Scales, as well as a label for the dimension. A Dimension Scale can be shared by two or more
dimensions, including dimensions in the same or different dataset.

Relationships between dataset dimensions and their corresponding dimension scales are not be directly maintained
or enforced by the HDF5 library. For instance, a dimension scale would not be automatically deleted when all
datasets that refer to it are deleted.

Functions for creating and using Dimension Scales are implemented as high level functions, as defined in Section 5
below.

A frequently requested feature is for Dimension Scales to be represented as functions, rather than a stored array of
precomputed values. To meet this requirement, it is recommended that the dataset model be expanded in the future
to allow datasets to be represented by a generating function. This feature is defined in a separate document [12].

1 The name of a dimension scale does not have to be the same as the HDF5 path name for the dataset representing
the scale.

 - 2 -

3 Conceptual model
As discussed in on [5], proposals [1] and [3] differ in their conceptual models. This specification includes (and
excludes) features of both.

Our study of dimension scale use cases has revealed an enormous variety of ways that dimension scales can be used.
We recognize the importance of having a model that will be easy to understand and use for the vast majority of
applications. It is our sense that those applications will need either no scale, a single 1-D array of floats or integers,
or a simple function that provides a scale and offset.

At the same time, we want to place as few restrictions as possible on other uses of dimension scales. For instance,
we don’t want to require dimension scales to be 1-D arrays, or to allow only one scale per dimension.

So our goal is to provide a model that serves the needs of two communities. We want to keep the dimension scale
model conceptually simple for the majority of applications, but also to place as few restrictions as possible how
dimension scales are interpreted and used. With this approach, it becomes the responsibility of applications to make
sure that dimension scales satisfy the constraints of the model that they are assuming, such as constraints on the size
of dimension scales and valid range of indices.

3.1 Definitions
This document refers to the standard objects of the HDF5 Abstract Data Model [10, 11]. Dimension Scales are
implemented as an extension of these objects. In the HDF5 Abstract Data Model, a Dataset has a Dataspace, which
defines a multi dimensional array of elements. Conceptually, a Dataspace has N dimension objects, which define the
current and maximum size of the array in that dimension.

It is important to emphasize that the Dataspace of a Dataset has no intrinsic meaning except to define the layout in
computer storage. Dimension Scales may be used to store application specific labels to the positions in the stored
data array, i.e., to add application specific meaning to the dimensions of the dataspace.

A Dimension Scale is an object associated with one dimension of a Dataspace.2 The meaning of the association is
left to applications. The values of the Dimension Scale are set by the application to reflect semantics of the data, for
example, to associate coordinates of a reference system with positions on the dimension.

In general, these associations define a mapping between values of a dimension index and values of the Dimension
Scale dataset. A simple case is where the Dimension Scale s is a (one dimensional) sequence of labels for the
dimension ix of Dataset d. In this case, Dimension Scale is an array indexed by the same index as in the dimension
of the Dataspace. For example, for the Dimension Scale s, associated with dimension ix, the ith position of ix is
associated with the value s[i], so s[i] is taken as a label for ix[i].

See [3] [4] and [5] for several other possible uses of Dimension Scales.

3.2 Entity Relationship Diagrams
Figure 1 shows UML to illustrate the relationship between a Dimension and a Dimension Scale object.
Conceptually, each Dimension of a Dataspace may have zero or more Dimension Scales associated with it. In turn, a
Dimension Scale object may be associated with zero or more Dimensions (in zero or more Dataspaces).

Figure 2 illustrates the abstract model for a Dimension Scale object. A Dimension Scale is represented as a sub-class
of a Dataset: a Dimension Scale has all the properties of a Dataset, with some specializations. A Dimension Scale
dataset has an attribute “CLASS” with the value “DIMENSION_SCALE”. (This is analogous to the Table, Image,
and Palette objects [9].) The Dimension Scale dataset has other attributes, including an optional NAME and
references to any associated Dataset, as discussed below.

When the Dimension Scale is associated with a dimension of a Dataset, the association is represented by attributes
of the two datasets. In the Dataset, the DIMENSION_LIST is an array of object references to scales (Dimension

2 Some of the use cases in [3] require associating more than one dimension with a Dimension Scale. This
specification does not directly address this requirement, but applications can extend this specification to support this
use.

 - 3 -

Scale Datasets) (Figure 1), and in the Dimension Scale Dataset the REFERENCE_LIST is an array of object
references to Datasets (Figure 2).

Figure 1. The relationship between a Dimension and a Dimension Scale.

Figure 2. The definition of a Dimension Scale and its attributes.

 - 4 -

3.3 What types of scales should be implemented?
As discussed in [5], there seems to be good agreement that the model should accommodate scales that consist of a
stored 1-D list of values, certain simple functions, and “no scale.” This specification also includes scales that are
higher dimensional arrays, as well. The four types of scales are:

1. No scale. Frequently no scale is needed, so it should not be required. In some of these cases, an axis
label may still be needed, and should be available. In this case, the Dataset defines a Dimension Scale
label for a dimension, with no Dimension Scale dataset.

2. 1-D array. Both fixed length and extendable arrays should be available. The size of the Dimension
Scale is not required by HDF5 to conform to the size of the corresponding dimension(s), so that the
number of scale values could be less than, equal to, or greater than the corresponding dimension size.

3. Simple function. At a minimum, a linear scale of the form A + Bx should be available. This will be
discussed in a future proposal [12].

4. Higher dimensional arrays. Proposal [3] makes a good case for including arrays with dimension
greater than 1. This specification allows Dimension Scales to have any number of dimensions.

A number of use cases have been proposed in which more than one scale is needed for a given dimension. This
specification places no restrictions on the number of scales that can be associated with a dimension, nor on the
number or identities of Dimensions that may share the same Dimension Scale.

As discussions in [5], there are use cases for storing many types of data in a scale, including, but not limited to
integers, floats, and strings. Therefore, this specification places no restrictions on the datatypes of scale values: a
Dimension Scale can have any HDF5 Datatype. The interpretation of dimension scale values is left to applications.

