Chapter
3

Scientific Data Sets (SD API)

3.1 Chapter Overview

This chapter describes the routines available for storing and retrieving multidimensional arrays
containing scientific data.

3.2 The SD Scientific Data Set Data Model

In HDF, any multi-dimensional array qualifies ascéentific data sebr SDSif it's associated with

a dimension record and a data type. In addition to providing a framework for storing arrays of
arbitrary dimensions and data type, the SDS data model sugpogssion scalesuser-defined
attributesandpredefined attributes(See Figure 3a.)

FIGURE 3a The Contents of a Three-Dimensional SD Scientific Data Set

SD Scientific Data Se

' ' ' '

Array Dimension X Dimension Y Dimension Z
Array Attributes Dimension Dimension Dimension
Attributes Attributes Attributes
Array Data Type Dimension Dimension Dimension
Data Type Data Type Data Type
Dimension Dimension Dimension

Dimension X, Y, Z Scale Scale Scale

Scientific data sets consist of required and optional objects. The required objects will be covered
first. Please note that in this chapter the terms "SDS" and "data set" are used interchangeably.

3.2.1 Required SD SDS Objects

Every SD scientific data set must contain three objects. These objects inclGiESlaeray data
typeanddimension recordsRequired objects are automatically created from the information pro-
vided at the time the SDS is defined.

May 14, 1997 3-19

National Center for Supercomputing Applications

3.2.1.1 SDS Array

An SDS arrayis an n-dimensional data structure that serves as the basic building block of an
SDS. When an SDS array is created, the number and size of the dimensions that define its shape
are specified, as is its data type. SDS arrays are conceptually equivalenaldesin the

netCDF data model.

3.2.1.2 SDS Array Name

An SDS array has 88DS nameconsisting of a sequence of case-sensitive alphanumeric charac-
ters. A name can be assigned to an SDS by a calling program, but if a name is not provided by the
calling program one will be assigned by the HDF library. Names are assigned when the data set is
created and cannot be changed. SDS names do not have to be unique within a file, but if they are
not it can be difficult to distinguish between the scientific data sets in the file.

3.2.1.3 Data Type

The standard data types supported by the SD API are 32- and 64-bit floating-point numbers, 8-,
16- and 32-bit signed integers and 8-, 16- and 32-bit unsigned integers. The SD interface also
includes a routine that allows SD data sets with variable bit lengths (1 to 32 bits) to be created.

Before writing an SDS to a file, HDF normally converts its elements from the native format of the
host machine to a standard HDF format. The standard representations used by HDF for floating-
point numbers are the IEEE 32- and 64-bit floating-point formats. For integers, HDF uses big-
endian byte ordering. For signed integers HDF uses twos-complement representation. Converting
to and from the standard formats can result in low-order inaccuracies in the data. For example,
data converted from 64-bit to 32-hit floating-point representation is accurate to about 10

Sometimes users prefer not to have their data automatically converted, either because the conver-
sion slows down processing or because it introduces intolerable inaccuracies. For those instances,
HDF provides a “native format” option, whereby numbers are stored "as is" in the file and are
tagged accordingly. HDF also provides a “little-endian” option to suppress any rearranging of byte
ordering from little- to big-endian. This is primarily for users of Intel-based machines who do not
want to incur the cost of reordering data when writing to an HDF file. Because HDF does not sup-
port direct conversion between many machine architectures, using a native format can diminish
the portability of HDF files. However, note that direct conversions are supported between little-
endian and all other byte-order formats supported by HDF.

3.2.1.4 Dimensions

SDSdimensionsspecify the shape and size of an SDS array. The number of dimensions of an

array is known as thank of the array. Dimension hames are not treated in the same way as array
names. For example, if a name assigned to a dimension was previously assigned to another dimen-
sion the SD interface treats both dimensions as the same data object and any changes made to one
will be reflected in the other. The size of a dimension is a positive integer.

Also, one dimension of an SDS array can be assigned the predefined_sige/MITED. This
dimension is referred to as anlimited dimension which, as the name suggests, can grow to
any length.

3.2.2 Optional SD SDS Objects

There are two types of optional objects available for inclusion in an &B®nsion scalesand
attributes Attributes are either predefined or defined by the user. Optional objects are only created
when specifically requested by the calling program.

3-20 May 14, 1997

3.3

Dimension Scales

A dimension scale is a sequence of numbers placed along a dimension to demarcate intervals
along it. Dimension scales are described in Section 3.9 on page 70.

User-Defined Attributes

Attributes are alphanumeric strings describing the nature and/or intended usage of the file, SDS or
dimension they're attached tdser-defined attributesre attributes defined by the calling pro-

gram containing auxiliary information about a file, SDS array or dimension. They are more fully
described in Section 3.10 on page 79.

Predefined Attributes

Predefined attributesre attributes that have reserved labels and in some cases predefined data
types. Predefined attributes are useful because they establish conventions that applications can
depend on. They are further described in Section 3.11 on page 85.

3.2.3 Annotations and the SD Data Model

With the expansion of the SD interface to include user-defined attributes, annotations should no
longer be used in conjunction with scientific data sets. In fact, metadata once stored as an annota-
tion is now more conveniently stored as an attribute. However, to insure backward compatibility
with scientific data sets and applications relying on annotations, the DFAN annotation API,
described in Chapter 10, titldhnotations (DFAN APJ)can be used to annotate SDSs. There is

no cross-compatibility between attributes and annotations; creating one does not automatically
create the other.

The SD Scientific Data Set API

Unlike the DFSD SDS interface, the SD interface supports simultaneous access to more than one
SDS in more than one HDF file. Although it is fully compatible with the DFSD data model, the

SD interface also supports a more powerful and more general scientific data model; one that is
very similar to the netCDF data model developed by the Unidata Program Center.

All valid operations involving an SDS can be done by calling routines in the SD interface. Except
in rare instances, the physical file format used to store HDF data is transparent to HDF users.

3.3.1 SD Library Routines
All C routines in the SD scientific data library begin with the prefix "SD". The equivalent Fortran-
77 functions use the prefix "sf". These routines are categorized as follows:

Access routinegnitialize and terminate access to HDF files and data sets.

Read and write routinesead and write data sets by manipulating their dimensions, rank
and data type.

General inquiry routinesreturn information about the location, contents and description of
the scientific data sets in an HDF file.

Dimension scale routineslefine and access dimension scales within a data set.

User-defined attribute routineglescribe and access characteristics of an HDF file, data set
or dimension defined by the HDF user.

Predefined attribute routinesiccess previously-defined characteristics of an HDF file, data
set, or dimension.

May 14, 1997 3-21

National Center for Supercomputing Applications

- Compression routinesletermine the compression method for SDS data.
- Chunkingttiling routines determine the chunking configuration for SDS data.
- N-bit data set routinesletermine the non-standard data bit length configuration for SDS

data.

The SD routines are described in the following table and ik Reference Guide

nfor-

ence

TABLE 3A SD Library Routines
Routine Name
Category Description
C Fortran-77
SDend sfend Closes the file and clean up memory.
Disposes of a data set identifier, flush out metadata and order i
SDendaccess sfendacc .
Access mation.
SDselect sfselect Returns the identifier of the specified data set.
SDstart sfstart Initializes the SD interface.
SDcreate sfcreate Creates a new data set.
sfrdata/
SDreaddata Reads data from a chunked or non-chunked data set.
Read and sfrcdata
Write SDsetexternalfile sfsgxtf Defines the data type to be stored in an external file.
SDwritedata sfwdata/ Writes data to a chunked or non-chunked data set.
sfwcdata
SDfileinfo sffinfo Returns information about the contents of a file.
SDgetinfo sfginfo Returns information about a data set.
SDidtoref fid2ref Returns a reference number for a named data set.
General
Inquiry SDiscoordvar fiscvar Distinguishes data sets from dimension scales.
SDnametoindex sfn2index Returns an index of a specified data set.
Returns the index of I ndin iven ref
SDreftoindex diref2index eturns the index of a data set corresponding to a given refe
number.
SDdiminfo sfgdinfo Gets information about a dimension.
SDgetdimid sfdimid Retrieves the identifier of a dimension.
DI:S:Ian SDsetdimname sfsdimname Associates a name with a dimension.
SDgetdimscale kfgdscale Returns scale values for a dimension.
SDsetdimscale sfsdscale Defines the values of this dimension.
SDattrinfo sfgainfo Gets information about an attribute.
SDfindattr sffattr Returns the index of the specified attribute.
User-defined sfrnatt/
Attributes SDreadattr sfrcatt Reads the values of the specified attribute.
sfsnatt/ . .
SDsetattr Creates and defines a new attribute.
sfscatt

3-22 May 14, 1997

SDgetcal sfgcal Returns calibration information.
SDgetdatastrs sfgdtstr Returns the label, limit, format and coordinate system of a data|set.
SDgetdimstrs $fgdmstr Returns the attribute strings for a dimension.
SDgetfillvalue ngf'"./ Reads the fill value if it exists.
sfgcfill
SDgetrange sfgrange Returns the range of values of the specified data set.
Pre(_ieflned SDsetcal sfscal Defines the calibration information.
Attributes
SDsetdatastrs sfsdtstr Defines the attribute strings of the specified data set.
SDsetdimstrs $fsdmstr Defines the attribute strings of the specified dimension.
) sfsfill/ .)
SDseffillvalue sfeciill Defines the fill value of the current data set.
SDsetfilmode sfsfimd Defines the file mode to be applied to all SDSs in the specified file.
SDsetrange sfsrange Defines the maximum and minimum values of the valid range.
Compression SDsetcompress None Defines the compression method to be applied to data set data
SDgetchunkinfo one Obtains information about a chunked SDS.
SDsetchunkcache None Sets the size of the chunk cache.
Chunking/
Tiing SDsetchunk None Makes a non-chunked SDS a chunked SDS.
SDwritechunk one Writes data to a chunked SDS.
SDreadchunk None Reads data from a chunked SDS.
N—Lt:;:]thz:]ta SDsetnbitdataset sfnbit Defines the non-standard bit length of the data set data.

3.3.2 SDS Identifiers in the SD Interface

In the SD interface, scientific data sets are identified in several ways. Before a data set is accessi-
ble, it is identified byindex, nameandreference numberAfter it is opened, it is identified by a
data set identifieror SDS id

The index describes the relative position of the data set in the file. The name is a unique character
string and the reference number is a unique integer which are both assigned to the data set when it
is created. The index, name, and reference number are needed to obtain a data set id.

The SDS id is the data set equivalent of a file identifier and uniquely identifies an SDS data set
within a file. It is created when an existing SDS is selected for use or when a new SDS is created
and is thereafter used to access the SDS.

3.3.3 Tags in the SD Interface
A complete list of SDS tags and their descriptions is in Table D in the User’s Guide Appendix.

Programming Model for the SD Interface

To support multifile access, the SD interface relies on the calling program to initiate and terminate
access to files and data sets. The SD programming model for accessing an SDS in an HDF file is
as follows:

1. Open afile and initialize the SD interface.

2. Open an existing SDS by obtaining an SDS id from an SDS iD&egreate a new
SDS by obtaining an SDS id from the SDS name, rank and dimensions.

3. Perform desired operations on the SDS.
4. Terminate access to the data set.
5. Terminate access to the SD interface and close the file.

May 14, 1997 3-23

National Center for Supercomputing Applications

To access a single SDS in an HDF file, the calling program must contain the following calls:

C: sd_id = SDstart(filename, access_mode);
sds_id = SDselect(sd_id, sds_index);
<Optional operations>
status = SDendaccess(sds_id);
status = SDend(sd_id);

FORTRAN: sd_id = sfstart(filename_1, access_mode)
sds_id = sfselect(sd_id, sds_index)
<Optional operations>
status = sfendaccess(sds_id)
status = sfend(sd_id)

To access several files at the same time, a calling program must obtain a separate file id for each
file to be opened. Likewise, to access more than one SDS a calling program must obtain a separate
SDS id for each SDS. For example, to open two SDSs stored in two files a program would execute
a series of function calls similar to the following:

C: sd_id_1 = SDstart(filename_1, access_mode);
sds_id_1 = SDselect(sd_id_1, sds_index_1);
sd_id_2 = SDstart(filename_2, access_mode);
sds_id_2 = SDselect(sd_id_2, sds_index_2);
<Optional operations>
status = SDendaccess(sds_id_1);
status = SDend(sd_id_1);
status = SDendaccess(sds_id_2);
status = SDend(sd_id_2);

FORTRAN: sd_id_1 = sfstart(filename_1, access_mode)
sds_id_1 = sfselect(sd_id_1, sds_index_1)
sd_id_2 = sfstart(filename_2, access_mode)
sds_id_2 = sfselect(sd_id_2, sds_index_2)
<Optional operations>
status = sfendacc(sds_id_1)
status = sfend(sd_id_1)
status = sfendacc(sds_id_2)
status = sfend(sd_id_2)

As with file identifiers, SD ids can be obtained and discarded in any order and all SD ids must be
individually discarded before termination of the calling program.

3.4.1 Establishing Access to Files and Data Sets: SDstart and SDselect

In the SD interfaceSDstart is used to open files rather theopen. SDstart takes two arguments;
flename andaccess_mode, and returns the file isd_id . The argumertfilename is the name

of an HDF or netCDF file as it is stored on disk. All other functions in the SD interface accept only
sd_id for file operations. The argumesmicess_mode specifies the type of access required for
operations on the file. The access mode tags passeddectise mode parameter have names
prefaced by "DFACC".

Although it is possible to open a file more than once, it is better to select the most appropriate
access mode and c&Dstart only once. Repeatedly callir@Dstart may cause unexpected
results and is not recommended.

If access_mode is set tadDFACC_RDONL Yhe specified file will not be created if it doesn’t exist.

3-24 May 14, 1997

SDselecttakes two argumentsd_id andsds_index and returns the data setsitk_id . The
argumensd_id is the file identifier returned b$Dstart, andsds_index is the position of the
data set relative to the beginning of the file. The arguswenindex is zero-based, meaning that
the index of first SDS in the file is 0.

The parameters @Dstart andSDselectare further defined below. (See Table 3B.)

3.4.2 Terminating Access to Files and Data Sets: SDendaccess and SDend

SDendaccesslisposes of the open data setdd id and terminates access to the data set. The
calling program must make oPDendaccessall for everySDselectcall made during its execu-
tion. Failing to callSDendacces$or each call t&SDselector SDcreatemay result in a loss of
data.

SDenddisposes of the file ile_id and terminates access to the file and the SD interface. The
calling program must make osDendcall for everySDstart call made during its execution.
Failing to callSDendfor eachSDstart may result in a loss of data.

The parameters @DendaccesandSDendare further defined in the following table.

TABLE 3B SDstart, SDselect, SDend and SDendaccess Parameter List
Routine Name Data Type
Parameter Description
(Fortran-77) C Fortran-77
SDstart filename char * character* (*) | Name of the HDF or netCDF file.
(sfstart) access_mode int32 integer | Type of access.
SDselect file_id int32 integer HDF file identifier.
(sfselect) sds_index int32 integer Position of the data set within the file.
Sbend file_id int32 integer HDF file identifier.
(sfend)
SDendaccess sds_id int32 integer Data set identifier.
(sfendacc)
EXAMPLE 1. Accessing and Closing an SDS

The following examples are a code template on how to access the first data set in an HDF file, then
detach from the data set and the file. The file name "Dummy_HDF_File.hdf" represents a preex-
isting HDF file - replace it with the name of your target file.

This example assumes that the "Dummy_HDF_File.hdf" file contains one SDS.

C: #include "hdf.h"
#include "mfhdf.h"

main()

{

int32 sd_id, sds_id, sds_index, status;
int32 rank, num_type, attributes;

/* Open the HDF file. DFACC_RDONLY is defined in hdf.h. */
sd_id = SDstart("Dummy_HDF_File.hdf', DFACC_CREATE),

/* Get the identifier of the first data set. */
sds_index = 0;

May 14, 1997 3-25

National Center for Supercomputing Applications

sds_id = SDselect(sd_id, sds_index);

/* Dispose of the data set identifier to terminate access. */
status = SDendaccess(sds_id);

/* Dispose of the file identifier to close the file. */
status = SDend(sd_id);

}

FORTRAN: PROGRAM SDSDATA ACCESS

integer*4 sds_id, sd_id, sds_index, status
integer sfstart, sfselect, sfendacc, sfend

C DFACC_CREATE is defined in hdf.h.
parameter (DFACC_CREATE = 4)

C Open the HDF file.
sd_id = sfstart(Dummy_HDF_File.hdf, DFACC_CREATE)

C Getthe identifier of the first data set.

sds_index=0
sds_id = sfselect(sd_id, sds_index)

C Dispose of the data set identifier to terminate access.
status = sfendacc(sds_id)

C Dispose of the file identifier to close the file.
status = sfend(sd_id)

end

3.5 Creating and Writing to Simple Scientific Data Sets

This section describes the routines needed to create and write simple SDSs. A “simple” SDS is
defined here as one with no attributes or user-defined dimension scales.

In the SD interface, creating and writing data to an SDS are separate operations - each performed
by one SD routine. The SD interface retains no definitions about the size, contents or rank of an
SDS from one SDS to the next or from one file to the next.

3.5.1 Creating Scientific Data Sets: SDcreate

Creating a simple SDS or an SDS without attributes or scales involves the following steps:
1. Open afile and initialize the SD interface.

Define the characteristics of the SDS.

Perform optional operations on the SDS.

Terminate access to the data set.

Terminate access to the SD interface and close the file.

a M w0

To create an SDS, the calling program must contain the following sequence of routine calls:

C: sd_id = SDstart(filename, access_mode);
sds_id = SDcreate(sd_id, name, number_type, rank, dim_sizes);
<Optional operations>

3-26 May 14, 1997

status = SDendaccess(sds_id);
status = SDend(sd_id);

FORTRAN: sd_id = sfstart(filename, access_mode)
sds_id = sfcreate(sd_id, name, number_type, rank, dim_sizes)
<Optional operations>
status = sfendacc(sds_id)
status = sfend(sd_id)

SDcreatedefines a new SDS using the argumeiatse, number_type , rank anddim_sizes
Once a data set is created, you cannot change its name, data type 8D@ektedoes not actu-
ally perform the write; it occurs only whe&Dendis called.

The SD interface will assign a name if one is not provided. In this situatioilethsme param-
eter must be a null character string. The maximum length of an SDS name is defined by
MAX_NC_NAMand the maximum rank of an SDS array is definesihy_VAR_DIMS.Both are
defined in the "netcdf.h" header file. Tag names passed wuther_type parameter are pref-
aced by "DFNT".

When creating an SDS, it is necessary to specify the data type of the array data contained in the
SDS. The "hntdefs.h" header file contains definitions of all valid data types, which are described
in Chapter 2, tittedHDF Fundamentals

TABLE 3C SDcreate Parameter List
Routine Name Data Type
Parameter Description
(Fortran-77) C Fortran-77
file_id int32 integer File identifier.
name char * character* (*) | ASCII string containing the name of the data set.
SDcreate - -
(sfcreate) data_type int32 integer Data type of the data set.
rank int32 integer Number of dimensions in the array.
dim_sizes int32 | integer (*) Array defining the size of each dimension.
EXAMPLE 2. Creating an Empty SDS

If SDcreateis called but not written, an empty array is created. An "empty array" is an array that
has been defined but not yet initialized with data. All array information passefiDui@ate
through its parameters are stored in the file.

