
Chapter
3

Scientific Data Sets (SD API)
ys

of

ered
bly.

ro-
3.1 Chapter Overview

This chapter describes the routines available for storing and retrieving multidimensional arra
containing scientific data.

3.2 The SD Scientific Data Set Data Model

In HDF, any multi-dimensional array qualifies as a scientific data set or SDS if it’s associated with
a dimension record and a data type. In addition to providing a framework for storing arrays
arbitrary dimensions and data type, the SDS data model supports dimension scales, user-defined
attributes and predefined attributes. (See Figure 3a.)

FIGURE 3a The Contents of a Three-Dimensional SD Scientific Data Set

Scientific data sets consist of required and optional objects. The required objects will be cov
first. Please note that in this chapter the terms "SDS" and "data set" are used interchangea

3.2.1 Required SD SDS Objects
Every SD scientific data set must contain three objects. These objects include the SDS array, data
type and dimension records. Required objects are automatically created from the information p
vided at the time the SDS is defined.

Array

SD Scientific Data Set

Dimension
Attributes

Dimension X Dimension Y Dimension Z

Array Attributes

Array Data Type

Dimension X, Y, Z

Dimension
Data Type

Dimension
Scale

Dimension
Attributes

Dimension
Data Type

Dimension
Scale

Dimension
Attributes

Dimension
Data Type

Dimension
Scale
May 14, 1997 3-19

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

n
 shape

rac-
 by the
 set is
ey are

, 8-,
lso
ed.

f the
ting-

ig-
erting

ple,

onver-
tances,
e
f byte
 not
t sup-
nish
tle-

n
rray
 dimen-
e to one

eated
3.2.1.1 SDS Array

An SDS array is an n-dimensional data structure that serves as the basic building block of a
SDS. When an SDS array is created, the number and size of the dimensions that define its
are specified, as is its data type. SDS arrays are conceptually equivalent to variables in the
netCDF data model.

3.2.1.2 SDS Array Name

An SDS array has an SDS name consisting of a sequence of case-sensitive alphanumeric cha
ters. A name can be assigned to an SDS by a calling program, but if a name is not provided
calling program one will be assigned by the HDF library. Names are assigned when the data
created and cannot be changed. SDS names do not have to be unique within a file, but if th
not it can be difficult to distinguish between the scientific data sets in the file.

3.2.1.3 Data Type

The standard data types supported by the SD API are 32- and 64-bit floating-point numbers
16- and 32-bit signed integers and 8-, 16- and 32-bit unsigned integers. The SD interface a
includes a routine that allows SD data sets with variable bit lengths (1 to 32 bits) to be creat

Before writing an SDS to a file, HDF normally converts its elements from the native format o
host machine to a standard HDF format. The standard representations used by HDF for floa
point numbers are the IEEE 32- and 64-bit floating-point formats. For integers, HDF uses b
endian byte ordering. For signed integers HDF uses twos-complement representation. Conv
to and from the standard formats can result in low-order inaccuracies in the data. For exam
data converted from 64-bit to 32-bit floating-point representation is accurate to about 10-7.

Sometimes users prefer not to have their data automatically converted, either because the c
sion slows down processing or because it introduces intolerable inaccuracies. For those ins
HDF provides a “native format” option, whereby numbers are stored "as is" in the file and ar
tagged accordingly. HDF also provides a “little-endian” option to suppress any rearranging o
ordering from little- to big-endian. This is primarily for users of Intel-based machines who do
want to incur the cost of reordering data when writing to an HDF file. Because HDF does no
port direct conversion between many machine architectures, using a native format can dimi
the portability of HDF files. However, note that direct conversions are supported between lit
endian and all other byte-order formats supported by HDF.

3.2.1.4 Dimensions

SDS dimensions specify the shape and size of an SDS array. The number of dimensions of a
array is known as the rank of the array. Dimension names are not treated in the same way as a
names. For example, if a name assigned to a dimension was previously assigned to another
sion the SD interface treats both dimensions as the same data object and any changes mad
will be reflected in the other. The size of a dimension is a positive integer.

Also, one dimension of an SDS array can be assigned the predefined size SD_UNLIMITED. This
dimension is referred to as an unlimited dimension - which, as the name suggests, can grow to
any length.

3.2.2 Optional SD SDS Objects

There are two types of optional objects available for inclusion in an SDS: dimension scales and
attributes. Attributes are either predefined or defined by the user. Optional objects are only cr
when specifically requested by the calling program.
3-20 May 14, 1997

als

DS or

ully

ata
 can

d no
nnota-
ility

s
ally

n one
e
t is

cept
rs.

ran-

 of

set

ta
Dimension Scales

A dimension scale is a sequence of numbers placed along a dimension to demarcate interv
along it. Dimension scales are described in Section 3.9 on page 70.

User-Defined Attributes

Attributes are alphanumeric strings describing the nature and/or intended usage of the file, S
dimension they’re attached to. User-defined attributes are attributes defined by the calling pro-
gram containing auxiliary information about a file, SDS array or dimension. They are more f
described in Section 3.10 on page 79.

Predefined Attributes

Predefined attributes are attributes that have reserved labels and in some cases predefined d
types. Predefined attributes are useful because they establish conventions that applications
depend on. They are further described in Section 3.11 on page 85.

3.2.3 Annotations and the SD Data Model
With the expansion of the SD interface to include user-defined attributes, annotations shoul
longer be used in conjunction with scientific data sets. In fact, metadata once stored as an a
tion is now more conveniently stored as an attribute. However, to insure backward compatib
with scientific data sets and applications relying on annotations, the DFAN annotation API,
described in Chapter 10, titled Annotations (DFAN API), can be used to annotate SDSs. There i
no cross-compatibility between attributes and annotations; creating one does not automatic
create the other.

3.3 The SD Scientific Data Set API

Unlike the DFSD SDS interface, the SD interface supports simultaneous access to more tha
SDS in more than one HDF file. Although it is fully compatible with the DFSD data model, th
SD interface also supports a more powerful and more general scientific data model; one tha
very similar to the netCDF data model developed by the Unidata Program Center.

All valid operations involving an SDS can be done by calling routines in the SD interface. Ex
in rare instances, the physical file format used to store HDF data is transparent to HDF use

3.3.1 SD Library Routines
All C routines in the SD scientific data library begin with the prefix "SD". The equivalent Fort
77 functions use the prefix "sf". These routines are categorized as follows:

• Access routines initialize and terminate access to HDF files and data sets.

• Read and write routines read and write data sets by manipulating their dimensions, rank
and data type.

• General inquiry routines return information about the location, contents and description
the scientific data sets in an HDF file.

• Dimension scale routines define and access dimension scales within a data set.

• User-defined attribute routines describe and access characteristics of an HDF file, data
or dimension defined by the HDF user.

• Predefined attribute routines access previously-defined characteristics of an HDF file, da
set, or dimension.
May 14, 1997 3-21

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

-

e

• Compression routines determine the compression method for SDS data.

• Chunking/tiling routines determine the chunking configuration for SDS data.

• N-bit data set routines determine the non-standard data bit length configuration for SDS
data.

The SD routines are described in the following table and in the HDF Reference Guide.

TABLE 3A SD Library Routines

Category
Routine Name

Description
C Fortran-77

 Access

SDend sfend Closes the file and clean up memory.

SDendaccess sfendacc
Disposes of a data set identifier, flush out metadata and order infor
mation.

SDselect sfselect Returns the identifier of the specified data set.

SDstart sfstart Initializes the SD interface.

Read and
Write

SDcreate sfcreate Creates a new data set.

SDreaddata
sfrdata/

sfrcdata
Reads data from a chunked or non-chunked data set.

SDsetexternalfile sfsextf Defines the data type to be stored in an external file.

SDwritedata
sfwdata/

sfwcdata
Writes data to a chunked or non-chunked data set.

General
Inquiry

SDfileinfo sffinfo Returns information about the contents of a file.

SDgetinfo sfginfo Returns information about a data set.

SDidtoref sfid2ref Returns a reference number for a named data set.

SDiscoordvar sfiscvar Distinguishes data sets from dimension scales.

SDnametoindex sfn2index Returns an index of a specified data set.

SDreftoindex sfref2index
Returns the index of a data set corresponding to a given referenc
number.

Dimension
Scales

SDdiminfo sfgdinfo Gets information about a dimension.

SDgetdimid sfdimid Retrieves the identifier of a dimension.

SDsetdimname sfsdimname Associates a name with a dimension.

SDgetdimscale sfgdscale Returns scale values for a dimension.

SDsetdimscale sfsdscale Defines the values of this dimension.

User-defined
Attributes

SDattrinfo sfgainfo Gets information about an attribute.

SDfindattr sffattr Returns the index of the specified attribute.

SDreadattr
sfrnatt/

sfrcatt
Reads the values of the specified attribute.

SDsetattr
sfsnatt/

sfscatt
Creates and defines a new attribute.
3-22 May 14, 1997

cessi-

racter
when it

set
eated

ix.

inate
 file is

.

3.3.2 SDS Identifiers in the SD Interface
In the SD interface, scientific data sets are identified in several ways. Before a data set is ac
ble, it is identified by index, name and reference number. After it is opened, it is identified by a
data set identifier or SDS id.

The index describes the relative position of the data set in the file. The name is a unique cha
string and the reference number is a unique integer which are both assigned to the data set
is created. The index, name, and reference number are needed to obtain a data set id.

The SDS id is the data set equivalent of a file identifier and uniquely identifies an SDS data
within a file. It is created when an existing SDS is selected for use or when a new SDS is cr
and is thereafter used to access the SDS.

3.3.3 Tags in the SD Interface
A complete list of SDS tags and their descriptions is in Table D in the User’s Guide Append

3.4 Programming Model for the SD Interface

To support multifile access, the SD interface relies on the calling program to initiate and term
access to files and data sets. The SD programming model for accessing an SDS in an HDF
as follows:

1. Open a file and initialize the SD interface.

2. Open an existing SDS by obtaining an SDS id from an SDS index OR create a new
SDS by obtaining an SDS id from the SDS name, rank and dimensions.

3. Perform desired operations on the SDS.

4. Terminate access to the data set.

5. Terminate access to the SD interface and close the file.

Predefined
Attributes

SDgetcal sfgcal Returns calibration information.

SDgetdatastrs sfgdtstr Returns the label, limit, format and coordinate system of a data set

SDgetdimstrs sfgdmstr Returns the attribute strings for a dimension.

SDgetfillvalue
sfgfill/

sfgcfill
Reads the fill value if it exists.

SDgetrange sfgrange Returns the range of values of the specified data set.

SDsetcal sfscal Defines the calibration information.

SDsetdatastrs sfsdtstr Defines the attribute strings of the specified data set.

SDsetdimstrs sfsdmstr Defines the attribute strings of the specified dimension.

SDsetfillvalue
sfsfill/

sfscfill
Defines the fill value of the current data set.

SDsetfillmode sfsflmd Defines the file mode to be applied to all SDSs in the specified file.

SDsetrange sfsrange Defines the maximum and minimum values of the valid range.

Compression SDsetcompress None Defines the compression method to be applied to data set data.

Chunking/
Tiling

SDgetchunkinfo None Obtains information about a chunked SDS.

SDsetchunkcache None Sets the size of the chunk cache.

SDsetchunk None Makes a non-chunked SDS a chunked SDS.

SDwritechunk None Writes data to a chunked SDS.

SDreadchunk None Reads data from a chunked SDS.

N-bit Data
Length

SDsetnbitdataset sfsnbit Defines the non-standard bit length of the data set data.
May 14, 1997 3-23

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 each
parate
ecute

st be

 only

te
To access a single SDS in an HDF file, the calling program must contain the following calls:

C: sd_id = SDstart(filename, access_mode);
sds_id = SDselect(sd_id, sds_index);
<Optional operations>
status = SDendaccess(sds_id);
status = SDend(sd_id);

FORTRAN: sd_id = sfstart(filename_1, access_mode)
sds_id = sfselect(sd_id, sds_index)
<Optional operations>
status = sfendaccess(sds_id)
status = sfend(sd_id)

To access several files at the same time, a calling program must obtain a separate file id for
file to be opened. Likewise, to access more than one SDS a calling program must obtain a se
SDS id for each SDS. For example, to open two SDSs stored in two files a program would ex
a series of function calls similar to the following:

C: sd_id_1 = SDstart(filename_1, access_mode);
sds_id_1 = SDselect(sd_id_1, sds_index_1);
sd_id_2 = SDstart(filename_2, access_mode);
sds_id_2 = SDselect(sd_id_2, sds_index_2);
<Optional operations>
status = SDendaccess(sds_id_1);
status = SDend(sd_id_1);
status = SDendaccess(sds_id_2);
status = SDend(sd_id_2);

FORTRAN: sd_id_1 = sfstart(filename_1, access_mode)
sds_id_1 = sfselect(sd_id_1, sds_index_1)
sd_id_2 = sfstart(filename_2, access_mode)
sds_id_2 = sfselect(sd_id_2, sds_index_2)
<Optional operations>
status = sfendacc(sds_id_1)
status = sfend(sd_id_1)
status = sfendacc(sds_id_2)
status = sfend(sd_id_2)

As with file identifiers, SD ids can be obtained and discarded in any order and all SD ids mu
individually discarded before termination of the calling program.

3.4.1 Establishing Access to Files and Data Sets: SDstart and SDselect
In the SD interface, SDstart is used to open files rather than Hopen. SDstart takes two arguments;
filename and access_mode, and returns the file id sd_id . The argument filename is the name
of an HDF or netCDF file as it is stored on disk. All other functions in the SD interface accept
sd_id for file operations. The argument access_mode specifies the type of access required for
operations on the file. The access mode tags passed in the access_mode parameter have names
prefaced by "DFACC".

Although it is possible to open a file more than once, it is better to select the most appropria
access mode and call SDstart only once. Repeatedly calling SDstart may cause unexpected
results and is not recommended.

If access_mode is set to DFACC_RDONLY, the specified file will not be created if it doesn’t exist.
3-24 May 14, 1997

t

d
e

he

, then
reex-
SDselect takes two arguments: sd_id and sds_index and returns the data set id sds_id . The
argument sd_id is the file identifier returned by SDstart, and sds_index is the position of the
data set relative to the beginning of the file. The argument sds_index is zero-based, meaning tha
the index of first SDS in the file is 0.

The parameters of SDstart and SDselect are further defined below. (See Table 3B.)

3.4.2 Terminating Access to Files and Data Sets: SDendaccess and SDen
SDendaccess disposes of the open data set id sds_id and terminates access to the data set. Th
calling program must make one SDendaccess call for every SDselect call made during its execu-
tion. Failing to call SDendaccess for each call to SDselect or SDcreate may result in a loss of
data.

SDend disposes of the file id file_id and terminates access to the file and the SD interface. T
calling program must make one SDend call for every SDstart call made during its execution.
Failing to call SDend for each SDstart may result in a loss of data.

The parameters of SDendaccess and SDend are further defined in the following table.

TABLE 3B SDstart, SDselect, SDend and SDendaccess Parameter List

EXAMPLE 1. Accessing and Closing an SDS

The following examples are a code template on how to access the first data set in an HDF file
detach from the data set and the file. The file name "Dummy_HDF_File.hdf" represents a p
isting HDF file - replace it with the name of your target file.

This example assumes that the "Dummy_HDF_File.hdf" file contains one SDS.

C: #include "hdf.h"

#include "mfhdf.h"

main()
{

int32 sd_id, sds_id, sds_index, status;
int32 rank, num_type, attributes;

/* Open the HDF file. DFACC_RDONLY is defined in hdf.h. */
sd_id = SDstart("Dummy_HDF_File.hdf", DFACC_CREATE);

/* Get the identifier of the first data set. */
sds_index = 0;

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

SDstart
(sfstart)

filename char * character* (*) Name of the HDF or netCDF file.

access_mode int32 integer Type of access.

SDselect
(sfselect)

file_id int32 integer HDF file identifier.

sds_index int32 integer Position of the data set within the file.

SDend
(sfend)

file_id int32 integer HDF file identifier.

SDendaccess
(sfendacc)

sds_id int32 integer Data set identifier.
May 14, 1997 3-25

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

S is

formed
f an

:

sds_id = SDselect(sd_id, sds_index);

/* Dispose of the data set identifier to terminate access. */
status = SDendaccess(sds_id);

/* Dispose of the file identifier to close the file. */
status = SDend(sd_id);

}

FORTRAN: PROGRAM SDSDATA ACCESS

integer*4 sds_id, sd_id, sds_index, status
integer sfstart, sfselect, sfendacc, sfend

C DFACC_CREATE is defined in hdf.h.
parameter (DFACC_CREATE = 4)

C Open the HDF file.
sd_id = sfstart('Dummy_HDF_File.hdf', DFACC_CREATE)

C Get the identifier of the first data set.

sds_index = 0
sds_id = sfselect(sd_id, sds_index)

C Dispose of the data set identifier to terminate access.
status = sfendacc(sds_id)

C Dispose of the file identifier to close the file.
status = sfend(sd_id)

end

3.5 Creating and Writing to Simple Scientific Data Sets

This section describes the routines needed to create and write simple SDSs. A “simple” SD
defined here as one with no attributes or user-defined dimension scales.

In the SD interface, creating and writing data to an SDS are separate operations - each per
by one SD routine. The SD interface retains no definitions about the size, contents or rank o
SDS from one SDS to the next or from one file to the next.

3.5.1 Creating Scientific Data Sets: SDcreate

Creating a simple SDS or an SDS without attributes or scales involves the following steps:

1. Open a file and initialize the SD interface.

2. Define the characteristics of the SDS.

3. Perform optional operations on the SDS.

4. Terminate access to the data set.

5. Terminate access to the SD interface and close the file.

To create an SDS, the calling program must contain the following sequence of routine calls

C: sd_id = SDstart(filename, access_mode);
sds_id = SDcreate(sd_id, name, number_type, rank, dim_sizes);
<Optional operations>
3-26 May 14, 1997

in the
ibed

 that
status = SDendaccess(sds_id);
status = SDend(sd_id);

FORTRAN: sd_id = sfstart(filename, access_mode)
sds_id = sfcreate(sd_id, name, number_type, rank, dim_sizes)
<Optional operations>
status = sfendacc(sds_id)
status = sfend(sd_id)

SDcreate defines a new SDS using the arguments name, number_type , rank and dim_sizes .
Once a data set is created, you cannot change its name, data type or rank. SDcreate does not actu-
ally perform the write; it occurs only when SDend is called.

The SD interface will assign a name if one is not provided. In this situation, the filename param-
eter must be a null character string. The maximum length of an SDS name is defined by
MAX_NC_NAME and the maximum rank of an SDS array is defined by MAX_VAR_DIMS. Both are
defined in the "netcdf.h" header file. Tag names passed in the number_type parameter are pref-
aced by "DFNT".

When creating an SDS, it is necessary to specify the data type of the array data contained
SDS. The "hntdefs.h" header file contains definitions of all valid data types, which are descr
in Chapter 2, titled HDF Fundamentals.

TABLE 3C SDcreate Parameter List

EXAMPLE 2. Creating an Empty SDS

If SDcreate is called but not written, an empty array is created. An "empty array" is an array
has been defined but not yet initialized with data. All array information passed into SDcreate
through its parameters are stored in the file.

C: #include "hdf.h"

#include "mfhdf.h"

#define X_LENGTH 5
#define Y_LENGTH 16

main()
{

int32 sd_id, sds_id, status;
int32 dimsizes[2], rank;

/* Create and open the file and initiate the SD interface. */
sd_id = SDstart("Example2.hdf", DFACC_CREATE);

/* Define the rank and dimensions of the array to be created. */

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

SDcreate
(sfcreate)

file_id int32 integer File identifier.

name char * character* (*) ASCII string containing the name of the data set.

data_type int32 integer Data type of the data set.

rank int32 integer Number of dimensions in the array.

dim_sizes int32 [] integer (*) Array defining the size of each dimension.
May 14, 1997 3-27

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

ly or
of
pera-
rank = 2;
dimsizes[0] = Y_LENGTH;
dimsizes[1] = X_LENGTH;

/* Create the array. */
sds_id = SDcreate(sd_id, "Ex_array_1", DFNT_INT16, rank, dimsizes);

/* Terminate access to the array. */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file */
status = SDend(sd_id);

}

FORTRAN: PROGRAM EMPTY ARRAY

integer*4 sd_id, sds_id, dimsizes(2), rank
integer sfstart, sfcreate, sfendacc, sfend

integer*4 X_LENGTH, Y_LENGTH
parameter (X_LENGTH = 16, Y_LENGTH = 5)

C DFACC_CREATE and DFNT_INT16 are defined in hdf.h.
integer*4 DFACC_CREATE, DFNT_INT16
parameter (DFACC_CREATE = 4, DFNT_INT16 = 22)

C Create and open the file and initiate the SD interface.
sd_id = sfstart('Example2.hdf', DFACC_CREATE)

C Define the rank and dimensions of the array to be created.
rank = 2
dimsizes(1) = Y_LENGTH
dimsizes(2) = X_LENGTH

C Create the array.
sds_id = sfcreate(sd_id, ’Ex_array_1’, DFNT_INT16, rank, dimsizes)

C Terminate access to the array.
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

3.5.2 Writing Data to an SDS Array: SDwritedata
SDwritedata is the only routine that is needed to write data to an SDS array. It can complete
partially fill an SDS n-dimensional array or append data along one dimension defined to be
unlimited length. It can also skip a specified number of SDS array elements between write o
tions along each dimension.

Creating an SDS and writing one or more slabs to it involves the following steps:

1. Create an SDS.

2. Write a slab or series of slabs.

To do this, the calling program must contain the following sequence of routine calls:

C: sds_id = SDcreate(sd_id, name, number_type, rank, dim_sizes);
status = SDwritedata(sds_id, start, stride, edge, data);
3-28 May 14, 1997

 SDS
tial

te
rward
f the

n

. In
less
te

 to

-
se

n. If
speci-

SDS
-

sion
FORTRAN: sds_id = sfcreate(sd_id, name, number_type, rank, dim_sizes)
status = sfwdata(sds_id, start, stride, edge, data)

A slab is an n-dimensional array whose dimensions are smaller than or equal to those of the
array into which it will be written. A slab is defined by the n-dimensional coordinate of its ini
vertex and the lengths of each dimension.