3.4 Limitations of this Specification
The model presented in this specification does not meet some requirements suggested by the use cases in [3]. These
requirements must be implemented by other software, such as the netCDF 4 library [7]. These issues are discussed
in detail in [4] and [5]. This section summarizes some of the limitations.

One-to-many mapping. When there are fewer values in a dimension scale than in the corresponding dimension, it
is useful to have a mapping between the two. For example, mappings are used by HDF-EOS to map geolocation
information to dimension, in order that, for example, every second point may have geolocation. On the other hand,
the way that mappings are defined can be very idiosyncratic, and it would seem to be challenging to provide a
mapping model that satisfied a large number of cases. These mappings are not included in the model specified here.

Visibility and Integrity. Since Dimension Scales are a specialization of a Dataset, it is “visible” and accessible as a
regular Dataset through the HDF5 API. This means that an application program could alter the values of or delete a
Dimension Scale object or required attributes without regard to any of the semantics defined in this document. This
exposure has advantages and disadvantages, as discussed in [4].

One advantage it that the implementation requires no changes to the base library, which reduces the complexity of
the code and the risk of side-effects. The implementation builds on existing functions, which should improve the
quality and reliability of the code. Also, this approach leaves most of the semantics of dimension scales to
applications and communities, who can use the specification in any way they need.

An important disadvantage is that the core HDF5 library will not manage the semantics of Dimension Scales. In
particular, applications or other software must implement:

1. Naming – the HDF5 library will impose no rules on the names of Dimension Scales

2. Consistency of references – e.g., if a Dataset (Dimension Scale) is deleted (e.g., with H5Gdelete(), any
Dimension Scales (Datasets) that it refers to (refer to it) will not be updated by the HDF5 library.

3. Consistency of extents – the HDF5 library will not assure that a Dimension and associated Dimension
Scale have the same extent (number of elements), nor that shared objects are consistent with each other. As
in the case of delete, if a Dimension or Dimension Scale is extended (e.g., H5S…), any associated objects
will not be automatically extended.

 - 5 -

These are briefly summarized here.

Naming and Name Spaces. As discussed in [4] and [5], there are many potential schemes for naming
dimensions, each suited for different uses. This specification does not impose any specific approach, so it
may be used by different applications. However, the lack of restrictions has disadvantages as well.

For some purposes, it will be important to iterate through all the Dimension Scale objects in a file. The
iterate operation is difficult to implement with the design specified here. This will be left to other software.
For example, the HDF-EOS library [8] has its own mechanism for managing a set of dimensions, and the
netCDF4 library [7] will implement this if it needs to.

Automatically extending dataset dimensions. When a dimension of a dataset is extended, should the
library automatically extend the corresponding dimension scale, or should this be left to the application?
Since a dimension scale can be shared among many datasets, this raises a number of issues that are difficult
to address in a general way. For instance, which dimension scale should be extended when only one
dataset is extended, and what values are to be added? We have seen no compelling reason to implement an
automatic extension of dimension scales when dataset dimensions are extended, so we suggest letting
applications be responsible for this operation.

Automatically deleting dimension scales. Should a dimension scale be deleted when all datasets that use
it have been deleted? This is another case where different applications might have different requirements,
so a general policy would be difficult to devise. Furthermore, enforcing a deletion policy, even a simple
one, adds complexity to the library, and could also affect performance. Deletion policies seem best left to
applications.

Section 5 presents an API and programming model that implements some of these features. However, applications
may ignore or bypass these APIs, to write or read the attributes directly.

4 The HDF5 Dimension Scale Specification

4.1 Brief Summary
A Dimension Scale is stored as an HDF5 Dataset.

• A Dimension Scale is an object that is associated with a dimension of a Dataset.

• A Dimension Scale can have at most one name.

• A Dimension Scale may be associated with zero, one, or many different dimensions in any number of
Datasets.

• Unless otherwise specified, a Dimension Scale inherits the properties of an HDF5 Dataset.

• There are no restrictions on the size, shape, or datatype of a Dimension Scale.

A Dimension Scale can be associated with a dimension of an HDF5 dataset

• A dimension of a Dataset may have zero, one, or more Dimension Scales associated with it.

• Each scale is identified by an index value.

A dimension may have a label without a scale, and may have a scale with no label.

• The label need not be the same as the name of any associated Dimension Scales.

The implementation has two parts:

1. A storage profile

2. An API and programming model

This section specifies the storage profile. Section 5 presents the API.

 - 6 -

4.2 Storage Profile
This section specifies the storage profile for Dimension Scale objects and the association between Dimensions and
Dimension Scales.

This profile is compatible with an earlier netcdf prototype [13] and the HDF4 to HDF5 Mapping [6]. This profile is
also compatible with the netCDF4 proposal [7]. This profile may be used to augment the HDF-EOS5 profile, as well
[8].

See Appendix 2 for a discussion of how to store converted HDF4 objects. See Appendix 3 for a discussion of
netCDF4 issues. See Appendix 4 for a discussion of HDF-EOS5.

4.2.1 Dimension Scale Dataset
A Dimension Scale dataset is stored as an HDF5 dataset. Table 1 summarizes the stored data, i.e., the values of the
scale. There are no restrictions on the dataspace or datatype, or storage properties of the dataset.

The scale may have any HDF5 datatype, and does not have to be the same as the datatype of the Dataset(s) that use
the scale. E.g., an integer dataset might have dimension scales that are string or float values.

The dataspace of the scale can be any rank and shape. A scale is not limited to one dimension, and is not restricted
by the size of any dimension(s) associated with it. When a dimension is associated with a one dimensional scale, the
scale may be a different size from the dimension. In this case, it is up to the application to interpret or resolve the
difference. When a dimension is associated with a scale with a rank higher than 1, the interpretation of the
association is up to the application.

The Dimension Scale dataset can use any storage properties (including fill values, filters, and storage layout), not
limited by the properties of any datasets that refer to it. When the Dimension Scale is extendible, it must be chunked.