C: #include "hdf.h"
#include "mfhdf.h"

#define X_LENGTH 5
#define Y_LENGTH 16

main()

{

int32 sd_id, sds_id, status;
int32 dimsizes[2], rank;

/* Create and open the file and initiate the SD interface. */
sd_id = SDstart("Example2.hdf', DFACC_CREATE);

/* Define the rank and dimensions of the array to be created. */

May 14, 1997 3-27

National Center for Supercomputing Applications

rank = 2;
dimsizes[0] = Y_LENGTH,;
dimsizes[1] = X_LENGTH,;

/* Create the array. */
sds_id = SDcreate(sd_id, "Ex_array_1", DFNT_INT16, rank, dimsizes);

/* Terminate access to the array. */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file */
status = SDend(sd_id);

}

FORTRAN: PROGRAM EMPTY ARRAY

integer*4 sd_id, sds_id, dimsizes(2), rank
integer sfstart, sfcreate, sfendacc, sfend

integer*4 X_LENGTH, Y_LENGTH
parameter (X_LENGTH =16, Y_LENGTH =5)

C DFACC_CREATE and DFNT_INT16 are defined in hdf.h.
integer*4 DFACC_CREATE, DFNT_INT16
parameter (DFACC_CREATE = 4, DFNT_INT16 = 22)

C Create and open the file and initiate the SD interface.
sd_id = sfstart(Example2.hdf, DFACC_CREATE)

C Define the rank and dimensions of the array to be created.
rank =2
dimsizes(1) = Y_LENGTH
dimsizes(2) = X_LENGTH

C Create the array.
sds_id = sfcreate(sd_id, 'Ex_array_1', DFNT_INT16, rank, dimsizes)

C Terminate access to the array.
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

3.5.2 Writing Data to an SDS Array: SDwritedata

SDwritedata is the only routine that is needed to write data to an SDS array. It can completely or
partially fill an SDS n-dimensional array or append data along one dimension defined to be of
unlimited length. It can also skip a specified number of SDS array elements between write opera-
tions along each dimension.

Creating an SDS and writing one or more slabs to it involves the following steps:
1. Create an SDS.
2. Write a slab or series of slabs.

To do this, the calling program must contain the following sequence of routine calls:

C: sds_id = SDcreate(sd_id, name, number_type, rank, dim_sizes);
status = SDwritedata(sds_id, start, stride, edge, data);

3-28

May 14, 1997

FORTRAN: sds_id = sfcreate(sd_id, name, number_type, rank, dim_sizes)
status = sfwdata(sds_id, start, stride, edge, data)

A slabis an n-dimensional array whose dimensions are smaller than or equal to those of the SDS
array into which it will be written. A slab is defined by the n-dimensional coordinate of its initial
vertex and the lengths of each dimension.

SDwritedata takes five argumentsts_id , start , stride , edge, anddata . Thesds_id argu-

ment is the SDS identifier returned 8iDcreateor SDselect The argumentstart |, stride , and

edge respectively describe the n-dimensional coordinates the SD interface will begin the write
operation in the data set, the number of locations the current SDS location will be moved forward
after each write, and the length of each dimension of the n-dimensional slab to be written. If the
SDS array is smaller than theta argument array, the amount of data written will be limited to

the maximum size of the SDS array.

The argumengtart is an array specifying the location in the data set array the write operation
will begin. The indices are relative to 0 so the first data value of an array would havéQijex

... 0} . The size oktart must be the same as the number of dimensions in the SDS array. In
addition, each value istart must be smaller than its corresponding SDS array dimension unless
the dimension is unlimited. Violating any of these conditions causes a termination of the write
operation and causes an error condition to be generated.

The argumendtride is an array specifying, for each dimension, the interval between values to
be written. For example, settisgide[0]=2 writes data to every other location along the first
dimension.(See Figure 3b on page 29.) Setinge[0]=1 writes data to every location along

the first dimension. l§tride is defined asiuLLin C or0 in Fortran-77, it is assumed to contain

all ones. For better performance, is it advised that you define the vaduigeof asNULL rather

than setting it equal to 1. The length of gh@le array must be the same as the number of
dimensions in the SDS array. Also, each valugridte must be smaller than or equal to its cor-
responding SDS array dimension unless the dimension is unlimited. A violation of any of these
conditions terminates the write operation and causes an error condition to be generated.

FIGURE 3b

Description of "Strides"

stride = 2

Array 0 1 2 3 4 5 6 N
Location

The argumenédge is an array specifying the length of each dimension of the slab to be written. If
the rank of the slab is less than that of the SDS data set, all additional dimensions must be speci-
fied as 1. Each value in tlkege arraymust not be larger than the length of the corresponding
dimension in the SDS data set. Attempting to read or write slabs larger than the size of the SDS
data set will result in an error condition. The sizedsfe must be equal to the number of dimen-
sions in the SDS array. In addition, the sum of each value wugeearray and the corresponding

value in thestart array must be smaller than or equal to its corresponding SDS array dimension

May 14, 1997 3-29

National Center for Supercomputing Applications

unless the dimension is unlimited. A violation of any of these conditions terminates the write
operation and results in an error condition.

Be aware that the mapping between the dimensions of a slab and the order in which the slab val-
ues are stored in memory is different between C and Fortran-77. In C the values are stored with
the assumption that the last dimension of the slab varies fastest (or "row-major order” storage), but
in Fortran-77 the first dimension varies fastest (or "column-major order” storage). These storage
order conventions can cause some confusion when data written by a C program is read by a For-
tran-77 program or vice versa.

There are two Fortran-77 versions of this routsfeidata andsfwcdata Thesfwdataroutine
writes numeric scientific data asfivcdatawrites character scientific data.

The parameters @Dwritedata are described in the following table. Note that, because there are
two Fortran-77 versions &Dwritedata, there are correspondingly two entries in the “Data Type”
field of thedataparameter.

TABLE 3D SDwritedata Parameter List
Routine Name Data Type o
Parameter Description
(Fortran-77) C Fortran-77
sds_id int32 integer Data set identifier.

. . Array containing the position the write will
start ints2 {1 integer () start for each dimension.

SDwritedata Array containing the number of data locations
(sfwdata/ stride int32 [] integer (*) the current location is to be moved forward
sfwcdata) before the next write.

. . . Array containing the number of data elements
edge int32 {1 integer () that will be written along each dimension.
data VOIDP <valid numeric data type> Buffer for the data to be written.

3.5.2.1 Filling an Entire Array
Filling an array is a simple slab operation where the slab begins at the origin of the SDS array and
fills every location in the arragDwritedata will fill an SDS array with data when given the ori-
gin (start={0,0, ... 0}) as its starting coordinates, a stride valuswfL, and edge dimen-
sions equal to the size of the SDS arfaigé={dim_sizes[0], dim_sizes[1], ...
dim_size[rank-1]}).
EXAMPLE 3. Creating and Writing to an SDS
These examples ugDcreateunder the C interface asficreateunder the Fortran-77 interface.
The only difference between writing array data to an existing SDS and writing it to a newly cre-
ated array is the use 8Dselectinstead ofSDcreate
C: #include "hdf.h"
#include "mfhdf.h"
#define X_LENGTH 5
#define Y_LENGTH 16
main()
{
int32 sd_id, sds_id, status;
3-30 May 14, 1997

int32 dims[2], start[2], edges[2], rank;
int16 array_datalY_LENGTH][X_LENGTH];
intn i, j;

/* Create and open the file and initiate the SD interface. */
sd_id = SDstart("Example3.hdf', DFACC_CREATE);

/* Define the rank and dimensions of the data set to be created. */
rank = 2;

dims[0] = Y_LENGTH;

dims[1] = X_LENGTH;

/* Create the array data set. */
sds_id = SDcreate(sd_id, "Ex_array_3", DFNT_INT16, rank, dims);

/* Fill the stored-data array with values. */
for (j=0;j<Y_LENGTH; j++)
for (i=0; i< X_LENGTH; i++)
array_datafj][i]= (i +j) + 1;

/* Define the location, pattern, and size of the data set */
for (i=0; i < rank; i++) {

start[i] = 0;

edgesi] = dims][i];

[* Write the stored data to the "Ex_Array_3" data set. The fifth \

* argument must be explicitly cast to a generic pointer to conform \

* to the HDF API definition for SDwritedata.*/

status = SDwritedata(sds_id, start, NULL, edges, (VOIDP)array_data);

/* Terminate access to the array. */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file. */
status = SDend(sd_id);

}

FORTRAN: PROGRAM FILLED ARRAY

integer*4 sd_id, sds_id, rank

integer dims(2), start(2), edges(2), stride(2), status
integer*2 i, j

integer sfstart, sfcreate, sfwdata, sfendacc, sfend

C DFACC_CREATE and DFNT_INT16 are defined in hdf.h.

integer*4 DFACC_CREATE, DFNT_INT16

integer*4 X_LENGTH, Y_LENGTH

parameter (DFACC_CREATE =4, DFNT_INT16 =22, X_LENGTH =5,
+ Y_LENGTH = 16)

integer*2 array_data(X_LENGTH, Y_LENGTH)

C Create and open the file and initiate the SD interface.
sd_id = sfstart(Example3.hdf, DFACC_CREATE)

C Define the rank and dimensions of the data set to be created.
rank = 2
dims(1) = X_LENGTH
dims(2) = Y_LENGTH

C Create the data set.
sds_id = sfcreate(sd_id, 'Ex_array_3', DFNT_INT16, rank, dims)

C Fill the stored-data array with values.

May 14, 1997 3-31

National Center for Supercomputing Applications

do20j=1, Y_LENGTH
do10i=1, X_LENGTH
array_data(i, j)=i+j-1
10 continue
20 continue

C Define the location, pattern, and size of the data set
C that will be written to.

start(1) =0

start(2) =0

edges(1) = X_LENGTH

edges(2) = Y_LENGTH

stride(1) =1

stride(2) = 1

C Write the stored data to the "Ex_array_3" data set.
status = sfwdata(sds_id, start, stride, edges, array_data)

C Terminate access to the array.
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

3.5.2.2 Writing Slabs to an SDS Array

To allow preexisting data to be modified, the HDF library does not pr&@wtitedata from

overwriting one slab with another. As a result, the calling program is responsible for managing
any overlap when writing slabs. The HDF library will issue an error if a slab extends past the valid
boundaries of the SDS data set, although appending data along an unlimited dimension is allowed.

EXAMPLE 4. Writing a Slab of Data to an SDS

These examples show how to write a series of slabs to a data set. The programs create a three-
dimensional array with the size of the x-dimension being four elements, the y-dimension five ele-
ments and the z-dimension six elements. As the data set elements are written, the slabs are
"sliced" along the y-dimension.

Note that thestart, edgeandstride arguments irs Dwritedata refer to the coordinate locations in
the file representation of the data set, not the location withiartleedata array. Therefore, the
actual slab to be written is first buffered in #xedata array.

In most real-world HDF-based applications that perform slab writesyitbedata array would
be a buffer area for data previously read irsByeaddata In this example, this data read step has
been omitted so that this example can focus on the slab write procedure.

C: #include "hdf.h"
#include "mfhdf.h"

#define X_LENGTH 4
#define Y_LENGTH 5
#define Z_LENGTH 6

main()

{

int32 sd_id, sds_id, rank, status;

int32 dims[3], start[3], edges[3];

int16 write_data[Z_LENGTH][Y_LENGTH][X_LENGTH];
int16 zx_data[Z_LENGTH][X_LENGTH];

3-32 May 14, 1997

intni, j, k;

/¥ Open the file. */
sd_id = SDstart("Example4.hdf', DFACC_CREATE);

/* Define the rank and dimensions of the array to be created. */
rank = 3;

dims[0] = Z_LENGTH;

dims[1] = Y_LENGTH;

dims[2] = X_LENGTH,;

/* Create the array. */
sds_id = SDcreate(sd_id, "Ex_array_4", DFNT_INT16, rank, dims);

/* Compute and store the values that will be written to the data \
set. Fill the write_data array along the x-axis first. */

for (k=0; k <Z_LENGTH,; k++)
for (j=0; j < Y_LENGTH; j++)
for (i=0; i < X_LENGTH; i++)
write_data[K][j]i] = (i + 1) + + 1) + (k + 1);

/¥ Within each for loop, set the start and edge parameters to write \
a 4-by-6 element slab of stored data from the write_data array to\
the data set. */

edges[0] = Z_LENGTH,;
edges[1] = 1;

edges[2] = X_LENGTH,;
start[0] = start[2] = 0;

for (j = dims[1]; j > 0; j--) {
start[1] =j - 1;
for (k=0; k <Z_LENGTH; k++)
for (i=0;i<X_LENGTH; i++) {
zx_data[K][i] = write_data[K][j-11[i];
status = SDwritedata(sds_id, start, NULL, edges,
(VOIDP)zx_data);

}

/* Terminate access to the data set. */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file. */
status = SDend(sd_id);

}

FORTRAN: PROGRAM WRITE SLAB

integer*4 sd_id, sds_id, rank

integer dims(3), start(3), edges(3), stride(3)
integer i, j, k, status

integer sfstart, sfcreate, sfwdata, sfendacc, sfend

C DFACC_CREATE and DFNT_INT16 are defined in hdf.h.
integer*4 DFACC_CREATE, DFNT_INT16
integer*4 X_LENGTH, Y_LENGTH, Z_LENGTH
parameter (DFACC_CREATE =4, DFNT_INT16 =22, X_LENGTH =4,
+ Y_LENGTH=5,Z LENGTH = 6)

May 14, 1997 3-33

National Center for Supercomputing Applications

integer*2 write_data(X_LENGTH, Y_LENGTH, Z LENGTH)
integer*2 zx_data(X_LENGTH, Z_LENGTH)

C Create thefile.
sd_id = sfstart(Example4.hdf, DFACC_CREATE)

C Define the rank and dimensions of the array to be created.
rank =3
dims(1) = X_LENGTH
dims(2) = Y_LENGTH
dims(3) = Z_LENGTH

C Create the array.
sds_id = sfcreate(sd_id, 'Ex_array_4', DFNT_INT16, rank, dims)

Compute and store the values that will be later written to the
selected array data set. Fill the array_data array along the
x-axis first.
do30k=1,Z LENGTH
do20j=1, Y_LENGTH
do10i=1, X_LENGTH
write_data(i, j, k) =i+j+k
10 continue
20 continue
30 continue

[oNeN¢e]

Within each do loop, set the start and edge parameters so that
a 4-by-6 element slab of stored data will be written from the
array_data array to the data set.

edges(1l) = X_LENGTH

edges(2) =1

edges(3) = Z_LENGTH

start(1) =0

start(3) =0

stride(1) =1

stride(2) = 1

stride(3) =1

OO0

do60j=Y_LENGTH, 0, -1
start(2) =j-1
do50k=1,Z LENGTH
do40i=1, X_LENGTH
zx_data(i, k) = write_data(j, j-1, k)
status = sfwdata(sds_id, start, stride, edges, zx_data)
40 continue
50 continue
60 continue

C Terminate access to the data set.
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

EXAMPLE 5. Altering Values Within an Array Data Set

These examples demonstrate the procedure for changing the value of one element, located in the
second column and tenth row, of a data set.

3-34 May 14, 1997

This procedure can be used to alter the values of a group of elements within the data set by chang-
ing thestart andedge arguments of the second call of ®Bwritedata function. Notice that a
NULL value is passed int8Dwritedata in the C program instead of thide array.

C: #include "hdf.h"
#include "mfhdf.h"

#define X_LENGTH 5
#define Y_LENGTH 16

main()

{

int32 sd_id, sds_id, status;

int32 start[2], edges[2];

int16 write_data[Y_LENGTH][X_LENGTH], intval;
intn i, j;

/¥ Open the file. */
sd_id = SDstart("Example3.hdf', DFACC_RDWR);

/* Select the first data set. */
sds_id = SDselect(sd_id, 0);

/¥ Compute and store the values that will be written to the\
selected array data set. */
for (j=0;j<Y_LENGTH,; j++)
for (i=0; i< X_LENGTH; i++)
write_datal[j][i] = (i+ 1) + (+ 1) * 10;

/¥ Set up the start and edge parameters to write the buffered
data to the entire array data set. */

start[0] = start[1] = 0;

edges[0] = Y_LENGTH;

edges[1] = X_LENGTH;

/* Write the buffered data to the "Ex_array_3" data set. The fifth \
argument must be explicitly cast to a generic pointer to conform \
to the HDF API definition of SDwritedata.*/

status = SDwritedata(sds_id, start, NULL, edges, (VOIDP)write_data);

/* Alter a value (second column, tenth row) within this data set. */
intval = 15;

start[0] = 10;

start[1] = 1;

edges[0] = 1;

edges[1] = 1;

status = SDwritedata(sds_id, start, NULL, edges, (VOIDP)&intval);

/* Terminate access to the data set. */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file. */
status = SDend(sd_id);

}

FORTRAN: PROGRAM ALTER DATA

integer*4 sd_id, sds_id

integer start(2), edges(2), stride(2)

integer i, j, status

integer sfstart, sfselect, sfwdata, sfendacc, sfend

May 14, 1997 3-35

National Center for Supercomputing Applications

3.5.2.3 Appending Data to an SDS Array Using the Unlimited Dimension

If one dimension of an SDS array must be extendable, it is possible to crepigealable SDS
array. An SDS array is appendable if one dimension is specified as an “unlimited” when the array

is created.

In C, if theSDcreateparametetiim_sizes[0]

10
20

DFACC_RDWR is defined in hdf.h.
integer*4 DFACC_RDWR
integer*4 X_LENGTH, Y_LENGTH

parameter (DFACC_RDWR =3, X_LENGTH =5, Y_LENGTH = 16)

integer*2 array_data(X_LENGTH, Y_LENGTH), intval

Open the file and initiate the SD interface.
sd_id = sfstart(Example3.hdf, DFACC_RDWR)

Select the first data set.
sds_id = sfselect(sd_id, 0)

Compute and store the values that will be later written to the data

set.
do20j=1, Y_LENGTH
do10i=1, X LENGTH
array_data(i, j)=i+j* 10
continue
continue

Initialize the start, edge and stride parameters to write the
stored data to the data set.

start(1) =0

start(2) =0

edges(1l) = X_LENGTH

edges(2) = Y_LENGTH

stride(1) =1

stride(2) = 1

Write the stored data to the data set.
status = sfwdata(sds_id, start, stride, edges, array_data)

Alter the value of the data set element in the second column,
tenth row to be '15’.

intval = 15

start(1) =1

start(2) = 10

edges(1)=1

edges(2) =1

status = sfwdata(sds_id, start, stride, edges, intval)

Terminate access to the data set.
status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

3-36 May 14, 1997

is assigned the vallsd_UNLIMITEDIt is consid-

ered to be an unlimited dimension. This is the only dimension that may be specified as unlimited
in a C program and can also be understood afr¢tielimension or the dimension of thevest

rank value, of the SDS. In Fortran-77, only gt dimension or the dimension of theghestrank

value, can be unlimited. In other words, in Fortrantinv sizes(rank) must be set to the value
SD_UNLIMITEDto make the array appendable.

To append data to an extensible data set without overwriting data, specify the appsepriate
coordinates in th&Dwritedata routine. For example, if the current coordinate boundary of an
unlimited dimension is defined as 15, appending data to the array without overwriting existing
data requires start coordinate of 16. To append data by overwriting data, spesifyta coor-

dinate less than the current boundary of the unlimited dimension. In either case, all but the unlim-
ited coordinate istart must fall within the boundaries of the original array definition.

Any time a write operation is attempted beyond the current boundary, the HDF library will auto-
matically adjust the dimension record to the new length. If the new data both begins and ends past
the boundary of the array, locations between the existing boundary and the beginning of the new
data stream are initialized to the assigned fill value if there is one or the default fill value if none is
assigned.

EXAMPLE 6.

Appending Data to an SDS Array Using an Unlimited Dimension

In the C example, the length of the SDS array's y-dimension (or the first dimension) is set to the
valuesD_UNLIMITED, which defines the x-dimension (or the second and last dimension) as
appendable. In the Fortran-77 version, the length of the y-dimension (or the second and last
dimension) is set to the val$®_UNLIMITED. Again, this is because only the dimension of the
highest rank (in this case the x-dimension is of rank 1 and the y-dimension is of rank 2) can be
defined as appendable under the Fortran-77 interface.