SDwritedata takes five arguments: sds_id , start , stride , edge , and data . The sds_id argu-
ment is the SDS identifier returned by SDcreate or SDselect. The arguments start , stride , and
edge respectively describe the n-dimensional coordinates the SD interface will begin the wri
operation in the data set, the number of locations the current SDS location will be moved fo
after each write, and the length of each dimension of the n-dimensional slab to be written. I
SDS array is smaller than the data argument array, the amount of data written will be limited to
the maximum size of the SDS array.

The argument start is an array specifying the location in the data set array the write operatio
will begin. The indices are relative to 0 so the first data value of an array would have index {0,0,
... 0} . The size of start must be the same as the number of dimensions in the SDS array
addition, each value in start must be smaller than its corresponding SDS array dimension un
the dimension is unlimited. Violating any of these conditions causes a termination of the wri
operation and causes an error condition to be generated.

The argument stride is an array specifying, for each dimension, the interval between values
be written. For example, setting stride[0]=2 writes data to every other location along the first
dimension.(See Figure 3b on page 29.) Setting stride[0]=1 writes data to every location along
the first dimension. If stride is defined as NULL in C or 0 in Fortran-77, it is assumed to contain
all ones. For better performance, is it advised that you define the value of stride as NULL rather
than setting it equal to 1. The length of the stride array must be the same as the number of
dimensions in the SDS array. Also, each value in stride must be smaller than or equal to its cor
responding SDS array dimension unless the dimension is unlimited. A violation of any of the
conditions terminates the write operation and causes an error condition to be generated.

FIGURE 3b Description of "Strides"

The argument edge is an array specifying the length of each dimension of the slab to be writte
the rank of the slab is less than that of the SDS data set, all additional dimensions must be
fied as 1. Each value in the edge array must not be larger than the length of the corresponding
dimension in the SDS data set. Attempting to read or write slabs larger than the size of the
data set will result in an error condition. The size of edge must be equal to the number of dimen
sions in the SDS array. In addition, the sum of each value in the edge array and the corresponding
value in the start array must be smaller than or equal to its corresponding SDS array dimen

Array
Location

0 1 2 3 4 5 6 N

. . .

stride = 2
May 14, 1997 3-29

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

b val-
 with
e), but
rage
a For-

 are
e”

y and

re-
unless the dimension is unlimited. A violation of any of these conditions terminates the write
operation and results in an error condition.

Be aware that the mapping between the dimensions of a slab and the order in which the sla
ues are stored in memory is different between C and Fortran-77. In C the values are stored
the assumption that the last dimension of the slab varies fastest (or "row-major order" storag
in Fortran-77 the first dimension varies fastest (or "column-major order" storage). These sto
order conventions can cause some confusion when data written by a C program is read by
tran-77 program or vice versa.

There are two Fortran-77 versions of this routine: sfwdata and sfwcdata. The sfwdata routine
writes numeric scientific data and sfwcdata writes character scientific data.

The parameters of SDwritedata are described in the following table. Note that, because there
two Fortran-77 versions of SDwritedata, there are correspondingly two entries in the “Data Typ
field of the data parameter.

TABLE 3D SDwritedata Parameter List

3.5.2.1 Filling an Entire Array

Filling an array is a simple slab operation where the slab begins at the origin of the SDS arra
fills every location in the array. SDwritedata will fill an SDS array with data when given the ori-
gin (start={0,0, ... 0}) as its starting coordinates, a stride value of NULL, and edge dimen-
sions equal to the size of the SDS array (edge={dim_sizes[0], dim_sizes[1], ...

dim_size[rank-1]}).

EXAMPLE 3. Creating and Writing to an SDS

These examples use SDcreate under the C interface and sfcreate under the Fortran-77 interface.
The only difference between writing array data to an existing SDS and writing it to a newly c
ated array is the use of SDselect instead of SDcreate.

C: #include "hdf.h"

#include "mfhdf.h"

#define X_LENGTH 5
#define Y_LENGTH 16

main()
{

int32 sd_id, sds_id, status;

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

SDwritedata
(sfwdata/
sfwcdata)

sds_id int32 integer Data set identifier.

start int32 [] integer (*)
Array containing the position the write will
start for each dimension.

stride int32 [] integer (*)
Array containing the number of data locations
the current location is to be moved forward
before the next write.

edge int32 [] integer (*)
Array containing the number of data elements
that will be written along each dimension.

data VOIDP <valid numeric data type> Buffer for the data to be written.
3-30 May 14, 1997

int32 dims[2], start[2], edges[2], rank;
int16 array_data[Y_LENGTH][X_LENGTH];
intn i, j;

/* Create and open the file and initiate the SD interface. */
sd_id = SDstart("Example3.hdf", DFACC_CREATE);

/* Define the rank and dimensions of the data set to be created. */
rank = 2;
dims[0] = Y_LENGTH;
dims[1] = X_LENGTH;

/* Create the array data set. */
sds_id = SDcreate(sd_id, "Ex_array_3", DFNT_INT16, rank, dims);

/* Fill the stored-data array with values. */
for (j = 0; j < Y_LENGTH; j++)

for (i = 0; i < X_LENGTH; i++)
array_data[j][i] = (i + j) + 1;

/* Define the location, pattern, and size of the data set */
for (i = 0; i < rank; i++) {

start[i] = 0;
edges[i] = dims[i];

}

/* Write the stored data to the "Ex_Array_3" data set. The fifth \
* argument must be explicitly cast to a generic pointer to conform \
* to the HDF API definition for SDwritedata.*/
status = SDwritedata(sds_id, start, NULL, edges, (VOIDP)array_data);

/* Terminate access to the array. */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file. */
status = SDend(sd_id);

}

FORTRAN: PROGRAM FILLED ARRAY

integer*4 sd_id, sds_id, rank
integer dims(2), start(2), edges(2), stride(2), status
integer*2 i, j
integer sfstart, sfcreate, sfwdata, sfendacc, sfend

C DFACC_CREATE and DFNT_INT16 are defined in hdf.h.
integer*4 DFACC_CREATE, DFNT_INT16
integer*4 X_LENGTH, Y_LENGTH
parameter (DFACC_CREATE = 4, DFNT_INT16 = 22, X_LENGTH = 5,

+ Y_LENGTH = 16)
integer*2 array_data(X_LENGTH, Y_LENGTH)

C Create and open the file and initiate the SD interface.
sd_id = sfstart('Example3.hdf', DFACC_CREATE)

C Define the rank and dimensions of the data set to be created.
rank = 2
dims(1) = X_LENGTH
dims(2) = Y_LENGTH

C Create the data set.
sds_id = sfcreate(sd_id, 'Ex_array_3', DFNT_INT16, rank, dims)

C Fill the stored-data array with values.
May 14, 1997 3-31

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

ing
 valid
llowed.

ree-
 ele-

e

s
do 20 j = 1, Y_LENGTH
do 10 i = 1, X_LENGTH

array_data(i, j) = i + j - 1
10 continue
20 continue

C Define the location, pattern, and size of the data set
C that will be written to.

start(1) = 0
start(2) = 0
edges(1) = X_LENGTH
edges(2) = Y_LENGTH
stride(1) = 1
stride(2) = 1

C Write the stored data to the "Ex_array_3" data set.
status = sfwdata(sds_id, start, stride, edges, array_data)

C Terminate access to the array.
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

3.5.2.2 Writing Slabs to an SDS Array

To allow preexisting data to be modified, the HDF library does not prevent SDwritedata from
overwriting one slab with another. As a result, the calling program is responsible for manag
any overlap when writing slabs. The HDF library will issue an error if a slab extends past the
boundaries of the SDS data set, although appending data along an unlimited dimension is a

EXAMPLE 4. Writing a Slab of Data to an SDS

These examples show how to write a series of slabs to a data set. The programs create a th
dimensional array with the size of the x-dimension being four elements, the y-dimension five
ments and the z-dimension six elements. As the data set elements are written, the slabs ar
"sliced" along the y-dimension.

Note that the start, edge and stride arguments in SDwritedata refer to the coordinate locations in
the file representation of the data set, not the location within the write_data array. Therefore, the
actual slab to be written is first buffered in the zx_data array.

In most real-world HDF-based applications that perform slab writes, the write_data array would
be a buffer area for data previously read in by SDreaddata. In this example, this data read step ha
been omitted so that this example can focus on the slab write procedure.

C: #include "hdf.h"

#include "mfhdf.h"

#define X_LENGTH 4
#define Y_LENGTH 5
#define Z_LENGTH 6

main()
{

int32 sd_id, sds_id, rank, status;
int32 dims[3], start[3], edges[3];
int16 write_data[Z_LENGTH][Y_LENGTH][X_LENGTH];
int16 zx_data[Z_LENGTH][X_LENGTH];
3-32 May 14, 1997

intn i, j, k;

/* Open the file. */
sd_id = SDstart("Example4.hdf", DFACC_CREATE);

/* Define the rank and dimensions of the array to be created. */
rank = 3;
dims[0] = Z_LENGTH;
dims[1] = Y_LENGTH;
dims[2] = X_LENGTH;

/* Create the array. */
sds_id = SDcreate(sd_id, "Ex_array_4", DFNT_INT16, rank, dims);

/* Compute and store the values that will be written to the data \
set. Fill the write_data array along the x-axis first. */

for (k = 0; k < Z_LENGTH; k++)
for (j = 0; j < Y_LENGTH; j++)

for (i = 0; i < X_LENGTH; i++)
write_data[k][j][i] = (i + 1) + (j + 1) + (k + 1);

/* Within each for loop, set the start and edge parameters to write \
a 4-by-6 element slab of stored data from the write_data array to \
the data set. */

edges[0] = Z_LENGTH;
edges[1] = 1;
edges[2] = X_LENGTH;
start[0] = start[2] = 0;

for (j = dims[1]; j > 0; j--) {
start[1] = j - 1;
for (k = 0; k < Z_LENGTH; k++)

for (i = 0; i < X_LENGTH; i++) {
zx_data[k][i] = write_data[k][j-1][i];
status = SDwritedata(sds_id, start, NULL, edges,

(VOIDP)zx_data);
}

}
}

/* Terminate access to the data set. */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file. */
status = SDend(sd_id);

}

FORTRAN: PROGRAM WRITE SLAB

integer*4 sd_id, sds_id, rank
integer dims(3), start(3), edges(3), stride(3)
integer i, j, k, status
integer sfstart, sfcreate, sfwdata, sfendacc, sfend

C DFACC_CREATE and DFNT_INT16 are defined in hdf.h.
integer*4 DFACC_CREATE, DFNT_INT16
integer*4 X_LENGTH, Y_LENGTH, Z_LENGTH
parameter (DFACC_CREATE = 4, DFNT_INT16 = 22, X_LENGTH = 4,

+ Y_LENGTH = 5, Z_LENGTH = 6)
May 14, 1997 3-33

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 in the
integer*2 write_data(X_LENGTH, Y_LENGTH, Z_LENGTH)
integer*2 zx_data(X_LENGTH, Z_LENGTH)

C Create the file.
sd_id = sfstart('Example4.hdf', DFACC_CREATE)

C Define the rank and dimensions of the array to be created.
rank = 3
dims(1) = X_LENGTH
dims(2) = Y_LENGTH
dims(3) = Z_LENGTH

C Create the array.
sds_id = sfcreate(sd_id, 'Ex_array_4', DFNT_INT16, rank, dims)

C Compute and store the values that will be later written to the
C selected array data set. Fill the array_data array along the
C x-axis first.

do 30 k = 1, Z_LENGTH
do 20 j = 1, Y_LENGTH

do 10 i = 1, X_LENGTH
write_data(i, j, k) = i + j + k

10 continue
20 continue
30 continue

C Within each do loop, set the start and edge parameters so that
C a 4-by-6 element slab of stored data will be written from the
C array_data array to the data set.

edges(1) = X_LENGTH
edges(2) = 1
edges(3) = Z_LENGTH
start(1) = 0
start(3) = 0
stride(1) = 1
stride(2) = 1
stride(3) = 1

do 60 j = Y_LENGTH, 0, -1
start(2) = j - 1

 do 50 k = 1, Z_LENGTH
 do 40 i = 1, X_LENGTH

zx_data(i, k) = write_data(i, j-1, k)
status = sfwdata(sds_id, start, stride, edges, zx_data)

40 continue
50 continue
60 continue

C Terminate access to the data set.
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

EXAMPLE 5. Altering Values Within an Array Data Set

These examples demonstrate the procedure for changing the value of one element, located
second column and tenth row, of a data set.
3-34 May 14, 1997

 chang-
This procedure can be used to alter the values of a group of elements within the data set by
ing the start and edge arguments of the second call of the SDwritedata function. Notice that a
NULL value is passed into SDwritedata in the C program instead of the stride array.

C: #include "hdf.h"

#include "mfhdf.h"

#define X_LENGTH 5
#define Y_LENGTH 16

main()
{

int32 sd_id, sds_id, status;
int32 start[2], edges[2];
int16 write_data[Y_LENGTH][X_LENGTH], intval;
intn i, j;

/* Open the file. */
sd_id = SDstart("Example3.hdf", DFACC_RDWR);

/* Select the first data set. */
sds_id = SDselect(sd_id, 0);

/* Compute and store the values that will be written to the\
 selected array data set. */

for (j = 0; j < Y_LENGTH; j++)
for (i = 0; i < X_LENGTH; i++)

write_data[j][i] = (i + 1) + (j + 1) * 10;

/* Set up the start and edge parameters to write the buffered
data to the entire array data set. */

start[0] = start[1] = 0;
edges[0] = Y_LENGTH;
edges[1] = X_LENGTH;

/* Write the buffered data to the "Ex_array_3" data set. The fifth \
argument must be explicitly cast to a generic pointer to conform \
to the HDF API definition of SDwritedata.*/

status = SDwritedata(sds_id, start, NULL, edges, (VOIDP)write_data);

/* Alter a value (second column, tenth row) within this data set. */
intval = 15;
start[0] = 10;
start[1] = 1;
edges[0] = 1;
edges[1] = 1;
status = SDwritedata(sds_id, start, NULL, edges, (VOIDP)&intval);

/* Terminate access to the data set. */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file. */
status = SDend(sd_id);

}

FORTRAN: PROGRAM ALTER DATA

integer*4 sd_id, sds_id
integer start(2), edges(2), stride(2)
integer i, j, status
integer sfstart, sfselect, sfwdata, sfendacc, sfend
May 14, 1997 3-35

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

array

ited
C DFACC_RDWR is defined in hdf.h.
integer*4 DFACC_RDWR
integer*4 X_LENGTH, Y_LENGTH
parameter (DFACC_RDWR = 3, X_LENGTH = 5, Y_LENGTH = 16)

integer*2 array_data(X_LENGTH, Y_LENGTH), intval

C Open the file and initiate the SD interface.
sd_id = sfstart('Example3.hdf', DFACC_RDWR)

C Select the first data set.
sds_id = sfselect(sd_id, 0)

C Compute and store the values that will be later written to the data
C set.

do 20 j = 1, Y_LENGTH
do 10 i = 1, X_LENGTH

array_data(i, j) = i + j * 10
10 continue
20 continue

C Initialize the start, edge and stride parameters to write the
C stored data to the data set.

start(1) = 0
start(2) = 0
edges(1) = X_LENGTH
edges(2) = Y_LENGTH
stride(1) = 1
stride(2) = 1

C Write the stored data to the data set.
status = sfwdata(sds_id, start, stride, edges, array_data)

C Alter the value of the data set element in the second column,
C tenth row to be ’15’.

intval = 15
start(1) = 1
start(2) = 10
edges(1) = 1
edges(2) = 1
status = sfwdata(sds_id, start, stride, edges, intval)

C Terminate access to the data set.
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

3.5.2.3 Appending Data to an SDS Array Using the Unlimited Dimension

If one dimension of an SDS array must be extendable, it is possible to create an appendable SDS
array. An SDS array is appendable if one dimension is specified as an “unlimited” when the
is created.

In C, if the SDcreate parameter dim_sizes[0] is assigned the value SD_UNLIMITED it is consid-
ered to be an unlimited dimension. This is the only dimension that may be specified as unlim
in a C program and can also be understood as the first dimension or the dimension of the lowest
rank value, of the SDS. In Fortran-77, only the last dimension or the dimension of the highest rank
3-36 May 14, 1997

g

unlim-

uto-
s past
 new
ne is

 the

t

 be
value, can be unlimited. In other words, in Fortran-77 dim_sizes(rank) must be set to the value
SD_UNLIMITED to make the array appendable.

To append data to an extensible data set without overwriting data, specify the appropriate start
coordinates in the SDwritedata routine. For example, if the current coordinate boundary of an
unlimited dimension is defined as 15, appending data to the array without overwriting existin
data requires a start coordinate of 16. To append data by overwriting data, specify a start coor-
dinate less than the current boundary of the unlimited dimension. In either case, all but the
ited coordinate in start must fall within the boundaries of the original array definition.

Any time a write operation is attempted beyond the current boundary, the HDF library will a
matically adjust the dimension record to the new length. If the new data both begins and end
the boundary of the array, locations between the existing boundary and the beginning of the
data stream are initialized to the assigned fill value if there is one or the default fill value if no
assigned.

EXAMPLE 6. Appending Data to an SDS Array Using an Unlimited Dimension

In the C example, the length of the SDS array's y-dimension (or the first dimension) is set to
value SD_UNLIMITED, which defines the x-dimension (or the second and last dimension) as
appendable. In the Fortran-77 version, the length of the y-dimension (or the second and las
dimension) is set to the value SD_UNLIMITED. Again, this is because only the dimension of the
highest rank (in this case the x-dimension is of rank 1 and the y-dimension is of rank 2) can
defined as appendable under the Fortran-77 interface.

C: #include "hdf.h"

#include "mfhdf.h"

#define X_LENGTH 10
#define Y_LENGTH 10

main()
{

int32 sd_id, sds_id, sds_idx;
int32 dims[2], rank;
int16 array_data[Y_LENGTH][X_LENGTH], append_data[X_LENGTH];
int32 start[2], edges[2];
intn i = 0, j, status;

/* Open the file and initiate the SD interface. */
sd_id = SDstart("Example3.hdf", DFACC_RDWR);

/* Define the rank and dimensions of the array. Make the first \
array dimension appendable by defining it's length to be \
unlimited.*/

rank = 2;
dims[0] = SD_UNLIMITED;
dims[1] = X_LENGTH;

/* Create the array data set. */
sds_id = SDcreate(sd_id, "Ex_File_6", DFNT_INT16, rank, dims);

/* Store the array values. */
for (j = 0; j < Y_LENGTH; j++) {

for (i = 0; i < X_LENGTH; i++)
array_data[j][i] = (i + 1) + (j + 1);

}

May 14, 1997 3-37

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications
/* Write the data to the array. */
start[0] = start[1] = 0;
edges[0] = Y_LENGTH;
edges[1] = X_LENGTH;

/* Perform the initial write to the array data set. */
status = SDwritedata(sds_id, start, NULL, edges, (VOIDP)array_data);

/* Terminate access to the array data set, terminate access \
to the SD interface and close the file. */

status = SDendaccess(sds_id);
status = SDend(sd_id);

/* Reopen the file and initiate the SD interface in preparation \
for appending data to the data set. Then select the first \
data set.*/

sd_id = SDstart("Example3.hdf", DFACC_RDWR);
sds_idx = SDnametoindex(sd_id, "Ex_File_6");
sds_id = SDselect(sd_id, sds_idx);

/* Store the array values to be appended to the data set. */
for (i = 0; i < X_LENGTH; i++)

append_data[i] = i + 1;

/* Define the location of the append to start at the first column \
of the sixteenth row of the data set and to stop at the end of the \
fifth row. */

start[0] = Y_LENGTH;
start[1] = 0;
edges[0] = 1;
edges[1] = X_LENGTH;

/* Append the stored data to the array data set. */
status = SDwritedata(sds_id, start, NULL, edges, (VOIDP)append_data);

/* Terminate access to the array data set. */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file. */
status = SDend(sd_id);

}

FORTRAN: PROGRAM APPEND DATA

integer*4 sd_id, sds_id, sds_idx
integer dims(2), rank
integer start(2), edges(2), stride(2)
integer status
integer sfstart, sfcreate, sfwdata, sfselect, sfendacc, sfend
integer sfn2index

C DFACC_RDWR and DFNT_INT16 are defined in hdf.h, SD_UNLIMITED
C is defined in hdf.h.

integer*4 DFACC_RDWR, DFNT_INT16, SD_UNLIMITED
integer*4 X_LENGTH, Y_LENGTH
parameter (DFACC_RDWR = 3, DFNT_INT16 = 22, SD_UNLIMITED = 0,

+ X_LENGTH = 10, Y_LENGTH = 10)

integer*2 array_data(X_LENGTH, Y_LENGTH)
integer*2 append_data(X_LENGTH)
integer*2 i, j

C Open the file and initiate the SD interface.
3-38 May 14, 1997

sd_id = sfstart('Example3.hdf', DFACC_RDWR)

C Define the rank and dimensions of the array. Make the
C last dimension appendable by defining it's length as unlimited.

rank = 2
dims(1) = X_LENGTH
dims(2) = SD_UNLIMITED

C Create the array data set.
sds_id = sfcreate(sd_id, 'Ex_File_6', DFNT_INT16, rank, dims)

C Store the array values.
do 20 j = 1, Y_LENGTH

do 10 i = 1, X_LENGTH
array_data(i, j) = i + j

10 continue
20 continue

C Write the data to the array.
start(1) = 0
start(2) = 0
edges(1) = X_LENGTH
edges(2) = Y_LENGTH
stride(1) = 1
stride(2) = 1

C Perform the initial write to the data set.
status = sfwdata(sds_id, start, stride, edges, array_data)

C Terminate access to the data set, terminate access
C to the SD interface and close the file.

status = sfendacc(sds_id)
status = sfend(sd_id)

C Reopen the file and initiate the SD interface in preparation
C for appending data. Then select the first data set.

sd_id = sfstart('Example3.hdf', DFACC_RDWR)
sds_idx = sfn2index(sd_id, ’Ex_File_6’)
sds_id = sfselect(sd_id, sds_idx)

C Store the array values to be appended to the data set.
do 30 i = 1, X_LENGTH

append_data(i) = i
30 continue

C Define the location of the append to start at the first
C column of the third row and to stop at the end of the third row.

start(1) = 0
start(2) = Y_LENGTH
edges(1) = X_LENGTH
edges(2) = 1

C Append the stored data to the data set.
status = sfwdata(sds_id, start, stride, edges, append_data)

C Terminate access to the array data set.
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end
May 14, 1997 3-39

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

y calling
d
s.