Table 2 defines the required and optional attributes of the Dimension Scale Dataset. The attribute
REFERENCE_LIST is a list of (dataset, index) pairs. Each pair represents an association defined by ‘attach_scale’.
These pairs are stored as an array of compound data. Table 3 defines this datatype.

The Dimension Scale Dataset has an attribute called SUB_CLASS. This string is intended to be used to document
particular specializations of this profile, e.g., a Dimension Scale created by netCDF4.

 - 7 -

Table 1. The properties of the Dimension Scale dataset

Field Datatype Dataspace Storage Properties Notes

<data> Any Any Any These are the values of the Dimension Scale.

Table 2. Standard Attributes for a stored Dimension Scale dataset.

Attribute Name Datatype and
Dimensions Value Required /

Optional Notes

CLASS H5T_STRING
length = 16

“DIMENSION_SCALE” R This attribute
distinguishes the
dataset as a Dimension
scale object.

This is set by
H5DSset_scale

NAME H5T_STRING
length = <user
defined>

<user defined>1 O,
(Maximum
of
1)

The user defined label
of the Dimension
Scale.

This is set by
H5DSset_name

REFERENCE_LIST Array of Dataset
Reference Type
(Compound
Datatype), variable
length.

[{dataset1, ind1 },
 …]
[,…]
 ….]

O, required
when scale is
attached

See Table 3.

This is set by
H5DSattach_scale.

SUB_CLASS H5T_STRING
length = <profile
defined>

“HDF4_DIMENSION”,

“NC4_DIMENSION”,

O, defined
by other
profiles

This is used to indicate
a specific profile was
used.

<Other attributes> O For example, UNITS.

Notes:

1. The name does not have to be the same as the HDF5 path name for the dataset. The name does not have to
be related to any labels. Several Dimension Scales may have the same name.

Table 3. Dataset Reference Type. This is a pair, <dataset_ref, index>. This is created when the Dimension
Scale is attached to a Dataset.

Field Datatype Value Notes

DATASET Object Reference. Pointer to a Dataset
that refers to the
scale

Set by
H5DSattach_scale.
Removed by
H5DSdelete_scale.

INDEX H5T_NATIVE_INT Index of the
dimension the
dataset pointed to
by DATASET

Set by
H5DSattach_scale.
Removed by
H5DSdelete_scale.

 - 8 -

4.2.2 Attributes of a Dataset with a Dimension Scale
A Dataset may have zero or more Dimension Scales associated with its dataspace. When present, these associations
are represented by two attributes of the Dataset. Table 4 defines these attributes.

The DIMENSION_LIST is a two dimensional array with one row for each dimension of the Dataset, and a variable
number of entries in each row, one for each associated scale. This is stored as a one dimensional array, with the
HDF5 Datatype variable length array of object references.

When a dimension has more than one scale, the order of the scales in the DIMENSION_LIST attribute is not
defined. A given Dimension Scale should appear in the list only once. (I.e., the DIMENSION_LIST is a “set”.)

When a scale is shared by more than one dimension (of one or more Dataset), the order of the records in
REFERENCE_LIST is not defined. The Dataset and Dimension should appear in the list only once.

Table 4. Standard Attributes of a Dataset with associated Dimension Scale.1

Attribute Name Datatype and Dimensions Value Required /
Optional Notes

DIMENSION_LIST The HDF5 datatype is
ARRAY of Variable Length
H5T_STD_REF_OBJ
with rank of the dataspace.

[[{object__ref1,
object__ref2, …
object__refn},
…]

 […] ..]

O, required
if scales
are
attached

Set by
H5DSattach_scale.
Entries removed by
H5DSdetach_scale.

DIMENSION_LABELLIST The HDF5 datatype is
ARRAY of H5T_STRING

with rank of the dataspace.

[<Label1>,
<Label2>,
…,
<Label3>]

O, required
for scales
with a label

Set by
H5DSset_label.

Notes:

1. Note that there may be a label without a reference, and vice versa.

4.3 Dimension Scale Names and Labels
Dimension scales are often referred to by name, so Dimension Scales may have names. Since some applications do
not wish to apply names to dimension scales, Dimension Scale names be optional. In addition, some applications
will have a name but no associated data values for a dimension (i.e., just a label). To support this, each dimension
may have a label, which may be but need not be the same as the name of an associated Dimension Scale.

Dimension Scale Name. Associated with the Dimension Scale object. A Dimension Scale may have no name, or
one name.

Dimension Label. A optional label associated with a dimension of a Dataset.

How is a name represented? Three options seem reasonable: (1) the last link in the pathname, (2) an attribute, (3)
a header message.

1. Last link in the pathname. The h4toh5 mapping uses this approach [6], but there could be more than one
path to a dataset, leading to ambiguities. This could be overcome by enforcing conventions.

2. Attribute. This exposes this information at the top level, making it accessible to any viewer that can see
attributes. It also makes it easy for applications to change the name, which could be dangerous, or
valuable.

3. Header message. This approach makes the name a little less available at the top level, but firmly pushes the
concept into the base format and library. Since it also requires applications to change the name through a
function call, it leaves open the possibility that the form of the name could be altered later without requiring
application codes to change. On the other hand, if we treat names this way, it means that the “name”
attribute is being treated differently from the “class” attribute, which could be confusing.

 - 9 -

Dimension Scale names are stored in attributes of the Dimension Scale or the Dataset that refers to a Dimension
Scale.

Should dimension scale names be unique among dimension scales within a file? We have seen a number of
cases in which applications need more than one dimension scale with the same name. We have also seen
applications where the opposite is true: dimension scale names are assumed to be unique within a file. This
specification leaves it to applications to enforce a policy of uniqueness when they need it.

Can a dimension have a label, without having an associated scale? Some applications may wish to name
dimensions without having an associated scale. Therefore, a dataset may have a label for a dimension without
having an associated Dimension Scale dataset.

Can a dimension have a scale, without having an associated label? Some applications may wish to assign a
dimension scale with no label. Therefore, a dataset may have one or more
Dimension Scales for a dimension without having an associated label.

Anonymous Dimensions. It is possible to have a Dimension Scale dataset with no name, and associate it with a
dimension of a dataset with no label. This case associates an array of data values to the dimension, but no identifier.