C: #include "hdf.h"
#include "mfhdf.h"

#define X_LENGTH 10
#define Y_LENGTH 10

main()

{

int32 sd_id, sds_id, sds_idx;

int32 dims[2], rank;

intl6 array_datalY_LENGTH][X_LENGTH], append_data[X_LENGTH];
int32 start[2], edges[2];

intn i =0, j, status;

[* Open the file and initiate the SD interface. */
sd_id = SDstart("Example3.hdf', DFACC_RDWR);

/* Define the rank and dimensions of the array. Make the first \
array dimension appendable by defining it's length to be \
unlimited.*/

rank = 2;

dims[0] = SD_UNLIMITED;

dims[1] = X_LENGTH;

[* Create the array data set. */
sds_id = SDcreate(sd_id, "Ex_File_6", DFNT_INT16, rank, dims);

[* Store the array values. */
for j=0; < Y_LENGTH; j++) {
for (i=0; i < X_LENGTH; i++)
array_datafj]il=(@i+ 1)+ (+1);

May 14, 1997 3-37

National Center for Supercomputing Applications

/* Write the data to the array. */
start[0] = start[1] = 0;

edges[0] = Y_LENGTH;
edges[1] = X_LENGTH,;

/* Perform the initial write to the array data set. */
status = SDwritedata(sds_id, start, NULL, edges, (VOIDP)array_data);

/* Terminate access to the array data set, terminate access \
to the SD interface and close the file. */

status = SDendaccess(sds_id);

status = SDend(sd_id);

/* Reopen the file and initiate the SD interface in preparation \
for appending data to the data set. Then select the first\
data set.*/

sd_id = SDstart("Example3.hdf', DFACC_RDWR);

sds_idx = SDnametoindex(sd_id, "Ex_File_6");

sds_id = SDselect(sd_id, sds_idx);

[* Store the array values to be appended to the data set. */
for (i=0; i< X_LENGTH,; i++)
append_data[i] =i + 1;

/* Define the location of the append to start at the first column \
of the sixteenth row of the data set and to stop at the end of the \
fifth row. */

start[0] = Y_LENGTH;

start[1] = 0;

edges[0] = 1;

edges[1] = X_LENGTH,;

/* Append the stored data to the array data set. */
status = SDwritedata(sds_id, start, NULL, edges, (VOIDP)append_data);

/* Terminate access to the array data set. */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file. */
status = SDend(sd_id);

}

FORTRAN:

PROGRAM APPEND DATA

integer*4 sd_id, sds_id, sds_idx

integer dims(2), rank

integer start(2), edges(2), stride(2)

integer status

integer sfstart, sfcreate, sfwdata, sfselect, sfendacc, sfend
integer sfn2index

C DFACC_RDWR and DFNT_INT16 are defined in hdf.h, SD_UNLIMITED
C isdefined in hdf.h.

integer4 DFACC_RDWR, DFNT_INT16, SD_UNLIMITED

integer4 X_LENGTH, Y_LENGTH

parameter (DFACC_RDWR = 3, DFNT_INT16 = 22, SD_UNLIMITED =0,
+ X_LENGTH =10, Y_LENGTH = 10)

integer*2 array_data(X_LENGTH, Y_LENGTH)
integer*2 append_data(X_LENGTH)
integer*2 i, j

C Open the file and initiate the SD interface.

3-38

May 14, 1997

10
20

30

sd_id = sfstart(Example3.hdf, DFACC_RDWR)

Define the rank and dimensions of the array. Make the

last dimension appendable by defining it's length as unlimited.
rank =2

dims(1) = X_LENGTH

dims(2) = SD_UNLIMITED

Create the array data set.
sds_id = sfcreate(sd_id, 'Ex_File_6', DFNT_INT16, rank, dims)

Store the array values.
do20j=1, Y_LENGTH
do10i=1, X_LENGTH
array_data(i, j) =i+]j
continue
continue

Write the data to the array.
start(1) =0

start(2) =0

edges(1l) = X_LENGTH
edges(2) = Y_LENGTH
stride(1) =1

stride(2) = 1

Perform the initial write to the data set.
status = sfwdata(sds_id, start, stride, edges, array_data)

Terminate access to the data set, terminate access
to the SD interface and close the file.

status = sfendacc(sds_id)

status = sfend(sd_id)

Reopen the file and initiate the SD interface in preparation
for appending data. Then select the first data set.

sd_id = sfstart(Example3.hdf, DFACC_RDWR)

sds_idx = sfn2index(sd_id, 'Ex_File_6")

sds_id = sfselect(sd_id, sds_idx)

Store the array values to be appended to the data set.
do30i=1, X_LENGTH

append_data(i) =i
continue

Define the location of the append to start at the first

column of the third row and to stop at the end of the third row.
start(1) =0

start(2) = Y_LENGTH

edges(1l) = X_LENGTH

edges(2) =1

Append the stored data to the data set.
status = sfwdata(sds_id, start, stride, edges, append_data)

Terminate access to the array data set.
status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

May 14, 1997

3-39

National Center for Supercomputing Applications

3.5.3 Compressing SD SDS Array Data: SDsetcompress

Uncompressed SDS array data is compressed, or new compressed data sets are created, by calling
the SDsetcompressoutine.SDsetcompressompresses the data set data at the time it is called

(not during the next call t8Dwritedata)and supports all standard HDF compression algorithms.
These algorithms are:

JPEG.

Adaptive Huffman.

GZIP "deflation”. (Lempel/Ziv-77 dictionary coder)
Run-length encoding.

In the future, the following algorithms may be included: Lempel/Ziv-78 dictionary coding, an
arithmetic coder, and a faster Huffman algorithm.

The SDsetcompressoutine is a simplified interface to th#Ccreate routine, and should be used
instead oHCcreate unless the user is familiar with working with the lower-level routines. All
essential compression functionality is providedS®ysetcompress

The syntax of th&Dsetcompressoutine is as follows:

C: status = SDsetcompress(sds_id, comp_type, c_info);

Thecomp_type parameter is the compression type definition and is SEdNMP_CODE_JPE®r
JPEG compressionOMP_CODE_RLU®r run-length encoding;omp_coODE_DEFLATar Gnu ZIP (or
GZIP) compressior;OMP_CODE_SKPHUFer skipping Huffman ocompP_CODE_NoNer no com-
pression.

Thec_info parameter is a pointer to a union structure of tyger_info. If comp_type is set to
COMP_CODE_NONE COMP_CODE_R\&his is unused and can be sektaL If it's set to
COMP_CODE_SKPHURReskphuff ~ structure in theoder_info union must be provided informa-
tion about the size, in bytes, of the data elements. If it's sEbN®_CODE_DEFLATEhe deflate
structure in theoder_info union must be provided information about the compression "effort”.

For example, to compress unsigned 16-bit integer data using the adaptive Huffman algorithm, the
following definition andSDsetcompresgall is used.

coder_info c_info;
c_info.skphuff.skp_size = sizeof(uint16);
status = SDsetcompress(sds_id, COMP_CODE_SKPHUFF, &c_info);

To compress a data set using the gzip deflation algorithm, with the maximum "effort" level desig-
nated, the following definition an8Dsetcompres<all is used.

coder_info c_info;
c_info.deflate_level = 9;
status = SDsetcompress(sds_id, COMP_CODE_DEFLATE, &c_info);

To compress a data set using the JPEG algorithm, with the quality level of 80 designated and the
"force baseline" parameter enabled, the following definition@Ddetcompreszall is used.

coder_info c_info;

c_info.quality = 80;

c_info.force_baseline = TRUE;

status = SDsetcompress(sds_id, COMP_CODE_JPEG, &c_info);

3-40 May 14, 1997

SDsetcompresgunctionality is currently limited to creating new datasets or appending new slabs
onto existing datasets. Overwriting existing dataset data will be supported in the future.

Note that there is currently no Fortran-77 version of3Bsetcompressoutine. It will be
included in a future release.

TABLE 3E

SDsetcompress Parameter List

) Data Type o
Routine Name Parameter c Description
sds_id int32 Data set identifier.
SDsetcompress | comp_type char * Compression method.
cinfo comp_info* | Pointer to compression information structure.

3.5.3.1 Rules for Writing to a Compressed Data Set

Due to certain limitations in the way that compressed data sets are stored, they aren’t writable in
the way that uncompressed data sets are. The "rules” for writing to a compressed data set are the
following:

1. Write the compressed data, in its entirety, to the data set. Build the data set in-core,
then write it to the data set in a single write operation.

2. Append to a compressed data set. In other words, write to a compressed data set along
it's unlimited dimension. If an unlimited dimension hasn’t been defined for the data
set, it can’t be appended to in this way.

3. Write the compressed data, in its entirety, to any chunk in a chunked SDS.

These rules imply that it is impossible to overwrite subsets of non-chunked data sets. This is
because the existing compression algorithms supported by HDF don’t allow partial modification
to a compressed datastream.

3.5.4 External File Operations

An external SDS arrayis an array stored in a file separate from the file containing the metadata
for the array. With external arrays, it is possible to link data sets in the same HDF file to multiple
external files or data sets in different HDF files to the same external file. Routines for writing
external SDS arrays are only available in the C interface and can only be used with HDF files.
Unidata-formatted netCDF files are not supported by these routines.

External arrays are functionally identical to arrays in the primary data file. During slab operations,
the HDF library keeps track of the beginning of the data set and adds slabs at the appropriate posi-
tion in the external file. When data is written or appended along a specified dimension, the HDF
library writes along that dimension in the external file and updates the appropriate dimension
record in the primary file.

There are two methods for creating external SDS arrays. The user can create a new data set in an
external file or move data from an existing internal data set to an external file. In either case, only
the array values are stored externally, all other data set information remains in the primary HDF
file. When an external array is created, a sufficient amount of space is reserved in the external file
for the entire data set. The data set will begin at the specified byte offset and extend the length of
the data set. The write operation will overwrite the target locations in the external file. The exter-

May 14, 1997 3-41

National Center for Supercomputing Applications

nal file may be of any format, provided the data types, byte ordering, and dimension ordering are
supported by HDF. The primary file must be an HDF file.

3.5.4.1 Specifying the Directory Search Path of an External File: HXsetdir

There are three filesystem locations the HDF external file routines check when determining the
location of an external file. They are, in order of precedence:

1. The directory path specified by the last call to it¥setdir routine.
2. The directory path specified by the SHDFEXTDIR shell environment variable.
3. The locations searched by the standzpen(3)routine.

Until the HXsetdir routine is called, either the directories specified by the $HDFEXTDIR envi-
ronment variable are searched if the variable has been set, or Item 3 will be the search method
used. If theHXsetdir routine hasn’t been called and the $SHDFEXTDIR variable hasn't been set,
Item 3 will again be the search method used. Setting the $SHDFEXTDIR environment variable
effectively ensures that Item 3 will never be used as a default method as it can’t be unset within a
calling program.

HXsetdir has one argument, a string specifying the directory list to be searched. This list can con-
sist of one directory name or a set of directory names separated by cottdsetélir is passed a

null string and the $HDFEXTDIR environment variable has been set, the directories specified by
$HDFEXTDIR are searched, or Item 3 will be the search method used if $HDFEXTDIR hasn't
been set.

If an error condition is encounteradXsetdir leaves the directory search path unchanged. The
directory search path specified BXsetdir remains in effect throughout the scope of the calling
program.

The parameters ¢iXsetdir are described further in the following table.

TABLE 3F

HXsetdir Parameter List

Routine Name Data Type o
Parameter Description
(Fortran-77) C Fortran-77

HXsetdir dir_list char * character* (*) | Directory list to be searched.

(hxsdir) dir_length None integer Length of thedir_list string.

3.5.4.2 Specifying the Location of the Next External File to be Created: HXsetcreatedir

HXsetcreatedir specifies the directory location of the next external file to be created. It overrides
the directory location specified by the $HDFEXTCREATEDIR and the locations searched by the
open(3)call in the same manner HXsetdir. Specifically, the precedence is:

1. The directory specified by the last call to th¥setcreatedir routine.
2. The directory specified by the SHDFEXTCREATEDIR shell environment variable.
3. The locations searched by the standzpen(3)routine.

HXsetcreatedir has one argument: the directory location of the next external file to be created. If
an error is encountered, the directory location is left unchanged.

The parameters diXsetcreatedir are described further in the following table.

3-42

May 14, 1997

TABLE 3G

HXsetcreatedir Parameter List

Routine Name Data Type o
Parameter Description
(Fortran-77) C Fortran-77
HXsetcreatedir dir char * character* (*) | Directory location of the next external file to be created.
(hxsdir) dir_length None integer Length of thedir string.

3.5.4.3 Creating a Data Set in an External File: SDsetexternalfile
Creating a data set using external data involves the following steps:
1. Create the array.
2. Specify that an external data file is to be used.
3. Write data to the array.
4. Terminate access to the data set.

To create a data set containing an external file, the calling program must make the following calls.

C: sds_id = SDcreate(sd_id, name, number_type, rank, dim_sizes);
status = SDsetexternalfile(sds_id, filename, offset);
status = SDwritedata(sds_id, start, stride, edge, data);
status = SDendaccess(sds_id);

FORTRAN: sds_id = sfcreate(sd_id, name, number_type, rank, dim_sizes)
status = sfsextf(sds_id, filename, offset)
status = sfwdata(sds_id, start, stride, edge, data)
status = sfendacc(sds_id)

SDsetexternalfilemarks the SDS identified ks id as one whose data is to be written to an
external file. The paramet@iename is the name of the external data file, affget is the

number of bytes from the beginning of the external file to the location where the first byte of data
should be written.

When used in conjunction witBDcreate SDsetexternalfiledoes not actually write data to an
external file. Instead it marks the data set as an external data set for all subS&yuéraidata
operationsSDsetexternalfilecan only be called once after a data set has been created.

If a file with the same name &@fename exists in the current directory search path, HDF will
access it as the external file. If the file does not exist, HDF will create one in the directory named
in the last call ttHXsetcreatefile If an absolute pathname is specified, the external file will be
created at the location specified by the pathname, overriding the location specified by the last call
to HXsetcreatefile

Once the name of an external file is established, it is impossible to change it without breaking the
association between the data set’s metadata and the data it describes.

Use caution when writing to existing external or primary files as the HDF library starts the write
operation at the specified offset without checking if data is being overwritten.

For more information on the parameters usefilisetexternalfilerefer to the following table.

May 14, 1997 3-43

National Center for Supercomputing Applications

TABLE 3H SDsetexternalfile Parameter List
Routine Name Data Type o
Parameter Description
(Fortran-77) C Fortran-77
sds_id int32 integer Data set identifier.
SDsetexternalfile filename char * character* (*) | Name of the external data set.
(sfsext)) . Offset in bytes from the beginning of the external file to
offset int32 integer the SDS data.
3.5.4.4 Moving Data to an External File
Data can be moved from a primary file to an external file. To do so requires the following steps:
1. Select the array.
2. Specify the external data file.
3. Terminate access to the data set.
To move data to an external file, the calling program must make the following calls:
C: sds_id = SDselect(sd_id, sds_index);
status = SDsetexternalfile(sds_id, filename, offset);
status = SDendaccess(sds_id);
FORTRAN: sds_id = sfcreate(sd_id, name, number_type, rank, dim_sizes)
status = sfsextf(sds_id, filename, offset)
status = sfendacc(sds_id)
WhenSDsetexternalfileis used in conjunction witBDselect it will immediately write the exist-
ing data to the external file. Any data in the external file that occupies the space reserved for the
external array will be overwritten as a result of this operation. Data can only be moved to an exter-
nal file once after the parent data set has been created and the data set must first exist in the pri-
mary HDF file. During the operation, the data is written to the external file as a contiguous stream
regardless of how it is stored in the primary file. Because data is moved “as is”, any unwritten
locations in the data set are preserved in the external file. Subsequent read and write operations
performed on the data set will access the external file.
EXAMPLE 7. Writing SDS Data to an HDF File Starting at an Offset
A subset of values stored in an SDS can be moved from an HDF file to an external file, as shown
in the following examples.
C: #include "hdf.h"
main()
{
int32 sd_id, sds_id, offset, status;
/* Open the file. */
sd_id = SDstart("Example3.hdf', DFACC_RDWR);
/* Get the identifier for the first data set. */
sds_id = SDselect(sd_id, 0);
/* Create a file named "subfile1" and move the data set values into
* it, starting at byte location 24. */
offset = 24;
3-44 May 14, 1997

status = SDsetexternalfile(sds_id, "subfilel", offset);

/* Terminate access to the data set, SD interface and file. */
status = SDendaccess(sds_id);
status = SDend(sd_id);

}

FORTRAN: PROGRAM WRITE EXTFILE

integer*4 sd_id, sds_id, offset, DFACC_RDWR
integer status
integer sfstart, sfselect, sfsextf, sfendacc, sfend

C DFACC_RDWR is defined in hdf.h.
parameter (DFACC_RDWR = 3)

C Open the HDF file.
sd_id = sfstart(Example3.hdf, DFACC_RDWR)

C Getthe identifier of the first data set.
sds_id = sfselect(sd_id, 0)

C Create a file named "subfile1" and move the data set
C intoit, starting at byte location 24.

offset =24
status = sfsextf(sds_id, 'subfilel’, offset)

C Dispose of the data set identifier to terminate access.
status = sfendacc(sds_id)

C Dispose of the file identifier to close the file.
status = sfend(sd_id)

end

3.6 Reading Data from an SDS Array: SDreaddata

Selecting an SD data set and reading one or more slabs from it involves the following steps:
1. Select an SDS.
2. Read a slab or series of slabs.

To read data from an SDS array, the calling program must contain the following function calls:

C: sds_id = SDselect(sd_id, sds_index);
status = SDreaddata(sds_id, start, stride, edge, data);

FORTRAN: sds_id = sfselect(sd_id, sds_index)
status = sfrdata(sds_id, start, stride, edge, data)

SDreaddatareads an entire array, slabs of an array or it can be used to read a subset of the array.
For more information on reading attributes or scales see Section 3.10.3 on page 82 and
Section 3.9.4.3 on page 73.

Thesds_id argumentis the SDS id returned®®createor SDselect As with SDwritedata, the
argumentstart , stride , andedge respectively describe the n-dimensional coordinate of the

slab the SD interface will begin the read operation, number of locations the current SDS location
will be moved forward after each read, and the length of each dimension of the subset to be read.

May 14, 1997 3-45

National Center for Supercomputing Applications

If the SDS array is smaller than tisga argument array, the amount of data read will be trun-
cated to the size of the SDS array. For additional information cstdtoe , stride andedge
parameters refer to Section 3.5.2 on page 28.

There are two Fortran-77 versions of this routsfedata andsfrcdata. Thesfrdata routine reads
numeric scientific data arsfrcdata reads character scientific data.

The parameters @Dreaddataare further described in the following table. Note that, because
there are two Fortran-77 versionsSibreaddata there are correspondingly two entries in the
“Data Type” field of thedataparameter.

TABLE 3 SDreaddata Parameter List
Routine Name Data Type o
Parameter Description
(Fortran-77) C Fortran-77
sds_id int32 integer Data set identifier.
start int32] integer (*) Array contAainingAthe position the read will staft
for each dimension.

SDreaddata Array containing the number of data locations
(sfrdata/ stride int32] integer (*) the current location is to be moved forward
sfrcdata) before the next read.