".

m, the

esig-

d the
3.5.3 Compressing SD SDS Array Data: SDsetcompress

Uncompressed SDS array data is compressed, or new compressed data sets are created, b
the SDsetcompress routine. SDsetcompress compresses the data set data at the time it is calle
(not during the next call to SDwritedata)and supports all standard HDF compression algorithm
These algorithms are:

• JPEG.

• Adaptive Huffman.

• GZIP "deflation". (Lempel/Ziv-77 dictionary coder)

• Run-length encoding.

In the future, the following algorithms may be included: Lempel/Ziv-78 dictionary coding, an
arithmetic coder, and a faster Huffman algorithm.

The SDsetcompress routine is a simplified interface to the HCcreate routine, and should be used
instead of HCcreate unless the user is familiar with working with the lower-level routines. All
essential compression functionality is provided by SDsetcompress.

The syntax of the SDsetcompress routine is as follows:

C: status = SDsetcompress(sds_id, comp_type, c_info);

The comp_type parameter is the compression type definition and is set to COMP_CODE_JPEG for
JPEG compression, COMP_CODE_RLE for run-length encoding, COMP_CODE_DEFLATE for Gnu ZIP (or
GZIP) compression, COMP_CODE_SKPHUFF for skipping Huffman or COMP_CODE_NONE for no com-
pression.

The c_info parameter is a pointer to a union structure of type coder_info. If comp_type is set to
COMP_CODE_NONE or COMP_CODE_RLE, this is unused and can be set to NULL. If it’s set to
COMP_CODE_SKPHUFF, the skphuff structure in the coder_info union must be provided informa-
tion about the size, in bytes, of the data elements. If it’s set to COMP_CODE_DEFLATE, the deflate
structure in the coder_info union must be provided information about the compression "effort

For example, to compress unsigned 16-bit integer data using the adaptive Huffman algorith
following definition and SDsetcompress call is used.

coder_info c_info;
c_info.skphuff.skp_size = sizeof(uint16);
status = SDsetcompress(sds_id, COMP_CODE_SKPHUFF, &c_info);

To compress a data set using the gzip deflation algorithm, with the maximum "effort" level d
nated, the following definition and SDsetcompress call is used.

coder_info c_info;
c_info.deflate_level = 9;
status = SDsetcompress(sds_id, COMP_CODE_DEFLATE, &c_info);

To compress a data set using the JPEG algorithm, with the quality level of 80 designated an
"force baseline" parameter enabled, the following definition and SDsetcompress call is used.

coder_info c_info;
c_info.quality = 80;
c_info.force_baseline = TRUE;
status = SDsetcompress(sds_id, COMP_CODE_JPEG, &c_info);
3-40 May 14, 1997

labs

ble in
are the

re,

t along
ta

s
tion

ata
tiple

s.

ions,
te posi-

DF
n

et in an
, only
DF
al file

gth of
xter-
SDsetcompress functionality is currently limited to creating new datasets or appending new s
onto existing datasets. Overwriting existing dataset data will be supported in the future.

Note that there is currently no Fortran-77 version of the SDsetcompress routine. It will be
included in a future release.

TABLE 3E SDsetcompress Parameter List

3.5.3.1 Rules for Writing to a Compressed Data Set

Due to certain limitations in the way that compressed data sets are stored, they aren’t writa
the way that uncompressed data sets are. The "rules" for writing to a compressed data set
following:

1. Write the compressed data, in its entirety, to the data set. Build the data set in-co
then write it to the data set in a single write operation.

2. Append to a compressed data set. In other words, write to a compressed data se
it’s unlimited dimension. If an unlimited dimension hasn’t been defined for the da
set, it can’t be appended to in this way.

3. Write the compressed data, in its entirety, to any chunk in a chunked SDS.

These rules imply that it is impossible to overwrite subsets of non-chunked data sets. This i
because the existing compression algorithms supported by HDF don’t allow partial modifica
to a compressed datastream.

3.5.4 External File Operations
An external SDS array is an array stored in a file separate from the file containing the metad
for the array. With external arrays, it is possible to link data sets in the same HDF file to mul
external files or data sets in different HDF files to the same external file. Routines for writing
external SDS arrays are only available in the C interface and can only be used with HDF file
Unidata-formatted netCDF files are not supported by these routines.

External arrays are functionally identical to arrays in the primary data file. During slab operat
the HDF library keeps track of the beginning of the data set and adds slabs at the appropria
tion in the external file. When data is written or appended along a specified dimension, the H
library writes along that dimension in the external file and updates the appropriate dimensio
record in the primary file.

There are two methods for creating external SDS arrays. The user can create a new data s
external file or move data from an existing internal data set to an external file. In either case
the array values are stored externally, all other data set information remains in the primary H
file. When an external array is created, a sufficient amount of space is reserved in the extern
for the entire data set. The data set will begin at the specified byte offset and extend the len
the data set. The write operation will overwrite the target locations in the external file. The e

Routine Name Parameter
Data Type

Description
C

SDsetcompress

sds_id int32 Data set identifier.

comp_type char * Compression method.

cinfo comp_info * Pointer to compression information structure.
May 14, 1997 3-41

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

g are

 the

i-
hod
et,

le
ithin a

n con-

d by
n’t

g

ides
 the

.

d. If
nal file may be of any format, provided the data types, byte ordering, and dimension orderin
supported by HDF. The primary file must be an HDF file.

3.5.4.1 Specifying the Directory Search Path of an External File: HXsetdir

There are three filesystem locations the HDF external file routines check when determining
location of an external file. They are, in order of precedence:

1. The directory path specified by the last call to the HXsetdir routine.

2. The directory path specified by the $HDFEXTDIR shell environment variable.

3. The locations searched by the standard open(3) routine.

Until the HXsetdir routine is called, either the directories specified by the $HDFEXTDIR env
ronment variable are searched if the variable has been set, or Item 3 will be the search met
used. If the HXsetdir routine hasn’t been called and the $HDFEXTDIR variable hasn’t been s
Item 3 will again be the search method used. Setting the $HDFEXTDIR environment variab
effectively ensures that Item 3 will never be used as a default method as it can’t be unset w
calling program.

HXsetdir has one argument, a string specifying the directory list to be searched. This list ca
sist of one directory name or a set of directory names separated by colons. If HXsetdir is passed a
null string and the $HDFEXTDIR environment variable has been set, the directories specifie
$HDFEXTDIR are searched, or Item 3 will be the search method used if $HDFEXTDIR has
been set.

If an error condition is encountered, HXsetdir leaves the directory search path unchanged. The
directory search path specified by HXsetdir remains in effect throughout the scope of the callin
program.

The parameters of HXsetdir are described further in the following table.

TABLE 3F HXsetdir Parameter List

3.5.4.2 Specifying the Location of the Next External File to be Created: HXsetcreatedir

HXsetcreatedir specifies the directory location of the next external file to be created. It overr
the directory location specified by the $HDFEXTCREATEDIR and the locations searched by
open(3) call in the same manner as HXsetdir. Specifically, the precedence is:

1. The directory specified by the last call to the HXsetcreatedir routine.

2. The directory specified by the $HDFEXTCREATEDIR shell environment variable

3. The locations searched by the standard open(3) routine.

HXsetcreatedir has one argument: the directory location of the next external file to be create
an error is encountered, the directory location is left unchanged.

The parameters of HXsetcreatedir are described further in the following table.

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

HXsetdir
(hxsdir)

dir_list char * character* (*) Directory list to be searched.

dir_length None integer Length of the dir_list string.
3-42 May 14, 1997

 calls.

 data

med

st call

g the

rite
TABLE 3G HXsetcreatedir Parameter List

3.5.4.3 Creating a Data Set in an External File: SDsetexternalfile

Creating a data set using external data involves the following steps:

1. Create the array.

2. Specify that an external data file is to be used.

3. Write data to the array.

4. Terminate access to the data set.

To create a data set containing an external file, the calling program must make the following

C: sds_id = SDcreate(sd_id, name, number_type, rank, dim_sizes);
status = SDsetexternalfile(sds_id, filename, offset);
status = SDwritedata(sds_id, start, stride, edge, data);
status = SDendaccess(sds_id);

FORTRAN: sds_id = sfcreate(sd_id, name, number_type, rank, dim_sizes)
status = sfsextf(sds_id, filename, offset)
status = sfwdata(sds_id, start, stride, edge, data)
status = sfendacc(sds_id)

SDsetexternalfile marks the SDS identified by sds_id as one whose data is to be written to an
external file. The parameter filename is the name of the external data file, and offset is the
number of bytes from the beginning of the external file to the location where the first byte of
should be written.

When used in conjunction with SDcreate, SDsetexternalfile does not actually write data to an
external file. Instead it marks the data set as an external data set for all subsequent SDwritedata
operations. SDsetexternalfile can only be called once after a data set has been created.

If a file with the same name as filename exists in the current directory search path, HDF will
access it as the external file. If the file does not exist, HDF will create one in the directory na
in the last call to HXsetcreatefile. If an absolute pathname is specified, the external file will be
created at the location specified by the pathname, overriding the location specified by the la
to HXsetcreatefile.

Once the name of an external file is established, it is impossible to change it without breakin
association between the data set’s metadata and the data it describes.

Use caution when writing to existing external or primary files as the HDF library starts the w
operation at the specified offset without checking if data is being overwritten.

For more information on the parameters used in SDsetexternalfile refer to the following table.

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

HXsetcreatedir
(hxsdir)

dir char * character* (*) Directory location of the next external file to be created.

dir_length None integer Length of the dir string.
May 14, 1997 3-43

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

ps:

r the
 exter-
e pri-
ream
n
tions

hown
TABLE 3H SDsetexternalfile Parameter List

3.5.4.4 Moving Data to an External File

Data can be moved from a primary file to an external file. To do so requires the following ste

1. Select the array.

2. Specify the external data file.

3. Terminate access to the data set.

To move data to an external file, the calling program must make the following calls:

C: sds_id = SDselect(sd_id, sds_index);
status = SDsetexternalfile(sds_id, filename, offset);
status = SDendaccess(sds_id);

FORTRAN: sds_id = sfcreate(sd_id, name, number_type, rank, dim_sizes)
status = sfsextf(sds_id, filename, offset)
status = sfendacc(sds_id)

When SDsetexternalfile is used in conjunction with SDselect, it will immediately write the exist-
ing data to the external file. Any data in the external file that occupies the space reserved fo
external array will be overwritten as a result of this operation. Data can only be moved to an
nal file once after the parent data set has been created and the data set must first exist in th
mary HDF file. During the operation, the data is written to the external file as a contiguous st
regardless of how it is stored in the primary file. Because data is moved “as is”, any unwritte
locations in the data set are preserved in the external file. Subsequent read and write opera
performed on the data set will access the external file.

EXAMPLE 7. Writing SDS Data to an HDF File Starting at an Offset

A subset of values stored in an SDS can be moved from an HDF file to an external file, as s
in the following examples.

C: #include "hdf.h"

main()
{

int32 sd_id, sds_id, offset, status;

/* Open the file. */
sd_id = SDstart("Example3.hdf", DFACC_RDWR);

/* Get the identifier for the first data set. */
sds_id = SDselect(sd_id, 0);

/* Create a file named "subfile1" and move the data set values into
 * it, starting at byte location 24. */
offset = 24;

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

SDsetexternalfile
(sfsextf)

sds_id int32 integer Data set identifier.

filename char * character* (*) Name of the external data set.

offset int32 integer
Offset in bytes from the beginning of the external file to
the SDS data.
3-44 May 14, 1997

:

ls:

 array.

ation
 read.
status = SDsetexternalfile(sds_id, "subfile1", offset);

/* Terminate access to the data set, SD interface and file. */
status = SDendaccess(sds_id);
status = SDend(sd_id);

}

FORTRAN: PROGRAM WRITE EXTFILE

integer*4 sd_id, sds_id, offset, DFACC_RDWR
integer status
integer sfstart, sfselect, sfsextf, sfendacc, sfend

C DFACC_RDWR is defined in hdf.h.
parameter (DFACC_RDWR = 3)

C Open the HDF file.
sd_id = sfstart('Example3.hdf', DFACC_RDWR)

C Get the identifier of the first data set.
sds_id = sfselect(sd_id, 0)

C Create a file named "subfile1" and move the data set
C into it, starting at byte location 24.

offset = 24
status = sfsextf(sds_id, ’subfile1’, offset)

C Dispose of the data set identifier to terminate access.
status = sfendacc(sds_id)

C Dispose of the file identifier to close the file.
status = sfend(sd_id)

end

3.6 Reading Data from an SDS Array: SDreaddata

Selecting an SD data set and reading one or more slabs from it involves the following steps

1. Select an SDS.

2. Read a slab or series of slabs.

To read data from an SDS array, the calling program must contain the following function cal

C: sds_id = SDselect(sd_id, sds_index);
status = SDreaddata(sds_id, start, stride, edge, data);

FORTRAN: sds_id = sfselect(sd_id, sds_index)
status = sfrdata(sds_id, start, stride, edge, data)

SDreaddata reads an entire array, slabs of an array or it can be used to read a subset of the
For more information on reading attributes or scales see Section 3.10.3 on page 82 and
Section 3.9.4.3 on page 73.

The sds_id argument is the SDS id returned by SDcreate or SDselect. As with SDwritedata, the
arguments start , stride , and edge respectively describe the n-dimensional coordinate of the
slab the SD interface will begin the read operation, number of locations the current SDS loc
will be moved forward after each read, and the length of each dimension of the subset to be
May 14, 1997 3-45

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 start
If the SDS array is smaller than the data argument array, the amount of data read will be trun-
cated to the size of the SDS array. For additional information on the start , stride and edge
parameters refer to Section 3.5.2 on page 28.

There are two Fortran-77 versions of this routine: sfrdata and sfrcdata. The sfrdata routine reads
numeric scientific data and sfrcdata reads character scientific data.

The parameters of SDreaddata are further described in the following table. Note that, because
there are two Fortran-77 versions of SDreaddata, there are correspondingly two entries in the
“Data Type” field of the data parameter.

TABLE 3I SDreaddata Parameter List

EXAMPLE 8. Reading an Entire SDS

When SDreaddata is used to read an entire n-dimensional SDS array, the coordinates for the
position must begin at 0 for each dimension (start={0,0, ... 0}), the interval between each
read must equal 1 for each dimension (stride=NULL or stride={1,1, ... 1}), and the size
of each dimension must equal the size of the array itself (edge={dim_size_1, dim_size_2,

... dim_size_n}). The data buffer must have enough preallocated space to hold the data.

C: #include “hdf.h”

#include "mfhdf.h"

#define X_LENGTH 4
#define Y_LENGTH 5
#define Z_LENGTH 6

main()
{

int32 sd_id, sds_id, status;
int32 start[3], edges[3];
int16 array_data[Z_LENGTH][Y_LENGTH][X_LENGTH];

/* Open the file and initiate the SD interface. */
sd_id = SDstart("Example4.hdf", DFACC_RDONLY);

/* Select the first (and in this case, only) data set in the file. */
sds_id = SDselect(sd_id, 0);

/* Define the location, pattern, and size of the data to read. */
start[0] = start[1] = start[2] = 0;
edges[0] = Z_LENGTH;
edges[1] = Y_LENGTH;

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

SDreaddata
(sfrdata/
sfrcdata)

sds_id int32 integer Data set identifier.

start int32 [] integer (*)
Array containing the position the read will start
for each dimension.

stride int32 [] integer (*)
Array containing the number of data locations
the current location is to be moved forward
before the next read.

edge int32 [] integer (*)
Array containing the number of data elements
that will be read along each dimension.

data VOIDP <valid numeric data type> Buffer the data will be read into.
3-46 May 14, 1997

edges[2] = X_LENGTH;

/* Read the array. */
status = SDreaddata(sds_id, start, NULL, edges, (VOIDP)array_data);

/* Terminate access to the array */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file. */
status = SDend(sd_id);

}

 FORTRAN: PROGRAM CONFIRM ARRAY

integer*4 sd_id, sds_id, status
integer start(3), edge(3), stride(3)
integer sfstart, sfselect, sfrdata, sfendacc, sfend

C DFACC_RDONLY is defined in hdf.h. MAX_NC_NAME and MAX_VAR_DIMS
C are defined in netcdf.h.

integer*4 DFACC_RDONLY, MAX_NC_NAME, MAX_VAR_DIMS
integer*4 X_LENGTH, Y_LENGTH, Z_LENGTH
parameter (DFACC_RDONLY = 1, MAX_NC_NAME = 256,

+ MAX_VAR_DIMS = 32, X_LENGTH = 4,
+ Y_LENGTH = 5, Z_LENGTH = 6)

integer*2 array_data(X_LENGTH, Y_LENGTH, Z_LENGTH)
integer dims(MAX_VAR_DIMS)

C Open the file and initiate the SD interface.
sd_id = sfstart('Example4.hdf', DFACC_RDONLY)

C Select the first (and in this case, only) data set in the file.
sds_id = sfselect(sd_id, 0)

C Define the location, pattern, and size of the data to read
C from the data set.

dims(1) = X_LENGTH
dims(2) = Y_LENGTH
dims(3) = Z_LENGTH
start(1) = 0
start(2) = 0
start(3) = 0
stride(1) = 1
stride(2) = 1
stride(3) = 1
edge(1) = dims(1)
edge(2) = dims(2)
edge(3) = dims(3)

C Read the array data set.
status = sfrdata(sds_id, start, stride, edge, array_data)

C Terminate access to the array data set.
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

EXAMPLE 9. Reading a Subset of an SDS Array
May 14, 1997 3-47

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

The start and edges arguments of the SDreaddata function can be used to read a subset of the
entire data set, as shown in the following examples.

C: #include "hdf.h"

#include "mfhdf.h"

#define X_LENGTH 5
#define Y_LENGTH 16

main()
{

int32 sd_id, sds_id;
int32 start[2], edges[2];
int16 all_data[Y_LENGTH][X_LENGTH], subset_data[7][3], status;

/* Open the file for read-only access. */
sd_id = SDstart("Example3.hdf", DFACC_RDONLY);

/* Select the first data set. */
sds_id = SDselect(sd_id, 0);

/* First, read the entire data set. */
start[0] = start[1] = 0;
edges[0] = Y_LENGTH;
edges[1] = X_LENGTH;
status = SDreaddata(sds_id, start, NULL, edges, (VOIDP)all_data);

/* Read a subset of the data set. */
start[0] = 1;
start[1] = 1;
edges[0] = 7;
edges[1] = 3;
status = SDreaddata(sds_id, start, NULL, edges, (VOIDP)subset_data);

/* Terminate access to the array. */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file. */
status = SDend(sd_id);

}

FORTRAN: PROGRAM READ SUBSET

integer*4 sd_id, sds_id
integer start(2), edges(2), stride(2), status
integer sfstart, sfselect, sfrdata, sfendacc, sfend

C DFACC_RDONLY is defined in hdf.h.
integer*4 DFACC_RDONLY
integer*4 X_LENGTH, Y_LENGTH
parameter (DFACC_RDONLY = 1, X_LENGTH = 5, Y_LENGTH = 16)
integer*2 all_data(X_LENGTH, Y_LENGTH)
integer*2 subset_data(3, 7)

C Open the file.
sd_id = sfstart('Example3.hdf', DFACC_RDONLY)

C Select the first data set.
sds_id = sfselect(sd_id, 0)

C Read the entire data set.
start(1) = 0
3-48 May 14, 1997

start(2) = 0
edges(1) = 5
edges(2) = 16
stride(1) = 1
stride(2) = 1
status = sfrdata(sds_id, start, stride, edges, all_data)

C Read a subset from the middle of the data set.
start(1) = 1
start(2) = 1
edges(1) = 3
edges(2) = 7
status = sfrdata(sds_id, start, stride, edges, subset_data)

C Terminate access to the array.
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

EXAMPLE 10. Sampling SDS Data

These examples demonstrate how samples of data set elements can be read by using the stride

argument of the SDreaddata function. Here we read every tenth row and every other column.

