
Chapter
2

HDF Fundamentals
e
s

ow-
 HDF
con-

ine

ngle-

and
2.1 Chapter Overview

In this chapter, our description of HDF in Chapter 1, titled Introduction to HDF, is expanded to
include a description of the hierarchical structure of HDF interaction with HDF file objects, th
physical format of HDF files, the low-level HDF interfaces, and programming language issue
pertaining to the use of Fortran-77, ANSI C and K&R C in HDF programming.

2.2 The Hierarchy of HDF Interaction

To review the description of HDF provided in Chapter 1, HDF is a physical file format at its l
est level and a collection of utilities and applications at its highest. Between these two levels,
is a library that itself provides two levels of programming interfaces. HDF can be thought of
ceptually as three interface layers built upon a physical file format.

FIGURE 2a The Three Levels of Interaction with the HDF File Format

Refer to Figure 2a. Of the three types of top-level general applications, only the command-l
utilities will be extensively covered in this manual. See Chapter 13, titled HDF Command-Line
Utilities, for descriptions of this aspect of HDF. These general applications directly call the si
file and multifile interfaces.

The two interactive levels immediately below this level, the low-level interface and the HDF data
file itself, are only briefly described as the single-file and multifile interfaces provide a safer

HDF File

Data Descriptor Block Data Elements File Header

HD Interface HE Interface

Low-level Interface

HL/HX Interface

General Applications

Commercial ApplicationsNCSA ApplicationsUtilities

Multifile Interfaces
General
Raster

Scientific
 DataAnnotationsVgroups Vdata

Single-File Interfaces
Scientific

 Data
8-Bit

 Raster Raster
24-Bit

AnnotationsPalette
May 14, 1997 2-7

National Center for Supercomputing Applications

- the
wer-

 the
orpo-
elves

psu-

a itself.

ptor is

ppen-

se tags
99 are
nted
st to

mple,
ference

 are
ter

write
ge set
bers.
more standardized means of accessing these levels. The single-file and multifile interfaces
second highest level of interaction within HDF - are routinely updated as aspects of these lo
level interfaces are changed, in a manner as transparent to the HDF user as possible. With
exception of the few instances where lower-level interface functionality has not yet been inc
rated into the higher-level interface functions, the HDF user need not directly concern thems
with these levels.

2.3 Data Objects

The term data object is used to describe the fundamental conglomerate structure use to enca
late data.

Data objects contain a data descriptor and a data element. Data descriptors consist of information
about the type, location, and size of a data element. Data elements contain the primary dat

2.3.1 Data Descriptors
All data descriptors are twelve bytes long and contain four fields. (See Figure 2b.)

FIGURE 2b The Contents of a Data Descriptor

Tags

Tags identify the type of data stored in its data element. For example, a raster image descri
identified by a DFTAG_RI tag and a palette descriptor a DFTAG_LUT tag. There are currently over 200
tags defined for general use. A complete list of tags and their descriptions can be found in A
dix A of this manual

Tag values ranging between 1 and 32,767 are reserved for commonly-used data types. The
are assigned by the HDF development group. Tag values ranging between 32,768 and 64,9
not regulated by NCSA and are available for private application. These tags are not docume
by NCSA and may therefore conflict with tags assigned by someone else. Therefore, it is be
limit applications to the use of the commonly-used tags.

Reference Numbers

Reference numbers distinguish between different data elements with the same tag. For exa
all raster image descriptors will have the same raster data tag. The pairing of a tag and a re
number provides a unique identifier for any HDF object within a file.

Although HDF assigns reference numbers in increasing order, it is the write operations that
counted, not the number or type of data objects added to the file. For example, writing a ras
image set followed by a scientific data set uses a minimum of six data objects but only two
operations. Consequently, HDF will assign 1 as the reference number for the first raster ima
and all its members and 2 as the reference number for the scientific data set and all its mem

Tag Reference Offset Length

Data Descriptor

2 bytes 4 bytes 2 bytes 4 bytes
2-8 May 14, 1997

 ref-
.

ytes
 the

tive

tain-

ty
tor

e data
ed
sets in

ing the
icating

 set -
While application programmers may find it convenient to impart some additional meaning to
erence numbers, it should be noted that HDF will not internally recognize any such meaning

Offsets and Lengths

The offset field points to the location of the data element in the file by storing the number of b
from the beginning of the file to the beginning of the data element. The length field contains
total size of the data element in bytes.

