Chapter
2

HDF Fundamentals

2.1

2.2

Chapter Overview

In this chapter, our description of HDF in Chapter 1, titrecbduction to HDFE is expanded to
include a description of the hierarchical structure of HDF interaction with HDF file objects, the
physical format of HDF files, the low-level HDF interfaces, and programming language issues
pertaining to the use of Fortran-77, ANSI C and K&R C in HDF programming.

The Hierarchy of HDF Interaction

To review the description of HDF provided in Chapter 1, HDF is a physical file format at its low-
est level and a collection of utilities and applications at its highest. Between these two levels, HDF
is a library that itself provides two levels of programming interfaces. HDF can be thought of con-
ceptually as three interface layers built upon a physical file format.

FIGURE 2a

The Three Levels of Interaction with the HDF File Format

General Applications
Utilities m NCSA Applications m Commercial Applications
U | U
Single-File Interfaces G | Multifile Interfaces S S
Scientific 8-Bit 24-Bit eneral X cientific
Data [7| Palette |7|Annotationy| Raslter |7| Raster |/— Raster VI Vgroups MAnnotatlon% Vdata V‘ Data
— U U U U U U U
Low-level Interface
HD Interface m HL/HX Interface m HE Interface
[T [T [T
HDF File
File Header m Data Descriptor Block m Data Elements

Refer to Figure 2a. Of the three types of top-level general applications, only the command-line
utilities will be extensively covered in this manual. See Chapter 13, iHildel Command-Line

Utilities, for descriptions of this aspect of HDF. These general applications directly call the single-
file and multifile interfaces.

The two interactive levels immediately below this level,ltve-level interfaceand the HDF data
file itself, are only briefly described as the single-file and multifile interfaces provide a safer and

May 14, 1997

National Center for Supercomputing Applications

2.3

more standardized means of accessing these levels. The single-file and multifile interfaces - the
second highest level of interaction within HDF - are routinely updated as aspects of these lower-
level interfaces are changed, in a manner as transparent to the HDF user as possible. With the
exception of the few instances where lower-level interface functionality has not yet been incorpo-
rated into the higher-level interface functions, the HDF user need not directly concern themselves
with these levels.

Data Objects

The termdata objecis used to describe the fundamental conglomerate structure use to encapsu-
late data.

Data objects containdata descriptoland adata elementData descriptors consist of information
about the type, location, and size of a data element. Data elements contain the primary data itself.

2.3.1 Data Descriptors
All data descriptors are twelve bytes long and contain four fields. (See Figure 2b.)

FIGURE 2b

The Contents of a Data Descriptor

Tag Reference Offset Length

2 bytes 2 bytes 4 bytes 4 bytes

/

Data Descriptor

Tags

Tags identify the type of data stored in its data element. For example, a raster image descriptor is
identified by aDFTAG_RItag and a palette descriptoberAG_LUTtag. There are currently over 200

tags defined for general use. A complete list of tags and their descriptions can be found in Appen-
dix A of this manual

Tag values ranging between 1 and 32,767 are reserved for commonly-used data types. These tags
are assigned by the HDF development group. Tag values ranging between 32,768 and 64,999 are
not regulated by NCSA and are available for private application. These tags are not documented
by NCSA and may therefore conflict with tags assigned by someone else. Therefore, it is best to
limit applications to the use of the commonly-used tags.

Reference Numbers

Reference numbers distinguish between different data elements with the same tag. For example,
all raster image descriptors will have the same raster data tag. The pairing of a tag and a reference
number provides a unique identifier for any HDF object within a file.

Although HDF assigns reference numbers in increasing order, it is the write operations that are
counted, not the number or type of data objects added to the file. For example, writing a raster
image set followed by a scientific data set uses a minimum of six data objects but only two write
operations. Consequently, HDF will assign 1 as the reference number for the first raster image set
and all its members and 2 as the reference number for the scientific data set and all its members.

2-8

May 14, 1997

2.4

While application programmers may find it convenient to impart some additional meaning to ref-
erence numbers, it should be noted that HDF will not internally recognize any such meaning.

Offsets and Lengths

The offset field points to the location of the data element in the file by storing the number of bytes
from the beginning of the file to the beginning of the data element. The length field contains the
total size of the data element in bytes.

Data Elements

The type of the data stored in a data element is identified by its tag, however, other interpretive
information may be required before it can be processed properly.