. . . Array containing the number of data elements
edge int32 [integer () that will be read along each dimension.
data VOIDP <valid numeric data typej Buffer the data will be read into.
EXAMPLE 8. Reading an Entire SDS
WhenSDreaddatais used to read an entire n-dimensional SDS array, the coordinates for the start
position must begin at 0 for each dimensistar(={0,0, ... 0}), the interval between each
read must equal 1 for each dimensistide=NULL or stride={1,1, ... 1}), and the size
of each dimension must equal the size of the array itsgé€{dim_size_1, dim_size_2,
... dim_size_n}). Thedata buffer must have enough preallocated space to hold the data.
C:. #include “hdf.h”

#include "mfhdf.h"

#define X_LENGTH 4

#define Y_LENGTH 5

#define Z_LENGTH 6

main()

{

int32 sd_id, sds_id, status;

int32 start[3], edges[3];

intl6 array_data[Z LENGTH][Y_LENGTH][X_LENGTH]J;

[* Open the file and initiate the SD interface. */

sd_id = SDstart("Example4.hdf', DFACC_RDONLY);

[* Select the first (and in this case, only) data set in the file. */

sds_id = SDselect(sd_id, 0);

[/* Define the location, pattern, and size of the data to read. */

start[0] = start[1] = start[2] = O;

edges[0] = Z_LENGTH,;

edges[1] = Y_LENGTH;

3-46 May 14, 1997

edges[2] = X_LENGTH,;

/* Read the array. */
status = SDreaddata(sds_id, start, NULL, edges, (VOIDP)array_data);

/* Terminate access to the array */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file. */
status = SDend(sd_id);

}

FORTRAN: PROGRAM CONFIRM ARRAY

integer*4 sd_id, sds_id, status
integer start(3), edge(3), stride(3)
integer sfstart, sfselect, sfrdata, sfendacc, sfend

C DFACC_RDONLY is defined in hdf.h. MAX_NC_NAME and MAX_VAR_DIMS
C are defined in netcdf.h.
integer*4 DFACC_RDONLY, MAX_NC_NAME, MAX_VAR_DIMS
integer*4 X_LENGTH, Y_LENGTH, Z_LENGTH
parameter (DFACC_RDONLY =1, MAX_NC_NAME = 256,
+ MAX_VAR_DIMS =32, X_LENGTH = 4,
+ Y_LENGTH=5,Z LENGTH = 6)
integer2 array_data(X_LENGTH, Y_LENGTH, Z_LENGTH)
integer dims(MAX_VAR_DIMS)

C Open the file and initiate the SD interface.
sd_id = sfstart(Example4.hdf, DFACC_RDONLY)

C Select the first (and in this case, only) data set in the file.
sds_id = sfselect(sd_id, 0)

C Define the location, pattern, and size of the data to read
C from the data set.
dims(1) = X_LENGTH
dims(2) = Y_LENGTH
dims(3) =Z_LENGTH
start(1) =0
start(2) =0
start(3) =0
stride(1) =1
stride(2) = 1
stride(3) =1
edge(1) = dims(1)
edge(2) = dims(2)
edge(3) = dims(3)

C Read the array data set.
status = sfrdata(sds_id, start, stride, edge, array_data)

C Terminate access to the array data set.
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

EXAMPLE 9. Reading a Subset of an SDS Array

May 14, 1997 3-47

National Center for Supercomputing Applications

Thestart andedges arguments of th&Dreaddatafunction can be used to read a subset of the
entire data set, as shown in the following examples.

C: #include "hdf.h"
#include "mfhdf.h"

#define X_LENGTH 5
#define Y_LENGTH 16

main()

{

int32 sd_id, sds_id;
int32 start[2], edges[2];
int16 all_data[Y_LENGTH][X_LENGTH], subset_data[7][3], status;

/* Open the file for read-only access. */
sd_id = SDstart("Example3.hdf', DFACC_RDONLY);

[* Select the first data set. */
sds_id = SDselect(sd_id, 0);

* First, read the entire data set. */

start[0] = start[1] = 0;

edges[0] = Y_LENGTH;

edges[1] = X_LENGTH,;

status = SDreaddata(sds_id, start, NULL, edges, (VOIDP)all_data);

/* Read a subset of the data set. */

start[0] = 1;

start[1] = 1;

edges[0] = 7;

edges[1] = 3;

status = SDreaddata(sds_id, start, NULL, edges, (VOIDP)subset_data);

/* Terminate access to the array. */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file. */
status = SDend(sd_id);

}

FORTRAN: PROGRAM READ SUBSET

integer*4 sd_id, sds_id
integer start(2), edges(2), stride(2), status
integer sfstart, sfselect, sfrdata, sfendacc, sfend

C DFACC_RDONLY is defined in hdf.h.
integer*4 DFACC_RDONLY
integer*4 X_LENGTH, Y_LENGTH
parameter (DFACC_RDONLY =1, X_LENGTH =5, Y_LENGTH = 16)
integer<2 all_data(X_LENGTH, Y_LENGTH)
integer*2 subset_data(3, 7)

C Open thefile.
sd_id = sfstart('Example3.hdf, DFACC_RDONLY)

C Select the first data set.
sds_id = sfselect(sd_id, 0)

C Read the entire data set.
start(1) =0

3-48 May 14, 1997

start(2) =0

edges(1) =5

edges(2) =16

stride(1) =1

stride(2) = 1

status = sfrdata(sds_id, start, stride, edges, all_data)

C Read a subset from the middle of the data set.
start(1) =1
start(2) = 1
edges(1) =3
edges(2) =7
status = sfrdata(sds_id, start, stride, edges, subset_data)

C Terminate access to the array.
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

EXAMPLE 10. Sampling SDS Data

These examples demonstrate how samples of data set elements can be read bystrgiag the
argument of th&Dreaddatafunction. Here we read every tenth row and every other column.

C: #include "hdf.h"
#include "mfhdf.h"

#define X_LENGTH 10
#define Y_LENGTH 20

main()

{

int32 sd_id, sds_id, rank, start[2], edges[2], stride[2], dims[2];
int16 all_data[Y_LENGTH][X_LENGTH], sample_data[5][5];
intn i, j;

int16 status;

/* Open the file. */
sd_id = SDstart("Example10.hdf*, DFACC_CREATE);

/* Define the rank and dimensions of the array to be created. */
rank = 2;

dims[0] = Y_LENGTH;

dims[1] = X_LENGTH;

/* Create the array. */
sds_id = SDcreate(sd_id, "Ex_array_10", DFNT_INT16, rank, dims);

/* Compute and store the data values. */
for (j=0; j< Y_LENGTH; j++) {
for (i=0; i< X_LENGTH; i++)
all_datalj][i] =i +j* 10;
}
/* Define the start and edge parameters. */

start[0] = start[1] = 0;
edges[0] = Y_LENGTH;

May 14, 1997 3-49

National Center for Supercomputing Applications

edges[1] = X_LENGTH,;

/* Write the buffered data in all_data to the data set. */
status = SDwritedata(sds_id, start, NULL, edges, (VOIDP)all_data);

/* Close the SD interface and the file, then re-open both and \
select the first and only data set in the file. */

status = SDendaccess(sds_id);

status = SDend(sd_id);

sd_id = SDstart("Example10.hdf', DFACC_RDONLY);

sds_id = SDselect(sd_id, 0);

/* Read the data into the sample_data array, skipping every fourth \
row and every other column. */

start[0] = start[1] = 0;

edges[0] = 5;

edges[1] =5;

stride[0] = 4;

stride[1] = 2;

status = SDreaddata(sds_id, start, stride, edges, (VOIDP)sample_data);

/* Terminate access to the array */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file */
status = SDend(sd_id);

}

FORTRAN: PROGRAM READ STRIDES

integer*4 sd_id, sds_id, rank

integer*4 start(2), edges(2), stride(2), dims(2)
integer i, j, status

integer sfstart, sfcreate, sfwdata, sfrdata, sfendacc
integer sfselect, sfend

C DFACC_CREATE and DFNT_INT16 are defined in hdf.h.
integer*4 DFACC_CREATE, DFACC_RDONLY, DFNT_INT16
integer*4 X_LENGTH, Y_LENGTH
parameter (DFACC_CREATE =4, DFACC_RDONLY =1, DFNT_INT16 = 22,
+ X_LENGTH =10, Y_LENGTH = 20)

integer*2 all_data(X_LENGTH, Y_LENGTH), sample_data(5, 5)

C Create thefile.
sd_id = sfstart(Example10.hdf', DFACC_CREATE)

C Define the rank and dimensions of the array to be created.
rank =2
dims(1) = X_LENGTH
dims(2) = Y_LENGTH

C Create the array.
sds_id = sfcreate(sd_id, 'Ex_array_10', DFNT_INT16, rank, dims)

C Compute and store the data values.
do20j=1, Y_LENGTH
do10i=1, X_LENGTH
all_data(i, j)=i+j*10
10 continue
20 continue

C Setup the start and edge parameters to write the buffered

3-50 May 14, 1997

3.7

C datato the entire array data set.
start(1) =0
start(2) =0
edges(1) = X_LENGTH
edges(2) = Y_LENGTH
stride(1) =1
stride(2) = 1

C Write the buffered data in wrt_data to the data set.
status = sfwdata(sds_id, start, stride, edges, all_data)

C Close the SD interface and the file, then re-open both and
C select the first and only data set in the file.
status = sfendacc(sds_id)
status = sfend(sd_id)
sd_id = sfstart(Example10.hdf’, DFACC_RDONLY)
sds_id = sfselect(sd_id, 0)

C Readthe datainto the sample_data array, skipping every fourth row
C and every other column.

edges(1) =5

edges(2) =5

stride(1) = 2

stride(2) = 4

status = sfrdata(sds_id, start, stride, edges, sample_data)

C Terminate access to the array.
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

3.6.1 Reading Data from an External File

SDS data is read from an external file in the same way that it is read from a primary file. Whether
the SDS data is or is not stored in an external file is transparent to the user.

Obtaining Information About SD Data Sets

The routines covered in this section provide methods for obtaining information about the scientific
data sets in a file, for identifying SDSs that meet certain criteria, and for obtaining information
about the data sets themselves.

SDfileinfo obtains the number of SDSs and file attributes in a file Sibgletinfo provides infor-

mation about individual SDSs. To cycle through the data sets in a file, a calling program must use
SDfileinfo to determine the number of data sets, followed by repeated c8Ixgetinfoto view

them. The parameters of these two routines are described below. (See Table 3J on page 52.)

At times you might need to search through a file for an SDS for a given name or reference number.
The SDnametoindexroutine determines the index of an SDS from its nameS&ndftoindex
determines the index of an SDS from its reference number. The parameters of these two routines
are described below. (See Table 3K on page 54.)

3.7.1 Obtaining Information About the SDSs in a File: SDfileinfo

It is often useful to determine the number of scientific data sets and global SDS attributes con-
tained in a file before executing a series of read or write operationsOfileinfo routine is

May 14, 1997 3-51

National Center for Supercomputing Applications

designed for this purpose. To determine the contents of a file, the calling program must contain the
following calls:

C: sd_id = SDstart(filename, access_mode);
status = SDfileinfo(sd_id, n_datasets, n_file_attr);
status = SDend(sd_id);

FORTRAN: sd_id = sfstart(filename, access_mode)
status = sffinfo(sd_id, n_datasets, n_file_attr)
status = sfend(sd_id)

SDfileinfo usesn_datasets to return the number of scientific data sets in the file, and
n_file_attr to return the number of file attributes in the file.

3.7.2 Obtaining Information About a Specific SDS: SDgetinfo

Some information may be needed before reading and working with SDS arrays. For instance, if
the rank, dimension sizes and/or data type of an array are unknown, it may be impossible to allo-
cate the proper amount of memory to work with the array.Sibgetinforoutineprovides basic
information about SDS arrays.

SDgetinfotakes an SDS id as input, and returns the name, rank, dimensions, data type, and num-
ber of attributes for the corresponding SDS. The attribute count will only reflect the number of
attributes assigned to the SDS array; file attributes are not included.

TABLE 3J SDfileinfo and SDgetinfo Parameter List
Routine Name Data Type o
Parameter Description
(Fortran-77) C Fortran-77
file_id int32 integer File identifier.
SDfl_Ielnfo n_datasets int32 * integer Number of data sets in the file.
(sffinfo)
n_file_attr int32 * integer Number of global attributes in the file.
sds_id int32 integer Data set identifier
sds_name char* character* (*)| Space to put the name of the data set.
SDgetinfo rank int32 * integer Space to put the number of dimensions in the array.
(sfginfo) dim_sizes int32 [integer (*) | Space to put the size of each dimension in the array.,
data_type int32 * integer Space to put the data type for the data in the array.
nattrs int32 * integer Space to put the number of attributes in the data set|
EXAMPLE 11. Printing Data Set Names
The SDgetinfofunction can be called within a loop to retrieve the names of all data sets in an
HDF file, as shown in the following examples.
C: #include "hdf.h"
#include "mfhdf.h"
#include <stdio.h>
main()
{
int32 sd_id, sds_id, n_datasets, n_file_attrs, index, status;
int32 dim_sizes[MAX_VAR_DIMS];
int32 rank, num_type, attributes;
3-52 May 14, 1997

char name[MAX_NC_NAME];

/* Open the file and initiate the SD interface. */
sd_id = SDstart("Example5.hdf', DFACC_RDONLY);

/* Determine the contents of the file. */
status = SDfileinfo(sd_id, &n_datasets, &n_file_attrs);

/* Access and print the name of every data set in the file. */
for (index = 0; index < n_datasets; index++) {
sds_id = SDselect(sd_id, index);
status = SDgetinfo(sds_id, name, &rank, dim_sizes, \
&num_type, &attributes);
printf("name = %s\n", name);
status = SDendaccess(sds_id);

}

/* Terminate access to the SD interface and close the file. */
status = SDend(sd_id);

}

FORTRAN: PROGRAM PRINT NAMES

integer*4 sd_id, sds_id

integer*4 n_datasets, n_file_attrs, index
integer status

integer sfstart, sffinfo, sfselect, sfginfo
integer sfendacc, sfend

C DFACC_RDONLY is defined in hdf.h. MAX_NC_NAME and MAX_VAR_DIMS
C are defined in netcdf.h.
integer*4 DFACC_RDONLY, MAX_NC_NAME, MAX_VAR_DIMS
parameter (DFACC_RDONLY =1, MAX_NC_NAME = 256,
+ MAX_VAR_DIMS = 32)

integer*4 dim_sizes(MAX_VAR_DIMS)
character name *(MAX_NC_NAME)

C Open the file and initiate the SD interface.
sd_id = sfstart('Example5.hdf, DFACC_RDONLY)

C Determine the contents of the file.
status = sffinfo(sd_id, n_datasets, n_file_attrs)

C Access and print the names of every data set in the file.
do 10 index = 0, n_datasets - 1
sds_id = sfselect(sd_id, index)
status = sfginfo(sds_id, name, rank, dim_sizes, num_type,
+ attributes)

print *, "name =", name
status = sfendacc(sds_id)

10 continue

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

May 14, 1997 3-53

National Center for Supercomputing Applications

3.7.3 Locating a SDS Data Set by Name: SDnametoindex

When an SDS is created, a unique number is assigned to it by the SD library so that it can be
located in the file for future access. This number is referred to asddveof an SDS.

If the index of an SDS in an HDF file is know®DDselectcan be used immediately. If not, it is
necessary to determine the index by some other mg8@mametoindexdetermines the index of
an SDS from its name. Selecting a data set by name involves the following steps:

1. Convert the SDS name into a valid index number.
2. Select the SDS by obtaining its identifier from its index number.

To access a SDS via its name, the calling program must contain the following function calls:

C: sds_index = SDnametoindex(sd_id, sds_name);
sds_id = SDselect(sd_id, sds_index);

FORTRAN: sds_index = sfn2index(sd_id, sds_name)
sds_id = sfselect(sd_id, sds_index)

SDnametoindexreturns the index specified by thés_index parameter for the first data set in
the file with the nameds_name . If two data sets have the same na8ienametoindexreturns
the index of the first data set. The indel¥_index can then be used I8Dselectto obtain an
SDS id for the specified data set.

The SDnametoindexroutine is case-sensitive and does not accept wildcards.

3.7.4 Locating an SDS by Reference Number: SDreftoindex

In addition to an index and name, data sets are also assigned a tag and referenc& Dugfifoer.
index determines the index of the SDS from its reference number. Selecting a data set by refer-
ence number involves the following steps:

1. Convert the reference number for the SDS into a valid index number.
2. Select the SDS by obtaining its identifier from its index number.

To select a data set by reference number, the calling program must execute the following calls:

C: sds_index = SDreftoindex(sd_id, ref);
sds_id = SDselect(sd_id, sds_index);

FORTRAN: sds_index = sfref2index(sd_id, ref)
sds_id = sfselect(sd_id, sds_index)

SDreftoindex returns the index specified by thés_index parameter for the SDS in the file
with the reference numbest . The indexds_index can then be passed$®selectto obtain an
SDS id for the SDS.

Because the HDF library assigns reference numbers in unpredictable ways, reference numbers
should be used to identify SDSs only when no other means are available. Reference numbers do
not necessarily adhere to any ordering scheme.

TABLE 3K SDnametoindex and SDreftoindex Parameter List
Routine Name Data Type o
Parameter Description
(Fortran-77) C Fortran-77
SDnametoindex sd_id int32 integer SD interface identifier.
(sfn2index) sds_name char * character* (*)| Name of the data set to index.
3-54 May 14, 1997

SDreftoindex sd_id int32 integer SD interface identifier.

(sfref2index) ref int32 integer IN: Reference number for the specified data set.

EXAMPLE 12. Searching for the Index of an SDS

In these examples, an invalid data set name is specified which ressidaametoindexreturn-
ing a value of1 . A valid data set name is then provided and the returned index is used to read the
contents of the corresponding data set.

C: #include "hdf.h"
#include "mfhdf.h"

#define X_LENGTH 4
#define Y_LENGTH 5
#define Z_LENGTH 6

main()

{

int32 sd_id, sds_index, sds_id, status;
int32 start[3], edges[3];
int16 array_data[Z_LENGTH][Y_LENGTH][X_LENGTH];

/* Open the file. */
sd_id = SDstart("Example4.hdf’, DFACC_RDONLY);

/* Search for the index of a non-existent array data set. */
sds_index = SDnametoindex(sd_id, “Invalid_Data_Set_Name");

/* Error condition: sds_index contains the value -1. */

/* Search for the index of a "Ex_array_4" array data set. */
sds_index = SDnametoindex(sd_id, "Ex_array_4");

/* Select the data set corresponding to the returned index. */
sds_id = SDselect(sd_id, sds_index);

/* Read the data set data into the array_data array. */

start[0] = start[1] = start[2] = 0;

edges[0] = Z_LENGTH,;

edges[1] = Y_LENGTH;

edges[2] = X_LENGTH,;

status = SDreaddata(sds_id, start, NULL, edges, (VOIDP)array_data);

/* Terminate access to the array */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file */
status = SDend(sd_id);

}

FORTRAN: PROGRAM SEARCH INDEX

integer*4 sd_id, sds_index, sds_id, status
integer*4 start(3), edges(3), stride(3)
integer sfstart, sfn2index, sfrdata, sfendacc, sfselect

C DFACC_RDONLY is defined in hdf.h.
integer*4 DFACC_RDONLY
integer*4 X_LENGTH, Y_LENGTH, Z_LENGTH
parameter (DFACC_RDONLY =1, X LENGTH =4, Y_LENGTH =5,

May 14, 1997 3-55

National Center for Supercomputing Applications

+ Z_LENGTH = 6)
integer*2 array_data(X_LENGTH, Y_LENGTH, Z_LENGTH)

C Open thefile.
sd_id = sfstart(Example4.hdf, DFACC_RDONLY)

C Search for the index of a non-existent array data set.
sds_index = sfn2index(sd_id, 'Invalid_Data_Set_Name")

C Error condition: sds_index contains the value -1.

C Search for the index of a 'Ex_array_4' array data set.
sds_index = sfn2index(sd_id, 'Ex_array_4")

C Select the data set corresponding to the returned index.
sds_id = sfselect(sd_id, sds_index)

C Read the data set data into the rd_data array.
start(1) =0
start(2) =0
start(3) =0
edges(1l) = X_LENGTH
edges(2) = Y_LENGTH
edges(3) = Z_LENGTH
stride(1) =1
stride(2) = 1
stride(3) =1
status = sfrdata(sds_id, start, stride, edges, array_data)

C Terminate access to the array
status = sfendacc(sds_id)

end

3.7.5 Creating SDS Arrays Containing Variable-Length Data:
SDsetnbitdataset

Version 4.0r1 of HDF provided ti&@Dsetnbitdatasetroutine, allowing the HDF user to specify

that a particular SDS array contains data of a non-standard length. Any length between 1 and 32
bits can be specified. Aft&§Dsetnbitdatasethas been called for the SDS array, any read or write
operations will involve a conversion between the new data length of the SDS array and the data
length of the read or write buffer.