Data Elements

The type of the data stored in a data element is identified by its tag, however, other interpre
information may be required before it can be processed properly.

2.4 File Format

HDF files contain a file header and at least one data descriptor block, as depicted in Figure 2c.
The HDF file header occupies the first four bytes of every HDF file with a signature field con
ing the 32-bit hexadecimal value 0e031301 . This number is considered a “magic cookie” as it
identifies the file as an HDF file. Initially the data descriptor block consists of a group of emp
data descriptors. As data objects are written to the file, the HDF library fills the data descrip
block by pairing one data descriptor for each data element. Refer to the following figure.

FIGURE 2c The Physical Layout of an HDF File Containing One Data Object

2.4.1 Grouping Data Objects in an HDF File
HDF files that contain more than one data element are generally easier to work with when th
objects containing related data are grouped together. These groups of data objects are calldata
sets. The HDF user uses the application interface to define, manipulate and dispose of data
a file.

As an example, an 8-bit raster image data set requires three objects: a group object identify
members of the set, an image object containing the image data and a dimension object ind
the size of the image. It is sometimes possible to add additional data objects to the minimum
for example, an 8-bit raster image set may include a palette.

Data Descriptor Block

Data Element

Data Descriptor

Empty Data Descrip-

Empty Data Descrip-

Empty Data Descrip-

HDF File Header HDF File Header

Data Object

HDF File
May 14, 1997 2-9

National Center for Supercomputing Applications

jects
 palette
ag and

HDF
 com-
ces or

and

 a
er and
re of
e

st
Data objects are individually accessible even if they are included in a set, therefore data ob
can belong to more than one set and sets can be included in larger groups. For example, a
object included in one raster image set may also be a part of another raster image set if its t
reference number are included in a data descriptor within that second set.

Several data sets may be further grouped into group objects. The contents of the group object
depends on the HDF data set it supports.

2.4.2 Storing Data Objects

Data objects can be stored in HDF data files as a contiguous element, as linked-block elements or
as external elements. These data storage options are illustrated below in Figure 2d.

FIGURE 2d HDF Data Storage Options

2.4.2.1 Contiguous Data Elements

This is the default method of data storage in HDF. In this case, all data objects exist in one
file and are stored in the manner illustrated in Figure 2c. Each data element in the file is one
plete unit of raw data, and as only one unique data descriptor points to it there are no referen
relationships to the other data elements in the file. As additional data elements are created
written they are appended to the end of the HDF file.

2.4.2.2 Linked-block Data Elements

Linked-block elements are a series of data elements existing in one HDF file which serve as
means of adding data to a pre-existing data element. These elements are linked to each oth
to the original data element by a linked-list structure similar to the data descriptor list. They a
a uniform size with the exception of the first block after the original data element, which is th
only block that can be resized.

2.4.2.3 External Data Elements

External data elements are those that exist in a file apart from the one the data descriptor li
resides in. These additional HDF data files are referred to as external data files. The HDF library

Data Element 1

Data Descriptor

Data Element 2

Data Element n

.

.

.

Data Element 1

Data Descriptor

Linked Element 1

.

.

.

Linked Element n

Linked Element 2

Data Descriptor

External Element 1

HDF File 1

HDF File 2

Contiguous Elements Linked-block Elements External Elements
2-10 May 14, 1997

rence

ces-
e rou-

h

ble or

nt-
keeps track of the filesystem location of the external data file as well as the standard tag/refe
number pair, offset and length information of the external element.

2.5 Header File Information

The “hdf.h” header file must be included in every HDF application program as it contains ne
sary declarations and definitions as well as prototypes for the HDF API routines. To use thes
tines, the HDF user must be familiar with the most-commonly used definitions stored in the
“hdf.h” file.

2.5.1 File Access Code Definitions

These definitions are passed into API file access routines as parameters. The DFACC_RDONLY and
DFACC_CLOBBER definitions exist in the “hdf.h” file to accommodate backward compatibility wit
applications designed to work with older versions of the HDF API library.

TABLE 2A File Access Code Definitions

2.5.2 Data Type Definitions

These definitions are used in comparison expressions to determine the type of an input varia
a value returned by an API function. DFNT_FLOAT, DFNT_DOUBLE, DFNT_UCHAR, and DFNT_CHAR are
included in the “hdf.h” file for backward compatibility. These definitions are located in the “h
defs.h” header file.