C: #include "hdf.h"

#include "mfhdf.h"

#define X_LENGTH 10
#define Y_LENGTH 20

main()
{

int32 sd_id, sds_id, rank, start[2], edges[2], stride[2], dims[2];
int16 all_data[Y_LENGTH][X_LENGTH], sample_data[5][5];
intn i, j;
int16 status;

/* Open the file. */
sd_id = SDstart("Example10.hdf", DFACC_CREATE);

/* Define the rank and dimensions of the array to be created. */
rank = 2;
dims[0] = Y_LENGTH;
dims[1] = X_LENGTH;

/* Create the array. */
sds_id = SDcreate(sd_id, "Ex_array_10", DFNT_INT16, rank, dims);

/* Compute and store the data values. */
for (j = 0; j < Y_LENGTH; j++) {

for (i = 0; i < X_LENGTH; i++)
all_data[j][i] = i + j * 10;

}

/* Define the start and edge parameters. */
start[0] = start[1] = 0;
edges[0] = Y_LENGTH;
May 14, 1997 3-49

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications
edges[1] = X_LENGTH;

/* Write the buffered data in all_data to the data set. */
status = SDwritedata(sds_id, start, NULL, edges, (VOIDP)all_data);

/* Close the SD interface and the file, then re-open both and \
select the first and only data set in the file. */

status = SDendaccess(sds_id);
status = SDend(sd_id);
sd_id = SDstart("Example10.hdf", DFACC_RDONLY);
sds_id = SDselect(sd_id, 0);

/* Read the data into the sample_data array, skipping every fourth \
row and every other column. */

start[0] = start[1] = 0;
edges[0] = 5;
edges[1] = 5;
stride[0] = 4;
stride[1] = 2;
status = SDreaddata(sds_id, start, stride, edges, (VOIDP)sample_data);

/* Terminate access to the array */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file */
status = SDend(sd_id);

}

FORTRAN: PROGRAM READ STRIDES

integer*4 sd_id, sds_id, rank
integer*4 start(2), edges(2), stride(2), dims(2)
integer i, j, status
integer sfstart, sfcreate, sfwdata, sfrdata, sfendacc
integer sfselect, sfend

C DFACC_CREATE and DFNT_INT16 are defined in hdf.h.
integer*4 DFACC_CREATE, DFACC_RDONLY, DFNT_INT16
integer*4 X_LENGTH, Y_LENGTH
parameter (DFACC_CREATE = 4, DFACC_RDONLY = 1, DFNT_INT16 = 22,

+ X_LENGTH = 10, Y_LENGTH = 20)

integer*2 all_data(X_LENGTH, Y_LENGTH), sample_data(5, 5)

C Create the file.
sd_id = sfstart('Example10.hdf', DFACC_CREATE)

C Define the rank and dimensions of the array to be created.
rank = 2
dims(1) = X_LENGTH
dims(2) = Y_LENGTH

C Create the array.
sds_id = sfcreate(sd_id, 'Ex_array_10', DFNT_INT16, rank, dims)

C Compute and store the data values.
do 20 j = 1, Y_LENGTH

do 10 i = 1, X_LENGTH
all_data(i, j) = i + j * 10

10 continue
20 continue

C Set up the start and edge parameters to write the buffered
3-50 May 14, 1997

ether

ntific
n

st use

.)

mber.

utines

on-
C data to the entire array data set.
start(1) = 0
start(2) = 0
edges(1) = X_LENGTH
edges(2) = Y_LENGTH
stride(1) = 1
stride(2) = 1

C Write the buffered data in wrt_data to the data set.
status = sfwdata(sds_id, start, stride, edges, all_data)

C Close the SD interface and the file, then re-open both and
C select the first and only data set in the file.

status = sfendacc(sds_id)
status = sfend(sd_id)
sd_id = sfstart(’Example10.hdf’, DFACC_RDONLY)
sds_id = sfselect(sd_id, 0)

C Read the data into the sample_data array, skipping every fourth row
C and every other column.

edges(1) = 5
edges(2) = 5
stride(1) = 2
stride(2) = 4
status = sfrdata(sds_id, start, stride, edges, sample_data)

C Terminate access to the array.
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

3.6.1 Reading Data from an External File
SDS data is read from an external file in the same way that it is read from a primary file. Wh
the SDS data is or is not stored in an external file is transparent to the user.

3.7 Obtaining Information About SD Data Sets

The routines covered in this section provide methods for obtaining information about the scie
data sets in a file, for identifying SDSs that meet certain criteria, and for obtaining informatio
about the data sets themselves.

SDfileinfo obtains the number of SDSs and file attributes in a file, and SDgetinfo provides infor-
mation about individual SDSs. To cycle through the data sets in a file, a calling program mu
SDfileinfo to determine the number of data sets, followed by repeated calls to SDgetinfo to view
them. The parameters of these two routines are described below. (See Table 3J on page 52

At times you might need to search through a file for an SDS for a given name or reference nu
The SDnametoindex routine determines the index of an SDS from its name, and SDreftoindex
determines the index of an SDS from its reference number. The parameters of these two ro
are described below. (See Table 3K on page 54.)

3.7.1 Obtaining Information About the SDSs in a File: SDfileinfo
It is often useful to determine the number of scientific data sets and global SDS attributes c
tained in a file before executing a series of read or write operations. The SDfileinfo routine is
May 14, 1997 3-51

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

in the

e, if
 allo-

 num-
of

designed for this purpose. To determine the contents of a file, the calling program must conta
following calls:

C: sd_id = SDstart(filename, access_mode);
status = SDfileinfo(sd_id, n_datasets, n_file_attr);
status = SDend(sd_id);

FORTRAN: sd_id = sfstart(filename, access_mode)
status = sffinfo(sd_id, n_datasets, n_file_attr)
status = sfend(sd_id)

SDfileinfo uses n_datasets to return the number of scientific data sets in the file, and
n_file_attr to return the number of file attributes in the file.

3.7.2 Obtaining Information About a Specific SDS: SDgetinfo
Some information may be needed before reading and working with SDS arrays. For instanc
the rank, dimension sizes and/or data type of an array are unknown, it may be impossible to
cate the proper amount of memory to work with the array. The SDgetinfo routine provides basic
information about SDS arrays.

SDgetinfo takes an SDS id as input, and returns the name, rank, dimensions, data type, and
ber of attributes for the corresponding SDS. The attribute count will only reflect the number
attributes assigned to the SDS array; file attributes are not included.

TABLE 3J SDfileinfo and SDgetinfo Parameter List

EXAMPLE 11. Printing Data Set Names

The SDgetinfo function can be called within a loop to retrieve the names of all data sets in an
HDF file, as shown in the following examples.

C: #include "hdf.h"

#include "mfhdf.h"
#include <stdio.h>

main()
{

int32 sd_id, sds_id, n_datasets, n_file_attrs, index, status;
int32 dim_sizes[MAX_VAR_DIMS];
int32 rank, num_type, attributes;

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

SDfileinfo
(sffinfo)

file_id int32 integer File identifier.

n_datasets int32 * integer Number of data sets in the file.

n_file_attr int32 * integer Number of global attributes in the file.

SDgetinfo
(sfginfo)

sds_id int32 integer Data set identifier

sds_name char* character* (*) Space to put the name of the data set.

rank int32 * integer Space to put the number of dimensions in the array.

dim_sizes int32 [] integer (*) Space to put the size of each dimension in the array.

data_type int32 * integer Space to put the data type for the data in the array.

nattrs int32 * integer Space to put the number of attributes in the data set.
3-52 May 14, 1997

char name[MAX_NC_NAME];

/* Open the file and initiate the SD interface. */
sd_id = SDstart("Example5.hdf", DFACC_RDONLY);

/* Determine the contents of the file. */
status = SDfileinfo(sd_id, &n_datasets, &n_file_attrs);

/* Access and print the name of every data set in the file. */
for (index = 0; index < n_datasets; index++) {

sds_id = SDselect(sd_id, index);
status = SDgetinfo(sds_id, name, &rank, dim_sizes, \

&num_type, &attributes);
printf("name = %s\n", name);
status = SDendaccess(sds_id);

}

/* Terminate access to the SD interface and close the file. */
status = SDend(sd_id);

}

FORTRAN: PROGRAM PRINT NAMES

integer*4 sd_id, sds_id
integer*4 n_datasets, n_file_attrs, index
integer status
integer sfstart, sffinfo, sfselect, sfginfo
integer sfendacc, sfend

C DFACC_RDONLY is defined in hdf.h. MAX_NC_NAME and MAX_VAR_DIMS
C are defined in netcdf.h.

integer*4 DFACC_RDONLY, MAX_NC_NAME, MAX_VAR_DIMS
parameter (DFACC_RDONLY = 1, MAX_NC_NAME = 256,

+ MAX_VAR_DIMS = 32)

integer*4 dim_sizes(MAX_VAR_DIMS)
character name *(MAX_NC_NAME)

C Open the file and initiate the SD interface.
sd_id = sfstart('Example5.hdf', DFACC_RDONLY)

C Determine the contents of the file.
status = sffinfo(sd_id, n_datasets, n_file_attrs)

C Access and print the names of every data set in the file.
do 10 index = 0, n_datasets - 1

sds_id = sfselect(sd_id, index)
status = sfginfo(sds_id, name, rank, dim_sizes, num_type,

+ attributes)
print *, "name = ", name
status = sfendacc(sds_id)

10 continue

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end
May 14, 1997 3-53

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

be

:

fer-

lls:

bers
rs do
3.7.3 Locating a SDS Data Set by Name: SDnametoindex
When an SDS is created, a unique number is assigned to it by the SD library so that it can
located in the file for future access. This number is referred to as the index of an SDS.

If the index of an SDS in an HDF file is known, SDselect can be used immediately. If not, it is
necessary to determine the index by some other means. SDnametoindex determines the index of
an SDS from its name. Selecting a data set by name involves the following steps:

1. Convert the SDS name into a valid index number.

2. Select the SDS by obtaining its identifier from its index number.

To access a SDS via its name, the calling program must contain the following function calls

C: sds_index = SDnametoindex(sd_id, sds_name);
sds_id = SDselect(sd_id, sds_index);

FORTRAN: sds_index = sfn2index(sd_id, sds_name)
sds_id = sfselect(sd_id, sds_index)

SDnametoindex returns the index specified by the sds_index parameter for the first data set in
the file with the name sds_name . If two data sets have the same name, SDnametoindex returns
the index of the first data set. The index sds_index can then be used by SDselect to obtain an
SDS id for the specified data set.

The SDnametoindex routine is case-sensitive and does not accept wildcards.

3.7.4 Locating an SDS by Reference Number: SDreftoindex
In addition to an index and name, data sets are also assigned a tag and reference number. SDrefto-
index determines the index of the SDS from its reference number. Selecting a data set by re
ence number involves the following steps:

1. Convert the reference number for the SDS into a valid index number.

2. Select the SDS by obtaining its identifier from its index number.

To select a data set by reference number, the calling program must execute the following ca

C: sds_index = SDreftoindex(sd_id, ref);
sds_id = SDselect(sd_id, sds_index);

FORTRAN: sds_index = sfref2index(sd_id, ref)
sds_id = sfselect(sd_id, sds_index)

SDreftoindex returns the index specified by the sds_index parameter for the SDS in the file
with the reference number ref . The index sds_index can then be passed to SDselect to obtain an
SDS id for the SDS.

Because the HDF library assigns reference numbers in unpredictable ways, reference num
should be used to identify SDSs only when no other means are available. Reference numbe
not necessarily adhere to any ordering scheme.

TABLE 3K SDnametoindex and SDreftoindex Parameter List

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

SDnametoindex
(sfn2index)

sd_id int32 integer SD interface identifier.

sds_name char * character* (*) Name of the data set to index.
3-54 May 14, 1997

d the
EXAMPLE 12. Searching for the Index of an SDS

In these examples, an invalid data set name is specified which results in SDnametoindex return-
ing a value of -1 . A valid data set name is then provided and the returned index is used to rea
contents of the corresponding data set.

C: #include "hdf.h"

#include "mfhdf.h"

#define X_LENGTH 4
#define Y_LENGTH 5
#define Z_LENGTH 6

main()
{

int32 sd_id, sds_index, sds_id, status;
int32 start[3], edges[3];
int16 array_data[Z_LENGTH][Y_LENGTH][X_LENGTH];

/* Open the file. */
sd_id = SDstart("Example4.hdf", DFACC_RDONLY);

/* Search for the index of a non-existent array data set. */
sds_index = SDnametoindex(sd_id, "Invalid_Data_Set_Name");

/* Error condition: sds_index contains the value -1. */

/* Search for the index of a "Ex_array_4" array data set. */
sds_index = SDnametoindex(sd_id, "Ex_array_4");

/* Select the data set corresponding to the returned index. */
sds_id = SDselect(sd_id, sds_index);

/* Read the data set data into the array_data array. */
start[0] = start[1] = start[2] = 0;
edges[0] = Z_LENGTH;
edges[1] = Y_LENGTH;
edges[2] = X_LENGTH;
status = SDreaddata(sds_id, start, NULL, edges, (VOIDP)array_data);

/* Terminate access to the array */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file */
status = SDend(sd_id);

}

FORTRAN: PROGRAM SEARCH INDEX

integer*4 sd_id, sds_index, sds_id, status
integer*4 start(3), edges(3), stride(3)
integer sfstart, sfn2index, sfrdata, sfendacc, sfselect

C DFACC_RDONLY is defined in hdf.h.
integer*4 DFACC_RDONLY
integer*4 X_LENGTH, Y_LENGTH, Z_LENGTH
parameter (DFACC_RDONLY = 1, X_LENGTH = 4, Y_LENGTH = 5,

SDreftoindex
(sfref2index)

sd_id int32 integer SD interface identifier.

ref int32 integer IN: Reference number for the specified data set.
May 14, 1997 3-55

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

nd 32
ite
data

ield

en.
field -
+ Z_LENGTH = 6)

integer*2 array_data(X_LENGTH, Y_LENGTH, Z_LENGTH)

C Open the file.
sd_id = sfstart('Example4.hdf', DFACC_RDONLY)

C Search for the index of a non-existent array data set.
sds_index = sfn2index(sd_id, 'Invalid_Data_Set_Name')

C Error condition: sds_index contains the value -1.

C Search for the index of a 'Ex_array_4' array data set.
sds_index = sfn2index(sd_id, 'Ex_array_4')

C Select the data set corresponding to the returned index.
sds_id = sfselect(sd_id, sds_index)

C Read the data set data into the rd_data array.
start(1) = 0
start(2) = 0
start(3) = 0
edges(1) = X_LENGTH
edges(2) = Y_LENGTH
edges(3) = Z_LENGTH
stride(1) = 1
stride(2) = 1
stride(3) = 1
status = sfrdata(sds_id, start, stride, edges, array_data)

C Terminate access to the array
status = sfendacc(sds_id)

end

3.7.5 Creating SDS Arrays Containing Variable-Length Data:
SDsetnbitdataset

Version 4.0r1 of HDF provided the SDsetnbitdataset routine, allowing the HDF user to specify
that a particular SDS array contains data of a non-standard length. Any length between 1 a
bits can be specified. After SDsetnbitdataset has been called for the SDS array, any read or wr
operations will involve a conversion between the new data length of the SDS array and the
length of the read or write buffer.

The syntax of SDsetnbitdataset is as follows:

C: status = SDsetnbitdataset(sds_id, start_bit, bit_len,
sign_ext, fill_one);

FORTRAN: status = sfsnbit(sds_id, start_bit, bit_len, sign_ext,
fill_one)

Bit lengths of all data types are counted from the right of the bit field starting with 0. In a bit f
containing the values 01111011 , bits 2 and 7 are set to 0 and all the other bits are set to 1.

The start_bit parameter specifies the leftmost position of the variable-length bit field to be
written. For example, in the bit field described in the preceding paragraph a start_bit parameter
value of 1 would denote the fourth bit value of 1 from the right.

The bit_len parameter specifies the number of bits of the variable-length bit field to be writt
This number includes the starting bit and the count proceeds toward the right end of the bit
3-56 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

ld to
is
,

le-

lue,

 first

work
fic per-
 cor-

d
toward the lower-bit numbers. For example, starting at bit 5 and writing 4 bits of the bit field
described in the preceding paragraph would result in the bit field 1110 being written to the data
set. This would correspond to a start_bit value of 5 and a bit_len value of 4.

The sign_ext parameter specifies whether to use the leftmost bit of the variable-length bit fie
sign-extend to the leftmost bit of the data set data. For example, if 9-bit signed integer data
extracted from bits 17-25 and the bit in position 25 is 1, then when the data is read back from disk
bits 26-31 will be set to 1. Otherwise bit 25 will be 0 and bits 26-31 will be set to 0. The sign_ext
parameter is set to either TRUE or FALSE - specify TRUE to sign-extend.

The fill_one specifies whether to fill the "background" bits with the value 1 or 0. This parameter
is also set to either TRUE or FALSE.

The "background" bits of a variable-length data set are the bits that fall outside of the variab
length bit field stored on disk. For example, if five bits of an unsigned 16-bit integer data set
located in bits 5 to 9 are written to disk with the fill_one parameter set to TRUE (or 1), then when
the data is reread into memory bits 0 to 4 and 10 to 15 would be set to 1. If the same 5-bit data was
written with a fill_one value of FALSE (or 0), then bits 0 to 4 and 10 to 15 would be set to 0.

This bit operation is performed before the sign-extend bit-filling. For example, using the
sign_ext example above, bits 0 to 16 and 26 to 31 will first be set to the "background" bit va
and then bits 26 to 31 will be set to 1 or 0 based on the value of the 25th bit.

SDsetnbitdataset returns SUCCEED (or 0) upon successful completion and FAIL (or -1) otherwise.

TABLE 3L SDsetnbitdataset Parameter List

3.8 Chunked (or Tiled) Scientific Data Sets

NOTE: It is strongly encouraged that HDF users who wish to use the SD chunking routines
read the section on SD chunking in Chapter 13, titled HDF Performance Issues. In that section the
concepts of chunking are explained, as well as their use in relation to HDF. As the ability to
with chunked data has been added to HDF functionality for the purpose of addressing speci
formance-related issues, the user should first have the necessary background knowledge to
rectly determine how chunking will positively or adversely affect their application.

This chapter will refer to both "tiled" and "chunked" SDSs as simply "chunked SDSs", as tile
SDSs are the two-dimensional case of chunked SDSs.

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

SDsetnbitdataset
(sfsnbit)

sds_id int32 integer Data set identifier.

start_bit intn integer Leftmost bit of the field to be written.

bit_len intn integer Length of the bit field to be written

sign_ext intn integer Sign-extend specifier.

fill_one intn integer Background bit specifier.
3-57 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

for-
 is

 a sin-
3.8.1 Making a Non-Chunked SDS a Chunked SDS: SDsetchunk

In HDF, an SDS must first be created as a generic SDS through the SDcreate routine, then "pro-
moted" to be a chunked SDS through the use of SDsetchunk. SDsetchunk determines the chunk
size and the compression method, if any, to be applied when accessing the chunks.

SDsetchunk receives its information on how to create the chunks, as well as compression in
mation, from an HDF_CHUNK_DEF union passed in as its second argument. This union structure
defined in the HDF library as follows:

typedef union hdf_chunk_def_u {
int32 chunk_lengths[MAX_VAR_DIMS];
struct {

int32 chunk_lengths[MAX_VAR_DIMS];
int32 comp_type;
comp_info cinfo;

} comp;
} HDF_CHUNK_DEF

Note that there is currently no Fortran-77 version of SDsetchunk.

TABLE 3M SDsetchunk Parameter List

The flags parameter can either be set to HDF_CHUNK if the SDS is to be uncompressed, or to the
bitwise-OR’ed values of HDF_CHUNK and HDF_COMP (HDF_CHUNK | HDF_COMP) if a compression
method is to be applied. In the former case the first definition of the chunk_lengths array should
be set to the dimensions of the chunks. For example, given the definition of HDF_CHUNK_DEF
stated above, a flags parameter value of HDF_CHUNK and the following definition of a three-
dimensional chunked SDS

HDF_CHUNK_DEF current_chunk_def;

current_chunk_def.chunk_lengths[0] = 2;
current_chunk_def.chunk_lengths[1] = 3;
current_chunk_def.chunk_lengths[2] = 4;

the size of the chunk passed to SDsetchunk will be 2 bytes by 3 bytes by 4 bytes.

In the latter case (where a compression method is specified), the chunk_lengths array definition
within the comp structure is initialized in the way described above and the cinfo structure is ini-
tialized in the same way as for the SDsetcompress routine. (See Figure 3.5.3 on page 40.)

There are two restrictions that apply to chunked SDSs. The maximum number of chunks in
gle HDF file is 65,535, and a chunked SDS cannot contain an unlimited dimension.

SDsetchunk returns either a value of SUCCEED or FAIL .

Routine Name Parameter
Data Type

Description
C

SDsetchunk

sds_id int32 SD identifier.

c_def HDF_CHUNK_DEF Union containing information on how the chunks are to be defined.

flags int32 Flags determining the behavior of the routine.
3-58 May 14, 1997

, the

 this

ached
as
 new

 is
is
he.

 or

it-

ard
rs to the
ec-
rigin of
D
3.8.2 Setting the Maximum Number of Chunks in the Cache:
SDsetchunkcache

To maximize the performance of the HDF library routines when working with chunked SDSs
library maintains a separate area of memory specifically for cached data chunks. SDsetchunk-
cache determines the maximum number of chunks of the specified SDS that are cached into
segment of memory.

When the chunk cache has been filled, any additional chunks written to cache memory are c
according to the LRU, or Least-Recently-Used, algorithm. This means that the chunk that h
resided in the cache the longest without being reread or rewritten will be written over with the
chunk.

Note that there is currently no Fortran-77 equivalent of SDsetchunkcache.

TABLE 3N SDsetchunkcache Parameter List

By default, when a generic SDS is promoted to be a chunked SDS, the maxcache parameter is set
to the number of chunks along the last dimension.

If the chunk cache is full and the value of the maxcache parameter is larger than the currently
allowed maximum number of cached chunks, then the maximum number of cached chunks
reset to the value of maxcache . If the chunk cache is not full, then the size of the chunk cache
reset to the value of maxcache only if it is greater than the current number of chunks in the cac

Currently the only allowed value of the flag parameter is 0, which designates default operation. In
the near future, the value HDF_CACHEALL will be supported to be used to specify that the whole
SDS object is to be cached.

SDsetchunkcache returns either the set value of the maximum number of cacheable chunks
FAIL .

3.8.3 Writing Data to Chunked SDSs: SDwritechunk and SDwritedata

If an SDS has been created as a chunked SDS (i.e., has been created through calls to SDcreate and
SDsetchunk), both SDwritedata and SDwritechunk can be used to write data to it. There are s
uations where SDwritechunk may be a more appropriate routine to use than SDwritedata, but
both routines essentially achieve the same results.

The location of data in a chunked SDS can be referenced in two ways. The first is the stand
method used in the SD routines that access both chunked and non-chunked SDSs, and refe
starting location, or the origin, as an offset in bytes from the origin of the SD array itself. The s
ond method is used by the SD routines that only access chunked SDSs, and refers to the o
the chunk as an offset in chunks from the origin of the SD array itself. See the section on S
chunking in Chapter 13, titled HDF Performance Issues, for an illustration of this.

Routine Name Parameter
Data Type

Description
C

SDsetchunkcache

sds_id int32 SD identifier.

maxcache int32 Maximum number of chunks to cache.

flags int32 Flags determining the default caching behavior.
May 14, 1997 3-59

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

et be
ng

ction-

 of

rds,
or con-

nal

f

 for
 size of
SDwritechunk is used when an entire chunk is to be written and requires that the chunk offs
known. SDwritedata is used when the write operation is to be done regardless of the chunki
scheme used in the SDS and the byte offset of the target chunk is known. Also, as SDwritechunk
is written specifically for chunked SDSs and doesn’t have the overhead of the additional fun
ality supported by the SDwritedata routine, it is much faster than SDwritedata.