File Format

HDF files contain dile headerand at least ongata descriptor blockas depicted in Figure 2c.

The HDF file header occupies the first four bytes of every HDF file with a signature field contain-
ing the 32-bit hexadecimal valweo31301 . This number is considered a “magic cookie” as it
identifies the file as an HDF file. Initially the data descriptor block consists of a group of empty
data descriptors. As data objects are written to the file, the HDF library fills the data descriptor
block by pairing one data descriptor for each data element. Refer to the following figure.

FIGURE 2c

The Physical Layout of an HDF File Containing One Data Object

HDE File > HDF File Header HDF File Header

Data Descriptor

Empty Data Descrip- | Data Descriptor Block

. Empty Data Descrip-
Data Object

Empty Data Descrip-

Data Element

2.4.1 Grouping Data Objects in an HDF File

HDF files that contain more than one data element are generally easier to work with when the data
objects containing related data are grouped together. These groups of data objects alesa&alled
sets The HDF user uses the application interface to define, manipulate and dispose of data sets in
a file.

As an example, an 8-bit raster image data set requires three objects: a group object identifying the
members of the set, an image object containing the image data and a dimension object indicating
the size of the image. It is sometimes possible to add additional data objects to the minimum set -
for example, an 8-bit raster image set may include a palette.

May 14, 1997 2-9

National Center for Supercomputing Applications

Data objects are individually accessible even if they are included in a set, therefore data objects
can belong to more than one set and sets can be included in larger groups. For example, a palette
object included in one raster image set may also be a part of another raster image set if its tag and
reference number are included in a data descriptor within that second set.

Several data sets may be further groupeddgntap objectsThe contents of the group object
depends on the HDF data set it supports.

2.4.2 Storing Data Objects

Data objects can be stored in HDF data files aséiguous elementaslinked-block elementsr
asexternal elementsThese data storage options are illustrated below in Figure 2d.

FIGURE 2d HDF Data Storage Options
Data Descriptor - Data Descriptor HDF File 1
- Data Descriptor
Data Element 1 Data Element 1
Data Element 2
- InKe! emen
HDF File 2
INKe! emen
| External Element 1 |
Data Element n
INKe! ement n
Contiguous Elements Linked-block Elements External Elements
2.4.2.1 Contiguous Data Elements
This is the default method of data storage in HDF. In this case, all data objects exist in one HDF
file and are stored in the manner illustrated in Figure 2c. Each data element in the file is one com-
plete unit of raw data, and as only one unique data descriptor points to it there are no references or
relationships to the other data elements in the file. As additional data elements are created and
written they are appended to the end of the HDF file.
2.4.2.2 Linked-block Data Elements
Linked-block elements are a series of data elements existing in one HDF file which serve as a
means of adding data to a pre-existing data element. These elements are linked to each other and
to the original data element by a linked-list structure similar to the data descriptor list. They are of
a uniform size with the exception of the first block after the original data element, which is the
only block that can be resized.
2.4.2.3 External Data Elements
External data elements are those that exist in a file apart from the one the data descriptor list
resides in. These additional HDF data files are referredeaatamal data files The HDF library
2-10 May 14, 1997

2.5

keeps track of the filesystem location of the external data file as well as the standard tag/reference
number pair, offset and length information of the external element.

Header File Information

The “hdf.h” header file must be included in every HDF application program as it contains neces-
sary declarations and definitions as well as prototypes for the HDF API routines. To use these rou-
tines, the HDF user must be familiar with the most-commonly used definitions stored in the
“hdf.h” file.

2.5.1 File Access Code Definitions

These definitions are passed into API file access routines as parameteysaGberDONLENd
DFACC_cLOBBEHREefinitions exist in the “hdf.h” file to accommodate backward compatibility with
applications designed to work with older versions of the HDF API library.