TABLE 2B Data Type Definitions

Definition Name Definition Value Description

DFACC_READ 1 Read access.

DFACC_WRITE 2 Write access.

DFACC_RDWR 3 Read and write access.

DFACC_CREATE 4 File creation access.

DFACC_CLOBBER 4 Same as DFACC_CREATE.

DFACC_RDONLY 1 Same as DFACC_READ.

Definition Name Definition Value Description

DFNT_CHAR8 4 8-bit character type.

DFNT_CHAR 4 Same as DFNT_CHAR8.

DFNT_UCHAR8 3 8-bit unsigned character type.

DFNT_UCHAR 3 Same as DFNT_UCHAR8.

DFNT_INT8 20 8-bit integer type.

DFNT_UINT8 21 8-bit unsigned integer type.

DFNT_INT16 22 16-bit integer type.

DFNT_UINT16 23 16-bit unsigned integer type.

DFNT_INT32 24 32-bit integer type.

DFNT_UINT32 25 32-bit unsigned integer type.

DFNT_INT64 26 64-bit integer type.

DFNT_UINT64 27 64-bit unsigned integer type.
May 14, 1997 2-11

National Center for Supercomputing Applications

pt of
able

 pixel

, titled
2.5.3 Tag Definitions

These definitions identify the object tags defined and used by the HDF API library. The conce
object tags is introduced in Section 2.3.1 on page 8. Note that, in the tag list that follows in T
2C, tags can also identify properties of data objects such as raster image compression and
interlacing type (these concepts are described in Chapter 6, titled 8-bit Raster Images. (DFR8
API) 8- and 24-raster images and scientific data sets are respectively described in Chapter 6
8-bit Raster Images (DFR8 API), Chapter 7, titled 24-bit Raster Images (DF24 API) and Chapter
3, titled Scientific Data Sets (SD API).

TABLE 2C Tag Definitions

DFNT_FLOAT32 5 32-bit floating-point type.

DFNT_FLOAT64 6 64-bit floating-point type.

Definition Name Definition Value Description

DFTAG_FID ((uint16) 100) File identifier.

DFTAG_FD ((uint16) 101) File description.

DFTAG_TID ((uint16) 102) Tag identifier.

DFTAG_TD ((uint16) 103) Tag descriptor.

DFTAG_DIL ((uint16) 104) Data identifier label.

DFTAG_DIA ((uint16) 105) Data identifier annotation.

DFTAG_NT ((uint16) 106) Number type.

DFTAG_ID8 ((uint16) 200) 8-bit raster image dimension record.

DFTAG_IP8 ((uint16) 201) 8-bit raster image palette.

DFTAG_RI8 ((uint16) 202) 8-bit raster image data.

DFTAG_CI8 ((uint16) 203) 8-bit raster image data - RLE compressed.

DFTAG_II8 ((uint16) 204) 8-bit raster image data - IMCOMP compressed.

DFTAG_ID ((uint16) 300) 24-bit raster image dimension record.

DFTAG_LUT ((uint16) 301) 24-bit raster image palette.

DFTAG_RI ((uint16) 302) 24-bit raster image data.

DFTAG_CI ((uint16) 303) 24-bit raster image - compressed.

DFTAG_RIG ((uint16) 306) Raster image group.

DFTAG_LD ((uint16) 307) Palette dimension record.

DFTAG_SDG ((uint16) 700) Scientific data group.

DFTAG_SDD ((uint16) 701) Scientific data dimension record.

DFTAG_SD ((uint16) 702) Scientific data group data.

DFTAG_SDS ((uint16) 703) Scientific data scale.

DFTAG_SDL ((uint16) 704) Scientific data label.

DFTAG_SDU ((uint16) 705) Scientific data unit.

DFTAG_NDG ((uint16) 720) Numeric data group.

DFTAG_CAL ((uint16) 731) Calibration information.

DFTAG_VG ((uint16) 1965) Vgroup.

DFTAG_VH ((uint16) 1962) Vdata header.

DFTAG_VS ((uint16) 1963) Vdata storage.

DFTAG_RLE ((uint16) 11) Run-length encoding compression algorithm.

DFTAG_IMCOMP ((uint16) 12) IMCOMP compression algorithm.

DFTAG_JPEG ((uint16) 13) JPEG compression algorithm - 24-bit data.