The parameters of SDwritedata are listed above. (See Table 3D on page 30.) The parameters
SDwritechunk are as follows. Note that there currently is no Fortran-77 equivalent of SDwrite-
chunk.

TABLE 3O SDwritechunk Parameter List

The datap parameter must point to an array containing an entire chunk of data - in other wo
the size of the array must be the same as the chunk size of the SDS to be written to. An err
dition will result if this is not the case.

SDwritechunk returns either a value of SUCCEED or FAIL .

3.8.4 Reading Data From Chunked SDSs: SDreadchunk and SDreaddata

As both SDwritedata and SDwritechunk can be used to write data to chunked SDSs, both
SDreaddata and SDreadchunk can be used to read data from chunked SDSs.

SDreadchunk is used when an entire chunk of data is to be read. SDreaddata is used when the
read operation is to be done regardless of the chunking scheme used in the SDS. Also, SDread-
chunk is written specifically for chunked SDSs and doesn’t have the overhead of the additio
functionality supported by the SDreaddata routine - therefore, it is much faster than SDreaddata.

SDreadchunk returns either a value of SUCCEED or FAIL .

The parameters of SDreaddata are listed above. (See Table 3I on page 46.) The parameters o
SDreadchunk are as follows. Note that there is currently no Fortran-77 equivalent of SDread-
chunk.

TABLE 3P SDreadchunk Parameter List

As with SDwritechunk, the datap parameter must point to an array containing enough space
an entire chunk of data. In other words, the size of the array must be the same as the chunk
the SDS to be written to. An error condition will result if this is not the case.

Routine Name Parameter
Data Type

Description
C

SDwritechunk

sds_id int32 SD identifier.

origin int32 * Origin of the chunk to be written.

datap const VOID * Buffer containing the data to be written.

Routine Name Parameter
Data Type

Description
C

SDreadchunk

sds_id int32 SD identifier.

origin int32 * Origin of the chunk to be read.

datap VOID * Buffer for the returned chunk data.
3-60 May 14, 1997

ether

r

3.8.5 Obtaining Information About a Chunked SDS: SDgetchunkinfo

SDgetchunkinfo is used to determine how the chunks in a chunked SDS are defined and wh
the SDS is chunked or not.

Information about the chunks is returned in the HDF_CHUNK_DEF union provided as the second
parameter - therefore, it will return the same information that can be set in the SDsetchunk rou-
tine. For example, the flags argument will return either HDF_CHUNK for an uncompressed
chunked SDS, HDF_CHUNK bitwise-OR’ed with HDF_COMP for a compressed and chunked SDS o
HDF_NONE for a non-chunked SDS. A pointer to a chunk_lengths array containing chunk dimen-
sion size information will be returned if the returned flags param value is HDF_CHUNK, a pointer
to a comp structure containing chunk dimension size and compression information will be
returned if the returned flags param value is HDF_CHUNK bitwise-OR’ed with HDF_COMP.

A NULL value can also be passed in as the c_def param if chunking information is not desired.

Note that there is currently no Fortran-77 equivalent of SDgetchunkinfo.

TABLE 3Q SDgetchunkinfo Parameter List

SDgetchunkinfo returns either a value of SUCCEED or FAIL .

EXAMPLE 13. Writing and Reading Chunked Data Using SDwritechunk and SDreaddata

This example creates a 9-by-4 integer chunked uncompressed SDS in a file named
"Example13.hdf", then writes six 3-by-2 byte chunks of 16-bit unsigned integers to it. It then
reads one 5-by-2 16-bit unsigned integer subset. It uses SDwritechunk to write the chunks and
SDreaddata to read the subset.

C: #include "hdf.h"

#include "mfhdf.h"

/* Arrays containing dimension info for datasets. */
static int32 d_dims[3] = {2, 3, 4}; /* Data dimensions */
static int32 edge_dims[3] = {0, 0, 0}; /* Edge dims */
static int32 start_dims[3] = {0, 0, 0}; /* Starting dims */
static int32 cdims[3] = {1, 2, 3}; /* Chunk lengths */

int32 status;

static uint16 chunk1_2u16[6] = {11, 21,
 12, 22,
 13, 23};

static uint16 chunk2_2u16[6] = {31, 41,
 32, 42,

Routine Name Parameter
Data Type

Description
C

SDgetchunkinfo

sds_id int32 SD identifier.

c_def HDF_CHUNK_DEF *
Union structure containing information about the chunks in
the SDS.

flags int32 * Flags determining the behavior of the routine.
May 14, 1997 3-61

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications
 33, 43};

static uint16 chunk3_2u16[6] = {14, 24,
 15, 25,
 16, 26};

static uint16 chunk4_2u16[6] = {34, 44,
 35, 45,
 36, 46};

static uint16 chunk5_2u16[6] = {17, 27,
 18, 28,
 19, 29};

static uint16 chunk6_2u16[6] = {37, 47,
 38, 48,
 39, 49};

main()
{

int32 f1; /* File handle */
int32 sdsid; /* SDS handle */
uint16 inbuf_2u16[5][2]; /* Data array read */
uint16 fill_u16 = 0; /* Fill value */
int32 c_flags;
HDF_CHUNK_DEF c_def, r_def;

/* Create the HDF file. */
f1 = SDstart("Example13.hdf", DFACC_CREATE);

/* Create a 9x4 SDS of uint16 in file 1. */
d_dims[0] = 9;
d_dims[1] = 4;
sdsid = SDcreate(f1, "DataSetChunked_1", DFNT_UINT16, 2, d_dims);

/* Set the fill value. */
fill_u16 = 0;
status = SDsetfillvalue(sdsid, (VOIDP) &fill_u16);

/* Create chunked SDS chunk with 3x2 chunks which will create
6 chunks. */

c_def.chunk_lengths[0] = 3;
c_def.chunk_lengths[1] = 2;
status = SDsetchunk(sdsid, c_def, HDF_CHUNK);

/* Set chunk cache to hold a maximum of 3 chunks */
status = SDsetchunkcache(sdsid, 3, 0);

/* Write the data chunks. */

/* Write chunk 1. */
start_dims[0] = 0;
start_dims[1] = 0;
status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk1_2u16);

/* Write chunk 4. */
start_dims[0] = 1;
start_dims[1] = 1;
status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk4_2u16);

/* Write chunk 2. */
3-62 May 14, 1997

 a file
then
start_dims[0] = 0;
start_dims[1] = 1;
status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk2_2u16);

/* Write chunk 5. */
start_dims[0] = 2;
start_dims[1] = 0;
status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk5_2u16);

/* Write chunk 3. */
start_dims[0] = 1;
start_dims[1] = 0;
status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk3_2u16);

/* Write chunk 6. */
start_dims[0] = 2;
start_dims[1] = 1;
status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk6_2u16);

/* Read a subset of the data back in using SDreaddata
 i.e 5x2 subset of the whole array. */
start_dims[0] = 2;
start_dims[1] = 1;
edge_dims[0] = 5;
edge_dims[1] = 2;
status = SDreaddata(sdsid, start_dims, NULL, edge_dims, \

(VOIDP) inbuf_2u16);

/* This 5x2 array should look like this
 {{23, 24, 25, 26, 27},
 {33, 34, 35, 36, 37}} */

/* Get chunk lengths. */
status = SDgetchunkinfo(sdsid, &r_def, &c_flags);

/* Close the current SDS. */
status = SDendaccess(sdsid);

/* Close down the SDS interface. */
status = SDend(f1);

}

EXAMPLE 14. Writing and Reading Chunked Data Using SDwritedata and SDreaddata

This example creates a chunked SDS with a size of 2-by-3-by-4 16-bit unsigned integers in
named "Example14.hdf", then writes two 2-by-3-by-2 16-bit unsigned integer chunks to it. It
reads one 2-by-3-by-4 16-bit unsigned integer chunk. It uses SDwritedata to write the chunks and
SDreaddata to read the subset.

C: #include "hdf.h"

#include "mfhdf.h"

/* Arrays containing dimension info for datasets. */
static int32 d_dims[3] = {2, 3, 4}; /* Data dimensions */
static int32 edge_dims[3] = {0, 0, 0}; /* Edge dims */
static int32 start_dims[3] = {0, 0, 0}; /* Starting dims */
static int32 cdims[3] = {1, 2, 3}; /* Chunk lengths */
May 14, 1997 3-63

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications
int32 status;

static uint16 u16_3data[2][3][4] =
{
 {
 { 0, 1, 2, 3},
 { 10, 11, 12, 13},
 { 20, 21, 22, 23}},
 {
 { 100, 101, 102, 103},
 { 110, 111, 112, 113},
 { 120, 121, 122, 123}}};

main()
{

int32 f1; /* File handle */
int32 sdsid; /* SDS handle */
uint16 inbuf_3u16[2][3][4]; /* Data array read */
uint16 fill_u16 = 0; /* Fill value */
int32 c_flags;
HDF_CHUNK_DEF c_def, r_def;

/* Create the HDF file. */
f1 = SDstart("Example14.hdf", DFACC_CREATE);

/* Create a new 2x3x4 SDS of uint16 in the file. */
d_dims[0] = 2;
d_dims[1] = 3;
d_dims[2] = 4;
sdsid = SDcreate(f1, "DataSetChunked_2", DFNT_UINT16, 3, d_dims);

/* Set the fill value. */
fill_u16 = 0;
status = SDsetfillvalue(sdsid, (VOIDP) &fill_u16);

/* Create chunked SDS - chunk is 2x3x2 which will create 2 chunks */
c_def.chunk_lengths[0] = 2;
c_def.chunk_lengths[1] = 3;
c_def.chunk_lengths[2] = 2;
status = SDsetchunk(sdsid, c_def, HDF_CHUNK);

/* Set chunk cache to hold a maximum of 2 chunks*/
status = SDsetchunkcache(sdsid, 2, 0);

/* Write data using SDwritedata. */
start_dims[0] = 0;
start_dims[1] = 0;
start_dims[2] = 0;
edge_dims[0] = 2;
edge_dims[1] = 3;
edge_dims[2] = 4;
status = SDwritedata(sdsid, start_dims, NULL, edge_dims, \

(VOIDP) u16_3data);

/* Read data using SDreaddata. */
start_dims[0] = 0;
start_dims[1] = 0;
start_dims[2] = 0;
edge_dims[0] = 2;
edge_dims[1] = 3;
edge_dims[2] = 4;
3-64 May 14, 1997

 a file
then
status = SDreaddata(sdsid, start_dims, NULL, edge_dims, \
(VOIDP) inbuf_3u16);

/* Verify the data in inbuf_3u16 against u16_3data[]. */

/* Get chunk lengths. */
status = SDgetchunkinfo(sdsid, &r_def, &c_flags);

/* Close the current SDS. */
status = SDendaccess(sdsid);

/* Close down SDS interface. */
status = SDend(f1);
}

EXAMPLE 15. Writing and Reading Chunked Data Using SDwritedata and SDreadchunk

This example creates a chunked SDS with a size of 2-by-3-by-4 16-bit unsigned integers in
named "Example15.hdf", then writes one 2-by-3-by-4 16-bit unsigned integer chunk to it. It
reads six 1-by-1-by-4 16-bit unsigned integer subsets. It uses SDwritedata to write the chunks
and SDreadchunk to read the subsets.

C: #include "hdf.h"

#include "mfhdf.h"

/* Arrays containing dimension info for datasets. */
static int32 d_dims[3] = {2, 3, 4}; /* Data dimensions */
static int32 edge_dims[3] = {0, 0, 0}; /* Edge dims */
static int32 start_dims[3] = {0, 0, 0}; /* Starting dims */
static int32 cdims[3] = {1, 2, 3}; /* Chunk lengths */

int32 status;

static uint16 u16_3data[2][3][4] =
{
 {
 { 0, 1, 2, 3},
 { 10, 11, 12, 13},
 { 20, 21, 22, 23}},
 {
 { 100, 101, 102, 103},
 { 110, 111, 112, 113},
 { 120, 121, 122, 123}}};

main()
{

int32 f1;/* File handle */
int32 sdsid;/* SDS handle */
uint16 ru16_3data[4]; /* Whole chunk input buffer */
int32 rcdims[3]; /* For SDgetchunkinfo() */
uint16 fill_u16 = 0; /* Fill value */
int32 c_flags;
HDF_CHUNK_DEF c_def, r_def;

/* Create the HDF file. */
f1 = SDstart("Example15.hdf", DFACC_CREATE);

/* Create a new 2x3x4 SDS of uint16 in the file. */
May 14, 1997 3-65

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications
d_dims[0] = 2;
d_dims[1] = 3;
d_dims[2] = 4;
sdsid = SDcreate(f1, "DataSetChunked_4", DFNT_UINT16, 3, d_dims);

/* Set the fill value. */
fill_u16 = 0;
status = SDsetfillvalue(sdsid, (VOIDP) &fill_u16);

/* Create chunked SDS - chunk is 1x1x4 which will create 6 chunks. */
c_def.chunk_lengths[0] = 1;
c_def.chunk_lengths[1] = 1;
c_def.chunk_lengths[2] = 4;
status = SDsetchunk(sdsid, c_def, HDF_CHUNK);

/* Set chunk cache to hold a maximum of 4 chunks. */
status = SDsetchunkcache(sdsid, 4, 0);

/* Write data using SDwritedata. */
start_dims[0] = 0;
start_dims[1] = 0;
start_dims[2] = 0;
edge_dims[0] = 2;
edge_dims[1] = 3;
edge_dims[2] = 4;
status = SDwritedata(sdsid, start_dims, NULL, edge_dims, \

(VOIDP) u16_3data);

/* Read data using SDreadchunk and verify against
 the chunk arrays chunk1_3u16[] ... chunk6_3u16[]. */

/* Read chunk 1. */
start_dims[0] = 0;
start_dims[1] = 0;
start_dims[2] = 0;
status = SDreadchunk(sdsid, start_dims, (VOIDP) ru16_3data);

/* Read chunk 2. */
start_dims[0] = 0;
start_dims[1] = 1;
start_dims[2] = 0;
status = SDreadchunk(sdsid, start_dims, (VOIDP) ru16_3data);

/* Read chunk 3. */
start_dims[0] = 0;
start_dims[1] = 2;
start_dims[2] = 0;
status = SDreadchunk(sdsid, start_dims, (VOIDP) ru16_3data);

/* Read chunk 4. */
start_dims[0] = 1;
start_dims[1] = 0;
start_dims[2] = 0;
status = SDreadchunk(sdsid, start_dims, (VOIDP) ru16_3data);

/* Read chunk 5. */
start_dims[0] = 1;
start_dims[1] = 1;
start_dims[2] = 0;
status = SDreadchunk(sdsid, start_dims, (VOIDP) ru16_3data);

/* Read chunk 6. */
start_dims[0] = 1;
3-66 May 14, 1997

ing
start_dims[1] = 2;
start_dims[2] = 0;
status = SDreadchunk(sdsid, start_dims, (VOIDP) ru16_3data);

/* Get chunk lengths. */
status = SDgetchunkinfo(sdsid, &r_def, &c_flags);

/* Close the current SDS. */
status = SDendaccess(sdsid);

/* Close down the SDS interface. */
status = SDend(f1);

}

EXAMPLE 16. Writing and Reading Compressed Chunked Data Using SDwritechunk and SDreaddata

This example uses SDwritechunk to write the chunks and SDreaddata to read the subset, like
Example 13 (See page 61.). However, it also compresses the chunks using the GZIP (skipp
Huffman) algorithm.

C: #include "hdf.h"

#include "mfhdf.h"

/* Arrays containing dimension info for datasets. */
static int32 d_dims[3] = {2, 3, 4}; /* Data dimensions */
static int32 edge_dims[3] = {0, 0, 0}; /* Edge dims */
static int32 start_dims[3] = {0, 0, 0}; /* Starting dims */
static int32 cdims[3] = {1, 2, 3}; /* Chunk lengths */

int32 status;

static uint16 chunk1_2u16[6] = {11, 21,
 12, 22,
 13, 23};

static uint16 chunk2_2u16[6] = {31, 41,
 32, 42,
 33, 43};

static uint16 chunk3_2u16[6] = {14, 24,
 15, 25,
 16, 26};

static uint16 chunk4_2u16[6] = {34, 44,
 35, 45,
 36, 46};

static uint16 chunk5_2u16[6] = {17, 27,
 18, 28,
 19, 29};

static uint16 chunk6_2u16[6] = {37, 47,
 38, 48,
 39, 49};

main()
{

May 14, 1997 3-67

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications
int32 f1; /* File handle */
int32 sdsid; /* SDS handle */
uint16 inbuf_2u16[5][2]; /* Data array read */
uint16 fill_u16 = 0; /* Fill value */
int32 c_flags;
HDF_CHUNK_DEF c_def, r_def;

/* Create the HDF file. */
f1 = SDstart("Example16.hdf", DFACC_CREATE);

/* Create a 9x4 SDS of uint16 in file 1. */
d_dims[0] = 9;
d_dims[1] = 4;
sdsid = SDcreate(f1, "DataSetChunked_1", DFNT_UINT16, 2, d_dims);

/* Set the fill value. */
fill_u16 = 0;
status = SDsetfillvalue(sdsid, (VOIDP) &fill_u16);

/* Create chunked SDS chunk with 3x2 chunks which will create
6 chunks. */

c_def.chunk_lengths[0] = c_def.comp.chunk_lengths[0] = 3;
c_def.chunk_lengths[1] = c_def.comp.chunk_lengths[1] = 2;

c_def.comp.comp_type = COMP_CODE_DEFLATE; /* GZIP */
c_def.comp.cinfo.deflate.level = 6;

status = SDsetchunk(sdsid, c_def, HDF_CHUNK | HDF_COMP);

/* Set chunk cache to hold a maximum of 3 chunks */
status = SDsetchunkcache(sdsid, 3, 0);

/* Write the data chunks. */

/* Write chunk 1. */
start_dims[0] = 0;
start_dims[1] = 0;
status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk1_2u16);

/* Write chunk 4. */
start_dims[0] = 1;
start_dims[1] = 1;
status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk4_2u16);

/* Write chunk 2. */
start_dims[0] = 0;
start_dims[1] = 1;
status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk2_2u16);

/* Write chunk 5. */
start_dims[0] = 2;
start_dims[1] = 0;
status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk5_2u16);

/* Write chunk 3. */
start_dims[0] = 1;
start_dims[1] = 0;
status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk3_2u16);

/* Write chunk 6. */
start_dims[0] = 2;
start_dims[1] = 1;
status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk6_2u16);
3-68 May 14, 1997

of
 follow-

e. It
rbage
/* Read a subset of the data back in using SDreaddata
 i.e 5x2 subset of the whole array. */
start_dims[0] = 2;
start_dims[1] = 1;
edge_dims[0] = 5;
edge_dims[1] = 2;
status = SDreaddata(sdsid, start_dims, NULL, edge_dims, \

(VOIDP) inbuf_2u16);

/* This 5x2 array should look like this
 {{23, 24, 25, 26, 27},
 {33, 34, 35, 36, 37}} */

/* Get chunk lengths. */
status = SDgetchunkinfo(sdsid, &r_def, &c_flags);

/* Close the current SDS. */
status = SDendaccess(sdsid);

/* Close down the SDS interface. */
status = SDend(f1);

}

3.8.6 Ghost Areas

In cases where the size of the SDS array is not an even multiple of the chunk size, regions
excess array space beyond the defined dimensions of the SDS will be created. Refer to the
ing illustration.

FIGURE 3c Array Locations Created Beyond the Defined Dimensions of an SDS

These regions are called "ghost areas". "Ghost areas" can be accessed only by SDreadchunk and
SDwritechunk - they cannot be written to or accessed by either SDreaddata or SDwritedata. If
the fill value has been set, the values in these array locations will be initialized to the fill valu
is highly recommended that users set the fill value before writing to chunked SDSs so that ga
values won’t be read from these locations.

1600 ints

2000
ints

In a 1600 by 2000 integer chunked
SDS array with 500 by 500 integer
chunks, a 400 by 2000 integer area
of array locations beyond the
defined dimensions of the SDS
is created (shaded area). These
areas are called "ghost areas".
May 14, 1997 3-69

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

DF

, its

nsion

ion

ifying a

lso
ed that
aming
r will

ension
e should
Also, if SDreadchunk and SDwritechunk are used, it is not recommended that valid data be
written to the "ghost areas" as these areas won’t be accessible by SDreaddata and SDwritedata.
Moreover, the ability to write to these areas may not be supported in future versions of the H
library.

3.9 SD Dimension and Dimension Scale Operations

A description of dimensions is in Section 3.2.1.4 on page 20.

3.9.1 Selecting a Dimension: SDgetdimid
SDS dimensions are uniquely identified by dimension ids, which are assigned when a dimension
is created. These dimension ids are used to refer within a program to a particular dimension
scale and its attributes. Before working with a dimension, a program must first obtain a dime
id by calling the SDgetdimid routine:

C: dim_id = SDgetdimid(sds_id, dim_index);

FORTRAN: dim_id = sfdimid(sds_id, dim_index)

SDgetdimid has two arguments; sds_id and dim_index , and returns a dimension identifier,
dim_id . The argument dim_index is a zero-based integer indicating the location of the dimens
in the data set.

The number of dimensions in a data set is specified at the time the data set is created. Spec
dimension index larger than the number of dimensions in the data set returns an error.

Unlike file and data set identifiers, dimension identifiers do not require explicit disposal.

3.9.2 Naming a Dimension: SDsetdimname
SDsetdimname assigns a name to the selected dimension. The name of the dimension will a
appear as the name of the dimension scale. If the dimension name is not unique, it is assum
both dimensions refer to the same object and changes to one will be reflected in the other. N
dimensions is optional but encouraged. Dimensions that are not explicitly named by the use
have names generated by the HDF library. Use SDdiminfo to read existing dimension names.

The following steps are required to name a dimension and its scale:

1. Get the identifier of the dimension.

2. Assign a name to the dimension - the dimension scale will be set automatically.

The following routine calls are required to do this:

C: dim_id = SDgetdimid(dim_id, dim_index);
status = SDsetdimname(dim_id, dim_name);

FORTRAN: dim_id = sfdimid(dim_id, dim_index)
status = sfsdimname(dim_id, dim_name)

The argument dim_id in SDsetdimname is the dimension identifier returned by SDgetdimid and
dim_name is the name for the selected dimension. An attempt to rename a dimension using SDset-
dimname will cause the old name to be deleted and a new one to be assigned.