A dimension with a label and a name. A dimension of a dataset can be associated with a Dimension Scale that has
a name, and assigned a label. In this case, the association has two “names”, the label and the dimension scale name.
It is up to applications to interpret these names.

Table 5 summarizes the six possible combinations of label and name.

Table 5. Labels and scales of a dimension.

 No scale Scale with no name Scale with name

No
label

Dimension has no label
or scale (default)

Dimension has an
anonymous scale

Dimension has scale, the scale is called “name”

Label Dimension has label Dimension has scale
with a label.

Dimension has scale with both a label and name. A
shared dimension has one name, but may have several
labels

4.4 Shared Dimension Scales
Given the design described above, datasets can share dimension scales. The following additional capabilities would
seem to be useful.

1. When a dimension scale is deleted, remove the reference to the dimension scale in all datasets that refer to
it.

2. Determine how many datasets are attached to a given dimension scale

3. Determine what datasets are attached to a given dimension scale

These capabilities can be provided in several ways:

a)

b)

Back pointers. If every dimension scale contained a list of back pointers to all datasets that referenced it,
then it would be relatively easy to open all of these datasets and remove the references, as well as to answer
questions #2 and #3. This would require the library to update the back pointer list every time a link was
made.

Alternatively, such lists could be maintained in a separate table. Such a table could contain all information
about a number of dimension scales, which might provide a convenient way for applications to gain
information about a set of dimension scales. For instance, this table might correspond to the coordinate
variable definitions in a netCDF file.

 - 10 -

c) If no such list were available, an HDF5 function could be available to search all datasets to determine
which ones referenced a given dimension scale. This would be straightforward, but in some cases could be
very time consuming.

This specification defines attributes that maintain back pointers as suggested by (a), which enable these kinds of
cross referencing. Other software, such as NetCDF4, may well need a global table to track a set of dimensions. Such
a table can be done in addition to the attributes defined here.

4.5 Example
This section presents an example to illustrate the data structures defined above.

Figure 3 shows a Dataset with a four dimensional Dataspace. The file also contains six Dimension Scale datasets.
The Dimension Scale datasets are HDF5 objects, with path names such as “/DS1”.

Figure 4 illustrates the use of dimension scales in this example. Each Dimension Scale Dataset has an optional
NAME. For example, “/DS3” has been assigned the name “Scale3”.

The dimensions of dataset D have been assigned zero or more scales and labels. Dimension 0 has two scales,
Dimension 1 has one scale, and so on. Dimension 2 has no scale associated with it.

Some of the dimensions have labels as well. Note that dimension 2 has a label but no scale, and dimension 3 has
scales but no label.

Some of the Dimension Scales are shared. Dimension Scale DS1 is referenced by dimension 0 of D and by another
unspecified dataset. Dimension Scale DS3 is referenced by dimension 1 and 3 of Dataset D.

These relationships are represented in the file by attributes of the Dataset D and the Dimension Scale Datasets.
Figure 5 shows the values that are stored for the DIMENSION_LIST attribute of Dataset D. This attribute is a one-
dimensional array with the HDF5 datatype variable length H5T_STD_REF_OBJ. Each row of the array is zero or
more object references for Dimension Scale datasets.

Table 6 shows the DIMENSION_LABELLIST for Dataset D. This is a one dimensional array with some empty
values.

Each of the Dimension Scale Datasets has a name and other attributes. The references are represented in the
REFERENCE_LIST attributes. Table 7 – Table 10 show the values for these tables. Note that Dimension Scale DS4
and DS6 have no references to them in this diagram.

The tables are stored as attributes of the Dimension Scale Dataset and the Datasets that refer to scales. Essentially,
the association between a dimension of a Dataset and a Dimension Scale is represented by “pointers” (i.e., HDF5
Object References) in both of the associated objects. Since there can be multiple associations, there can be multiple
pointers stored at each object, representing the endpoints of the associations. These will be stored in tables, i.e., as an
attribute with an array of values.

When dimension scales are attached or detached, the tables in the Dataset and the Dimension Scale must be updated.
The arrays in the attributes can grow, and items can be deleted.

The associations are identified by the object reference and dimension which is stored in a back pointer and returned
from an API. The detach function needs to be careful how it deletes an item from the table, because the entries at
both ends of the association must be updated at the same time.

 - 11 -

Figure 3. Example dataset and scales.

Figure 4. Example labels, names, and attached scales.

.

 - 12 -

Figure 5. The table of dimension references, stored as an attribute of the Dataset.

Table 6. The table of dimension labels.

Dataset Dimension Label

0 “LX”

1 “LZ”

2 “LQ”

3 “”

Table 7. The reference list for DS1.

Reference Dataset Reference Record

0 {Object reference to Dataset D, 0}

1 {Object reference to other Dataset, ?}

Table 8. Reference list for DS2

Reference Dataset Reference Record

0 {Object reference to Dataset D, 0}

Table 9. Reference list for DS3

Reference Dataset Reference Record

0 {Object reference to Dataset D, 1}

1 {Object reference to Dataset D, 3}

Table 10. Reference List for DS5

Reference Dataset Reference Record

0 {Object reference to Dataset D, 3}

 - 13 -

5 Programming Model and API

5.1 Programming Model
Dimension Scales are HDF5 Datasets, so they may be created and accesses through any HDF5 API for datasets [10].
The HDF5 Dimension Scale API implements the specification defined in this document. The operations include:

• Convert dataset to scale (D) – convert dataset D to a dimension scale. D may be specified by an id or by a
path name.

• Attach scale (D, S, i) – attach dimension scale S to the ith dimension of D. D and S may be specified by an
id or path name

• Detach scale (D, i, scale) – detach scale from the ith dimension of D.

• Iterate through scales of (D, i) – get each scale attached.

• Get the number of scales of (D, i)

• Get the ith scale of D

• Set/Get name (S) – set/get the name about dimension scale S.

The API also defines operations for dimension labels:

• Set/Get label (D, i) – set/get the label for ith dimension of D.