TABLE 2A File Access Code Definitions
Definition Name Definition Value Description
DFACC_READ 1 Read access.
DFACC_WRITE 2 Write access.
DFACC_RDWR 3 Read and write access.
DFACC_CREATE 4 File creation access.
DFACC_CLOBBER 4 Same as DFACC_CREATE.
DFACC_RDONLY 1 Same as DFACC_READ.
2.5.2 Data Type Definitions
These definitions are used in comparison expressions to determine the type of an input variable or
a value returned by an API functiaENT_FLOATDFNT_DOUBLEDFNT_UCHARandDFNT_CHARare
included in the “hdf.h” file for backward compatibility. These definitions are located in the “hnt-
defs.h” header file.
TABLE 2B Data Type Definitions

Definition Name Definition Value Description
DFNT_CHARS8 4 8-bit character type.
DFNT_CHAR 4 Same as DFNT_CHARS.
DFNT_UCHARS8 3 8-bit unsigned character type.
DFNT_UCHAR 3 Same as DFNT_UCHARS.
DFNT_INT8 20 8-bit integer type.
DFNT_UINT8 21 8-bit unsigned integer type.
DFNT_INT16 22 16-bit integer type.
DFNT_UINT16 23 16-bit unsigned integer type.
DFNT_INT32 24 32-bit integer type.
DFNT_UINT32 25 32-bit unsigned integer type.
DFNT_INT64 26 64-bit integer type.
DFNT_UINT64 27 64-bit unsigned integer type.

May 14, 1997 2-11

National Center for Supercomputing Applications

DFNT_FLOAT32

32-bit floating-point type.

DFNT_FLOAT64

64-bit floating-point type.

2.5.3 Tag Definitions

These definitions identify the object tags defined and used by the HDF API library. The concept of
object tags is introduced in Section 2.3.1 on page 8. Note that, in the tag list that follows in Table
2C, tags can also identify properties of data objects such as raster image compression and pixel
interlacing type (these concepts are described in Chapter 6 8tiledRaster Image§DFR8

API) 8- and 24-raster images and scientific data sets are respectively described in Chapter 6, titled
8-bit Raster Images (DFR8 AR hapter 7, titte@4-bit Raster Images (DF24 ARPdhd Chapter

3, titled Scientific Data Sets (SD API)

TABLE 2C Tag Definitions
Definition Name Definition Value Description
DFTAG_FID ((uint16) 100) File identifier.
DFTAG_FD ((uintl6) 101) File description.
DFTAG_TID ((uint16) 102) Tag identifier.
DFTAG_TD ((uint16) 103) Tag descriptor.
DFTAG_DIL ((uint16) 104) Data identifier label.
DFTAG_DIA ((uint16) 105) Data identifier annotation.
DFTAG_NT ((uint16) 106) Number type.
DFTAG_ID8 ((uint16) 200) 8-bit raster image dimension record.
DFTAG_IP8 ((uintl6) 201) 8-bit raster image palette.
DFTAG_RI8 ((uint16) 202) 8-bit raster image data.
DFTAG_CI8 ((uint16) 203) 8-bit raster image data - RLE compressed.
DFTAG_lI8 ((uint16) 204) 8-bit raster image data - IMCOMP compressed.
DFTAG_ID ((uint16) 300) 24-bit raster image dimension record.
DFTAG_LUT ((uint16) 301) 24-bit raster image palette.
DFTAG_RI ((uint16) 302) 24-bit raster image data.
DFTAG_CI ((uint16) 303) 24-bit raster image - compressed.
DFTAG_RIG ((uint16) 306) Raster image group.
DFTAG_LD ((uint16) 307) Palette dimension record.
DFTAG_SDG ((uint16) 700) Scientific data group.
DFTAG_SDD ((uintl6) 701) Scientific data dimension record.
DFTAG_SD ((uintl6) 702) Scientific data group data.
DFTAG_SDS ((uint16) 703) Scientific data scale.
DFTAG_SDL ((uint16) 704) Scientific data label.
DFTAG_SDU ((uint16) 705) Scientific data unit.
DFTAG_NDG ((uint16) 720) Numeric data group.
DFTAG_CAL ((uint16) 731) Calibration information.
DFTAG_VG ((uint16) 1965) Vgroup.
DFTAG_VH ((uint16) 1962) Vdata header.
DFTAG_VS ((uint16) 1963) Vdata storage.
DFTAG_RLE ((uint16) 11) Run-length encoding compression algorithm.
DFTAG_IMCOMP ((uint16) 12) IMCOMP compression algorithm.
DFTAG_JPEG ((uint16) 13) JPEG compression algorithm - 24-bit data.
DFTAG_GREYJPEG ((uint16) 14) JPEG compression algorithm - 8-bit data.
2-12 May 14, 1997

DFIL_PIXEL ((uint16) 0) Pixel interlacing.
DFIL_LINE ((uint16) 1) Scan-line interlacing.
DFIL_PLANE ((uint16) 2) Scan-plane interlacing.