What should be remembered when naming dimensions is that the name or a particular dim
must be set before attributes are assigned - and, once the attributes have been set, the nam
3-70 May 14, 1997

ingle
 the
 the
e
 double
s was

ta has

r
te on
 tran-
the

ep-
not be changed. In other words, SDsetdimname should only be called before any calls to SDset-
dimscale (described in Section 3.9.4.1 on page 72), SDsetattr (described in Section 3.10.1 on
page 80) or SDsetdimstrs (described in Section 3.11.2.1 on page 87).

TABLE 3R SDsetdimname Parameter List

3.9.3 Old and New Dimension Implementations

Up to and including HDF version 4.0 beta1, dimensions were vgroup objects containing a s
field vdata with a class name of "DimVal0.0". The vdata had the same number of records as
size of the dimension, which consisted of the values 0, 1, 2, . . . n - 1, where n is the size of
dimension. These values weren’t strictly necessary and for applications that create large on
dimensional array datasets the disk space taken by these unnecessary values would nearly
the size of the HDF file. In order to avoid these situations, a new representation of dimension
implemented for HDF version 4.0 beta 2 and later versions.

Dimensions are still vgroups in the new representation: the only differences are that the vda
only one record with a value of <dimension size> and the class name of the vdata has been
changed to "DimVal0.1" to distinguish it from the old version.

Until HDF version 4.1, the old and new dimension representation will be written by default fo
each dimension created, and both representations will be recognized by routines that opera
dimensions. HDF version 4.1 routines will only recognize the new representation. During the
sitional period, two routines will be provided to allow HDF programs to distinguish between
two dimension representations, or compatibility modes: - SDsetdimval_comp and
SDsetdimval_bwcomp.

3.9.3.1 Setting the Future Compatibility Mode of a Dimension: SDsetdimval_comp

SDsetdimval_comp determines whether the specified dimension will have the old and new repre-
sentations or the new representation only, by setting the compatibility mode for the specified
dimension. The routine’s syntax is the following:

C: status = SDsetdimval_comp(dim_id, comp_mode);

FORTRAN: status = sfsdmvc(dim_id, comp_mode)

The comp_mode parameter determines the compatibility mode. It can be set to either
SD_DIMVAL_BW_COMP, which specifies compatible mode and that the old and new dimension r
resentations will be written to file , or SD_DIMVAL_BW_INCOMP, which specifies incompatible
mode and that only the new dimension representation will be written to file.

Unlimited dimensions are always backward compatible. Therefore, SDsetdimval_comp takes no
action on these dimensions.

SDsetdimval_comp returns either SUCCEED on successful completion, or FAIL otherwise.

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

SDsetdimname
(sfsdimname)

dim_id int32 integer Dimension identifier.

dim_name char * character* (*) Dimension name.
May 14, 1997 3-71

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 data
a one-
xam-

ne-

 and

ion

th a
TABLE 3S SDsetdimval_comp Parameter List

3.9.3.2 Setting the Current Compatibility Mode of a Dimension: SDisdimval_bwcomp

SDisdimval_bwcomp determines whether the specified dimension has the old and new represen-
tations or the new representation only. The function’s syntax is the following:

C: comp_mode = SDisdimval_bwcomp(dim_id);

FORTRAN: comp_mode = sfisdmvc(dim_id)

SDisdimval_bwcomp returns one of three values: either SD_DIMVAL_BW_COMP,
SD_DIMVAL_BW_INCOMP or ERROR. SD_DIMVAL_BW_COMP and SD_DIMVAL_BW_INCOMP are inter-
preted as they are by SDisdimval_comp.

TABLE 3T SDisdimval_bwcomp Parameter List

3.9.4 Dimension Scales
A dimension scale is a series of numbers placed along a dimension to demarcate intervals in a
set. One scale is assigned per dimension. In the SDS data model, each dimension scale is
dimensional array with size and name equal to its assigned dimension name and size. For e
ple, if a dimension of length 6 named "depth" is assigned a dimension scale, its scale is a o
dimensional array of length 6 and is also assigned the name "depth".

Although dimension scales are conceptually different from SDS arrays, they are both arrays
are often treated in the same way by the SDS API. For example, when the SDfileinfo routine
returns the number of data sets in a file, it includes dimension scales in that number. The SDisco-
ordvar routine (described in Section 3.9.5 on page 76) distinguishes data sets from dimens
scales.

3.9.4.1 Writing Dimension Scales: SDsetdimscale

Selecting a dimension with SDgetdimid assigns a default dimension scale. Default dimension
scales have the data type of the corresponding SDS array. To assign a non-default scale wi
non-default data type, use SDsetdimscale.

To create a non-default scale, the following steps are required:

1. Get the identifier of the dimension.

2. Create the dimension scale, setting the data type and size to the desired values.

To do this, the calling program must execute the following calls:

C: dim_id = SDgetdimid(sds_id, dim_index);
status = SDsetdimscale(dim_id, count, data_type, data);

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

SDsetdimval_comp
(sfsdmvc)

dim_id int32 integer Dimension identifier.

comp_mode intn integer Compatibility mode.

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

SDisdimval_bwcomp
(sfisdmvc)

dim_id int32 integer Dimension identifier.
3-72 May 14, 1997

s

cteris-
of its
te

umber

f the

t

FORTRAN: dim_id = sfdimid(sds_id, dim_index)
status = sfsdscale(dim_id, count, data_type, data)

The argument count is the size of the scale, data_type defines the data type for the scale value
and data is an array containing the scale values. Assigning a value to count is optional: it exists
to insure backward compatibility.

3.9.4.2 Obtaining Dimension Scale and Other Dimension Information: SDdiminfo

Before working with an existing dimension scale, it is often necessary to determine its chara
tics. For instance, to allocate the proper amount of memory for a scale requires knowledge
size and data type. SDdiminfo provides this basic information, as well as the name and attribu
count for a specified dimension.

To obtain dimension information the following steps are required:

1. Get the identifier of the dimension.

2. Retrieve the dimension information.

The calling program must call the following routines in order:

C: dim_id = SDgetdimid(sds_id, dim_index);
status = SDdiminfo(dim_id, name, count, data_type, nattrs);

FORTRAN: dim_id = sfdimid(sds_id, dim_index)
status = sfgdinfo(dim_id, name, count, data_type, nattrs)

In SDdiminfo the arguments name, count , data_type and nattrs define buffers allocated to
respectively hold the dimension name and size, the data type for the scale values and the n
of attributes assigned to the dimension.

Dimensions are always named. However, if you don’t wish to explicitly provide a name, NULL can
be passed as the name parameter to SDdiminfo and a default name will be assigned by the SD
API. If scale information is available for the dimension, data_type will contain the data type of
the scale values, otherwise data_type will be 0.

3.9.4.3 Reading Dimension Scales: SDgetdimscale

To read a scale, the following steps are required:

1. Get the identifier of the dimension.

2. Read the scale.

The calling program must contain the following sequence of calls:

C: dim_id = SDgetdimid(sds_id, dim_index);
status = SDgetdimscale(dim_id, data);

FORTRAN: dim_id = sfdimid(sds_id, dim_index)
status = sfgdscale(dim_id, data)

In SDgetdimscale the argument data is the buffer allocated to hold the scale values. As SDget-
dimscale returns all of the values associated with a given scale, it is assumed that the size o
scale buffer is greater than or equal to the dimension size.

TABLE 3U SDgetdimid, SDsetdimname, SDsetdimscale, SDdiminfo and SDgetdimscale Parameter Lis

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77
May 14, 1997 3-73

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

in these
EXAMPLE 17. Writing Dimension Information

The dimensions of the SDS created in Example 4 are created and scales assigned to them
examples.

C: #include "hdf.h"

#include "mfhdf.h"

main()
{

int32 sd_id, sds_id, dim_index, dim_id, sds_index, status;
int32 count, num_type, num_attrs;
int16 dim_scale[] = {6,5,4,3,2,1};
char dim_name[MAX_NC_NAME];

/* Open the file. */
sd_id = SDstart("Example4.hdf", DFACC_RDWR);

/* Get the index of the "Ex_array_4" array data set. */
sds_index = SDnametoindex(sd_id, "Ex_array_4");

/* Select the data set corresponding to the returned index. */
sds_id = SDselect(sd_id, sds_index);

/* For each dimension of the "Ex_array_4" array data set, */
for (dim_index = 0; dim_index < 3; dim_index++) {

/* - select the dimension id, */
dim_id = SDgetdimid(sds_id, dim_index);

/* - get the information about the selected dimension, */
status = SDdiminfo(dim_id, dim_name, &count, &num_type, \

&num_attrs);
num_type = DFNT_INT16;

/* - alter the dimension names, */
switch(dim_index) {

case 0: SDsetdimname(dim_id, "Z_Axis");
break;

case 1: SDsetdimname(dim_id, "Y_Axis");
 break;

SDgetdimid
(sfdimid)

sds_id int32 integer Data set identifier.

dim_index intn integer Index of the dimension.

SDsetdimname
(sfsdmname)

dim_id int32 integer Dimension identifier.

dim_name char * character* (*) Dimension name.

SDsetdimscale
(sfsdscale)

dim_id int32 integer Dimension identifier.

count int32 * integer Number of scale values.

data_type int32 * integer Data type of the scale values.

data VOIDP <valid numeric data type> Buffer for the scale values.

SDdiminfo
(sfgdinfo)

dim_id int32 integer Dimension identifier.

name char * character* (*) Buffer for the dimension name.

count int32 * integer Buffer for the dimension size.

number_type int32 * integer Buffer for the scale data type.

nattrs int32 * integer Buffer for the attribute count.

SDgetdimscale
(sfgdscale)

dim_id int32 integer Dimension identifier.

data VOIDP <valid numeric data type> Buffer for the scale values.
3-74 May 14, 1997

case 2: SDsetdimname(dim_id, "X_Axis");
break;

default: break;
}

/* - then alter the dimension scale and write it to the data set. */
dim_scale[0] = 3;
dim_scale[1] = 2;
dim_scale[2] = 1;
status = SDsetdimscale(dim_id, count, num_type, (VOIDP)dim_scale);

}

/* Terminate access to the array */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file */
status = SDend(sd_id);

}

FORTRAN: PROGRAM ALTER DIMENSION

integer*4 sd_id, sds_id, dim_index, dim_id, status
integer*4 count, num_attrs
integer sfstart, sfn2index, sfdimid, sfgdinfo
integer sfsdscale, sfsdmname, sfendacc
integer sfend, sfselect, num_type, i, dim_scale(6)

integer DFACC_RDWR, MAX_NC_NAME, DFNT_INT16
parameter (DFACC_RDWR = 3, MAX_NC_NAME = 256, DFNT_INT16 = 22)

character dim_name(MAX_NC_NAME)

C For each dimension of the 'Ex_array_4' array data set,

do 5 i = 1, 6

dim_scale(i) = i

5 continue

C Open the file.
sd_id = sfstart('Example4.hdf', DFACC_RDWR)

C Get the index of the 'Ex_array_4' array data set.
sds_index = sfn2index(sd_id, 'Ex_array_4')

C Select the data set corresponding to the returned index.
sds_id = sfselect(sd_id, sds_index)

C For each dimension of the 'Ex_array_4' array data set,
do 10 dim_index = 1, 3

C - select the dimension id,
dim_id = sfdimid(sds_id, dim_index-1)

C - get the information about the selected dimension,
status = sfgdinfo(dim_id, dim_name, count, num_type, num_attrs)

C - alter the dimension names.
if (dim_index .eq. 1) then
status = sfsdmname(dim_id, 'Z_Axis')
end if

if (dim_index .eq. 2) then
May 14, 1997 3-75

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

,

SDS
t

array.

ray
status = sfsdmname(dim_id, 'Y_Axis')
end if

if (dim_index .eq. 3) then
status = sfsdmname(dim_id, 'X_Axis')
end if

num_type = DFNT_INT16

C - and, alter the dimension scale, write it to the data set,
dim_scale(1) = 3
dim_scale(2) = 2
dim_scale(3) = 1
dim_scale(4) = 0
dim_scale(5) = -1
dim_scale(6) = -2
status = sfsdscale(dim_id, count, num_type, dim_scale)

10 continue

C Terminate access to the array.
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

3.9.5 Distinguishing SDS Arrays from Dimension Scales: SDiscoordvar
Although dimension scales, or coordinate variables in netCDF, can for the most part be ignored
it is important to note that, in HDF, they are also SDSs and are assigned the same tag (DFTAG_SD)
as other SDSs. As a result, dimension scales are treated as SDSs, and are included in the
count returned by SDfileinfo. The function SDiscoordvar is available to determine whether or no
a given SDS is a dimension scale.

SDiscoordvar takes an SDS id as its only argument and returns TRUE if the data set is a dimension
scale, and FALSE if it isn’t. If SDiscoordvar returns TRUE, a subsequent call to SDgetinfo will fill
the specified locations with information about the dimension scale, rather than the data set

TABLE 3V SDiscoordvar Parameter List

EXAMPLE 18. Retrieving SDS Information from an HDF File

SDgetinfo and SDiscoordvar provide information that may be needed in order to read in an ar
successfully, as the following examples show.

C: #include "hdf.h"

#include "mfhdf.h"

#define X_LENGTH 5
#define Y_LENGTH 16

main()

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

SDiscoordvar
(sfiscvar)

sds_id int32 integer Data set identifier.
3-76 May 14, 1997

{

int32 sd_id, sds_id, status;
int32 rank, nt, dims[MAX_VAR_DIMS], nattrs;
int32 start[2], edges[2];
int16 array_data[Y_LENGTH][X_LENGTH];
char name[MAX_NC_NAME];

/* Open the file and initiate the SD interface. */
sd_id = SDstart("Example3.hdf", DFACC_RDONLY);

/* Select the first (and in this case, only) data set in the file. */
sds_id = SDselect(sd_id, 0);

/* Confirm that the data set is not a coordinate variable. */
if (FALSE == SDiscoordvar(sds_id)) {

/* Verify the characteristics of the array. */
status = SDgetinfo(sds_id, name, &rank, dims, &nt, &nattrs);

/* Define the location, pattern, and size of the data to read from \
the data set. */
start[0] = start[1] = 0;
edges[0] = dims[0];
edges[1] = dims[1];

/* Read the array data set created in Example 3. */
status = SDreaddata(sds_id, start, NULL, edges, (VOIDP)array_data);

/* Terminate access to the array data set. */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file. */
status = SDend(sd_id);

}

FORTRAN: PROGRAM CONFIRM FILE

integer*4 sd_id, sds_id, rank, nt, nattrs, status
integer start(2), edge(2), stride(2)
integer datavar
integer sfstart, sfselect, sfiscvar, sfginfo
integer sfrdata, sfendacc, sfend

C DFACC_RDONLY is defined in hdf.h. MAX_NC_NAME and MAX_VAR_DIMS
C are defined in netcdf.h.

integer*4 DFACC_RDONLY, MAX_NC_NAME, MAX_VAR_DIMS
integer*4 X_LENGTH, Y_LENGTH
parameter (DFACC_RDONLY = 1, MAX_NC_NAME = 256,

+ MAX_VAR_DIMS = 32, X_LENGTH = 4, Y_LENGTH = 15)
integer*2 array_data(X_LENGTH, Y_LENGTH)

character name(MAX_NC_NAME)
integer dims(MAX_VAR_DIMS)

C Open the file and initiate the SD interface.
sd_id = sfstart('Example3.hdf', DFACC_RDONLY)

C Select the first (and in this case, only) data set in the file.
sds_id = sfselect(sd_id, 0)

C Confirm that the data set is not a coordinate variable.
datavar = sfiscvar(sds_id)
May 14, 1997 3-77

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

idered
mes in

elation-
are

d size.
ng a
 each
ns in
figure.
and
 con-

e
ta sets

 assign
l
if (datavar .eq. 0) then

C Verify the characteristics of the array.
status = sfginfo(sds_id, name, rank, dims, nt, nattrs)

C Define the location, pattern, and size of the data to read
C from the data set.

start(1) = 0
start(2) = 0
stride(1) = 1
stride(2) = 1
edge(1) = dims(1)
edge(2) = dims(2)

C Read the array data set.
status = sfrdata(sds_id, start, stride, edge, array_data)

endif

C Terminate access to the array data set.
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

3.9.6 Dimension Scales for Multiple Data Sets
SD scientific data sets with one or more dimensions with the same name and size are cons
to be related. Examples of related data sets are cross-sections from the same simulation, fra
an animation or images collected from the same apparatus. HDF attempts to preserve this r
ship by unifying their dimension scales and attributes. To understand how related data sets
handled, it is necessary to understand how dimension records are created.

In the SD interface, dimension records are only created for dimensions of a unique name an
To illustrate this, consider a case where there are three scientific data sets, each representi
unique variable, in an HDF file. (See Figure 3d.) The first two data sets have two dimensions
assigned to it and the third data set has three dimensions. There are a total of five dimensio
the file and the name mapping between the data sets and the dimensions are shown in the
Note that if, for example, the creation of a second dimension named "Altitude" is attempted
the size of the dimension is different from the existing dimension named "Altitude", an error
dition will be generated.

As expected, assigning a dimension attribute to dimension 1 of either data set will create th
required dimension scale and assign the appropriate attribute. However, because related da
share dimension records, they also share dimension attributes. Therefore, it is impossible to
an attribute to a dimension without assigning the same attribute to all dimensions of identica
name and size, either within one data set or related data sets.
3-78 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

for-

d

the
ets and

tion

pe is

s

ry new

trieve

 arrays
tribute
 of

r
if
ed a
ed
FIGURE 3d Dimension Records and Attributes Shared Between Related Data Sets

3.10 User-defined Attributes

User-defined attributes are attributes defined by the calling program that contains auxiliary in
mation about a file, SDS array or dimension. This auxiliary information is sometimes called meta-
data, because it is data about data. There are two ways to store metadata, as a user-define
attribute or predefined attribute.

They take the form label=value , where label is a character string containing MAX_NC_NAME or
fewer characters and value contains one or more entries of the same data type as defined at
time the attribute is created. Attributes can be attached to three types of objects: files, data s
dimensions. These are referred to, respectively, as file attributes , array attributes and dimension
attributes:

• File attributes are attributes that describe an entire file. They generally contain informa
pertinent to all data objects in the file and are sometimes referred to as global attributes.

• Data set attributes are attributes that describe individual SDS arrays. Because their sco
limited to an individual SDS, data set attributes are sometimes referred to as local attributes.

• Dimension attributes provide information applicable to an individual SDS dimension. It i
possible to assign a unit to one dimension in a data set without assigning a unit to the
remaining dimensions.

For each object, a separate attribute count is maintained that identifies the number of attributes
associated with the object. The attribute count begins at zero and is increased by one for eve
attribute assigned to an object. Each attribute associated with an object has a unique attribute
index, a value between 1 and the total number of attributes. The attribute index is used to re
an attribute’s value or information about an attribute.

The data types permitted for attributes are the same as those allowed for SDS arrays. SDS
with general attributes of the same name can have different data types. For example, the at
valid_range specifying the valid range of data value for an array of 16-bit integers might be
type 16-bit integer, whereas the attribute valid_range for a variable of 32-bit floats could be of
type 32-bit floating-point integer.

Attribute names follow the same rules as dimension names. Providing meaningful names fo
attributes is important, however using standardized conventional names may be necessary
generic applications and utility programs are to be used. For example, every variable assign
unit should have an attribute name of "units" defined. Furthermore, if an HDF file is to be us

Data Set A

Latitude Longitude

Altitude

Data Set B Data Set C

Latitude LongitudeLongitudeTime

Latitude Longitude Time Altitude

Dimension Names
3-79 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

are.

assign-
f iden-
S

g an
s the

te

lue
,

at,

with software that recognizes "units" attributes, the values of the "units" attributes should be
expressed in a conventional form as a character string that can be interpreted by that softw

The SD interface uses the same functions to access all attributes regardless of their object
ments. The difference between accessing a file, array or dimension attribute lies in the use o
tifiers. File ids, SDS ids and dimension ids are used to respectively access file attributes, SD
attributes and dimension attributes.

3.10.1 Writing User-defined Attributes: SDsetattr
Attributes are not actually written out to a file until access to the object is terminated. Creatin
attribute increases the attribute count by one for the given object. Writing an attribute involve
following steps:

1. Obtain the appropriate identifiers:

2. Create the attribute.

3. Terminate access by disposing of any existing identifiers:

To assign an attribute to a file, the calling program must contain a call to SDsetattr:

C: status = SDsetattr(sd_id, attr_name, data_type, count, value);

FORTRAN: status = sfsnatt(sd_id, attr_name, data_type, count, value)

In SDsetattr the argument sd_id is the identifier for the HDF object to be assigned the attribu
and it can be a file id, SDS id or dimension id. The argument attr_name is an ASCII string con-
taining the name of the attribute. It represents the label in the label=value equation and can be
no more than MAX_NC_NAME characters. If this is set to the name of an existing attribute the va
portion of the attribute will be overwritten. Do not use SDsetattr to assign a name to a dimension
use SDsetdimname instead.

The arguments, data_type , count and value describe the right side of the label=value equa-
tion. The value argument contain one or more values of the same data type. The data_type argu-
ment describes the data type for the attribute values and count defines the total number of values
in the attribute.

There are two Fortran-77 versions of this routine: sfsnatt and sfscatt. The sfsnatt routine writes
numeric attribute data and sfscatt writes character attribute data.

The parameters of SDsetattr are further described below. (See Table 3W on page 82.) Note th
because there are two Fortran-77 versions of SDsetattr, there are correspondingly two entries in
the “Data Type” field of the values parameter.

EXAMPLE 19. Setting Attribute Values

The following examples call SDsetattr with an SDS id as the first parameter, which assigns an
SDS attribute to the selected data set. If a file id were passed instead, SDsetattr would assign a file
attribute to the entire file.