This section outlines the programming model for using these operations with some example uses.

5.1.1 Create new Dimension Scale with Initial Values
1. Create dataset with for the Dimension Scale with H5Dcreate and other standard HDF5 calls.

2. Initialize the values of the Dimension Scale with H5Dwrite and other calls.

3. Convert the dataset to a Dimension Scale with H5DSmake_scale.

4. Close the Dimension Scale when finished with H5Dclose.

5.1.2 Attach Dimension Scale to Dataset
Create or open the Dataset, D, with H5Dopen, etc. 1.

2.

3.

4.

Create or open the Dimension Scale dataset, S, with H5Dopen or as above.
Attach the Dimension Scale S to dimension j of Dataset D with H5DSattach_scale
When finished, close the Dimension Scale and Dataset with H5Dclose.

5.1.3 Read Dimension Scale values
1. Open the Dataset D, with H5Dopen

2. Get the number of dimensions of D with H5Dget_space.

3. Iterate through the scales of dimension i, locate the target scale, S (e.g., by its name).

4. Get the datatype, dataspace, etc. of S with H5Dget_space, H5Dget_type, H5Sget_ndims, etc.

5. Read the values of S into memory with H5Dread, e.g. into dscalebuff.

6. When finished, close the S and other objects with H5Dclose etc.

 - 14 -

7. When finished, close the Dataset D with H5Dclose.

5.1.4 Write or Update Dimension Scale values
1.

2.

3.

4.

5.

1.

2.

3.

1.

2.

3.

4.

Open the Dimension Scale Dataset S with H5open

Get the datatype, dataspace, etc. of S with H5Dget_space, H5Dget_type, H5Sget_ndims, etc.

If needed, read the values of S into memory with H5Dread. Note, may read selected values using a
selection.

Write updated values to S with H5Dwrite. Note, may write selected values using a selection.

When finished, close S and other objects with H5Dclose etc.

5.1.5 Create a label for a dimension
Open the Dataset D with H5open

Add write a label for dimension i of D, with H5DSset_label.

When finished, close the Dimension Scale Dataset and other objects with H5Dclose etc.

5.1.6 Extending a Dimension with a Dimension Scale attached
When an extendible Dataset has Dimension Scales, it is necessary to coordinate when the dimensions change size.

1. Open the Dataset to be extended, with H5Dopen.

2. Extend the dimension(s) with H5Dextend

3. Iterate through the scales of each extended dimension. For each scale

a. Extend the scale to the new size of the dimension with H5Dextend

b. Write new values to the extended scale with H5Dwrite, etc.

c. Close the Dimension Scale Dataset with H5Dclose if necessary.

4. When finished, close the Dataset with H5Dclose

5.1.7 Detach Dimension Scale from Dataset
The detach operation removes an association between a dimension and a scale. It does not delete the Dimension
Scale Dataset.

Open the Dataset, D, with H5Dopen.
Iterate through the scales of dimension i, locate the target scale, S (e.g., by its name).
Detach the Dimension Scale S to dimension j of Dataset D with H5DSdetach_scale
When finished, close the Dimension Scale and Dataset with H5Dclose.

5.1.8 Delete a Dimension Scale Dataset
When it is necessary to delete a Dimension Scale Dataset, it is necessary to detach it from all dataset. This section
outlines the necessary steps.

1. Open the Dimension Scale to be deleted.

2. Read the REFERENCE_LIST attribute into memory with H5Aread etc.

3. For each entry in the list:

a. Dereference the dataset reference

b. Detach the scale with H5DSdetach_scale

 - 15 -

c. Close the dataset reference

4. Delete the Dimension Scale Dataset

5.1.9 Clean up Dimension Scales when deleting a Dataset
When it is necessary to delete a dataset that has scales attached, it is necessary to delete all the scales before deleting
the dataset. Here is a sketch of the steps.

1.

2.

3.

4.

Open the Dataset to be deleted, with H5Dopen.

Iterate through the scales of each dimension of D
For each scale, detach the Dimension Scale S from dimension j of Dataset D with H5DSdetach_scale
Delete the Dataset, with H5Gunlink.

5.2 Programming API: H5DS

This section defines the programming API, to be added to the HDF5 High Level APIs.

Functions to be added in the future:

For several functions (H5DSset_scale, H5DSattach_scale, and possibly others), an alternative function will be
defined that uses path names instead of hid_t. These will have the same function as specified here, except for the
path names.

This document defines a basic iterator, H5DSiterate. Additional functions will be needed to (1) get the number of
entries, and (2) to retrieve the ith entry. These will be analogous to similar functions in other APIs, such as H5A.
These functions are not specified yet.

Name: H5DSset_scale
Signature:

herr_t H5DSmake_scale(hid_t dsid, char *dimname)

Purpose:

Convert dataset dset to a dimension scale, with optional name, dimname.

Description:

The dataset dsid is converted to a Dimension Scale dataset, as defined above. Creates the CLASS attribute, set to the
value “DIMENSION_SCALE” and an empty REFERENCE_LIST attribute, as described in section 4.2 above.

If dimname is specified, then an attribute called NAME is created, with the value dimname.

Fails if:

• Bad arguments

• If dsid is already a scale

• If dsid is a Dataset which already has dimension scales

If the dataset was created with the Table, Image, or Palette interface [9], it is not recommended to convert to a
Dimension Scale. (These Datasets will have a CLASS Table, Image, or Palette.)

Parameters:

 - 16 -

hid_t dsid; IN: the dataset to be made a Dimension Scale

char *dimname; IN: the dimension name (optional), NULL if the dimension has no name.

Returns:

 Zero if succeed, negative if fail.

Name: H5DSattach_scale
Signature:

herr_t H5DSattach_scale(hid_t did, hid_t dsid, unsigned int idx)

Purpose:

Attach dimension scale dsid to dimension idx of dataset dsid.

Description:

Define Dimension Scale dsid to be associated with dimension idx of Dataset did.

Entries are created in the DIMENSION_LIST and REFERENCE_LIST attributes, as defined in section 4.2.