DFTAG_GREYJPEG ((uint16) 14) JPEG compression algorithm - 8-bit data.
2-12 May 14, 1997

 maxi-
e dis-
d

tion,
o use

long
en
DF

le.
ond
de
am.

inter-

fied,
 are
2.5.4 Limit Definitions

These definitions declare the maximum size of specific data object parameters, such as the
mum length of a vdata field or the maximum number of objects in a vgroup. Vdata objects ar
cussed in Chapter 4, titled Vdatas (VS API), and vgroup objects are described in Chapter 5, title
Vgroups (V API). Except for FIELDNAMELENMAX, these can be safely altered by the HDF user.

TABLE 2D Limit Definitions

2.6 Basic Operations on HDF Files

The HDF programming model specifies that a data file be first explicitly opened by an applica
then manipulated, then explicitly closed by the application code at the end of its execution. T
the routines designed to open and close data files, the user must first know about the file identifiers
used by the HDF API routines.

2.6.1 File Identifiers

HDF data files are uniquely identified by either a filename or a file identification number, or file id.
The filename is the name of the file as represented in the native filesystem, and is created a
with the file itself through the HDF file creation routine. The file id is the numeric identifier giv
to the file by the HDF library, also at the time of creation, and is generally only used by the H
library routines; the HDF user need not keep track of them.

As every file is assigned its own identifier, the order in which files are accessed is very flexib
For example, it is perfectly valid to open a file and obtain an identifier for it, then open a sec
file without closing the first file or disposing of the first file identifier. The only requirement ma
by HDF is that all file ids be individually discarded before the termination of the calling progr

File identifiers created by any HDF API routine cannot be used by the routines of any other
face - they are not interchangeable.

2.6.2 Opening HDF Files: Hopen

The Hopen routine opens or creates an HDF data file, depending on the access mode speci
and returns the file id the HDF library has assigned it. The parameter names and data types

DFIL_PIXEL ((uint16) 0) Pixel interlacing.

DFIL_LINE ((uint16) 1) Scan-line interlacing.

DFIL_PLANE ((uint16) 2) Scan-plane interlacing.

Definition Name Definition Value Description

FIELDNAMELENMAX 128 Maximum length of a vdata field in bits - 16 characters.

VSNAMELENMAX 64 Maximum length of a vdata name in bytes - 64 characters.

VGNAMELENMAX 64 Maximum length of a vgroup name in bytes - 64 characters.

MAX_VFILE 16 Maximum number of open data files.

MAXNVELT 64 Maximum number of objects in a vgroup.

MAX_ORDER 32000 Maximum order of a vdata field.

MAX_FIELD_SIZE 32000 Maximum length of a field.
May 14, 1997 2-13

National Center for Supercomputing Applications

e

low.

nal
Table
listed in Table 2E below. Refer also to the HDF Reference Manual for additional information on
Hopen and to Section 2.5 on page 11 for information regarding file access codes.

TABLE 2E Hopen Parameter List

2.6.3 Closing HDF Files: Hclose

The Hclose routine closes the file designated by the file id passed in as the file_id parameter.
The parameter names and data types are listed in Table 2F below. Refer also to the HDF Reference
Manual for additional information regarding Hclose.

TABLE 2F Hclose Parameter List

2.6.4 Determining the Number of Objects with a Specified Tag: Hnumber

Hnumber determines how many objects with the specified tag exist within a file. To count th
total number of objects in a file, set the tag argument to DFTAG_WILDCARD. Note that a return value
of 0 is not a error condition. The parameter names and data types are listed in Table 2G be
Refer also to the HDF Reference Manual for additional information regarding Hnumber.

TABLE 2G Hnumber Parameter List

2.6.5 Getting the HDF Library Version Used to Create a File:
Hgetlibversion

Hgetlibversion returns the version of the HDF library currently being used, as well as additio
textual information regarding the library. The parameter names and data types are listed in
2H below. Refer also to the HDF Reference Manual for additional information regarding Hgetlib-
version.

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

Hopen
(hopen)

filename char *
character8

(*)
File identifier.

access intn integer Access mode definition.

n_dds int16 integer*2
Number of data descriptors in a block if a new file is to be
created.

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

Hclose
(hclose)

file_id int32 integer*4 File identifier.

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

Hnumber
(hnumber)

file_id int32 integer*4 File identifier.

tag int32 uint16 Tag to be counted.
2-14 May 14, 1997

eful
og-

 is

n be

pal-
3

 com-
lan-

 all
n. For
TABLE 2H Hgetlibversion Parameter List

2.6.6 Locate an Object by its Tag/Reference Number Pair: Hfind
Hfind , like all H functions, must be preceded by a call to Hopen and followed at some point by a
call to Hclose.