2.5.4 Limit Definitions

These definitions declare the maximum size of specific data object parameters, such as the maxi-
mum length of a vdata field or the maximum number of objects in a vgroup. Vdata objects are dis-
cussed in Chapter 4, titldfdatas (VS APJ)and vgroup objects are described in Chapter 5, titled
Vgroups (V APL)Except forFIELDNAMELENMAXthese can be safely altered by the HDF user.

TABLE 2D

2.6

Limit Definitions

Definition Name Definition Value Description
FIELDNAMELENMAX 128 Maximum length of a vdata field in bits - 16 characters.
VSNAMELENMAX 64 Maximum length of a vdata name in bytes - 64 characters.
VGNAMELENMAX 64 Maximum length of a vgroup name in bytes - 64 characters.
MAX_VFILE 16 Maximum number of open data files.
MAXNVELT 64 Maximum number of objects in a vgroup.
MAX_ORDER 32000 Maximum order of a vdata field.
MAX_FIELD_SIZE 32000 Maximum length of a field.

Basic Operations on HDF Files

The HDF programming model specifies that a data file be first explicitly opened by an application,
then manipulated, then explicitly closed by the application code at the end of its execution. To use
the routines designed to open and close data files, the user must first know afileutidifiers

used by the HDF API routines.

2.6.1 File Identifiers

HDF data files are uniquely identified by either a filename or a file identification numifiée,idr

The filename is the name of the file as represented in the native filesystem, and is created along
with the file itself through the HDF file creation routine. The file id is the numeric identifier given
to the file by the HDF library, also at the time of creation, and is generally only used by the HDF
library routines; the HDF user need not keep track of them.

As every file is assigned its own identifier, the order in which files are accessed is very flexible.
For example, it is perfectly valid to open a file and obtain an identifier for it, then open a second
file without closing the first file or disposing of the first file identifier. The only requirement made
by HDF is that all file ids be individually discarded before the termination of the calling program.

File identifiers created by any HDF API routine cannot be used by the routines of any other inter-
face - they are not interchangeable.

2.6.2 Opening HDF Files: Hopen

TheHopen routine opens or creates an HDF data file, depending on the access mode specified,
and returns the file id the HDF library has assigned it. The parameter names and data types are

May 14, 1997 2-13

National Center for Supercomputing Applications

listed in Table 2E below. Refer also to tHBF Reference Manudbr additional information on
Hopenand to Section 2.5 on page 11 for information regarding file access codes.

TABLE 2E Hopen Parameter List
Routine Name Data Type
Parameter Description
(Fortran-77) C Fortran-77
filename char * E:;aracters File identifier.
Hopen access intn integer Access mode definition.
(hopen)
)) Number of data descriptors in a block if a new file is to bg
n_dds int16 integer 2
- created.

2.6.3 Closing HDF Files: Hclose

TheHcloseroutine closes the file designated by the file id passed in d@igtle parameter.
The parameter names and data types are listed in Table 2F below. Refer alstitb theference
Manualfor additional information regardirigclose

TABLE 2F Hclose Parameter List
Routine Name Data Type
Parameter Description
(Fortran-77) C Fortran-77
Hclose file_id int32 integert4 File identifier.
(hclose)

2.6.4 Determining the Number of Objects with a Specified Tag: Hhumber

Hnumber determines how many objects with the specified tag exist within a file. To count the
total number of objects in a file, set thg argument t@FTAG_wiLDCARDNote that a return value

of 0 is not a error condition. The parameter names and data types are listed in Table 2G below.
Refer also to thelDF Reference Manudbr additional information regardirignumber.

TABLE 2G Hnumber Parameter List
Routine Name Data Type
Parameter Description
(Fortran-77) C Fortran-77
Hnumber file_id int32 integer<4 File identifier.
(hnumber) tag int32 uint16 Tag to be counted.

2.6.5 Getting the HDF Library Version Used to Create a File:
Hgetlibversion

Hgetlibversion returns the version of the HDF library currently being used, as well as additional
textual information regarding the library. The parameter names and data types are listed in Table
2H below. Refer also to tHeéDF Reference Manudbr additional information regardiriggetlib-
version.