Fails if:

• Bad arguments

• If dsid is not a Dimension Scale

• If did is a Dimension Scale (A Dimension Scale cannot have scales.)

Note: The Dimension Scale dsid can be attached to the same dimension more than once, which has no effect.

Parameters:

hid_t did; IN: the dataset

 hid_t dsid; IN: the scale to be attached

unsigned int idx; IN: the dimension of did that dsid is associated with.

Returns:

Zero if succeed, negative if fail.

Name: H5DSdetach_scale
Signature:

herr_t H5DSdetach_scale(hid_t did, hid_t dsid, unsigned int idx)

Purpose:

Detach dimension scale dsid from the dimension idx of Dataset did.

Description:

If possible, deletes association of Dimension Scale dsid with dimension idx of Dataset did. This deletes the
entries in the DIMENSION_LIST and REFERENCE_LIST attributes, as defined in section 4.2.

Fails if:

 - 17 -

• Bad arguments

• The dataset did or dsid do not exist.

• The dsid is not a Dimension Scale

• dsid is not attached to did.

Note that a scale may be associated with more than dimension of the same dataset. If so, the detach operation only
deletes one of the associations, for did.

Parameters:

hid_t did; IN: the dataset

 hid_t dsid; IN: the scale to be detached

unsigned int idx; IN: the dimension of did to detach

Returns:

Zero if succeed, negative if fail.

Name: H5DSis_attached
Signature:

htri_t H5DSis_attached(hid_t did, hid_t dsid, unsigned int idx)

Purpose:

Report if dimension scale dsid is currently attached to dimension idx of dataset did.

Description:

Report if dimension scale dsid is currently attached to dimension idx of dataset did.

Fails if:

• Bad arguments

• If dsid is not a Dimension Scale

• If did is a Dimension Scale (A Dimension Scale cannot have scales.)

Parameters:

hid_t did; IN: the dataset

 hid_t dsid; IN: the scale to be attached

unsigned int idx; IN: the dimension of did that dsid is associated with.

Returns:

When successful, returns a positive value for TRUE or 0 (zero) for FALSE. Otherwise returns a negative
value.

Name: H5DSiterate_scales
Signature:

herr_t H5DSiterate_scales(hid_t did, unsigned dim, int *idx, H5DS_iterate_t visitor, void *visitor_data)

Purpose:

 - 18 -

Iterates the operation visitor through the scales attached to dimension dim.

Description:

H5DSiterate_scales iterates over the scales attached to dimension dim of dataset dset. For each scale in

the list, the visitor_data and some additional information, specified below, are passed to the visitor
function. The iteration begins with the idx object in the group and the next element to be processed by the

operator is returned in idx. If idx is NULL, then the iterator starts at the first group member; since no
stopping point is returned in this case, the iterator cannot be restarted if one of the calls to its operator
returns non-zero.
The prototype for H5DS_iterate_t is:

typedef herr_t (*H5DS_iterate_t)(hid_t did, unsigned dim, hid_t dsid, void *visitor_data);

The operation receives the Dimension Scale dataset identifier, dsid, and the pointer to the operator data

passed in to H5DDiterate_scales, visitor_data.

The return values from an operator are:

• Zero causes the iterator to continue, returning zero when all group members have been processed.
• Positive causes the iterator to immediately return that positive value, indicating short-circuit

success. The iterator can be restarted at the next group member.
• Negative causes the iterator to immediately return that value, indicating failure. The iterator can be

restarted at the next group member.

H5DSiterate_scales assumes that the scales of the dimension identified by dim remain unchanged through the
iteration. If the membership changes during the iteration, the function's behavior is undefined.

Parameters:

hid_t did; IN: the dataset

unsigned dim; IN: the dimension of dset

int *idx; IN/OUT: input the index to start iterating, output the next index to visit. If NULL, start at the first
position.

H5DS_iterate_t visitor; IN: the visitor function

void *visitor_data; IN: arbitrary data to pass to the visitor function.

Returns:

Returns the return value of the last operator if it was non-zero, or zero if all scales were processed.

Name: H5DSset_label
Signature:

herr_t H5DSset_label(hid_t did, unsigned int idx, const char *label)

 - 19 -

Purpose:

Set label for the dimension idx of did to the value label.

Description:

Sets the DIMENSION_LABEL_LIST for dimension idx of dataset did. If the dimension had a label, the
new value replaces the old.

Fails if:

• Bad arguments

Parameters:

hid_t did; IN: the dataset

unsigned int idx; IN: the dimension

char *label: IN: the label

Returns:

Zero if succeed, negative if fail.

Name: H5DSget_label
Signature:

ssize_t H5DSget_label(hid_t did, unsigned int idx, char *label, size_t *size)

Purpose:

Read the label for dimension idx of did into buffer label.

Description:

Returns the value of the DIMENSION_LABEL_LIST for dimension idx of dataset did, if set. Up to size
characters of the name are copied into the buffer label. If the label is longer than size, it will be truncated to
fit. The parameter size is set to the size of the returned label.

If did has no label, the return value of label is NULL.

Fails if

• Bad arguments

Parameters:

hid_t did; IN: the dataset

unsigned ind idx; IN: the dimension

char *label: OUT: the label

size_t size: IN/OUT: the length of the buffer label; on return, the size of the label.

Returns:

 Zero if succeed, negative if fail.

 - 20 -

Name: H5DSget_scale_name
Signature:

herr_t H5DSget_scale_name(hid_t did, char *name, size_t *size)

Purpose:

Read the name of scale did into buffer name.

Description:

Read the value of the NAME attribute for scale did. Reads up to size characters into name. On return, size
is the number of characters read into name.

Parameters:

int did: IN: the index of the scale

char *name: OUT: the name, or NULL if there is no name set.

 size_t *didze: IN/OUT: the maximum characters to copy into name. On return, the number of characters
copied into name.

Returns:

Zero if succeed, negative if fail.

Name: H5DSis_scale
Signature:

htri_t H5DSis_scale(hid_t did)

Purpose:

Determines whether dset is a Dimension Scale.