Although Hfind is capable of executing many kinds of search operations, it is particularly us
for determining the valid reference numbers for any specified tag. When supplied with a rec
nized HDF tag, a wildcarded reference number and a search direction, Hfind will search sequen-
tially through the objects stored in an HDF file until the first data object with the specified tag
encountered. Once the data object is discovered, Hfind will return its reference number. By using
Hfind in a conditional loop the reference number for any or all data objects in an HDF file ca
retrieved. For more about Hfind consult the HDF Reference Guide.

TABLE 2I Hfind Parameter List

2.7 Application Programming Interfaces

HDF provides Fortran-77 and C APIs for storing and retrieving 8- and 24-bit raster images,
ettes, scientific data, and annotations. These interfaces are described in detail in Chapters
through 12 of this manual.

2.8 Fortran-77 and C Language Issues

In order to make the Fortran-77 and C versions of each routine as similar as possible, some
promises have been made in the process of simplifying the interface for both programming
guages.

2.8.1 Fortran-77-to-C Translation

Nearly all of the HDF library code is written in C. The Fortran-77 HDF API routines translate
parameter data types to C data types, then call the C routine that performs the main functio

Function Name

(Fortran-77)
Parameter

Data Type
Description

C

Hgetfileversion

major_v uint32 * Major version number.

minor_v uint32 * Minor version number.

release uint32 * Complete library version number.

string char [80] Additional information about the library version.

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C

Hfind

major_v uint32 * Major version number.

minor_v uint32 * Minor version number.

release uint32 * Complete library version number.

string char [80] Additional information about the library version.
May 14, 1997 2-15

National Center for Supercomputing Applications

ll of
 can

rac-

 is

ou
.f” file
de.

type
 16-bit
ing
example, d8aimg is the Fortran-77 equivalent for DFR8addimage. Calls to either routine execute
the same C code that adds an 8-bit raster image to an HDF file - see the following figure.

FIGURE 2e Use of a Function Call Converter to Route Fortran-77 HDF Calls to the C Library

2.8.2 Case Sensitivity

Fortran-77 identifiers generally are not case sensitive, whereas C identifiers are. Although a
the Fortran-77 routines shown in this manual are written in lower case, Fortran-77 programs
generally call them using either upper- or lower-case letters without loss of meaning.

2.8.3 Name Length

Because some Fortran-77 compilers only interpret identifier names with seven or fewer cha
ters, the first seven characters of the Fortran-77 HDF routine names are unique.

2.8.4 Header Files

The inclusion of header files is not generally permitted by Fortran-77 compilers. However, it
sometimes available as an option. On UNIX systems, for example, the macro processors m4 and
cpp let your compiler include and preprocess header files. If this capability is not available, y
may have to copy whatever declarations, definitions, or values you need from the “constants
into your program code. If it is, include the header file named “hdf.inc” in your Fortran-77 co
The “constants.f” file is included in the “hdf.inc” header file.

2.8.5 Data Type Specifications

When mixing machines, compilers, and languages, it is difficult to maintain consistent data
definitions. For instance, on some machines an integer is a 32-bit quantity and on others, a
quantity. In addition, the differences between Fortran-77 and C lead to difficulties in describ
the data types found in the argument lists of HDF routines. To maintain portability, the HDF
library expects assigned names for all data types used in HDF routines. (See Table 2J.)

TABLE 2J Data Type Definitions

Data Type C Fortran-77

8-bit signed integer int8 integer*1

8-bit unsigned integer uint8 character*1

16-bit signed integer int16 integer*2

16-bit unsigned integer uint16 Not supported.

32-bit signed integer int32 integer*4

32-bit unsigned integer uint32 Not supported.

Your
C

Program

DFR8addimage

Your
Fortran-77
Program

d8aimg

Fortran-77 to C

HDF Library d8aimg to DFR8addimage
2-16 May 14, 1997

er data
signed

s are

old

k.

f For-
e to

when

lana-

 HDF
When using a Fortran-77 data type that is not supported, the general practice is to use anoth
type of the same size. For example, an 8-bit signed integer can be used to store an 8-bit un
integer variable unless the code relies on a sign-specific operation.