2-14 May 14, 1997

TABLE 2H Hgetlibversion Parameter List
Function Name Data Type o
Parameter Description
(Fortran-77) C
major_v uint32 * Major version number.
minor_v uint32 * Minor version number.
Hgetfileversion

release uint32 * Complete library version number.

string char [80] Additional information about the library version.
2.6.6 Locate an Object by its Tag/Reference Number Pair: Hfind
Hfind, like all H functions, must be preceded by a caltpen and followed at some point by a
call toHclose
AlthoughHfind is capable of executing many kinds of search operations, it is particularly useful
for determining the valid reference numbers for any specified tag. When supplied with a recog-
nized HDF tag, a wildcarded reference number and a search dirétfiitwh,will search sequen-
tially through the objects stored in an HDF file until the first data object with the specified tag is
encountered. Once the data object is discovétfdd will return its reference number. By using
Hfind in a conditional loop the reference number for any or all data objects in an HDF file can be
retrieved. For more abottfind consult theHDF Reference Guide

TABLE 2 Hfind Parameter List

2.7

2.8

Routine Name Data Type o
Parameter Description
(Fortran-77) C
major_v uint32 * Major version number.
minor_v uint32 * Minor version number.
Hfind - -
release uint32 * Complete library version number.
string char [80] Additional information about the library version.

Application Programming Interfaces

HDF provides Fortran-77 and C APIs for storing and retrieving 8- and 24-bit raster images, pal-
ettes, scientific data, and annotations. These interfaces are described in detail in Chapters 3
through 12 of this manual.

Fortran-77 and C Language Issues

In order to make the Fortran-77 and C versions of each routine as similar as possible, some com-
promises have been made in the process of simplifying the interface for both programming lan-
guages.

2.8.1 Fortran-77-to-C Translation

Nearly all of the HDF library code is written in C. The Fortran-77 HDF API routines translate all
parameter data types to C data types, then call the C routine that performs the main function. For

May 14, 1997 2-15

National Center for Supercomputing Applications

exampled8aimgis the Fortran-77 equivalent fdFR8addimage Calls to either routine execute
the same C code that adds an 8-bit raster image to an HDF file - see the following figure.

FIGURE 2e

Use of a Function Call Converter to Route Fortran-77 HDF Calls to the C Library

Your Your

c Fortran-77 to C Fortran-77
Program Program

DFR8addimage i d8aimg to DFR8addimage = dsaimg

2.8.2 Case Sensitivity

Fortran-77 identifiers generally are not case sensitive, whereas C identifiers are. Although all of
the Fortran-77 routines shown in this manual are written in lower case, Fortran-77 programs can
generally call them using either upper- or lower-case letters without loss of meaning.

2.8.3 Name Length

Because some Fortran-77 compilers only interpret identifier names with seven or fewer charac-
ters, the first seven characters of the Fortran-77 HDF routine names are unique.

2.8.4 Header Files

The inclusion of header files is not generally permitted by Fortran-77 compilers. However, it is
sometimes available as an option. On UNIX systems, for example, the macro processuats

cpp let your compiler include and preprocess header files. If this capability is not available, you
may have to copy whatever declarations, definitions, or values you need from the “constants.f” file
into your program code. If it is, include the header file named “hdf.inc” in your Fortran-77 code.
The “constants.f” file is included in the “hdf.inc” header file.

2.8.5 Data Type Specifications

When mixing machines, compilers, and languages, it is difficult to maintain consistent data type
definitions. For instance, on some machines an integer is a 32-bit quantity and on others, a 16-bit
quantity. In addition, the differences between Fortran-77 and C lead to difficulties in describing
the data types found in the argument lists of HDF routines. To maintain portability, the HDF
library expects assigned names for all data types used in HDF routines. (See Table 2J.)

TABLE 2J

Data Type Definitions

Data Type C Fortran-77

8-bit signed integer int8 integer*1

8-bit unsigned integer uint8 character1

16-bit signed integer int16 integer2

16-bit unsigned integer uint16 Not supported.

32-bit signed integer int32 integer*4

32-bit unsigned integer uint32 Not supported.

2-16

May 14, 1997

Data Type C Fortran-77
32-bit floating point number float32 real*4
64-bit floating point number float64 real*8
Native signed integer intn integer
Native unsigned integer uintn Not supported.

When using a Fortran-77 data type that is not supported, the general practice is to use another data
type of the same size. For example, an 8-bit signed integer can be used to store an 8-bit unsigned
integer variable unless the code relies on a sign-specific operation.