Description:

H5DSis_scale determines if did is a Dimension Scale, i.e., has CLASS=”DIMENSION_SCALE”).

Parameters:

hid_t did: IN: the data set to query

Returns:

When successful, returns a positive value for TRUE or 0 (zero) for FALSE. Otherwise returns a negative
value.

Name: H5DSget_num_scales
Signature:

int H5DSget_num_scales(hid_t did, unsigned int idx)

Purpose:

Determines how many Dimension Scales are attached to dimension idx of did.

Description:

 - 21 -

H5DSget_num_scales determines how many Dimension Scales are attached to dimension did of dataset
dset.

Parameters:

hid_t did: IN: the data set to query

unsigned int idx: IN: the dimension of did to query.

Returns:

Returns the number of Dimension Scales associated with did, if successful, otherwise returns a negative
value.

6 Other Language Interfaces
This document presents the C API. Fortran, C++, and other language interfaces will be implemented later.

7 References
1. McGrath, Robert E. “Dimension Scales in HDF5: Preliminary Ideas.” May 2001.

http://hdf.ncsa.uiuc.edu/RFC/ARCHIVE/DimScales/H5dimscales.htm.

2. McGrath, Robert E. “Needed: A convenience API to Support Dimensions in HDF5.” July 2001.
http://hdf.ncsa.uiuc.edu/RFC/ARCHIVE/DimScales/H5dims.htm.

3. Koziol, Quincey. “Coordinate Systems in HDF5.” A set of slides. March 11, 2004.

4. Folk, Mike. “Should Dimension Scales be basic HDF5 constructs or higher level constructs?” May 2004.
http://hdf.ncsa.uiuc.edu/RFC/ARCHIVE/DimScales/How_H5dimscales.htm.

5. Folk, Mike. “HDF5 Dimension Scale Proposal No. 3 Draft Version 3”, September 15, 2004. .
http://hdf.ncsa.uiuc.edu/RFC/H5DimScales/H5dimscale_prop_No3.v3.pdf

6. Mike Folk, Robert E. McGrath, Kent Yang, “Mapping HDF4 Objects to HDF5 Objects Version 3” August,
2003. http://hdf.ncsa.uiuc.edu/HDF5/doc/ADGuide/H4toH5Mapping.pdf

7. Unidata, “Shared Dimensions in NetCDF-4”, http://my.unidata.ucar.edu/content/staff/russ/shared-
dimensions.html.

8. NASA, “The HDF-EOS Information Center”, http://hdfeos.gsfc.nasa.gov/hdfeos/index.cfm

9. HDF, “HDF5 High Level APIs”, http://hdf.ncsa.uiuc.edu/HDF5/hdf5_hl/.

10. HDF, “HDF5 User's Guide”, September 2004. http://hdf.ncsa.uiuc.edu/HDF5/doc/UG/.

11. HDF, “HDF5 Abstract Data Model”, 1999.
http://hdf.ncsa.uiuc.edu/HDF5/papers/presentations/ADM/ADM_EOS_Sep99/EOSpresentation/index.html

12. HDF, “Expanding raw data options: “formula” datasets and attributes: Request for Comment”, To appear,
2005.

13. Nancy Yeager, “Design of NetCDF-H5 Prototype”, May, 1999.
http://hdf.ncsa.uiuc.edu/apps/netcdfh5/design.html.

 - 22 -

http://hdf.ncsa.uiuc.edu/RFC/ARCHIVE/DimScales/H5dimscales.htm
http://hdf.ncsa.uiuc.edu/RFC/ARCHIVE/DimScales/H5dims.htm
http://hdf.ncsa.uiuc.edu/RFC/ARCHIVE/DimScales/How_H5dimscales.htm
http://hdf.ncsa.uiuc.edu/RFC/H5DimScales/H5dimscale_prop_No3.v3.pdf

8 Appendix 1: Implications for tools
The introduction of Dimension Scales will require that tools using HDF5 add new features to correctly use
Dimension Scales.

Since the Dimension Scales and associations are represented by Datasets, object references, and Attributes; HDF5
tools will “see” these objects and treat them as regular objects. This will omit the meaning of the Dimension Scales,
and may be quite puzzling for users.

Therefore, tools should be updated to recognize Dimension Scales, display and process them appropriately.

Table 11. Summary of tools, enhancements needed.

Tool Changes

H5dump, H5ls TBD

H5DFView Do not display Dimensions as regular datasets.

When dimension are present use as labels for Data
table and image displays.

Will need to deal with dimension names, labels, and
possibly with editing features (add dimension,
change label, etc.)

H5diff Should do a logical comparison, i.e., Datasets that
have the same dimensions should be “the same”,
even though the object references differ.

Dimensions must have same path name, same name,
etc. to be same dimension.

Need to define the details of how to deal with order
of datasets, how to report differences in names or
labels.

Algorithm is TBD.

H5repack Should do a logical copy of the dimensions, and
then attach them to the datasets appropriately.

Need to decide about “compaction” policies and
possibly renumbering the indexes.

 - 23 -

9 Appendix 2: HDF4 to HDF5 Mapping
The HDF4 to HDF5 Mapping V3 defined an initial representation of HDF4 Dimension Scales in a converted HDF5
file [8]. This specification differs in some details, but HDF4 Dimension Scales can be converted into objects that
conform to this specification. Essentially, HDF4 is a special case, because a Dataset can have only one Dimension
Scale per dimension.

Table 12 and Table 13 give the revised specification.

The HDF4 to HDF5 Mapping and h4h5 software will be updated to conform to this Dimension Scale specification.

Table 12. The revised SDS mapping (from Table 2, [6])

 <SDS Dimension with
Name> (See note 1)

Dataset

R NAME Name <name> See note 1.
R SIZE Dataspace rank=1. Only the first dimension can be

unlimited.
R DATATYPE Datatype <HDF4 datatype>
R DATA Data <value>*
O <Dimension pre-defined

attribute>
 These are dimensions of an <SDS

dimension with Name> dataset, not an
SDS dataset

O *LONGNAME Attr
O UNIT Attr
O FORMAT Attr
O <User-defined

attribute>
Attr Defined above.