C: #include "hdf.h"

#include "mfhdf.h"

main()
{

int32 sd_id, sds_id, dim_id, dim_index, status;
3-80 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications
int32 num_values[2];

/* Open the file and get the identifier for the file. */
sd_id = SDstart("Example4.hdf", DFACC_RDWR);

/* Set an attribute that describes the file contents. */
status = SDsetattr(sd_id, "file_contents", DFNT_CHAR8, 16, \

(VOIDP)"storm_track_data");

/* Get the identifier for the first data set. */
sds_id = SDselect(sd_id, 0);

/* Set an attribute the specifies a valid range of values. */
num_values[0] = 2;
num_values[1] = 10;
status = SDsetattr(sds_id, "valid_range", DFNT_INT32, 2, \

(VOIDP)num_values);

/* Get the identifier for the first dimension. */
dim_id = SDgetdimid(sds_id, 0);

/* Set an attribute that specifies the dimension metric. */
status = SDsetattr(dim_id, "dim_metric", DFNT_CHAR8, 9,

(VOIDP)"millibars");

/* Terminate access to the array */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file */
status = SDend(sd_id);

}

FORTRAN: PROGRAM SET ATTRIBS

integer*4 sd_id, sds_id, dim_id, status
integer num_values(2)
integer sfstart, sfsnatt, sfselect, sfdimid
integer sfendacc, sfend

integer DFACC_RDWR, DFNT_CHAR8, DFNT_INT32
parameter (DFACC_RDWR = 3, DFNT_CHAR8 = 4, DFNT_INT32 = 24)

C Open the file and get the identifier for the file.
sd_id = sfstart('Example4.hdf', DFACC_RDWR)

C Set an attribute that describes the file contents.
status = sfsnatt(sd_id, 'file_contents', DFNT_CHAR8, 16,

+ 'storm_track_data')

C Get the identifier for the first data set.
sds_id = sfselect(sd_id, 0)

C Set an attribute the specifies a valid range of values.
num_values(1) = 2
num_values(2) = 10
status = sfsnatt(sds_id, 'valid_range', DFNT_INT32, 2, num_values)

C Get the identifier for the first dimension.
dim_id = sfdimid(sds_id, 0)

C Set an attribute that specifies the dimension metric.
status = sfsnatt(dim_id, 'dim_metric', DFNT_CHAR8, 9, 'millibars')

C Terminate access to the array
3-81 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

nfor-
te
ists.

the

 two
ld
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file
status = sfend(sd_id)

end

3.10.2 Querying User-defined Attributes: SDfindattr and SDattrinfo

Given a file, array or dimension id and an attribute name, SDfindattr will return a valid attribute
index if the corresponding attribute exists. The attribute index can then be used to retrieve i
mation about an attribute or its values. Given a file, array or dimension id and a valid attribu
index SDattrinfo returns the name, data type and count for the corresponding attribute if it ex

The syntax for SDfindattr and SDattrinfo is as follows:

C: attr_index = SDfindattr(id, attr_name);
status = SDattrinfo(id, attr_index, attr_name, num_type,

count);

FORTRAN: attr_index = sffattr(id, attr_name)
status = sfgainfo(id, attr_index, attr, name, number_type,

count)

The parameters of SDfindattr and SDattrinfo are further described below. (See Table 3W.)

An attribute’s index may also be determined by keeping track of the number and order of
attributes as they are written or dumping the contents of a file using a dumping utility.

3.10.3 Reading User-defined Attributes: SDreadattr
SDreadattr reads the value or values of an attribute. The syntax for SDreadattr is as follows:

C: status = SDreadattr(sds_id, attr_index, data);

FORTRAN: status = sfrattr(sd_id, attr_index, data)

SDreadattr takes a file, array, or dimension identifier and an attribute index specified in the
attr_index parameter as input parameters and returns the attribute values in the buffer data .
SDreadaddr will also read attributes and annotations created by the DFSD interface.

It’s assumed that the buffer data , allocated to hold the attribute values, is large enough to hold
data. The size of the buffer must be at least count*DFKNTsize(number_type) bytes long. It is
not possible to read a subset of values.

There are two Fortran-77 versions of this routine: sfrnatt and sfrcatt. The sfrnatt routine reads
numeric attribute data and sfrcatt reads character attribute dataset.

The parameters of SDreadattr are further described in Table 3W. Note that, because there are
Fortran-77 versions of SDreadattr, there are correspondingly two entries in the “Data Type” fie
of the data parameter.

TABLE 3W SDsetattr, SDfindattr, SDattrinfo and SDreadattr Parameter List

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77
3-82 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 the
EXAMPLE 20. Retrieving Attribute Information

The attribute information stored in the "Example4.hdf" HDF file in Example 15 are read from
file in these examples.

C: #include "hdf.h"

#include "mfhdf.h"

main()
{

int32 sd_id, sds_id, status, *buffer1;
int32 attr_index, data_type, count;
char attr_name[MAX_NC_NAME];
int8 *buffer;

/* Open the file. */
sd_id = SDstart("Example4.hdf", DFACC_RDONLY);

/* Find the file attribute named "file_contents". */
attr_index = SDfindattr(sd_id, "file_contents");

/* Get information about the file attribute. */
status = SDattrinfo(sd_id, attr_index, attr_name, &data_type, &count);

/* Allocate a buffer to hold the attribute data. */
buffer = (int8 *)malloc(count * DFKNTsize(data_type));

/* Read the attribute data. */
status = SDreadattr(sd_id, attr_index, buffer);

/* Get the identifier for the first data set. */

SDsetattr
(sfsnatt/
sfscatt)

file_id,
sds_id or
dim_id

int32 integer File, array or dimension identifier.

attr_name char * character* (*) Attribute name.

data_type int32 integer Data type of the attribute.

count int32 integer Number of values in the attribute.

values VOIDP <valid numeric data type> Buffer for the data to be written.

SDfindattr
(sffattr)

file_id,
sds_id or
dim_id

int32 integer File, array or dimension identifier.

attr_name char * character* (*) Attribute name.

SDattrinfo
(sfgainfo)

file_id,
sds_id or
dim_id

int32 integer File, array or dimension identifier.

attr_index int32 integer Index of the attribute to be read.

attr_name char * character* (*)
Buffer for the name of the dimension
attribute.

data_type int32 * integer
Buffer for the data type of the values in the
attribute.

count int32 * integer
Buffer for the total number of values in the
attribute.

SDreadattr
(sfrnatt/
sfrcatt)

file_id,
sds_id or
dim_id

int32 integer File, array or dimension identifier.

attr_index int32 integer Index for the attribute to be read.

data VOIDP <valid numeric data type> Buffer for the attribute values.
3-83 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications
sds_id = SDselect(sd_id, 0);

/* Find the data set attribute named "valid_range". */
attr_index = SDfindattr(sds_id, "valid_range");

/* Get information about the data set attribute. */
status = SDattrinfo(sds_id, attr_index, attr_name, &data_type, &count);

/* Allocate a buffer to hold the attribute data. */
buffer1 = (int32 *)malloc(count * DFKNTsize(data_type));

/* Read the attribute data. */
status = SDreadattr(sd_id, attr_index, buffer1);

/* Terminate access to the array */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file */
status = SDend(sd_id);

}

FORTRAN: PROGRAM ATTRIB INFO

integer*4 sd_id, sds_id, range_buffer(2)
integer attr_index, data_type, count, status
character attr_name *13
character char_buffer *20
integer sfstart, sffattr, sfgainfo, sfrattr, sfselect
integer sfendacc, sfend

C DFACC_RDWR is defined in hdf.h.
integer DFACC_RDWR
parameter (DFACC_RDWR = 3)

C Open the file.
sd_id = sfstart('Example4.hdf', DFACC_RDONLY)

C Find the file attribute named 'file_contents'.
attr_index = sffattr(sd_id, 'file_contents')

C Get information about the file attribute.
status = sfgainfo(sd_id, attr_index, attr_name, data_type, count)

C Read the attribute data.
status = sfrattr(sd_id, attr_index, char_buffer)

C Get the identifier for the first data set.
sds_id = sfselect(sd_id, 0)

C Find the data set attribute named 'valid_range'.
attr_index = sffattr(sds_id, 'valid_range')

C Get information about the data set attribute.
status = sfgainfo(sds_id, attr_index, attr_name, data_type, count)

C Read the attribute data.
status = sfrattr(sd_id, attr_index, range_buffer)

C Terminate access to the array
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file
status = sfend(sd_id)

end
3-84 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

ata

 such

evel-
ry

plica-

-
t. For
l

ing
nded

 may
a set.
d or
 as

rays.

 When
 8-bit
ffset

epend
. Pre-

.
X.)
3.11 Predefined Attributes

Predefined attributes are attributes that use reserved labels and in some cases Predefined d
types. Predefined attributes are categorized as follows:

• Labels can be thought of as independent variable names and dimension names and as
are used as primary search keys.

• Units are a means of declaring the units pertinent to a specific discipline. Unidata has d
oped a freely-available library of routines to convert between character string and bina
forms of unit specifications and to perform useful operations on the binary forms. This
library is used in some netCDF applications and is recommended for use with HDF ap
tions. For more information, refer to the netCDF User’s Guide.

• Formats describe the form numeric values will be printed and/or displayed. The recom
mended convention is to use standard Fortran-77 notation for describing the data forma
example, "F7.2" means to display seven digits with two digits to the right of the decima
point.

• Coordinate systems contain information that should be used when interpreting or display
the data. For example, the text strings "cartesian", "polar" and "spherical" are recomme
coordinate system descriptions.

• Ranges define the maximum and minimum values of a selected valid range. The range
cover the entire data set, values outside the data set or a subset of values within a dat
Because the HDF library does not check or update the range attribute as data is adde
removed from the file, the calling program may assign any values deemed appropriate
long as they are of the same data type as the SDS array.

• A fill value is the value used to fill the areas between non-contiguous writes to SDS ar
For more information about fill values, refer to Section 3.11.5 on page 89.

• Calibration stores scale and offset values used to create calibrated data in SDS arrays.
data are calibrated, they are typically reduced from floats, doubles or large integers into
or 16-bit integers and "packed" into an appropriately sized array. After the scale and o
values are applied, the packed array will return to its original form.

Predefined attributes are useful because they establish conventions that applications can d
on and because they are understood by the HDF library without users having to define them
defined attributes also insure backward compatibility with earlier versions of the HDF library
They can be assigned to two types of HDF objects: data sets and dimensions. (See Table 3

TABLE 3X Predefined Attribute List

Object Type Attribute Reserved Label Description

SDS Array
or

Dimension

Label long_name Name of the array.

Unit units Units used for all dimensions and data.

Format format Format for displaying dim scales and array values.

SDS Array Only

Coordinate System cordsys Coordinate system used to interpret the SDS array.

Range valid_range
Maximum and minimum values within a selected data

range.

Fill Value __FillValue Value used to fill empty locations in SDS array.

Calibration

scale_factor Value by which each array value is to be multiplied.

scale_factor_err Error introduced by scaling SDS array data.

add_offset Value to which each array value is to be added.

add_offset_err Error introduced by offsetting the SDS array data.

calibrated_nt Data type of the calibrated data.
3-85 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 are

 to
ple

n-
soci-

s are

d to

ribute

d uses
5 and

utines
s. This
the
 group.

rns all

hould

ute
 read
The following naming conventions taken from the netCDF User’s Guide are meant to promote
consistency of information-sharing among generic applications. These naming conventions
not specifically required by the HDF library, but are highly recommended.

• missing_value: An attribute containing a value use to fill areas of an array not intended
contain valid data or a fill value. The scope of this attribute is local to the array. An exam
of this would be a region where information is unavailable, as in a geographical grid co
taining ocean data. The part of the grid where there is land might not have any data as
ated with it and in such a case the missing_value value could be supplied. The
missing_value attribute is different from the _FillValue attribute in that fill values are
intended to indicate data that was expected but did not appear, whereas missing value
used to indicate data that were never expected.

• title : A global file attribute containing a description of the contents of a file.

• history: A global file attribute containing the name of a program and the arguments use
derive the file. Well-behaved generic filters (programs that take HDF or netCDF files as
input and produce HDF or netCDF files as output) would be expected to automatically
append their name and the parameters with which they were invoked to the history att
of an input file.

3.11.1 Accessing Predefined Attributes

The SD interface provides two methods for accessing predefined attributes. The first metho
the general attribute routines for user-defined attributes described in Section 3.11 on page 8
the second employs routines specifically designed for each attribute. Although the general
attribute routines work well and are recommended in most cases, the specialized attribute ro
are sometimes easier to use, especially when reading or writing related predefined attribute
is true for two reasons. First, because predefined attributes are guaranteed unique names,
attribute index is unnecessary. Second, attributes with several components may be read as a
For example, using the SD routine designed to read the predefined calibration attribute retu
five components with a single call, rather than five separate calls.

There is one exception: unlike predefined array attributes, predefined dimension attributes s
be read or written using the specialized attribute routines only.

The predefined attribute parameters are described in Table 3Y. Creating a predefined attrib
with parameters different from these will produce unpredictable results when the attribute is
using the corresponding predefined-attribute routine.

TABLE 3Y Predefined Attribute Parameter List

Category
attr_name

(Attribute type)

num_type

(Data type)

count

(Number of Values)

value

(Attribute value)

Label long_name DFNT_CHAR8 string length Pointer to string.

Unit units DFNT_CHAR8 string length Pointer to string.

Format format DFNT_CHAR8 string length Pointer to string.

Coordinate
System

cordsys DFNT_CHAR8 string length Pointer to string.

Range valid_range <valid type> 2 Pointer to array.

Fill Value _FillValue <valid type> 1 Pointer to fill value.
3-86 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

n

an

f an

cter

ns
In addition to SDreadattr, SDfindattr and SDattrinfo are also valid general attribute routines to
use when reading a predefined attribute. SDattrinfo is always useful for determining the size of a
attribute whose value contains a string.

3.11.2 SDS String Attributes
Predefined string attributes for an SDS array include the label, unit, format and coordinate system
of an SDS.

3.11.2.1 Writing String Attributes: SDsetdatastrs

The following function assigns label, unit, format and coordinate system string attributes to
SDS array:

C: status = SDsetdatastrs(sds_id, label, unit, format, coordsys);

FORTRAN: status = sfsdtstr(sds_id, label, unit, format, coordsys)

SDsetdatastrs assigns a predefined attribute to an SDS. The arguments for SDsetdatastrs are
described in Table 3Z. To avoid creating one or more attributes, pass NULL as the appropriate argu-
ment.

3.11.2.2 Reading String Attributes: SDgetdatastrs

The following function reads the label, unit, format and coordinate system string attributes o
SDS:

C: status = SDgetdatastrs(sds_id, label, unit, format, coordsys,
len);

FORTRAN: status = sfgdtstr(sds_id, label, unit, format, coordsys, len)

SDgetdatastrs reads the predefined attributes of an SDS array. The arguments label , unit ,
format and coordsys are string buffers. If a particular attribute does not exist, the first chara
of the returned string will be NULL. Each string buffer is assumed to be at least len characters
long, including the space to hold the NULL termination character. To avoid reading a particular
attribute, pass NULL in the corresponding argument.

Keep in mind that the value returned by label is the value of the attribute named "long_name"
and that the value returned by coordsys is the value of the attribute named "cordsys". The reaso
for this are explained in User’s Guide Appendix F.

The parameters of SDgetdatastrs are described in Table 3Z.

TABLE 3Z SDsetdatastrs and SDgetdatastrs Parameter List

Calibration

scale_factor DFNT_FLOAT64 1 Pointer to scale.

scale_factor_err DFNT_FLOAT64 1 Pointer to scale error.

add_offset DFNT_FLOAT64 1 Pointer to offset.

add_offset_err DFNT_FLOAT64 1 Pointer to offset error.

calibrated_nt DFNT_INT32 1 Pointer to data type.

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77
3-87 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

t
t char-

te,
3.11.3 Dimension String Attributes
Dimension string attributes include a label, unit and format string which describe a dimension.
They adhere to the same definitions as those of the label, unit and format strings for SDS
attributes.

3.11.3.1 Writing a Dimension String Attribute: SDsetdimstrs

C: status = SDsetdimstrs(dim_id, label, unit, format);

FORTRAN: status = sfsdmstr(dim_id, label, unit, format)

SDsetdimstrs assigns label, unit and format attributes to an SDS dimension. The dim_id argu-
ment is the dimension identifier returned by the call to SDgetdimid. It identifies the dimension to
which the attribute will be assigned. The remaining arguments are described below. (See
Table 3AA on page 88.)

3.11.3.2 Reading a Dimension String Attribute: SDgetdimstrs

C: status = SDgetdimstrs(dim_id, label, unit, format, len);

FORTRAN: status = sfgdmstr(dim_id, label, unit, format, len)

SDgetdimstrs reads the attributes specified by the label , unit and format parameters to an SDS
dimension. The arguments label , unit , and format are buffers to hold the label, unit and forma
strings as defined in their respective attributes. If a particular attribute does not exist, the firs
acter of the returned string will be NULL. Each buffer is assumed to be at least len characters long
including the space to hold the NULL termination character. To avoid reading a particular attribu
pass NULL as the appropriate argument.

The parameters of SDgetdimstrs are described in Table 3AA.

TABLE 3AA SDsetdimstrs and SDgetdimstrs Parameter List

SDsetdatastrs
(sfsdtstr)

sds_id int32 integer Data set identifier.

label char * character* (*) Label for the data.

unit char * character* (*) Definition of the units.

format char * character* (*) Description of the data format.

coordsys char * character* (*) Description of the coordinate system.

SDgetdatastrs
(sfgdtstr)

sds_id int32 integer Data set identifier.

label char * character* (*) Buffer for the label.

unit char * character* (*) Buffer for the description of the units.

format char * character* (*) Buffer for the description of the data format.

coordsys char * character* (*) Buffer for the description of the coordinate system.

len integer intn Maximum length of the attributes.

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

SDsetdimstrs
(sfsdmstr)

dim_id int32 integer Dimension identifier.

label char * character* (*) Label describing the specified dimension.

unit char * character* (*) Units to be used with the specified dimension.

format char * character* (*) Format to use when displaying the scale values.
3-88 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

. As
om the
ximum
e same

a

he

. If a
l
3.11.4 Range Attributes
The attribute range contains user-defined maximum and minimum values in a selected range
the HDF library does not check or update the range attribute as data is added or removed fr
file, the calling program may assign any values deemed appropriate. Also, because the ma
and minimum values are supposed to relate to the data set, it is assumed that they are of th
data type as the data.

3.11.4.1 Writing a Range Attribute: SDsetrange

SDsetrange assigns the range attribute to an SDS:

C: status = SDsetrange(sds_id, max, min);

FORTRAN: status = sfsrange(sds_id, max, min)

The parameters of SDsetrange are described below. (See Table 3AB on page 89.)

3.11.4.2 Reading a Range Attribute: SDgetrange

SDgetrange reads the maximum and minimum valid values of an SDS array as specified by
SDsetrange call or its equivalent:

C: status = SDgetrange(sds_id, max, min);

FORTRAN: status = sfgrange(sds_id, max, min)

The arguments max and min are buffers the maximum and minimum values will be read into. T
arguments in the C version of SDgetrange are pointers rather than simple variables, whereas in
the Fortran-77 version they are variables of the same data type as the data set. The parameters of
SDgetrange are described in the following table.

TABLE 3AB SDsetrange and SDgetrange Parameter List

3.11.5 Fill Values
A fill value is the value used to fill the spaces between non-contiguous writes to SDS arrays
fill value is set before writing data to an SDS, the entire array is initialized to the specified fil

SDgetdimstrs
(sfgdmstr)

dim_id int32 integer Dimension identifier.

label char * character* (*) Buffer for the dimension label.

unit char * character* (*) Buffer for the dimension unit.

format char * character* (*) Buffer for the dimension format.

len intn integer Maximum length of the string attributes.

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

SDsetrange
(sfsrange)

sds_id int32 integer Data set identifier.

max VOIDP <valid numeric data type> Maximum value of the range.

min VOIDP <valid numeric data type> Minimum value of the range.

SDgetrange
(sfgrange)

sds_id int32 integer Data set identifier.

max VOIDP <valid numeric data type> Buffer for the maximum value.

min VOIDP <valid numeric data type> Buffer for the minimum value.
3-89 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

ion
finity

re

,

 are

se,
rite

never
 add

a, pre-
tan-
value. By default, any location not subsequently overwritten by SDS data will contain the fill
value.

A fill value must be of the same data type as the array to which it’s written. To avoid convers
errors, use data-specific fill values instead of special architecture-specific values, such as in
and Not-a-Number or NaN.

Fill values can also be defined for all SDSs within a file. This is determined by setting a fill mode,
which can be done by calling the SDsetfillmode routine described below.

3.11.5.1 Writing a Fill Value Attribute: SDsetfillvalue

SDsetfillvalue assigns a new value to the fill value attribute for an SDS array:

C: status = SDsetfillvalue(sds_id, fill_val);

FORTRAN: status = sfsfill(sds_id, fill_val)

The argument fill_val is the new fill value. It is recommended that you set the fill value befo
writing data to an SDS array, as calling SDsetfillvalue after data is written to an SDS array only
changes the fill value attribute - it does not update the existing fill values.

There are two Fortran-77 versions of this routine: sfsfill and sfscfill. The sfsfill routine writes
numeric fill value data and sfscfill writes character fill value data.

The parameters of SDsetfillvalue are described below. (See Table 3AC on page 91.) Note that
because there are two Fortran-77 versions of SDsetfillvalue, there are correspondingly two entries
in the “Data Type” field of the fill_val parameter.

3.11.5.2 Reading a Fill Value Attribute: SDgetfillvalue

SDgetfillvalue reads in the fill value of an SDS array as specified by a SDsetfillvalue call or its
equivalent:

C: status = SDgetfillvalue(sds_id, fill_val);

FORTRAN: status = sfgfill(sds_id, fill_val)

The argument fill_val is the space allocated to store the fill value.

There are two Fortran-77 versions of this routine: sfgfill and sfgcfill. The sfgfill routine reads
numeric fill value data and sfgcfill reads character fill value data.

The parameters of SDgetfillvalue are described in the following table. Note that, because there
two Fortran-77 versions of SDgetfillvalue, there are correspondingly two entries in the “Data
Type” field of the fill_val parameter.