The syntax oSDsetnbitdatasetis as follows:

C: status = SDsetnbitdataset(sds_id, start_bit, bit_len,
sign_ext, fill_one);

FORTRAN: status = sfsnbit(sds_id, start_bit, bit_len, sign_ext,
fill_one)

Bit lengths of all data types are counted from the right of the bit field starting with 0. In a bit field
containing the value®l111011 , bits 2 and 7 are settoand all the other bits are setito

Thestart_bit parameter specifies the leftmost position of the variable-length bit field to be
written. For example, in the bit field described in the preceding parageagh bit parameter
value of1 would denote the fourth bit value offrom the right.

Thebit_len parameter specifies the number of bits of the variable-length bit field to be written.
This number includes the starting bit and the count proceeds toward the right end of the bit field -

3-56

May 14, 1997

National Center for Supercomputing Applications

toward the lower-bit numbers. For example, starting at bit 5 and writing 4 bits of the bit field
described in the preceding paragraph would result in the bitifieldl being written to the data
set. This would correspond tcstart_bit value of5 and abit_len value of4.

Thesign_ext parameter specifies whether to use the leftmost bit of the variable-length bit field to
sign-extend to the leftmost bit of the data set data. For example, if 9-bit signed integer data is
extracted from bits 17-25 and the bit in position 25, ihen when the data is read back from disk,
bits 26-31 will be set ta. Otherwise bit 25 will be and bits 26-31 will be set to Thesign_ext
parameter is set to eithBRUEOr FALSE - specifyTRUEtO sign-extend.

Thefill_one specifies whether to fill the "background" bits with the valwe0. This parameter
is also set to eith@MRUEOr FALSE

The "background" bits of a variable-length data set are the bits that fall outside of the variable-
length bit field stored on disk. For example, if five bits of an unsigned 16-bit integer data set
located in bits 5 to 9 are written to disk with thieone ~ parameter set toRUE(or 1), then when

the data is reread into memory bits 0 to 4 and 10 to 15 would beisét the same 5-bit data was
written with afil_one value ofFALSE (or 0), then bits 0 to 4 and 10 to 15 would be set.to

This bit operation is performed before the sign-extend bit-filling. For example, using the
sign_ext example above, bits 0 to 16 and 26 to 31 will first be set to the "background" bit value,
and then bits 26 to 31 will be seti@ro0 based on the value of the 25th bit.

SDsetnbitdatasetreturnsSUCCEEL{or 0) upon successful completion aralL (or-1) otherwise.

TABLE 3L

3.8

SDsetnbitdataset Parameter List

Routine Name Data Type o
Parameter Description
(Fortran-77) C Fortran-77

sds_id int32 integer Data set identifier.

start_bit intn integer Leftmost bit of the field to be written.

SDsetnbitdataset

(sfsnbit) bit_len intn integer Length of the bit field to be written

sign_ext intn integer Sign-extend specifier.

fill_one intn integer Background bit specifier.

Chunked (or Tiled) Scientific Data Sets

NOTE: It is strongly encouraged that HDF users who wish to use the SD chunking routines first
read the section on SD chunking in Chapter 13, tilBé Performance Issuei that section the
concepts of chunking are explained, as well as their use in relation to HDF. As the ability to work
with chunked data has been added to HDF functionality for the purpose of addressing specific per-
formance-related issues, the user should first have the necessary background knowledge to cor-
rectly determine how chunking will positively or adversely affect their application.

This chapter will refer to both "tiled" and "chunked" SDSs as simply "chunked SDSs", as tiled
SDSs are the two-dimensional case of chunked SDSs.

3-57

May 14, 1997

National Center for Supercomputing Applications

3.8.1 Making a Non-Chunked SDS a Chunked SDS: SDsetchunk

In HDF, an SDS must first be created as a generic SDS throu@btreateroutine, then "pro-
moted" to be a chunked SDS through the useldetchunk SDsetchunkdetermines the chunk
size and the compression method, if any, to be applied when accessing the chunks.

SDsetchunkreceives its information on how to create the chunks, as well as compression infor-
mation, from arHDF_CHUNK_DEHNion passed in as its second argument. This union structure is
defined in the HDF library as follows:

typedef union hdf_chunk_def_u {

int32 chunk_lengths[MAX_VAR_DIMS];

struct {
int32 chunk_lengths[MAX_VAR_DIMS];
int32 comp_type;
comp_info cinfo;

} comp;

} HDF_CHUNK_DEF

Note that there is currently no Fortran-77 versioBSbEetchunk

TABLE 3M SDsetchunk Parameter List
Data Type
Routine Name Parameter c Description
sds_id int32 SD identifier.
SDsetchunk c_def HDF_CHUNK_DEF | Union containing information on how the chunks are to be defined.
flags int32 Flags determining the behavior of the routine.

Theflags parameter can either be setitoF_CHUNKf the SDS is to be uncompressed, or to the
bitwise-OR’ed values afiDF_CHUNKiNdHDF_COMR HDF_CHUNK | HDF_COMPpif a compression
method is to be applied. In the former case the first definition ahiné_lengths array should
be set to the dimensions of the chunks. For example, given the definitim® cEHUNK_DEF
stated above, ftags parameter value ¢fiDF_CHUNKNd the following definition of a three-
dimensional chunked SDS

HDF_CHUNK_DEF current_chunk_def;
current_chunk_def.chunk_lengths[0] = 2;

current_chunk_def.chunk_lengths[1] = 3;
current_chunk_def.chunk_lengths[2] = 4;

the size of the chunk passed3Dsetchunkwill be 2 bytes by 3 bytes by 4 bytes.

In the latter case (where a compression method is specifiedtiite lengths array definition
within thecomp structure is initialized in the way described above andiifie structure is ini-
tialized in the same way as for t8®setcompressoutine. (See Figure 3.5.3 on page 40.)

There are two restrictions that apply to chunked SDSs. The maximum number of chunks in a sin-
gle HDF file is 65,535, and a chunked SDS cannot contain an unlimited dimension.

SDsetchunkreturns either a value 6JUCCEEDr FAIL .

3-58 May 14, 1997

3.8.2 Setting the Maximum Number of Chunks in the Cache:
SDsetchunkcache

To maximize the performance of the HDF library routines when working with chunked SDSs, the
library maintains a separate area of memory specifically for cached data cBDsk$chunk-
cachedetermines the maximum number of chunks of the specified SDS that are cached into this
segment of memory.

When the chunk cache has been filled, any additional chunks written to cache memory are cached
according to the LRU, or Least-Recently-Used, algorithm. This means that the chunk that has
resided in the cache the longest without being reread or rewritten will be written over with the new
chunk.

Note that there is currently no Fortran-77 equivaler8@$etchunkcache

TABLE 3N

SDsetchunkcache Parameter List

Data Type
Routine Name Parameter c Description
sds_id int32 SD identifier.
SDsetchunkcache maxcache int32 Maximum number of chunks to cache.
flags int32 Flags determining the default caching behavior.

By default, when a generic SDS is promoted to be a chunked SDfaxteehe parameter is set
to the number of chunks along the last dimension.

If the chunk cache is full and the value of thexcache parameter is larger than the currently
allowed maximum number of cached chunks, then the maximum number of cached chunks is
reset to the value @fiaxcache . If the chunk cache is not full, then the size of the chunk cache is
reset to the value efaxcache only if it is greater than the current number of chunks in the cache.

Currently the only allowed value of the flag parameter, ishich designates default operation. In
the near future, the valueF_CACHEALIWill be supported to be used to specify that the whole
SDS object is to be cached.

SDsetchunkcacheeturns either the set value of the maximum number of cacheable chunks or
FAIL .

3.8.3 Writing Data to Chunked SDSs: SDwritechunk and SDwritedata

If an SDS has been created as a chunked SDS (i.e., has been created througbDraksateand
SDsetchunB, bothSDwritedata andSDwritechunk can be used to write data to it. There are sit-
uations wher&Dwritechunk may be a more appropriate routine to use BRwritedata, but

both routines essentially achieve the same results.

The location of data in a chunked SDS can be referenced in two ways. The first is the standard
method used in the SD routines that access both chunked and non-chunked SDSs, and refers to the
starting location, or therigin, as an offset in bytes from the origin of the SD array itself. The sec-

ond method is used by the SD routines that only access chunked SDSs, and refers to the origin of
the chunk as an offset in chunks from the origin of the SD array itself. See the section on SD
chunking in Chapter 13, titleldDF Performance Issue$or an illustration of this.

May 14, 1997 3-59

National Center for Supercomputing Applications

SDwritechunk is used when an entire chunk is to be written and requires that the chunk offset be
known.SDwritedata is used when the write operation is to be done regardless of the chunking
scheme used in the SDS and the byte offset of the target chunk is known. ABwyrétechunk

is written specifically for chunked SDSs and doesn’'t have the overhead of the additional function-
ality supported by th8Dwritedata routine, it is much faster th&8Dwritedata.

The parameters @Dwritedata are listed above. (See Table 3D on page 30.) The parameters of
SDwritechunk are as follows. Note that there currently is no Fortran-77 equivalSwfite-
chunk.

TABLE 30

SDwritechunk Parameter List

Data Type
Routine Name Parameter c Description

sds_id int32 SD identifier.

SDwritechunk origin int32 * Origin of the chunk to be written.

datap const VOID * | Buffer containing the data to be written.

Thedatap parameter must point to an array containing an entire chunk of data - in other words,
the size of the array must be the same as the chunk size of the SDS to be written to. An error con-
dition will result if this is not the case.

SDwritechunk returns either a value 8lUCCEEDr FAIL .

3.8.4 Reading Data From Chunked SDSs: SDreadchunk and SDreaddata

As bothSDwritedata andSDwritechunk can be used to write data to chunked SDSs, both
SDreaddataandSDreadchunkcan be used to read data from chunked SDSs.

SDreadchunkis used when an entire chunk of data is to be i®Bdeaddatais used when the

read operation is to be done regardless of the chunking scheme used in the SCED s,

chunk is written specifically for chunked SDSs and doesn’t have the overhead of the additional
functionality supported by th®Dreaddataroutine - therefore, it is much faster ttédreaddata

SDreadchunkreturns either a value 6JUCCEEDr FAIL .

The parameters @Dreaddataare listed above. (See Table 3l on page 46.) The parameters of
SDreadchunkare as follows. Note that there is currently no Fortran-77 equival@Sidrefad-
chunk.

TABLE 3P

SDreadchunk Parameter List

) Data Type -
Routine Name Parameter c Description

sds_id int32 SD identifier.

SDreadchunk origin int32 * Origin of the chunk to be read.

datap VOID * Buffer for the returned chunk data.

As with SDwritechunk, thedatap parameter must point to an array containing enough space for
an entire chunk of data. In other words, the size of the array must be the same as the chunk size of
the SDS to be written to. An error condition will result if this is not the case.

3-60

May 14, 1997

3.8.5 Obtaining Information About a Chunked SDS: SDgetchunkinfo

SDgetchunkinfois used to determine how the chunks in a chunked SDS are defined and whether
the SDS is chunked or not.

Information about the chunks is returned ini#m&_CHUNK_DEBNion provided as the second
parameter - therefore, it will return the same information that can be setSD#®tchunkrou-
tine. For example, thitags argument will return eithetDF_CHUNHKor an uncompressed
chunked SDSHDF_CHUNKitwise-OR’ed withHDF_coM®or a compressed and chunked SDS or
HDF_NONEHor a non-chunked SDS. A pointer tetaink_lengths array containing chunk dimen-
sion size information will be returned if the returrieds param value iSIDF_CHUNKa pointer

to acomp structure containing chunk dimension size and compression information will be
returned if the returneithgs param value isIDF_CHUNMWitwise-OR’ed withHDF_COMP

A NULL value can also be passed in asctidef param if chunking information is not desired.

Note that there is currently no Fortran-77 equivaler8Dfetchunkinfo

TABLE 3Q SDgetchunkinfo Parameter List
) Data Type -
Routine Name Parameter c Description
sds_id int32 SD identifier.
SDgetchunkinfo c_def HDF_CHUNK_DEF * Union structure containing information about the chunks in
the SDS.
flags int32 * Flags determining the behavior of the routine.
SDgetchunkinforeturns either a value SUCCEEDI FAIL .
EXAMPLE 13. Writing and Reading Chunked Data Using SDwritechunk and SDreaddata

This example creates a 9-by-4 integer chunked uncompressed SDS in a file named
"Example13.hdf", then writes six 3-by-2 byte chunks of 16-bit unsigned integers to it. It then
reads one 5-by-2 16-bit unsigned integer subset. It$Begitechunk to write the chunks and
SDreaddatato read the subset.

C: #include "hdf.h"
#include "mfhdf.h"

[* Arrays containing dimension info for datasets. */

static int32 d_dims[3] ={2, 3, 4}; /* Data dimensions */
static int32 edge_dims[3] ={0, 0, 0}; /* Edge dims */
static int32 start_dims[3] = {0, 0, 0}; /* Starting dims */
static int32 cdims[3] ={1, 2, 3}; /* Chunk lengths */

int32 status;

static uintlé chunkl_2ul6[6] = {11, 21,
12, 22,
13, 23},

static uintlé chunk2_2ul6[6] = {31, 41,
32, 42,

May 14, 1997 3-61

National Center for Supercomputing Applications

33, 43},
static uint1l6 chunk3_2ul6[6] = {14, 24,
15, 25,
16, 26};
static uint1l6 chunk4_2ul6[6] = {34, 44,
35, 45,
36, 46};
static uint1l6 chunk5_2ul6[6] = {17, 27,
18, 28,
19, 29};
static uint16 chunk6_2ul6[6] = {37, 47,
38, 48,
39, 49};
main()
{
int32 f1; * File handle */
int32 sdsid; * SDS handle */

uintl6 inbuf 2ul6[5][2]; /* Data array read */
uint16 fill_ul6=0; /* Fill value */

int32 c_flags;

HDF_CHUNK_DEF c_def, r_def;

/* Create the HDF file. */
f1 = SDstart("Example13.hdf", DFACC_CREATE);

/* Create a 9x4 SDS of uint16 in file 1. */

d_dims[0] = 9;

d_dims[1] = 4;

sdsid = SDcreate(f1, "DataSetChunked_1", DFNT_UINT16, 2, d_dims);

* Set the fill value. */
fill_ul6 = 0;
status = SDseffillvalue(sdsid, (VOIDP) &fill_u16);

/* Create chunked SDS chunk with 3x2 chunks which will create
6 chunks. */

c_def.chunk_lengths[0] = 3;

c_def.chunk_lengths[1] = 2;

status = SDsetchunk(sdsid, c_def, HDF_CHUNK);

/* Set chunk cache to hold a maximum of 3 chunks */
status = SDsetchunkcache(sdsid, 3, 0);

[* Write the data chunks. */

/* Write chunk 1. */

start_dims[0] = 0;

start_dims[1] = 0;

status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk1_2ul6);

/* Write chunk 4. */

start_dims[0] = 1;

start_dims[1] = 1;

status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk4_2u16);

/* Write chunk 2. */

3-62 May 14, 1997

start_dims[0] = 0;
start_dims[1] = 1;
status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk2_2u16);

/* Write chunk 5. */

start_dims[0] = 2;

start_dims[1] = 0;

status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk5_2u16);

/* Write chunk 3. */

start_dims[0] = 1;

start_dims[1] = 0;

status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk3_2u16);

/* Write chunk 6. */

start_dims[0] = 2;

start_dims[1] = 1;

status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk6_2u16);

/* Read a subset of the data back in using SDreaddata
i.e 5x2 subset of the whole array. */

start_dims[0] = 2;

start_dims[1] = 1;

edge_dims[0] =5;

edge_dims[1] =2;

status = SDreaddata(sdsid, start_dims, NULL, edge_dims, \

(VOIDP) inbuf_2u16);

/* This 5x2 array should look like this
{{23, 24, 25, 26, 27},
{33, 34, 35, 36, 37}} ¥/

/* Get chunk lengths. */
status = SDgetchunkinfo(sdsid, &r_def, &c_flags);

* Close the current SDS. */
status = SDendaccess(sdsid);

/* Close down the SDS interface. */
status = SDend(f1);

}

EXAMPLE 14. Writing and Reading Chunked Data Using SDwritedata and SDreaddata

This example creates a chunked SDS with a size of 2-by-3-by-4 16-bit unsigned integers in a file
named "Example14.hdf", then writes two 2-by-3-by-2 16-bit unsigned integer chunks to it. It then
reads one 2-by-3-by-4 16-bit unsigned integer chunk. It8Beg@itedata to write the chunks and
SDreaddatato read the subset.

C: #include "hdf.h"
#include "mfhdf.h"

/* Arrays containing dimension info for datasets. */

static int32 d_dims[3] ={2, 3, 4}; /* Data dimensions */
static int32 edge_dims[3] ={0, 0, 0}; /* Edge dims */
static int32 start_dims[3] ={0, 0, 0}; /* Starting dims */
static int32 cdims[3] ={1, 2, 3}; /* Chunk lengths */

May 14, 1997 3-63

National Center for Supercomputing Applications

int32 status;

static uintl6 ul6_3data[2][3][4] =
{
{
{0, 1,2, 3},
{10, 11, 12, 13},
{20, 21, 22, 23}},
{
{100, 101, 102, 103},
{110, 111, 112, 113},
{120, 121, 122, 123}}};

main()

{

int32 f1; /* File handle */
int32 sdsid; /* SDS handle */

uintl6 inbuf_3ul6[2][3][4]; /* Data array read */
uint16 fill_ul6=0; /* Fill value */

int32 c_flags;

HDF_CHUNK_DEF c_def, r_def;

/* Create the HDF file. */
f1 = SDstart("Example14.hdf", DFACC_CREATE);

/* Create a new 2x3x4 SDS of uint16 in the file. */

d_dims[0] = 2;

d_dims[1] = 3;

d_dims[2] = 4;

sdsid = SDcreate(f1, "DataSetChunked_2", DFNT_UINT16, 3, d_dims);

* Set the fill value. */
fill_ul6 = 0;
status = SDseffillvalue(sdsid, (VOIDP) &fill_u16);

/* Create chunked SDS - chunk is 2x3x2 which will create 2 chunks */
c_def.chunk_lengths[0] = 2;

c_def.chunk_lengths[1] = 3;

c_def.chunk_lengths[2] = 2;

status = SDsetchunk(sdsid, c_def, HDF_CHUNK);

/* Set chunk cache to hold a maximum of 2 chunks*/
status = SDsetchunkcache(sdsid, 2, 0);

/* Write data using SDwritedata. */

start_dims[0] = 0;

start_dims[1] = 0;

start_dims[2] = 0;

edge_dims[0] = 2;

edge_dims[1] = 3;

edge_dims[2] = 4;

status = SDwritedata(sdsid, start_dims, NULL, edge_dims, \

(VOIDP) ul6_3data);

/* Read data using SDreaddata. */
start_dims[0] = 0;
start_dims[1] = 0;
start_dims[2] = 0;
edge_dims[0] = 2;
edge_dims[1] = 3;
edge_dims[2] = 4;

3-64 May 14, 1997

status = SDreaddata(sdsid, start_dims, NULL, edge_dims, \
(VOIDP) inbuf_3u16);

/* Verify the data in inbuf_3ul6 against ul6_3data[]. */

/* Get chunk lengths. */
status = SDgetchunkinfo(sdsid, &r_def, &c_flags);

/* Close the current SDS. */
status = SDendaccess(sdsid);

/* Close down SDS interface. */
status = SDend(f1);
}

EXAMPLE 15. Writing and Reading Chunked Data Using SDwritedata and SDreadchunk

This example creates a chunked SDS with a size of 2-by-3-by-4 16-bit unsigned integers in a file
named "Examplel5.hdf", then writes one 2-by-3-by-4 16-bit unsigned integer chunk to it. It then
reads six 1-by-1-by-4 16-bit unsigned integer subsets. It3Besitedata to write the chunks
andSDreadchunkto read the subsets.