2.8.6 Array Specifications

In the declarations contained in the headers of Fortran-77 functions, the following convention
followed:

• character* x(*) means that x refers to an array that contains an indefinite number of
characters. It is the responsibility of the calling program to allocate enough space to h
whatever data is stored in the array.

• real* x(*) means that x refers to an array of reals of indefinite size and of indefinite ran
It is the responsibility of the calling program to allocate an actual array with the correct
number of dimensions and dimension sizes.

2.8.7 Fortran-77, ANSI C and K&R C

As much as possible, we have conformed the HDF API routines to those implementations o
tran and C that are in most common use today, namely Fortran-77, ANSI C and K&R C. Du
the increasing availability of ANSI C, future versions of HDF will no longer support K&R C.

As Fortran-90 is a superset of Fortran-77, HDF programs should compile and run correctly
using a Fortran-90 compiler.

2.9 Low-Level Interfaces

The low-level HDF interface consists of the H interface, the HL/HX interface and the HE inter-
face.

2.9.1 The H Interface
The low-level H interface builds and manipulates data objects in an HDF file. A thorough exp
tion of each H interface routine can be found in the HDF Specification and Developer’s Guide.
Table 2K lists and briefly describes the H interface routines that are most commonly used in
applications.

TABLE 2K Some H Interface Routines

32-bit floating point number float32 real*4

64-bit floating point number float64 real*8

Native signed integer intn integer

Native unsigned integer uintn Not supported.

Category Routine Name Description

 Input/Output

Hopen Provides an access path to a file.

Hclose Closes an access path to a file.

Hgetlibversion Returns version information for the current HDF library.

Data Type C Fortran-77
May 14, 1997 2-17

National Center for Supercomputing Applications

h

2.9.2 The HX Interface

The HX interface routines create and maintain linked and external data elements. A thoroug
explanation of each HX interface routine can be found in the HDF Specification and Developer’s
Guide.

2.9.3 The HE Interface

The HE interface routines provide error handling functionality. The HE interface routines are
described in the HDF Specification and Developer’s Guide and Chapter 12, titled Error Report-
ing.
2-18 May 14, 1997

	HDF Fundamentals
	2.1 Chapter Overview
	2.2 The Hierarchy of HDF Interaction
	FIGURE 2a The Three Levels of Interaction with the...

	2.3 Data Objects
	2.3.1 Data Descriptors
	FIGURE 2b The Contents of a Data Descriptor

	2.4 File Format
	FIGURE 2c The Physical Layout of an HDF File Conta...
	2.4.1 Grouping Data Objects in an HDF File
	2.4.2 Storing Data Objects
	FIGURE 2d HDF Data Storage Options
	2.4.2.1 Contiguous Data Elements
	2.4.2.2 Linked-block Data Elements
	2.4.2.3 External Data Elements

	2.5 Header File Information
	2.5.1 File Access Code Definitions
	TABLE 2A File Access Code Definitions

	2.5.2 Data Type Definitions
	TABLE 2B Data Type Definitions

	2.5.3 Tag Definitions
	TABLE 2C Tag Definitions

	2.5.4 Limit Definitions
	TABLE 2D Limit Definitions

	2.6 Basic Operations on HDF Files
	2.6.1 File Identifiers
	2.6.2 Opening HDF Files: Hopen
	TABLE 2E Hopen Parameter List

	2.6.3 Closing HDF Files: Hclose
	TABLE 2F Hclose Parameter List

	2.6.4 Determining the Number of Objects with a Spe...
	TABLE 2G Hnumber Parameter List

	2.6.5 Getting the HDF Library Version Used to Crea...
	TABLE 2H Hgetlibversion Parameter List

	2.6.6 Locate an Object by its Tag/Reference Number...
	TABLE 2I Hfind Parameter List

	2.7 Application Programming Interfaces
	2.8 Fortran-77 and C Language Issues
	2.8.1 Fortran-77-to-C Translation
	FIGURE 2e Use of a Function Call Converter to Rout...

	2.8.2 Case Sensitivity
	2.8.3 Name Length
	2.8.4 Header Files
	2.8.5 Data Type Specifications
	TABLE 2J Data Type Definitions

	2.8.6 Array Specifications
	2.8.7 Fortran-77, ANSI C and K&R C

	2.9 Low-Level Interfaces
	2.9.1 The H Interface
	TABLE 2K Some H Interface Routines

	2.9.2 The HX Interface
	2.9.3 The HE Interface