2.8.6 Array Specifications

In the declarations contained in the headers of Fortran-77 functions, the following conventions are
followed:

character* x(*) means that refers to an array that contains an indefinite number of
characters. It is the responsibility of the calling program to allocate enough space to hold
whatever data is stored in the array.

real* x(¥) means that refers to an array of reals of indefinite size and of indefinite rank.
It is the responsibility of the calling program to allocate an actual array with the correct
number of dimensions and dimension sizes.

2.8.7 Fortran-77, ANSI C and K&R C

As much as possible, we have conformed the HDF API routines to those implementations of For-
tran and C that are in most common use today, namely Fortran-77, ANSI C and K&R C. Due to
the increasing availability of ANSI C, future versions of HDF will no longer support K&R C.

As Fortran-90 is a superset of Fortran-77, HDF programs should compile and run correctly when
using a Fortran-90 compiler.

2.9 Low-Level Interfaces

The low-level HDF interface consists of tHanterface, theHL/HX interface and theHE inter-
face

2.9.1 The H Interface

The low-level H interface builds and manipulates data objects in an HDF file. A thorough explana-
tion of each H interface routine can be found inkii¥ Specification and Developer’'s Guide
Table 2K lists and briefly describes the H interface routines that are most commonly used in HDF

applications.
TABLE 2K Some H Interface Routines
Category Routine Name Description
Hopen Provides an access path to a file.
Input/Output Hclose Closes an access path to a file.
Hgetlibversion Returns version information for the current HDF library.

May 14, 1997 2-17

National Center for Supercomputing Applications

2.9.2 The HX Interface

The HX interface routines create and maintain linked and external data elements. A thorough
explanation of each HX interface routine can be found itHBE Specification and Developer’s
Guide

2.9.3 The HE Interface

The HE interface routines provide error handling functionality. The HE interface routines are
described in thélDF Specification and Developer’'s Guidad Chapter 12, titleBrror Report-

ing.

2-18 May 14, 1997

	HDF Fundamentals
	2.1 Chapter Overview
	2.2 The Hierarchy of HDF Interaction
	FIGURE 2a The Three Levels of Interaction with the...

	2.3 Data Objects
	2.3.1 Data Descriptors
	FIGURE 2b The Contents of a Data Descriptor

	2.4 File Format
	FIGURE 2c The Physical Layout of an HDF File Conta...
	2.4.1 Grouping Data Objects in an HDF File
	2.4.2 Storing Data Objects
	FIGURE 2d HDF Data Storage Options
	2.4.2.1 Contiguous Data Elements
	2.4.2.2 Linked-block Data Elements
	2.4.2.3 External Data Elements

	2.5 Header File Information
	2.5.1 File Access Code Definitions
	TABLE 2A File Access Code Definitions

	2.5.2 Data Type Definitions
	TABLE 2B Data Type Definitions

	2.5.3 Tag Definitions
	TABLE 2C Tag Definitions

	2.5.4 Limit Definitions
	TABLE 2D Limit Definitions

	2.6 Basic Operations on HDF Files
	2.6.1 File Identifiers
	2.6.2 Opening HDF Files: Hopen
	TABLE 2E Hopen Parameter List

	2.6.3 Closing HDF Files: Hclose
	TABLE 2F Hclose Parameter List

	2.6.4 Determining the Number of Objects with a Spe...
	TABLE 2G Hnumber Parameter List

	2.6.5 Getting the HDF Library Version Used to Crea...
	TABLE 2H Hgetlibversion Parameter List

	2.6.6 Locate an Object by its Tag/Reference Number...
	TABLE 2I Hfind Parameter List

	2.7 Application Programming Interfaces
	2.8 Fortran-77 and C Language Issues
	2.8.1 Fortran-77-to-C Translation
	FIGURE 2e Use of a Function Call Converter to Rout...

	2.8.2 Case Sensitivity
	2.8.3 Name Length
	2.8.4 Header Files
	2.8.5 Data Type Specifications
	TABLE 2J Data Type Definitions

	2.8.6 Array Specifications
	2.8.7 Fortran-77, ANSI C and K&R C

	2.9 Low-Level Interfaces
	2.9.1 The H Interface
	TABLE 2K Some H Interface Routines

	2.9.2 The HX Interface
	2.9.3 The HE Interface