C: #include "hdf.h"

#include "mfhdf.h"

/* Arrays containing dimension info for datasets. */

static int32 d_dims[3] ={2, 3, 4}; /* Data dimensions */
static int32 edge_dims[3] ={0, 0, 0}; /* Edge dims */
static int32 start_dims[3] ={0, 0, 0}; /* Starting dims */
static int32 cdims[3] ={1, 2, 3}; /* Chunk lengths */

int32 status;

static uint1l6 ul6_3data[2][3][4] =
{
{
{0, 1,2, 3},
{10, 11, 12, 13},
{20, 21, 22, 23}},
{
{100, 101, 102, 103},
{110, 111, 112, 113},
{120, 121, 122, 123}}};

main()

{

int32 f1;/* File handle */

int32 sdsid;/* SDS handle */

uintlé rul6_3data[4]; /¥ Whole chunk input buffer */
int32 rcdims[3]; /* For SDgetchunkinfo() */
uintl6é fill_ul6 =0; * Fill value */

int32 c_flags;

HDF_CHUNK_DEF c_def, r_def;

/* Create the HDF file. */
f1 = SDstart("Example15.hdf", DFACC_CREATE);

/* Create a new 2x3x4 SDS of uint16 in the file. */

May 14, 1997 3-65

National Center for Supercomputing Applications

d_dims[0] = 2;
d_dims[1] = 3;
d_dims[2] = 4;
sdsid = SDcreate(f1, "DataSetChunked_4", DFNT_UINT16, 3, d_dims);

* Set the fill value. */
fill_ul6 = 0;
status = SDseffillvalue(sdsid, (VOIDP) &fill_u16);

/* Create chunked SDS - chunk is 1x1x4 which will create 6 chunks. */
c_def.chunk_lengths[0] = 1;

c_def.chunk_lengths[1] = 1;

c_def.chunk_lengths[2] = 4;

status = SDsetchunk(sdsid, c_def, HDF_CHUNK);

/* Set chunk cache to hold a maximum of 4 chunks. */
status = SDsetchunkcache(sdsid, 4, 0);

[* Write data using SDwritedata. */

start_dims[0] = 0;

start_dims[1] = 0;

start_dims[2] = 0;

edge_dims[0] = 2;

edge_dims[1] = 3;

edge_dims[2] = 4;

status = SDwritedata(sdsid, start_dims, NULL, edge_dims, \

(VOIDP) ul6_3data);

/* Read data using SDreadchunk and verify against
the chunk arrays chunk1_3ul6[] ... chunk6_3ul6][]. */

/* Read chunk 1. */

start_dims[0] = 0;

start_dims[1] = 0;

start_dims[2] = 0;

status = SDreadchunk(sdsid, start_dims, (VOIDP) rul6_3data);

/* Read chunk 2. */

start_dims[0] = 0;

start_dims[1] = 1;

start_dims[2] = 0;

status = SDreadchunk(sdsid, start_dims, (VOIDP) rul6_3data);

/* Read chunk 3. */

start_dims[0] = 0;

start_dims[1] = 2;

start_dims[2] = 0;

status = SDreadchunk(sdsid, start_dims, (VOIDP) rul6_3data);

/* Read chunk 4. */

start_dims[0] = 1;

start_dims[1] = 0;

start_dims[2] = 0;

status = SDreadchunk(sdsid, start_dims, (VOIDP) rul6_3data);

/* Read chunk 5. */

start_dims[0] = 1;

start_dims[1] = 1;

start_dims[2] = 0;

status = SDreadchunk(sdsid, start_dims, (VOIDP) rul6_3data);

/* Read chunk 6. */
start_dims[0] = 1;

3-66 May 14, 1997

start_dims[1] = 2;
start_dims[2] = 0;
status = SDreadchunk(sdsid, start_dims, (VOIDP) rul6_3data);

/* Get chunk lengths. */
status = SDgetchunkinfo(sdsid, &r_def, &c_flags);

* Close the current SDS. */
status = SDendaccess(sdsid);

/* Close down the SDS interface. */
status = SDend(f1);

}

EXAMPLE 16.

Writing and Reading Compressed Chunked Data Using SDwritechunk and SDreaddata

This example useSDwritechunk to write the chunks anBDreaddatato read the subset, like
Example 13 (See page 61.). However, it also compresses the chunks using the GZIP (skipping
Huffman) algorithm.

C:

#include "hdf.h"

#include "mfhdf.h"

/* Arrays containing dimension info for datasets. */

static int32 d_dims[3] ={2, 3, 4}; /* Data dimensions */
static int32 edge_dims[3] ={0, 0, 0}; /* Edge dims */
static int32 start_dims[3] ={0, 0, 0}; /* Starting dims */
static int32 cdims[3] ={1, 2, 3}; /* Chunk lengths */

int32 status;

static uint1l6 chunkl_2ul6[6] = {11, 21,
12, 22,
13, 23}

static uint1l6 chunk2_2ul6[6] = {31, 41,
32,42,
33, 43};

static uint1l6 chunk3_2ul6[6] = {14, 24,
15, 25,
16, 26};

static uintl6é chunk4_2ul6[6] = {34, 44,
35, 45,
36, 46},

static uint16 chunk5_2ul6[6] = {17, 27,
18, 28,
19, 29};

static uint1l6 chunk6_2ul6[6] = {37, 47,

38, 48,
39, 49};

main()

May 14, 1997

3-67

National Center for Supercomputing Applications

int32 f1; /* File handle */
int32 sdsid; /* SDS handle */
uintl6 inbuf 2ul6[5][2]; /* Data array read */

uint16 fill_ul6 =0; /* Fill value */

int32 c_flags;

HDF_CHUNK_DEF c_def, r_def;

/* Create the HDF file. */
f1 = SDstart("Example16.hdf", DFACC_CREATE);

/* Create a 9x4 SDS of uint16 in file 1. */

d_dims[0] = 9;

d_dims[1] = 4;

sdsid = SDcreate(f1, "DataSetChunked_1", DFNT_UINT16, 2, d_dims);

* Set the fill value. */
fill_ul6 = 0;
status = SDseffillvalue(sdsid, (VOIDP) &fill_u16);

/* Create chunked SDS chunk with 3x2 chunks which will create
6 chunks. */

c_def.chunk_lengths[0] = c¢_def.comp.chunk_lengths[0] = 3;

c_def.chunk_lengths[1] = c_def.comp.chunk_lengths[1] = 2;

¢_def.comp.comp_type = COMP_CODE_DEFLATE; /* GZIP */
c_def.comp.cinfo.deflate.level = 6;

status = SDsetchunk(sdsid, c_def, HDF_CHUNK | HDF_COMP);

/* Set chunk cache to hold a maximum of 3 chunks */
status = SDsetchunkcache(sdsid, 3, 0);

[* Write the data chunks. */

/* Write chunk 1. */

start_dims[0] = 0;

start_dims[1] = 0;

status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk1_2ul6);

/* Write chunk 4. */

start_dims[0] = 1;

start_dims[1] = 1;

status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk4_2u16);

/* Write chunk 2. */

start_dims[0] = 0;

start_dims[1] = 1;

status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk2_2u16);

/* Write chunk 5. */

start_dims[0] = 2;

start_dims[1] = 0;

status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk5_2u16);

/* Write chunk 3. */

start_dims[0] = 1;

start_dims[1] = 0;

status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk3_2u16);

/* Write chunk 6. */

start_dims[0] = 2;

start_dims[1] = 1;

status = SDwritechunk(sdsid, start_dims, (VOIDP) chunk6_2u16);

3-68 May 14, 1997

/* Read a subset of the data back in using SDreaddata
i.e 5x2 subset of the whole array. */

start_dims[0] = 2;

start_dims[1] = 1;

edge_dims[0] =5;

edge_dims[1] = 2;

status = SDreaddata(sdsid, start_dims, NULL, edge_dims, \

(VOIDP) inbuf_2u16);

/* This 5x2 array should look like this
{{23, 24, 25, 26, 27},
{33, 34, 35, 36, 37}} ¥/

/* Get chunk lengths. */
status = SDgetchunkinfo(sdsid, &r_def, &c_flags);

/* Close the current SDS. */
status = SDendaccess(sdsid);

/* Close down the SDS interface. */
status = SDend(f1);

}

3.8.6 Ghost Areas

In cases where the size of the SDS array is not an even multiple of the chunk size, regions of
excess array space beyond the defined dimensions of the SDS will be created. Refer to the follow-
ing illustration.

FIGURE 3c Array Locations Created Beyond the Defined Dimensions of an SDS

<1600 ints ———=

In a 1600 by 2000 integer chunke
SDS array with 500 by 500 integel
chunks, a 400 by 2000 integer are
of array locations beyond the
defined dimensions of the SDS

is created (shaded area). These
areas are called "ghost areas".

200
ints

These regions are called "ghost areas". "Ghost areas"” can be accessed@nyaochunkand
SDwritechunk - they cannot be written to or accessed by efftfigneaddataor SDwritedata. If

the fill value has been set, the values in these array locations will be initialized to the fill value. It
is highly recommended that users set the fill value before writing to chunked SDSs so that garbage
values won't be read from these locations.

May 14, 1997 3-69

National Center for Supercomputing Applications

3.9

Also, if SDreadchunkandSDwritechunk are used, it is not recommended that valid data be
written to the "ghost areas" as these areas won't be accessiblizréyddataandSDwritedata.
Moreover, the ability to write to these areas may not be supported in future versions of the HDF
library.

SD Dimension and Dimension Scale Operations
A description of dimensions is in Section 3.2.1.4 on page 20.

3.9.1 Selecting a Dimension: SDgetdimid

SDS dimensions are uniquely identified disnension ids which are assigned when a dimension
is created. These dimension ids are used to refer within a program to a particular dimension, its
scale and its attributes. Before working with a dimension, a program must first obtain a dimension
id by calling theSDgetdimid routine:

C: dim_id = SDgetdimid(sds_id, dim_index);

FORTRAN: dim_id = sfdimid(sds_id, dim_index)

SDgetdimid has two argumentsgis_id anddim_index , and returns a dimension identifier,
dim_id . The argumendim_index is a zero-based integer indicating the location of the dimension
in the data set.

The number of dimensions in a data set is specified at the time the data set is created. Specifying a
dimension index larger than the number of dimensions in the data set returns an error.

Unlike file and data set identifiers, dimension identifiers do not require explicit disposal.

3.9.2 Naming a Dimension: SDsetdimname

SDsetdimnameassigns a name to the selected dimension. The name of the dimension will also
appear as the name of the dimension scale. If the dimension name is not unique, it is assumed that
both dimensions refer to the same object and changes to one will be reflected in the other. Naming
dimensions is optional but encouraged. Dimensions that are not explicitly named by the user will
have names generated by the HDF library. 8Beiminfo to read existing dimension names.

The following steps are required to name a dimension and its scale:
1. Get the identifier of the dimension.
2. Assign a name to the dimension - the dimension scale will be set automatically.

The following routine calls are required to do this:

C: dim_id = SDgetdimid(dim_id, dim_index);
status = SDsetdimname(dim_id, dim_name);

FORTRAN: dim_id = sfdimid(dim_id, dim_index)
status = sfsdimname(dim_id, dim_name)

The argumentim_id in SDsetdimnamels the dimension identifier returned 8§pgetdimid and
dim_name is the name for the selected dimension. An attempt to rename a dimensio8Disatg
dimname will cause the old name to be deleted and a new one to be assigned.

What should be remembered when naming dimensions is that the name or a particular dimension
mustbe set before attributes are assigned - and, once the attributes have been set, the name should

3-70

May 14, 1997

not be changed. In other word)setdimnameshould only be called before any callsSiDset-
dimscale(described in Section 3.9.4.1 on page BDsetattr (described in Section 3.10.1 on
page 80) oSDsetdimstrs(described in Section 3.11.2.1 on page 87).

TABLE 3R SDsetdimname Parameter List
Routine Name Data Type
Parameter Description
(Fortran-77) C Fortran-77
SDsetdimname dim_id int32 integer Dimension identifier.
(sfsdimname) dim_name char * character* (*) | Dimension name.

3.9.3 Old and New Dimension Implementations

Up to and including HDF version 4.0 betal, dimensions were vgroup objects containing a single
field vdata with a class name of "DimVal0.0". The vdata had the same number of records as the
size of the dimension, which consisted of the values 0, 1, 2, ... n - 1, where n is the size of the
dimension. These values weren't strictly necessary and for applications that create large one
dimensional array datasets the disk space taken by these unnecessary values would nearly double
the size of the HDF file. In order to avoid these situations, a new representation of dimensions was
implemented for HDF version 4.0 beta 2 and later versions.

Dimensions are still vgroups in the new representation: the only differences are that the vdata has
only one record with a value eflimension size> and the class name of the vdata has been
changed to "DimVal0.1" to distinguish it from the old version.

Until HDF version 4.1, the old and new dimension representation will be written by default for
each dimension created, and both representations will be recognized by routines that operate on
dimensions. HDF version 4.1 routines will only recognize the new representation. During the tran-
sitional period, two routines will be provided to allow HDF programs to distinguish between the
two dimension representations,aampatibility modes- SDsetdimval_compand
SDsetdimval_bwcomp

3.9.3.1 Setting the Future Compatibility Mode of a Dimension: SDsetdimval_comp

SDsetdimval_compdetermines whether the specified dimensidhhavethe old and new repre-
sentations or the new representation only, by setting the compatibility mode for the specified
dimension. The routine’s syntax is the following:

C: status = SDsetdimval_comp(dim_id, comp_mode);
FORTRAN: status = sfsdmvc(dim_id, comp_mode)
Thecomp_mode parameter determines the compatibility mode. It can be set to either
SD_DIMVAL_BW_com®hich specifies compatible mode and that the old and new dimension rep-

resentations will be written to file , &D_DIMVAL_BW_INCOMRvhich specifies incompatible
mode and that only the new dimension representation will be written to file.

Unlimited dimensions are always backward compatible. Theres@setdimval_comptakes no
action on these dimensions.

SDsetdimval_compreturns eitheBUCCEEDN successful completion, BAIL otherwise.

May 14, 1997 3-71

National Center for Supercomputing Applications

TABLE 3S

SDsetdimval_comp Parameter List

Routine Name Data Type o
Parameter Description
(Fortran-77) C Fortran-77

SDsetdimval_comp dim_id int32 integer Dimension identifier.

(sfsdmvc) comp_mode intn integer Compatibility mode.

3.9.3.2 Setting the Current Compatibility Mode of a Dimension: SDisdimval_bwcomp

SDisdimval_bwcompdetermines whether the specified dimendianthe old and new represen-
tations or the new representation only. The function’s syntax is the following:

C: comp_mode = SDisdimval_bwcomp(dim_id);
FORTRAN: comp_mode = sfisdmvc(dim_id)
SDisdimval_bwcompreturns one of three values: eitls&r DIMVAL_BW_COMP

SD_DIMVAL_BW_INCOMBr ERRORSD_DIMVAL_BW_COMandSD_DIMVAL_BW_INCOMRre inter-
preted as they are I8Disdimval_comp

TABLE 3T

SDisdimval_bwcomp Parameter List

Routine Name Data Type o
Parameter Description
(Fortran-77) C Fortran-77

SDisdimval_bwcomp

(sfisdmvc) dim_id int32 integer Dimension identifier.

3.9.4 Dimension Scales

A dimension scalés a series of numbers placed along a dimension to demarcate intervals in a data
set. One scale is assigned per dimension. In the SDS data model, each dimension scale is a one-
dimensional array with size and name equal to its assigned dimension name and size. For exam-
ple, if a dimension of length 6 named "depth" is assigned a dimension scale, its scale is a one-
dimensional array of length 6 and is also assigned the name "depth".

Although dimension scales are conceptually different from SDS arrays, they are both arrays and
are often treated in the same way by the SDS API. For example, whebfilenfo routine

returns the number of data sets in a file, it includes dimension scales in that numigiddwe
ordvar routine (described in Section 3.9.5 on page 76) distinguishes data sets from dimension
scales.

3.9.4.1 Writing Dimension Scales: SDsetdimscale

Selecting a dimension witBDgetdimid assigns a default dimension scale. Default dimension
scales have the data type of the corresponding SDS array. To assign a non-default scale with a
non-default data type, ug§Dsetdimscale

To create a non-default scale, the following steps are required:
1. Get the identifier of the dimension.
2. Create the dimension scale, setting the data type and size to the desired values.

To do this, the calling program must execute the following calls:

C: dim_id = SDgetdimid(sds_id, dim_index);
status = SDsetdimscale(dim_id, count, data_type, data);

3-72

May 14, 1997

FORTRAN: dim_id = sfdimid(sds_id, dim_index)
status = sfsdscale(dim_id, count, data_type, data)

The argumendount is the size of the scaleata_type defines the data type for the scale values
anddata is an array containing the scale values. Assigning a vakeito is optional: it exists
to insure backward compatibility.

3.9.4.2 Obtaining Dimension Scale and Other Dimension Information: SDdiminfo

Before working with an existing dimension scale, it is often necessary to determine its characteris-
tics. For instance, to allocate the proper amount of memory for a scale requires knowledge of its
size and data typ&Ddiminfo provides this basic information, as well as the name and attribute
count for a specified dimension.

To obtain dimension information the following steps are required:
1. Get the identifier of the dimension.
2. Retrieve the dimension information.

The calling program must call the following routines in order:

C: dim_id = SDgetdimid(sds_id, dim_index);
status = SDdiminfo(dim_id, name, count, data_type, nattrs);

FORTRAN: dim_id = sfdimid(sds_id, dim_index)
status = sfgdinfo(dim_id, name, count, data_type, nattrs)

In SDdiminfo the argumentsame, count , data_type andnatirs define buffers allocated to
respectively hold the dimension name and size, the data type for the scale values and the number
of attributes assigned to the dimension.

Dimensions are always named. However, if you don’t wish to explicitly provide a namecan
be passed as tihhame parameter t&Ddiminfo and a default name will be assigned by the SD
API. If scale information is available for the dimensiaata_type will contain the data type of
the scale values, otherwisata_type will be 0.

3.9.4.3 Reading Dimension Scales: SDgetdimscale
To read a scale, the following steps are required:

1. Get the identifier of the dimension.
2. Read the scale.

The calling program must contain the following sequence of calls:

C: dim_id = SDgetdimid(sds_id, dim_index);
status = SDgetdimscale(dim_id, data);

FORTRAN: dim_id = sfdimid(sds_id, dim_index)
status = sfgdscale(dim_id, data)

In SDgetdimscalghe argumendata is the buffer allocated to hold the scale valuesSBget-
dimscalereturns all of the values associated with a given scale, it is assumed that the size of the
scale buffer is greater than or equal to the dimension size.

TABLE 3U

SDgetdimid, SDsetdimname, SDsetdimscale, SDdiminfo and SDgetdimscale Parameter List

Routine Name Data Type o
Parameter Description
(Fortran-77) C | Fortran-77

May 14, 1997 3-73

National Center for Supercomputing Applications

SDgetdimid sds_id int32 integer Data set identifier.
(sfdimid) dim_index intn integer Index of the dimension.
SDsetdimname dim_id int32 integer Dimension identifier.
(sfsdmname) dim_name char * character* () Dimension name.
dim_id int32 integer Dimension identifier.
SDsetdimscale count int32 * integer Number of scale values.
(sfsdscale) data_type int32 * integer Data type of the scale values.
data VOIDP <valid numeric data type>| Buffer for the scale values.
dim_id int32 integer Dimension identifier.
name char * character* (*) Buffer for the dimension name.
SDdiminfo count int32 * integer Buffer for the dimension size.
(sfgdinfo)
number_type int32 * integer Buffer for the scale data type.
nattrs int32 * integer Buffer for the attribute count.
SDgetdimscale dim_id int32 integer Dimension identifier.
(sfgdscale) data VOIDP <valid numeric data type>| Buffer for the scale values.