3.11.5.3 Setting the Fill Mode for all SDSs in the Specified File: SDsetfillmode

Writing fill values to an SDS can involve more I/O overhead than is necessary. This is becau
whenever a fill value is set for an SDS, two write operations are generally needed - one to w
the fill value and one to write the actual dataset data. It is "generally needed" because, whe
all of the data is written to the dataset in one write operation the additional write operation to
the fill values is not performed, as it isn’t necessary. For datasets containing contiguous dat
venting the HDF library from performing these fill value write operations can result in a subs
tial performance increase.
3-90 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

ile

for

, the

rays.
nted

 uncal-
However, it can be tedious to unset the fill value for all SDSs in a file, particularly when the f
contains a large number of them. This can be done with one call to SDsetfillmode, which must
occur before calls to SDsetfillvalue.

The syntax of SDsetfillmode is as follows:

C: status = SDsetfillmode(file_id, fill_mode);

FORTRAN: status = sfsflmd(file_id, fill_mode)

The argument file_id is the identifier of the file the fill mode will be applied to. The fill_mode
argument is the fill mode to be applied - it can be set to either SD_FILL or SD_NOFILL. SD_FILL
specifies that fill values will be written to all SDSs in the specified file by default. If SDsetfillm-
ode is never called before SDsetfillvalue, this is the default fill mode. SD_NOFILL specifies that, by
default, fill values will not be written to all SDSs in the specified file. This can be overridden
specific SDSs by subsequent calls to SDsetfillvalue.

Note that, whenever a file has been newly opened, or has been closed and then re-opened
default SD_FILL fill mode will be in effect until it is changed by a call to SDsetfillmode.

The parameters of SDsetfillmode are described in the table below.

TABLE 3AC SDsetfillvalue, SDgetfillvalue and SDsetfillmode Parameter List

3.11.6 Calibration Attributes
The calibration attribute stores scale and offset values to describe calibrated data in SDS ar
When data are calibrated using a scale and an offset, the values in an array can be represe
using a smaller data type than the original. For instance, an array containing data of type float
could be stored as an array containing data of type 8- or 16-bit integer. Both the scale_factor
and add_offset attributes should be of the type float64 .

3.11.6.1 Writing Calibrated Data: SDsetcal

SDsetcal adds the scale factor, offset, scale factor error, offset error and the data type of the
ibrated data to the specified data set:

C: status = SDsetcal(sds_id, cal, cal_error, offset, off_err,
num_type);

FORTRAN: status = sfscal(sds_id, cal, cal_error, offset, off_err,
num_type)

SDsetcal must be called to calibrate the data before the data is written.

Function Call

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

SDsetfillvalue
(sfsfill/
sfscfill)

sds_id int32 integer Data set identifier.

fill_val VOIDP <valid numeric data type> Pointer to the fill value to be set.

SDgetfillvalue
(sfgfill/
sfgcfill)

sds_id int32 integer Data set identifier

fill_val VOIDP <valid numeric data type> Buffer for the fill value.

SDsetfillmode
(sfsflmd)

file_id int32 integer File identifier.

fill_mode intn integer Fill mode to be set.
3-91 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

ated

riginal
o

ent
SDsetcal has six arguments; sds_id , cal , cal_error , offset , off_err and num_type . The
argument cal represents a single value that when multiplied against every value in the calibr
array reproduces the original data (assuming an offset of 0). The argument offset represents a
single value that when subtracted from every value in the calibrated array reproduces the o
data (assuming a scale of 1). The cal and offset values relate to the original data according t
the following equation:

original_data = cal * (calibrated_data - offset)

In addition to cal and offset , SDsetcal also includes both a scale and offset error. The argum
cal_err contains the potential error of the calibrated data due to scaling; off_err contains the
potential error for the calibrated data due to the offset.

The parameters of SDsetcal are described below. (See Table 3AD on page 92.)

3.11.6.2 Reading Calibrated Data: SDgetcal

SDgetcal reads calibration attributes for an SDS array as written by a SDsetcal call or its equiva-
lent:

C: status = SDgetcal(sds_id, cal, cal_error, off, off_err,
num_type);

FORTRAN: status = sfgcal(sds_id, cal, cal_error, off, off_err,
num_type)

Because the HDF library does not actually apply calibration information to the data, SDgetcal can
be called anytime before or after the data is read. If a calibration record does not exist, SDgetcal
returns FALSE. SDgetcal takes six arguments; sds_id , cal , cal_error , offset , off_err and
num_type . These parameters are described in the following table.

TABLE 3AD SDsetcal and SDgetcal Parameter List

EXAMPLE 21. Calibrating Data

Suppose the values in the calibrated array cal_val are the following integers:

Routine Name

(Fortran-77)
Parameter

Data Type
Description

C Fortran-77

SDsetcal
(sfscal)

sds_id int32 integer Data set identifier.

cal float64 real*8 Calibration factor.

cal_error float64 real*8 Calibration error.

off float64 real*8 Uncalibrated offset.

off_err float64 real*8 Uncalibrated offset error.

num_type int32 integer Data type of uncalibrated data.

SDgetcal
(sfgcal)

sds_id int32 integer Data set identifier.

cal float64 * real*8 Pointer to the calibration factor.

cal_error float64 * real*8 Pointer to the calibration error.

off float64 * real*8 Pointer to the uncalibrated offset.

off_err float64 * real*8 Pointer to the uncalibrated offset error.

num_type int32 * integer Pointer to the data type of uncalibrated data.
3-92 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

ter

Data
tems
PI is

le to
nter-
nd

ill
por-
rstood

nd
 sim-

-
h
ional
t sepa-

ing to

DS
 file:

en-

the
ions,
 vari-
ame
cal_val[6] = {2, 4, 5, 11, 26, 81}

By applying the calibration equation orig = cal * (cal_val - offset) with cal = 0.50
and offset = -2000.0 , the calibrated array cal_val[] returns to its original floating-point
form:

original_val[6] = {1001.0, 1002.0, 1002.5, 1005.5, 1013.0, 1040.5}

3.12 netCDF

HDF supports the netCDF data model and interface developed at the Unidata Program Cen
(UPC). Like HDF, netCDF is an interface to a library of data access programs that store and
retrieve data. The file format developed at the UPC to support netCDF uses XDR (eXternal
Representation) a non-proprietary external data representation developed by Sun Microsys
for describing and encoding data . Full documentation on netCDF and the Unidata netCDF A
available at http://www.unidata.ucar.edu/packages/netcdf/ .

The netCDF data model is interchangeable with the SDS data model in so far as it is possib
use the netCDF calling interface to place an SDS into an HDF file and conversely the SDS i
face will read from an XDR-based netCDF file. Because the netCDF API has not changed a
netCDF files stored in XDR format are readable, existing netCDF programs and data are st
usable, although programs will need to be relinked to the new library. However, there are im
tant conceptual differences between the HDF and the netCDF data model that must be unde
to effectively use HDF for the purpose of working with netCDF data objects and to understa
enhancements to the API that will be included in the future to make the two APIs much more
ilar.

In the HDF model, when an n-dimensional SDS is created by SDcreate, data objects are also cre
ated that provide information about the individual dimensions - one for each dimension. Eac
SDS contains within its internal structure the array data as well as pointers to these dimens
data objects. Each dimensional data object is stored in a structure that is in the HDF file, bu
rate from the SDS array.

If more than one SDS have the same dimension sizes, they may share dimensions by point
the same dimensional data objects. This can be done in application programs by calling SDset-
dimname to assign the same dimension name to all dimensions that are shared by several S
objects. For example, suppose you make the following sequence of calls for every SDS in a

dim_id = SDgetdimid(sds_id, 0);
ret = SDsetdimname(dim_id, "Lat");
dim_id = SDgetdimid(sds_id, 1);
ret = SDsetdimname(dim_id, "Long");

This will cause every SDS to refer to the dimensional data object named "Lat" as its first dim
sion and to the dimensional data object named "Long" as its second dimension.

This same result is obtained differently in netCDF. Note that a netCDF "variable" is roughly
same as an HDF SDS. The netCDF API requires application programs to define all dimens
using ncdimdef , before defining variables. Those defined dimensions are then used to define
ables in ncvardef . Each dimension is defined by a name and a size. All variables using the s
dimension will have the same dimension name and dimension size.

Although the HDF SDS API will read from and write to existing XDR-based netCDF files, HDF
cannot be used to create XDR-based netCDF files.
3-93 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

t you
DF

to
until

an be
 appli-
ty
-

inked

el:

 inter-
is
 thus

e for-
 dimen-

.
There is currently no support for the mixing of HDF objects that are not SDSs and netCDF
objects. For example, a raster image can exist in the same HDF file as a netCDF object, bu
must use one of the HDF raster image interfaces to read the image and the HDF SD or netC
interface to read the netCDF object. The other HDF interfaces are currently being modified
allow multifile access. Closer integration with the netCDF interface will probably be delayed
the end of that project.

3.12.1 HDF Interface vs. netCDF Interface
Existing netCDF applications can be used to read HDF files and existing HDF applications c
used to read XDR-based netCDF files. To read an HDF file using a netCDF application, the
cation must be recompiled using the HDF library. For example, recompiling the netCDF utili
ncdump with HDF creates a utility that can dump scientific data sets from both HDF and XDR
based files. To read an XDR-based file using an HDF application, the application must be rel
to the HDF library.

The current version of HDF contains three APIs that support essentially the same data mod

• The multifile SD interface.

• The netCDF or NC interface.

• The single-file DFSD interface.

• The multifile GR interface.

The first three interfaces can create, read and write SDSs in HDF files. Both the SD and NC
faces can read from and write to XDR-based netCDF files, but they cannot create them. Th
interoperability means that a single program may contain both SD and NC function calls and
transparently read and write scientific data sets to HDF or XDR-based files.

The SD interface is the only HDF interface capable of accessing the XDR-based netCDF fil
mat. The DFSD interface cannot access XDR-based files and can only access SDS arrays,
sion scales and predefined attributes. A summary of file interoperability among the three
interfaces is provided in the following table.

TABLE 3AE Summary of HDF and XDR File Compatibility for the HDF and netCDF APIs

A summary of NC function calls and their SD equivalents is presented in the following table

Files Created by

DFSD Interface

Files Created by

SD Interface

Files Written by

NC Interface

HDF HDF
NCSA HDF

Library
Unidata netCDF

Library

Accessed by DFSD Yes Yes Yes No

Accessed by SD Yes Yes Yes Yes

Accessed by NC Yes Yes Yes Yes
3-94 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications
TABLE 3AF NC Interface Routine Calls and Their SD Equivalents

Purpose
Routine Name

SD
Equivalent Description

C Fortran-77

Operations

nccreate NCCRE SDstart Creates a file.

ncopen NCOPN SDstart Opens a file.

ncredef NCREDF Not Applicable Sets open file into define mode.

ncendef NCENDF Not Applicable Leaves define mode.

ncclose NCCLOS SDend Closes an open file.

ncinquire NCINQ SDfileinfo Inquires about an open file.

ncsync NCSNC Not Applicable Synchronizes a file to disk.

ncabort NCABOR Not Applicable Backs out of recent definitions.

ncsetfill NCSFIL Not Implemented Sets fill mode for writes.

Dimensions

ncdimdef NCDDEF SDsetdimname Creates a dimension.

ncdimid NCDID SDgetdimid
Returns a dimension identifier from its
name.

ncdiminq NCDINQ SDdiminfo Inquires about a dimension.

ncdimrename NCDREN Not Implemented Renames a dimension.

Variables

ncvardef NCVDEF SDcreate Creates a variable.

ncvarid NCVID
SDnametoindex

and SDselect
Returns a variable identifier from its name.

ncvarinq NCVINQ SDgetinfo Returns information about a variable.

ncvarput1 NCVPT1 Not Implemented Writes a single data value.

ncvarget1 NCVGT1 Not Implemented Reads a single data value.

ncvarput NCVPT SDwritedata Writes a hyperslab of values.

ncvarget NCVGT/NCVGTC SDreaddata Reads a hyperslab of values.

ncvarrename NCVREN Not Implemented Renames a variable.

nctypelen NCTLEN DFKNTsize Returns the number of bytes for a data type.

Attributes

ncattput NCAPT/NCAPTC SDsetattr Creates an attribute.

ncattinq NCAINQ SDattrinfo Returns information about an attribute.

ncattcopy NCACPY Not Implemented Copies attribute from one file to another.

ncattget NCAGT/NCAGTC SDreadattr Returns attributes values.

ncattname NCANAM SDattrinfo Returns name of attribute from its number.

ncattrename NCAREN Not Implemented Renames an attribute.

ncattdel NCADEL Not Implemented Deletes an attribute.
3-95 May 14, 1997

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications
3-96 May 14, 1997

	Scientific Data Sets (SD API)
	3.1 Chapter Overview
	3.2 The SD Scientific Data Set Data Model
	FIGURE 3a The Contents of a Three-Dimensional SD S...
	3.2.1 Required SD SDS Objects
	3.2.1.1 SDS Array
	3.2.1.2 SDS Array Name
	3.2.1.3 Data Type
	3.2.1.4 Dimensions

	3.2.2 Optional SD SDS Objects
	3.2.3 Annotations and the SD Data Model

	3.3 The SD Scientific Data Set API
	3.3.1 SD Library Routines
	TABLE 3A SD Library Routines

	3.3.2 SDS Identifiers in the SD Interface
	3.3.3 Tags in the SD Interface

	3.4 Programming Model for the SD Interface
	1. Open a file and initialize the SD interface.
	2. Open an existing SDS by obtaining an SDS id fro...
	3. Perform desired operations on the SDS.
	4. Terminate access to the data set.
	5. Terminate access to the SD interface and close ...
	3.4.1 Establishing Access to Files and Data Sets: ...
	3.4.2 Terminating Access to Files and Data Sets: S...
	TABLE 3B SDstart, SDselect, SDend and SDendaccess ...
	EXAMPLE 1. Accessing and Closing an SDS

	3.5 Creating and Writing to Simple Scientific Data...
	3.5.1 Creating Scientific Data Sets: SDcreate
	1. Open a file and initialize the SD interface.
	2. Define the characteristics of the SDS.
	3. Perform optional operations on the SDS.
	4. Terminate access to the data set.
	5. Terminate access to the SD interface and close ...
	TABLE 3C SDcreate Parameter List
	EXAMPLE 2. Creating an Empty SDS

	3.5.2 Writing Data to an SDS Array: SDwritedata
	1. Create an SDS.
	2. Write a slab or series of slabs.
	FIGURE 3b Description of "Strides"
	TABLE 3D SDwritedata Parameter List

	3.5.2.1 Filling an Entire Array
	EXAMPLE 3. Creating and Writing to an SDS

	3.5.2.2 Writing Slabs to an SDS Array
	EXAMPLE 4. Writing a Slab of Data to an SDS
	EXAMPLE 5. Altering Values Within an Array Data Se...

	3.5.2.3 Appending Data to an SDS Array Using the U...
	EXAMPLE 6. Appending Data to an SDS Array Using an...

	3.5.3 Compressing SD SDS Array Data: SDsetcompress...
	TABLE 3E SDsetcompress Parameter List
	3.5.3.1 Rules for Writing to a Compressed Data Set...
	1. Write the compressed data, in its entirety, to ...
	2. Append to a compressed data set. In other words...
	3. Write the compressed data, in its entirety, to ...

	3.5.4 External File Operations
	3.5.4.1 Specifying the Directory Search Path of an...
	1. The directory path specified by the last call t...
	2. The directory path specified by the $HDFEXTDIR ...
	3. The locations searched by the standard open(3) ...
	TABLE 3F HXsetdir Parameter List

	3.5.4.2 Specifying the Location of the Next Extern...
	1. The directory specified by the last call to the...
	2. The directory specified by the $HDFEXTCREATEDIR...
	3. The locations searched by the standard open(3) ...
	TABLE 3G HXsetcreatedir Parameter List

	3.5.4.3 Creating a Data Set in an External File: S...
	1. Create the array.
	2. Specify that an external data file is to be use...
	3. Write data to the array.
	4. Terminate access to the data set.
	TABLE 3H SDsetexternalfile Parameter List

	3.5.4.4 Moving Data to an External File
	1. Select the array.
	2. Specify the external data file.
	3. Terminate access to the data set.
	EXAMPLE 7. Writing SDS Data to an HDF File Startin...

	3.6 Reading Data from an SDS Array: SDreaddata
	1. Select an SDS.
	2. Read a slab or series of slabs.
	TABLE 3I SDreaddata Parameter List
	EXAMPLE 8. Reading an Entire SDS
	EXAMPLE 9. Reading a Subset of an SDS Array
	EXAMPLE 10. Sampling SDS Data
	3.6.1 Reading Data from an External File

	3.7 Obtaining Information About SD Data Sets
	3.7.1 Obtaining Information About the SDSs in a Fi...
	3.7.2 Obtaining Information About a Specific SDS: ...
	TABLE 3J SDfileinfo and SDgetinfo Parameter List
	EXAMPLE 11. Printing Data Set Names

	3.7.3 Locating a SDS Data Set by Name: SDnametoind...
	1. Convert the SDS name into a valid index number....
	2. Select the SDS by obtaining its identifier from...

	3.7.4 Locating an SDS by Reference Number: SDrefto...
	1. Convert the reference number for the SDS into a...
	2. Select the SDS by obtaining its identifier from...
	TABLE 3K SDnametoindex and SDreftoindex Parameter ...
	EXAMPLE 12. Searching for the Index of an SDS

	3.7.5 Creating SDS Arrays Containing Variable-Leng...
	TABLE 3L SDsetnbitdataset Parameter List

	3.8 Chunked (or Tiled) Scientific Data Sets
	3.8.1 Making a Non-Chunked SDS a Chunked SDS: SDse...
	TABLE 3M SDsetchunk Parameter List

	3.8.2 Setting the Maximum Number of Chunks in the ...
	TABLE 3N SDsetchunkcache Parameter List

	3.8.3 Writing Data to Chunked SDSs: SDwritechunk a...
	TABLE 3O SDwritechunk Parameter List

	3.8.4 Reading Data From Chunked SDSs: SDreadchunk ...
	TABLE 3P SDreadchunk Parameter List

	3.8.5 Obtaining Information About a Chunked SDS: S...
	TABLE 3Q SDgetchunkinfo Parameter List
	EXAMPLE 13. Writing and Reading Chunked Data Using...
	EXAMPLE 14. Writing and Reading Chunked Data Using...
	EXAMPLE 15. Writing and Reading Chunked Data Using...
	EXAMPLE 16. Writing and Reading Compressed Chunked...

	3.8.6 Ghost Areas
	FIGURE 3c Array Locations Created Beyond the Defin...

	3.9 SD Dimension and Dimension Scale Operations
	3.9.1 Selecting a Dimension: SDgetdimid
	3.9.2 Naming a Dimension: SDsetdimname
	1. Get the identifier of the dimension.
	2. Assign a name to the dimension - the dimension ...
	TABLE 3R SDsetdimname Parameter List

	3.9.3 Old and New Dimension Implementations
	3.9.3.1 Setting the Future Compatibility Mode of a...
	TABLE 3S SDsetdimval_comp Parameter List

	3.9.3.2 Setting the Current Compatibility Mode of ...
	TABLE 3T SDisdimval_bwcomp Parameter List

	3.9.4 Dimension Scales
	3.9.4.1 Writing Dimension Scales: SDsetdimscale
	1. Get the identifier of the dimension.
	2. Create the dimension scale, setting the data ty...

	3.9.4.2 Obtaining Dimension Scale and Other Dimens...
	1. Get the identifier of the dimension.
	2. Retrieve the dimension information.

	3.9.4.3 Reading Dimension Scales: SDgetdimscale
	1. Get the identifier of the dimension.
	2. Read the scale.
	TABLE 3U SDgetdimid, SDsetdimname, SDsetdimscale, ...
	EXAMPLE 17. Writing Dimension Information

	3.9.5 Distinguishing SDS Arrays from Dimension Sca...
	TABLE 3V SDiscoordvar Parameter List
	EXAMPLE 18. Retrieving SDS Information from an HDF...

	3.9.6 Dimension Scales for Multiple Data Sets
	FIGURE 3d Dimension Records and Attributes Shared ...

	3.10 User-defined Attributes
	3.10.1 Writing User-defined Attributes: SDsetattr
	1. Obtain the appropriate identifiers:
	2. Create the attribute.
	3. Terminate access by disposing of any existing i...
	EXAMPLE 19. Setting Attribute Values

	3.10.2 Querying User-defined Attributes: SDfindatt...
	3.10.3 Reading User-defined Attributes: SDreadattr...
	TABLE 3W SDsetattr, SDfindattr, SDattrinfo and SDr...
	EXAMPLE 20. Retrieving Attribute Information

	3.11 Predefined Attributes
	TABLE 3X Predefined Attribute List
	3.11.1 Accessing Predefined Attributes
	TABLE 3Y Predefined Attribute Parameter List

	3.11.2 SDS String Attributes
	3.11.2.1 Writing String Attributes: SDsetdatastrs
	3.11.2.2 Reading String Attributes: SDgetdatastrs
	TABLE 3Z SDsetdatastrs and SDgetdatastrs Parameter...

	3.11.3 Dimension String Attributes
	3.11.3.1 Writing a Dimension String Attribute: SDs...
	3.11.3.2 Reading a Dimension String Attribute: SDg...
	TABLE 3AA SDsetdimstrs and SDgetdimstrs Parameter ...

	3.11.4 Range Attributes
	3.11.4.1 Writing a Range Attribute: SDsetrange
	3.11.4.2 Reading a Range Attribute: SDgetrange
	TABLE 3AB SDsetrange and SDgetrange Parameter List...

	3.11.5 Fill Values
	3.11.5.1 Writing a Fill Value Attribute: SDsetfill...
	3.11.5.2 Reading a Fill Value Attribute: SDgetfill...
	3.11.5.3 Setting the Fill Mode for all SDSs in the...
	TABLE 3AC SDsetfillvalue, SDgetfillvalue and SDset...

	3.11.6 Calibration Attributes
	3.11.6.1 Writing Calibrated Data: SDsetcal
	3.11.6.2 Reading Calibrated Data: SDgetcal
	TABLE 3AD SDsetcal and SDgetcal Parameter List
	EXAMPLE 21. Calibrating Data

	3.12 netCDF
	3.12.1 HDF Interface vs. netCDF Interface
	TABLE 3AE Summary of HDF and XDR File Compatibilit...
	TABLE 3AF NC Interface Routine Calls and Their SD ...