O **NAME Attr <value of LONGNAME, if
set>

R **CLASS Attr “DIMENSION_SCALE”
R **REFERENCE_LIST Attr Array of Dimension Record

Type
Required if the dimension is used by
any datasets.

Notes:

* Redundant with new NAME attribute. This attribute should be set for backward compatibility.

** New attributes to conform to the Dimension Scale Specification.

 - 24 -

Table 13. The revised SDS mapping (from Table 2, [6])

 <SDSArray>
R NAME Attr HDF4_OBJECT_NAME =

<SDSArrayName>
See Section 4 for details on how NAME
is used as a link in HDF5.

R DATATYPE Datatype <HDF4 datatype>
R DIMENSIONRANK &

DIMENSIONSIZE
Dataspace Dimension sizes are also part of

dimension information.
R *DIMENSIONLIST Attr DIMENSIONLIST =

{object__ref1,
object__ref2, …
object__refn}

An array of object references that refer
to the corresponding. dimension
datasets.

R **DIMENSION_NAMELIST Attr DIMENSION_NAMELIST
= {<DimName1,
<DimName2>,
…,<DimNameN>}

The absolute paths of dimensions are
stored. Dimension names are defined in
the HCR specification. See note 1.

O ***DIMENSION_LABELLIST Attr Same as list
DIMENSION_NAMELIST, follows the
DimensionScalespecification

R (Data) Data See [8] for details on how to handle
datatypes.

O <User-defined
attribute >

Attr rank = 1; size is fixed. Global attributes:
see note 2.

O <SDS pre-defined
attribute >

Attr

O (Reference number) Attr HDF4_REF_NUM =
<uint16>

O (Storage properties)
O Compression property Storage prop Use if supported in HDF5.
O Chunk property Storage prop Use if supported in HDF5.
O External storage Storage prop Use if supported in HDF5.

Notes:

* DIMENSION_LIST was a one dimensional array. It is now a special case of a two D array.

** Redundant with the DIMENSION_LABEL_LIST attribute, should be stored for backward compatibility.

*** New attribute to conform to the Dimension Scale specification.

 - 25 -

10 Appendix 3: netCDF-4 Dimensions
An important use of Dimension scales will be to represent coordinate variables in netCDF-4. It should be realized
that this profile does not support all of the semantics of netCDF-4 dimensions. However, it is general enough to be
used to store coordinate variables, and to store the associations between dimensions of a netCDF variable and
coordinate variables [7].

HDF5 Dimension Scales can be used in the following way:

• A coordinate variable is stored as an HDF5 Dimension Scale (in the appropriate group defined by
netCDF-4).

• The attribute “NAME” can hold a netCDF-4 defined name

• The attribute “SUB_CLASS” can be used to store a string indicating that this is a netCDF –4
coordinate variable. (There is no need to code this in the name of the dataset.)

• When a netCDF-4 Variable is created, the relevant coordinate variables should be attached.

• When a dimension is extended, the attached coordinate variables should be extended as well. An
algorithm for this was sketched in Section 5.1.8 above, netCDF-4 should implement an appropriate
variation of this approach.

Note that the netCDF-4 library can use the standard HDF5 APIs or can use the H5DS API proposed here.

HDF5 Dimension Scales do not implement several aspects of netCDF-4 dimensions.

• This specification does not enforce any rules about the names of Dimension Scales or where they are placed in
the file. These rules will be enforced by the netCDF-4 library.

• This specification does not maintain the consistency of the extents of Dimension Scales and associated
dimensions. However, this can be implemented.

• This specification does not provide a mechanism for finding all the Dimension Scales.

These and other semantics may require additional data structures in the netCDF-4 file. This specification certainly
does not preclude the use of such data structures.

HDF5 Dimension Scales provide some features not needed by netCDF-4. These can be ignored.

• NetCDF-4 may choose not to use labels or dimension names.

• NetCDF-4 may choose not to have multiple Dimension Scales for a give dimension of a variable.

In summary, this specification provides constructs that can and should be used to implement netCDF-4 Coordinate
Variables.

 - 26 -

 - 27 -

11 Appendix 4: HDF-EOS5 Issues
The HDF-EOS5 library implements a model of dimensions similar to HDF-EOS2 and HDF4 [8]. For example, the
HDF-EOS library API has several functions that create dimensions global to the file, and assign dimensions to
define the shape of a Grid.

These functions can be modified to create an HDF5 Dimension Scale object for each scale, perhaps in a reserved
directory. When the Grid is created, the related scales would be attached to the Datasets representing the fields of the
Grid. (There is one HDF5 Dataset per HDF-EOS Grid Field.)

The rest of the HDF-EOS library would not need to change, although other changes could be made to use the HDF5
attributes in the HDF-EOS code.

The advantage of adding this to the HDF-EOS library is that applications that do not use HDF-EOS but do use the
HDF5 Dimension Scales would be able to locate and interpret the dimension scales in the HDF-EOS file.

	Introduction and overview
	The HDF5 Standard for Dimension Scales
	Conceptual model
	Definitions
	Entity Relationship Diagrams
	What types of scales should be implemented?
	Limitations of this Specification

	The HDF5 Dimension Scale Specification
	Brief Summary
	Storage Profile
	Dimension Scale Dataset
	Attributes of a Dataset with a Dimension Scale

	Dimension Scale Names and Labels
	Shared Dimension Scales
	Example

	Programming Model and API
	Programming Model
	Create new Dimension Scale with Initial Values
	Attach Dimension Scale to Dataset
	Read Dimension Scale values
	Write or Update Dimension Scale values
	Create a label for a dimension
	Extending a Dimension with a Dimension Scale attached
	Detach Dimension Scale from Dataset
	Delete a Dimension Scale Dataset
	Clean up Dimension Scales when deleting a Dataset

	Programming API: H5DS

	Other Language Interfaces
	References
	Appendix 1: Implications for tools
	Appendix 2: HDF4 to HDF5 Mapping
	Appendix 3: netCDF-4 Dimensions
	Appendix 4: HDF-EOS5 Issues