EXAMPLE 17.

Writing Dimension Information

The dimensions of the SDS created in Example 4 are created and scales assigned to them in these
examples.

C: #include "hdf.h"
#include "mfhdf.h"

main()

{

int32 sd_id, sds_id, dim_index, dim_id, sds_index, status;
int32 count, num_type, num_attrs;

int16 dim_scale[] = {6,5,4,3,2,1};

char dim_name[MAX_NC_NAME];

/* Open the file. */
sd_id = SDstart("Example4.hdf', DFACC_RDWR);

/* Get the index of the "Ex_array_4" array data set. */
sds_index = SDnametoindex(sd_id, "Ex_array_4");

/* Select the data set corresponding to the returned index. */
sds_id = SDselect(sd_id, sds_index);

/* For each dimension of the "Ex_array_4" array data set, */
for (dim_index = 0; dim_index < 3; dim_index++) {

/* - select the dimension id, */
dim_id = SDgetdimid(sds_id, dim_index);

/* - get the information about the selected dimension, */
status = SDdiminfo(dim_id, dim_name, &count, &num_type, \
&num_attrs);
num_type = DFNT_INT16;

/* - alter the dimension names, */
switch(dim_index) {

case O: SDsetdimname(dim_id, "Z_Axis");
break;

case 1 SDsetdimname(dim_id, "Y_Axis");
break;

3-74 May 14, 1997

case 2: SDsetdimname(dim_id, "X_Axis");
break;
default: break;

}

/* - then alter the dimension scale and write it to the data set. */
dim_scale[0] = 3;
dim_scale[1] = 2;
dim_scale[2] = 1;
status = SDsetdimscale(dim_id, count, num_type, (VOIDP)dim_scale);

}

/* Terminate access to the array */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file */
status = SDend(sd_id);

}

FORTRAN: PROGRAM ALTER DIMENSION

integer*4 sd_id, sds_id, dim_index, dim_id, status
integer*4 count, num_attrs

integer sfstart, sfn2index, sfdimid, sfgdinfo
integer sfsdscale, sfsdmname, sfendacc

integer sfend, sfselect, num_type, i, dim_scale(6)

integer DFACC_RDWR, MAX_NC_NAME, DFNT_INT16
parameter (DFACC_RDWR = 3, MAX_NC_NAME = 256, DFNT_INT16 = 22)

character dim_name(MAX_NC_NAME)
C For each dimension of the 'Ex_array_4'array data set,
do5i=1,6
dim_scale(i) =i
5 continue

C Open thefile.
sd_id = sfstart(Example4.hdf, DFACC_RDWR)

C Gettheindex of the 'Ex_array_4' array data set.
sds_index = sfn2index(sd_id, 'Ex_array_4")

C Select the data set corresponding to the returned index.
sds_id = sfselect(sd_id, sds_index)

C For each dimension of the 'Ex_array_4'array data set,
do 10 dim_index =1, 3

C - select the dimension id,
dim_id = sfdimid(sds_id, dim_index-1)

C - get the information about the selected dimension,
status = sfgdinfo(dim_id, dim_name, count, num_type, num_attrs)

C - alter the dimension names.
if (dim_index .eq. 1) then
status = sfsdmname(dim_id, 'Z_Axis")
end if

if (dim_index .eq. 2) then

May 14, 1997 3-75

National Center for Supercomputing Applications

status = sfsdmname(dim_id, 'Y_Axis')
end if

if (dim_index .eq. 3) then
status = sfsdmname(dim_id, 'X_Axis’)
end if

num_type = DFNT_INT16

C -and, alter the dimension scale, write it to the data set,

dim_scale(1) =3

dim_scale(2) =2

dim_scale(3) =1

dim_scale(4) =0

dim_scale(5) =-1

dim_scale(6) = -2

status = sfsdscale(dim_id, count, num_type, dim_scale)

10 continue

C Terminate access to the array.
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

3.9.5 Distinguishing SDS Arrays from Dimension Scales: SDiscoordvar

Although dimension scales, ooordinate variablesn netCDF, can for the most part be ignored,

it is important to note that, in HDF, they are also SDSs and are assigned the savrReAag<D)

as other SDSs. As a result, dimension scales are treated as SDSs, and are included in the SDS
count returned bgDfileinfo. The functionSDiscoordvaris available to determine whether or not

a given SDS is a dimension scale.

SDiscoordvartakes an SDS id as its only argument and rettRuEif the data set is a dimension
scale, an@tALSE if it isn't. If SDiscoordvarreturnsTRUE a subsequent call @Dgetinfowill fill
the specified locations with information about the dimension scale, rather than the data set array.

TABLE 3V SDiscoordvar Parameter List
Routine Name Data Type o
Parameter Description
(Fortran-77) C Fortran-77
SDiscoordvar "
) sds_id int32 integer Data set identifier.
(sfiscvar)

EXAMPLE 18. Retrieving SDS Information from an HDF File
SDgetinfoandSDiscoordvar provide information that may be needed in order to read in an array
successfully, as the following examples show.

C: #include "hdf.h"
#include "mfhdf.h"
#define X_LENGTH 5
#define Y_LENGTH 16
main()

3-76 May 14, 1997

{

int32 sd_id, sds_id, status;

int32 rank, nt, dims[MAX_VAR_DIMS], nattrs;
int32 start[2], edges[2];

int16 array_datalY_LENGTH][X_LENGTH];
char name[MAX_NC_NAME];

/* Open the file and initiate the SD interface. */
sd_id = SDstart("Example3.hdf', DFACC_RDONLY);

/* Select the first (and in this case, only) data set in the file. */
sds_id = SDselect(sd_id, 0);

/* Confirm that the data set is not a coordinate variable. */
if (FALSE == SDiscoordvar(sds_id)) {

* Verify the characteristics of the array. */
status = SDgetinfo(sds_id, name, &rank, dims, &nt, &nattrs);

/* Define the location, pattern, and size of the data to read from \
the data set. */
start[0] = start[1] = 0;
edges|[0] = dims|[0];
edges[1] = dims[1];

/* Read the array data set created in Example 3. */
status = SDreaddata(sds_id, start, NULL, edges, (VOIDP)array_data);

/* Terminate access to the array data set. */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file. */
status = SDend(sd_id);

}

FORTRAN: PROGRAM CONFIRM FILE

integer*4 sd_id, sds_id, rank, nt, nattrs, status
integer start(2), edge(2), stride(2)

integer datavar

integer sfstart, sfselect, sfiscvar, sfginfo
integer sfrdata, sfendacc, sfend

C DFACC_RDONLY is defined in hdf.h. MAX_NC_NAME and MAX_VAR_DIMS
C are defined in netcdf.h.
integer*4 DFACC_RDONLY, MAX_NC_NAME, MAX_VAR_DIMS
integer4 X_LENGTH, Y_LENGTH
parameter (DFACC_RDONLY =1, MAX_NC_NAME = 256,
+ MAX_VAR_DIMS =32, X_LENGTH = 4, Y_LENGTH = 15)
integer*2 array_data(X_LENGTH, Y_LENGTH)

character name(MAX_NC_NAME)
integer dims(MAX_VAR_DIMS)

C Open the file and initiate the SD interface.
sd_id = sfstart('Example3.hdf, DFACC_RDONLY)

C Select the first (and in this case, only) data set in the file.
sds_id = sfselect(sd_id, 0)

C Confirm that the data set is not a coordinate variable.
datavar = sfiscvar(sds_id)

May 14, 1997 3-77

National Center for Supercomputing Applications

if (datavar .eq. 0) then

C Verify the characteristics of the array.
status = sfginfo(sds_id, name, rank, dims, nt, nattrs)

C Define the location, pattern, and size of the data to read
C from the data set.

start(1) =0

start(2) =0

stride(1) =1

stride(2) = 1

edge(1) = dims(1)

edge(2) = dims(2)

C Read the array data set.
status = sfrdata(sds_id, start, stride, edge, array_data)
endif

C Terminate access to the array data set.
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

3.9.6 Dimension Scales for Multiple Data Sets

SD scientific data sets with one or more dimensions with the same name and size are considered
to be related. Examples of related data sets are cross-sections from the same simulation, frames in
an animation or images collected from the same apparatus. HDF attempts to preserve this relation-
ship by unifying their dimension scales and attributes. To understand how related data sets are
handled, it is necessary to understand how dimension records are created.

In the SD interface, dimension records are only created for dimensions of a unique name and size.
To illustrate this, consider a case where there are three scientific data sets, each representing a
unique variable, in an HDF file. (See Figure 3d.) The first two data sets have two dimensions each
assigned to it and the third data set has three dimensions. There are a total of five dimensions in
the file and the name mapping between the data sets and the dimensions are shown in the figure.
Note that if, for example, the creation of a second dimension named "Altitude” is attempted and
the size of the dimension is different from the existing dimension named "Altitude"”, an error con-
dition will be generated.

As expected, assigning a dimension attribute to dimension 1 of either data set will create the
required dimension scale and assign the appropriate attribute. However, because related data sets
share dimension records, they also share dimension attributes. Therefore, it is impossible to assign
an attribute to a dimension without assigning the same attribute to all dimensions of identical
name and size, either within one data set or related data sets.

3-78

May 14, 1997

National Center for Supercomputing Applications

FIGURE 3d

Dimension Records and Attributes Shared Between Related Data Sets
Data Set A

Data Set B Data Set C

[Latitude] [Congitudg [Latitude] Longitudg

Latitude ’ Longitude Time Altitude

Dimension Names

3.10 User-defined Attributes

User-defined attributesire attributes defined by the calling program that contains auxiliary infor-
mation about a file, SDS array or dimension. This auxiliary information is sometimesroalad
data, because it is data about data. There are two ways to store metadata, as a user-defined
attribute or predefined attribute.

They take the formabel=value , wherelabel is a character string containivgpX_NC_NAMar

fewer characters andiue contains one or more entries of the same data type as defined at the
time the attribute is created. Attributes can be attached to three types of objects: files, data sets and
dimensions. These are referred to, respectivelfjieaattributes, array attributesanddimension
attributes

File attributesare attributes that describe an entire file. They generally contain information
pertinent to all data objects in the file and are sometimes referredjlobas attributes

Data set attributesre attributes that describe individual SDS arrays. Because their scope is
limited to an individual SDS, data set attributes are sometimes referrelbtalasttributes

Dimension attributesprovide information applicable to an individual SDS dimension. It is
possible to assign a unit to one dimension in a data set without assigning a unit to the
remaining dimensions.

For each object, a separatttribute countis maintained that identifies the number of attributes
associated with the object. The attribute count begins at zero and is increased by one for every new
attribute assigned to an object. Each attribute associated with an object has atinibyte

index, a value between 1 and the total number of attributes. The attribute index is used to retrieve
an attribute’s value or information about an attribute.

The data types permitted for attributes are the same as those allowed for SDS arrays. SDS arrays
with general attributes of the same name can have different data types. For example, the attribute
valid_range specifying the valid range of data value for an array of 16-bit integers might be of
type 16-bit integer, whereas the attribudkd_range for a variable of 32-bit floats could be of

type 32-bit floating-point integer.

Attribute names follow the same rules as dimension names. Providing meaningful names for
attributes is important, however using standardized conventional names may be necessary if
generic applications and utility programs are to be used. For example, every variable assigned a
unit should have an attribute name of "units" defined. Furthermore, if an HDF file is to be used

3-79

May 14, 1997

National Center for Supercomputing Applications

with software that recognizes "units" attributes, the values of the "units" attributes should be
expressed in a conventional form as a character string that can be interpreted by that software.

The SD interface uses the same functions to access all attributes regardless of their object assign-
ments. The difference between accessing a file, array or dimension attribute lies in the use of iden-
tifiers. File ids, SDS ids and dimension ids are used to respectively access file attributes, SDS
attributes and dimension attributes.

3.10.1 Writing User-defined Attributes: SDsetattr

Attributes are not actually written out to a file until access to the object is terminated. Creating an
attribute increases the attribute count by one for the given object. Writing an attribute involves the
following steps:

1. Obtain the appropriate identifiers:
2. Create the attribute.
3. Terminate access by disposing of any existing identifiers:

To assign an attribute to a file, the calling program must contain a &llidetattr.
C: status = SDsetattr(sd_id, attr_name, data_type, count, value);

FORTRAN: status = sfsnatt(sd_id, attr_name, data_type, count, value)

In SDsetattr the argumengd_id is the identifier for the HDF object to be assigned the attribute
and it can be a file id, SDS id or dimension id. The argurtenhame is an ASCII string con-
taining the name of the attribute. It represents the label iladblevalue equation and can be

no more thamAax_NC_NAMeharacters. If this is set to the name of an existing attribute the value
portion of the attribute will be overwritten. Do not &Bsetattr to assign a name to a dimension,
useSDsetdimnameinstead.

The argumentsjata_type , count andvalue describe the right side of thebel=value = equa-
tion. Thevalue argument contain one or more values of the same data typeathhgpe argu-
ment describes the data type for the attribute valuesaand defines the total number of values
in the attribute.

There are two Fortran-77 versions of this routsfenatt andsfscatt Thesfsnattroutine writes
numeric attribute data argflscattwrites character attribute data.

The parameters @Dsetattr are further described below. (See Table 3W on page 82.) Note that,
because there are two Fortran-77 versiorS2detattr, there are correspondingly two entries in
the “Data Type” field of thealuesparameter.

EXAMPLE 19.

Setting Attribute Values

The following examples caDsetattr with an SDS id as the first parameter, which assigns an
SDS attribute to the selected data set. If a file id were passed irSsatattr would assign a file
attribute to the entire file.

C: #include "hdf.h"
#include "mfhdf.h"

main()

{

int32 sd_id, sds_id, dim_id, dim_index, status;

3-80

May 14, 1997

National Center for Supercomputing Applications

int32 num_values[2];

/* Open the file and get the identifier for the file. */
sd_id = SDstart("Example4.hdf', DFACC_RDWR);

/* Set an attribute that describes the file contents. */
status = SDsetattr(sd_id, "file_contents", DFNT_CHARS, 16, \
(VOIDP)"storm_track_data");

/* Get the identifier for the first data set. */
sds_id = SDselect(sd_id, 0);

/* Set an attribute the specifies a valid range of values. */

num_values[0] = 2;

num_values[1] = 10;

status = SDsetattr(sds_id, "valid_range", DFNT_INT32, 2, \
(VOIDP)num_values);

/* Get the identifier for the first dimension. */

dim_id = SDgetdimid(sds_id, 0);

/* Set an attribute that specifies the dimension metric. */

status = SDsetattr(dim_id, "dim_metric", DFNT_CHARS, 9,
(VOIDP)"millibars");

/* Terminate access to the array */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file */
status = SDend(sd_id);

}

FORTRAN: PROGRAM SET ATTRIBS

integer*4 sd_id, sds_id, dim_id, status
integer num_values(2)
integer sfstart, sfsnatt, sfselect, sfdimid
integer sfendacc, sfend

integer DFACC_RDWR, DFNT_CHARS, DFNT_INT32
parameter (DFACC_RDWR = 3, DFNT_CHARS8 =4, DFNT_INT32 = 24)

C Open the file and get the identifier for the file.
sd_id = sfstart(Example4.hdf, DFACC_RDWR)

C Setan attribute that describes the file contents.
status = sfsnatt(sd_id, 'file_contents', DFNT_CHARS, 16,
+ 'storm_track_data’)

C Getthe identifier for the first data set.
sds_id = sfselect(sd_id, 0)

C Setan attribute the specifies a valid range of values.
num_values(1) = 2
num_values(2) = 10
status = sfsnatt(sds_id, 'valid_range', DFNT_INT32, 2, num_values)

C Getthe identifier for the first dimension.
dim_id = sfdimid(sds_id, 0)

C Setan attribute that specifies the dimension metric.
status = sfsnatt(dim_id, 'dim_metric', DFNT_CHARS, 9, ‘'millibars')

C Terminate access to the array

3-81 May 14, 1997

National Center for Supercomputing Applications

status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file
status = sfend(sd_id)

end

3.10.2 Querying User-defined Attributes: SDfindattr and SDattrinfo

Given a file, array or dimension id and an attribute nmdindattr will return a valid attribute

index if the corresponding attribute exists. The attribute index can then be used to retrieve infor-
mation about an attribute or its values. Given a file, array or dimension id and a valid attribute
indexSDattrinfo returns the name, data type and count for the corresponding attribute if it exists.

The syntax foSDfindattr andSDattrinfo is as follows:

C: attr_index = SDfindattr(id, attr_name);
status = SDattrinfo(id, attr_index, attr_name, num_type,
count);

FORTRAN: attr_index = sffattr(id, attr_name)
status = sfgainfo(id, attr_index, attr, name, number_type,
count)

The parameters @Dfindattr andSDattrinfo are further described below. (See Table 3W.)

An attribute’s indexmay also be determined by keeping track of the number and order of
attributes as they are written or dumping the contents of a file using a dumping utility.

3.10.3 Reading User-defined Attributes: SDreadattr
SDreadattr reads the value or values of an attribute. The synta3@oeadattr is as follows:
C: status = SDreadattr(sds_id, attr_index, data);
FORTRAN: status = sfrattr(sd_id, attr_index, data)
SDreadattr takes a file, array, or dimension identifier and an attribute index specified in the

attr_index parameteras input parameters and returns the attribute values in the daitfer
SDreadaddr will also read attributes and annotations created by the DFSD interface.

It's assumed that the buffesata , allocated to hold the attribute values, is large enough to hold the
data. The size of the buffer must be at leastit*DFKNTsize(number_type) bytes long. It is
not possible to read a subset of values.

There are two Fortran-77 versions of this routsfeatt andsfrcatt. Thesfrnatt routine reads
numeric attribute data argfrcatt reads character attribute dataset.

The parameters &Dreadattr are further described in Table 3W. Note that, because there are two
Fortran-77 versions @Dreadattr, there are correspondingly two entries in the “Data Type” field
of thedataparameter.

TABLE 3W SDsetattr, SDfindattr, SDattrinfo and SDreadattr Parameter List
Routine Name Data Type o
Parameter Description
(Fortran-77) C | Fortran-77
3-82 May 14, 1997

National Center for Supercomputing Applications

file_id,
sds_id or int32 integer File, array or dimension identifier.
dim_id
SDsetattr -
attr_name char * character* (*) Attribute name.
(sfsnatt/
sfscatt) data_type int32 integer Data type of the attribute.
count int32 integer Number of values in the attribute.
values VOIDP <valid numeric data type>| Buffer for the data to be written.
file_id,
SDfindattr sds_id or int32 integer File, array or dimension identifier.
(sffattr) dim_id
attr_name char * character* (*) Attribute name.
file_id,
sds_id or int32 integer File, array or dimension identifier.
dim_id
attr_index int32 integer Index of the attribute to be read.
SDatt_rlnfo attr_name char * character* (¥) Buﬁgr for the name of the dimension
(sfgainfo) attribute.
)) Buffer for the data type of the values in the
2 * .
data_type int3 integer attribute.
. .) Buffer for the total number of values in the
count int32 integer .
attribute.
file_id,
SDreadattr sccjjisr#cijdor int32 integer File, array or dimension identifier.
(sfrnatt/ -
sfrcatt) attr_index int32 integer Index for the attribute to be read.
data VOIDP <valid numeric data type>| Buffer for the attribute values.

EXAMPLE 20. Retrieving Attribute Information
The attribute information stored in the "Example4.hdf" HDF file in Example 15 are read from the
file in these examples.
C: #include "hdf.h"
#include "mfhdf.h"
main()
{
int32 sd_id, sds_id, status, *bufferl;
int32 attr_index, data_type, count;
char attr_name[MAX_NC_NAME];
int8 *buffer;
/* Open the file. */
sd_id = SDstart("Example4.hdf’, DFACC_RDONLY);
/* Find the file attribute named "file_contents". */
attr_index = SDfindattr(sd_id, “file_contents");
/* Get information about the file attribute. */
status = SDattrinfo(sd_id, attr_index, attr_name, &data_type, &count);
* Allocate a buffer to hold the attribute data. */
buffer = (int8 *)malloc(count * DFKNTsize(data_type));
/* Read the attribute data. */
status = SDreadattr(sd_id, attr_index, buffer);
/* Get the identifier for the first data set. */
3-83 May 14, 1997

National Center for Supercomputing Applications

sds_id = SDselect(sd_id, 0);

/* Find the data set attribute named "valid_range". */
attr_index = SDfindattr(sds_id, "valid_range");

/* Get information about the data set attribute. */
status = SDattrinfo(sds_id, attr_index, attr_name, &data_type, &count);

/* Allocate a buffer to hold the attribute data. */
bufferl = (int32 *)malloc(count * DFKNTsize(data_type));

/* Read the attribute data. */
status = SDreadattr(sd_id, attr_index, bufferl);

/* Terminate access to the array */
status = SDendaccess(sds_id);

/* Terminate access to the SD interface and close the file */
status = SDend(sd_id);

}

FORTRAN: PROGRAM ATTRIB INFO

integer*4 sd_id, sds_id, range_buffer(2)
integer attr_index, data_type, count, status
character attr_name *13

character char_buffer *20

integer sfstart, sffattr, sfgainfo, sfrattr, sfselect
integer sfendacc, sfend

C DFACC_RDWR is defined in hdf.h.
integer DFACC_RDWR
parameter (DFACC_RDWR = 3)

C Open thefile.
sd_id = sfstart(Example4.hdf, DFACC_RDONLY)

C Find the file attribute named ‘file_contents".
attr_index = sffattr(sd_id, 'file_contents')

C Getinformation about the file attribute.
status = sfgainfo(sd_id, attr_index, attr_name, data_type, count)

C Read the attribute data.
status = sfrattr(sd_id, attr_index, char_buffer)

C Getthe identifier for the first data set.
sds_id = sfselect(sd_id, 0)

C Find the data set attribute named 'valid_range'.
attr_index = sffattr(sds_id, 'valid_range’)

C Getinformation about the data set attribute.
status = sfgainfo(sds_id, attr_index, attr_name, data_type, count)

C Read the attribute data.
status = sfrattr(sd_id, attr_index, range_buffer)

C Terminate access to the array
status = sfendacc(sds_id)

C Terminate access to the SD interface and close the file
status = sfend(sd_id)

end

3-84 May 14, 1997

National Center for Supercomputing Applications

3.11 Predefined Attributes

Predefined attributesre attributes that use reserved labels and in some cases Predefined data
types. Predefined attributes are categorized as follows:

Labelscan be thought of as independent variable names and dimension names and as such
are used as primary search keys.

Units are a means of declaring the units pertinent to a specific discipline. Unidata has devel-
oped a freely-available library of routines to convert between character string and binary
forms of unit specifications and to perform useful operations on the binary forms. This
library is used in some netCDF applications and is recommended for use with HDF applica-
tions. For more information, refer to thetCDF User’'s Guide

Formatsdescribe the form numeric values will be printed and/or displayed. The recom-
mended convention is to use standard Fortran-77 notation for describing the data format. For
example, "F7.2" means to display seven digits with two digits to the right of the decimal
point.

Coordinate systemsontain information that should be used when interpreting or displaying

the data. For example, the text strings "cartesian”, "polar” and "spherical" are recommended
coordinate system descriptions.

Rangesdefine the maximum and minimum values of a selected valid range. The range may
cover the entire data set, values outside the data set or a subset of values within a data set.
Because the HDF library does not check or update the range attribute as data is added or
removed from the file, the calling program may assign any values deemed appropriate as
long as they are of the same data type as the SDS array.

A fill value is the value used to fill the areas between non-contiguous writes to SDS arrays.
For more information about fill values, refer to Section 3.11.5 on page 89.

Calibration stores scale and offset values used to create calibrated data in SDS arrays. When
data are calibrated, they are typically reduced from floats, doubles or large integers into 8-bit
or 16-bit integers and "packed" into an appropriately sized array. After the scale and offset
values are applied, the packed array will return to its original form.

Predefined attributes are useful because they establish conventions that applications can depend
on and because they are understood by the HDF library without users having to define them. Pre-
defined attributes also insure backward compatibility with earlier versions of the HDF library.
They can be assigned to two types of HDF objects: data sets and dimensions. (See Table 3X.)

TABLE 3X Predefined Attribute List
Object Type Attribute Reserved Label Description
SDS Array Label long_name Name of the array.
or Unit units Units used for all dimensions and data.
Dimension) : -
Format format Format for displaying dim scales and array values.
Coordinate System cordsys Coordinate system used to interpret the SDS array.
. Maximum and minimum values within a selected data
Range valid_range
range.
Fill Value __Fillvalue Value used to fill empty locations in SDS array.
SDS Array Only scale_factor Value by which each array value is to be multiplied.
scale_factor_err Error introduced by scaling SDS array data.
Calibration add_offset Value to which each array value is to be added.
add_offset_err Error introduced by offsetting the SDS array data.
calibrated_nt Data type of the calibrated data.
3-85 May 14, 1997

National Center for Supercomputing Applications

The following naming conventions taken from tietCDF User’'s Guidare meant to promote
consistency of information-sharing among generic applications. These naming conventions are
not specifically required by the HDF library, but are highly recommended.

missing_value An attribute containing a value use to fill areas of an array not intended to
contain valid data or a fill value. The scope of this attribute is local to the array. An example
of this would be a region where information is unavailable, as in a geographical grid con-
taining ocean data. The part of the grid where there is land might not have any data associ-
ated with it and in such a case thigsing_value value could be supplied. The

missing_value attribute is different from theFillvalue attribute in that fill values are
intended to indicate data that was expected but did not appear, whereas missing values are
used to indicate data that were never expected.

title: A global file attribute containing a description of the contents of a file.

history: A global file attribute containing the name of a program and the arguments used to
derive the file. Well-behaved generic filters (programs that take HDF or netCDF files as
input and produce HDF or netCDF files as output) would be expected to automatically
append their name and the parameters with which they were invoked to the history attribute
of an input file.

3.11.1 Accessing Predefined Attributes

The SD interface provides two methods for accessing predefined attributes. The first method uses
the general attribute routines for user-defined attributes described in Section 3.11 on page 85 and
the second employs routines specifically designed for each attribute. Although the general

attribute routines work well and are recommended in most cases, the specialized attribute routines
are sometimes easier to use, especially when reading or writing related predefined attributes. This
is true for two reasons. First, because predefined attributes are guaranteed unique names, the
attribute index is unnecessary. Second, attributes with several components may be read as a group.
For example, using the SD routine designed to read the predefined calibration attribute returns all
five components with a single call, rather than five separate calls.

There is one exception: unlike predefined array attributes, predefined dimension attributes should
be read or written using the specialized attribute routines only.

The predefined attribute parameters are described in Table 3Y. Creating a predefined attribute
with parameters different from these will produce unpredictable results when the attribute is read
using the corresponding predefined-attribute routine.

TABLE 3Y Predefined Attribute Parameter List
attr_name num_type count value
Category
(Attribute type) (Data type) (Number of Values) (Attribute value)
Label long_name DFNT_CHARS8 string length Pointer to string.
Unit units DFNT_CHARS8 string length Pointer to string.
Format format DFNT_CHARS8 string length Pointer to string.
Coordinate . . .
System cordsys DFNT_CHARS8 string length Pointer to string.
Range valid_range <valid type> 2 Pointer to array.
Fill Value _Fillvalue <valid type> 1 Pointer to fill value.
3-86 May 14, 1997

National Center for Supercomputing Applications

Calibration

scale_factor

DFNT_FLOAT64

Pointer to scale.

scale_factor_err

DFNT_FLOAT64

Pointer to scale error.

add_offset

DFNT_FLOAT64

Pointer to offset.

add_offset_err

DFNT_FLOAT64

Pointer to offset error.

calibrated_nt

DFNT_INT32

RrlRr|Rr|[Rkr|R

Pointer to data type.

In addition toSDreadattr, SDfindattr andSDattrinfo are also valid general attribute routines to
use when reading a predefined attrib@®attrinfo is always useful for determining the size of an
attribute whose value contains a string.

3.11.2 SDS String Attributes

Predefined string attributes for an SDS array includéate, unit, format andcoordinate system
of an SDS.

3.11.2.1 Writing String Attributes: SDsetdatastrs

The following function assigns label, unit, format and coordinate system string attributes to an
SDS array:

C: status = SDsetdatastrs(sds_id, label, unit, format, coordsys);

FORTRAN: status = sfsdtstr(sds_id, label, unit, format, coordsys)

SDsetdatastrsassigns a predefined attribute to an SDS. The argumerg®&mtdatastrsare
described in Table 3Z. To avoid creating one or more attributesNpasgs the appropriate argu-
ment.

3.11.2.2 Reading String Attributes: SDgetdatastrs

The following function reads the label, unit, format and coordinate system string attributes of an
SDS:

C: status = SDgetdatastrs(sds_id, label, unit, format, coordsys,
len);

FORTRAN: status = sfgdtstr(sds_id, label, unit, format, coordsys, len)

SDgetdatastrsreads the predefined attributes of an SDS array. The argurants unit

format andcoordsys are string buffers. If a particular attribute does not exist, the first character
of the returned string will bRULL. Each string buffer is assumed to be at leastcharacters

long, including the space to hold tRelLL termination character. To avoid reading a particular
attribute, passiULL in the corresponding argument.

Keep in mind that the value returnediyel is the value of the attribute named "long_name"
and that the value returned &ordsys is the value of the attribute named "cordsys". The reasons
for this are explained in User’s Guide Appendix F.

The parameters @Dgetdatastrsare described in Table 3Z.

TABLE 32 SDsetdatastrs and SDgetdatastrs Parameter List
Routine Name Data Type o
Parameter Description
(Fortran-77) C Fortran-77
3-87 May 14, 1997

National Center for Supercomputing Applications

sds_id int32 integer Data set identifier.
label char * character* (*) | Label for the data.
Sbsetdatastrs unit char * character* (*) | Definition of the units.
(sfsdtstr)
format char * character* (*) | Description of the data format.
coordsys char * character* (*) | Description of the coordinate system.
sds_id int32 integer Data set identifier.
label char * character* (*) | Buffer for the label.
SDgetdatastrs unit char * character* (*) | Buffer for the description of the units.
(sfgdtstr) format char * character* (*) | Buffer for the description of the data format.
coordsys char * character* (*) | Buffer for the description of the coordinate system.
len integer intn Maximum length of the attributes.

3.11.3 Dimension String Attributes

Dimension string attributes includdabel, unit andformat string which describe a dimension.
They adhere to the same definitions as those of the label, unit and format strings for SDS
attributes.

3.11.3.1 Writing a Dimension String Attribute: SDsetdimstrs

C: status = SDsetdimstrs(dim_id, label, unit, format);

FORTRAN: status = sfsdmstr(dim_id, label, unit, format)

SDsetdimstrsassigns label, unit and format attributes to an SDS dimensiontlinihe argu-
ment is the dimension identifier returned by the ca$ Dmetdimid. It identifies the dimension to
which the attribute will be assigned. The remaining arguments are described below. (See
Table 3AA on page 88.)

3.11.3.2 Reading a Dimension String Attribute: SDgetdimstrs

C: status = SDgetdimstrs(dim_.id, label, unit, format, len);

FORTRAN: status = sfgdmstr(dim_id, label, unit, format, len)

SDgetdimstrsreads the attributes specified by thtel ,unit andformat parametersto an SDS
dimension. The argumentkel ,unit , andformat are buffers to hold the label, unit and format
strings as defined in their respective attributes. If a particular attribute does not exist, the first char-
acter of the returned string will beJLL Each buffer is assumed to be at leéast characters long
including the space to hold theLL termination character. To avoid reading a particular attribute,
passNULL as the appropriate argument.

The parameters @Dgetdimstrsare described in Table 3AA.

TABLE 3AA SDsetdimstrs and SDgetdimstrs Parameter List
Routine Name Data Type
Parameter Description
(Fortran-77) C Fortran-77
dim_id int32 integer Dimension identifier.
SDsetdimstrs label char * character* (*) | Label describing the specified dimension.
(sfsdmstr) unit char * character* (*) | Units to be used with the specified dimension.
format char * character* (*) | Format to use when displaying the scale values.
3-88 May 14, 1997

National Center for Supercomputing Applications

dim_id int32 integer Dimension identifier.
label char * character* (*) | Buffer for the dimension label.
S(DS?:;?:E;B unit char * character* (*) | Buffer for the dimension unit.
format char * character* (*) | Buffer for the dimension format.
len intn integer Maximum length of the string attributes.

3.11.4 Range Attributes

The attributeange contains user-defined maximum and minimum values in a selected range. As
the HDF library does not check or update the range attribute as data is added or removed from the
file, the calling program may assign any values deemed appropriate. Also, because the maximum
and minimumvalues are supposed to relate to the data set, it is assumed that they are of the same
data type as the data.

3.11.4.1 Writing a Range Attribute: SDsetrange

SDsetrangeassigns the range attribute to an SDS:

C: status = SDsetrange(sds_id, max, min);

FORTRAN: status = sfsrange(sds_id, max, min)
The parameters @Dsetrangeare described below. (See Table 3AB on page 89.)

3.11.4.2 Reading a Range Attribute: SDgetrange

SDgetrangereads the maximum and minimum valid values of an SDS array as specified by a
SDsetrangecall or its equivalent:

C: status = SDgetrange(sds_id, max, min);

FORTRAN: status = sfgrange(sds_id, max, min)

The argumentsax andmin are buffers the maximum and minimum values will be read into. The
arguments in the C version 8Dgetrangeare pointers rather than simple variables, whereas in
the Fortran-77 version they are variables of the same data type as the ddia patameters of
SDgetrangeare described in the following table.

TABLE 3AB SDsetrange and SDgetrange Parameter List
Routine Name Data Type
Parameter Description
(Fortran-77) C Fortran-77
sds_id int32 integer Data set identifier.
SDsetrange max VOIDP <valid numeric data type>| Maximum value of the range.
(sfsrange)
min VOIDP <valid numeric data type>| Minimum value of the range.
sds_id int32 integer Data set identifier.
SDgetrange max VOIDP <valid numeric data type>| Buffer for the maximum value.
(sfgrange)
min VOIDP <valid numeric data type> | Buffer for the minimum value.

3.11.5 Fill Values

A fill value is the value used to fill the spaces between non-contiguous writes to SDS arrays. If a
fill value is set before writing data to an SDS, the entire array is initialized to the specified fill

3-89 May 14, 1997

National Center for Supercomputing Applications

value. By default, any location not subsequently overwritten by SDS data will contain the fill
value.

A fill value must be of the same data type as the array to which it's written. To avoid conversion
errors, use data-specific fill values instead of special architecture-specific values, such as infinity
andNot-a-Numberor NaN.

Fill values can also be defined for all SDSs within a file. This is determined by sefitingade,
which can be done by calling ti&Dsetfillmoderoutine described below.
3.11.5.1 Writing a Fill Value Attribute: SDseffillvalue
SDsetfillvalue assigns a new value to the fill value attribute for an SDS array:
C: status = SDsetfillvalue(sds_id, fill_val);

FORTRAN: status = sfsfill(sds_id, fill_val)

The argumentill_val is the new fill value. It is recommended that you set the fill value before
writing data to an SDS array, as calli@Dsetffillvalue after data is written to an SDS array only
changes the fill value attribute - it does not update the existing fill values.

There are two Fortran-77 versions of this routsfsfill andsfscfill. Thesfsfill routine writes
numeric fill value data ansfscfill writes character fill value data.

The parameters @Dsetfillvalue are described below. (See Table 3AC on page 91.) Note that,
because there are two Fortran-77 versior&detfillvalue there are correspondingly two entries
in the “Data Type” field of thdill_val parameter.

3.11.5.2 Reading a Fill Value Attribute: SDgetfillvalue

SDgetfillvalue reads in the fill value of an SDS array as specified 8{setfillvalue call or its
equivalent:

C: status = SDgetfillvalue(sds_id, fill_val);

FORTRAN: status = sfgfill(sds_id, fill_val)
The argumentill_val is the space allocated to store the fill value.

There are two Fortran-77 versions of this routsfgfill andsfgcfill. Thesfgfill routine reads
numeric fill value data ansfgcfill reads character fill value data.

The parameters &Dgetfillvalue are described in the following table. Note that, because there are
two Fortran-77 versions &Dgetffillvalue, there are correspondingly two entries in the “Data
Type” field of thefill_val parameter.

3.11.5.3 Setting the Fill Mode for all SDSs in the Specified File: SDsetfillmode

Writing fill values to an SDS can involve more I/O overhead than is necessary. This is because,
whenever a fill value is set for an SDS, two write operations are generally needed - one to write
the fill value and one to write the actual dataset data. It is "generally needed” because, whenever
all of the data is written to the dataset in one write operation the additional write operation to add
the fill values is not performed, as it isn’'t necessary. For datasets containing contiguous data, pre-
venting the HDF library from performing these fill value write operations can result in a substan-
tial performance increase.

3-90

May 14, 1997

National Center for Supercomputing Applications

However, it can be tedious to unset the fill value for all SDSs in a file, particularly when the file
contains a large number of them. This can be done with one &llidetfillmode which must
occur before calls t8Dsetfillvalue.

The syntax oSDsetfillmodeis as follows:
C: status = SDsetfillmode(file_id, fil_mode);
FORTRAN: status = sfsfimd(file_id, fill_mode)
The argumentfile_id is the identifier of the file the fill mode will be applied to. Tiiemode
argument is the fill mode to be applied - it can be set to efthenLL or SD_NOFILL. SD_FILL
specifies that fill values will be written to all SDSs in the specified file by defaBD#etfillm-
odeis never called befor®@Dsetffillvalug this is the default fill modesD_NOFILL specifies that, by

default, fill values will not be written to all SDSs in the specified file. This can be overridden for
specific SDSs by subsequent callSDsetfillvalue

Note that, whenever a file has been newly opened, or has been closed and then re-opened, the
defaultsp_riLL fill mode will be in effect until it is changed by a callS®setfillmode

The parameters @Dsetfillmodeare described in the table below.

TABLE 3AC SDsetfillvalue, SDgetfillvalue and SDsetfillmode Parameter List
Function Call Data Type o
Parameter Description
(Fortran-77) C Fortran-77
SDsetfillvalue sds_id int32 integer Data set identifier.
fsfill/
Ssiflill) fill_val VOIDP <valid numeric data type> | Pointer to the fill value to be set.
SDgeffillvalue sds_id int32 integer Data set identifier
fofill/
Sg%fli”) fill_val VOIDP <valid numeric data type> | Buffer for the fill value.
SDsetfillmode file_id int32 integer File identifier.
(sfsfimd) fill_mode intn integer Fill mode to be set.
3.11.6 Calibration Attributes
Thecalibration attribute stores scale and offset values to describe calibrated data in SDS arrays.
When data are calibrated using a scale and an offset, the values in an array can be represented
using a smaller data type than the original. For instance, an array containing dataleitype
could be stored as an array containing data of type 8- or 16-bit integer. Bethi¢gheactor
andadd_offset attributes should be of the typeat64
3.11.6.1 Writing Calibrated Data: SDsetcal
SDsetcaladds the scale factor, offset, scale factor error, offset error and the data type of the uncal-
ibrated data to the specified data set:
C: status = SDsetcal(sds_id, cal, cal_error, offset, off_err,
num_type);
FORTRAN: status = sfscal(sds_id, cal, cal_error, offset, off_err,
num_type)
SDsetcalmust be called to calibrate the data before the data is written.
3-91 May 14, 1997

National Center for Supercomputing Applications

SDsetcalhas six argumentsgs_id , cal , cal_error , offset ,off_err andnum_type . The
argumental represents a single value that when multiplied against every value in the calibrated
array reproduces the original data (assumingfiaet of 0). The argumentffset represents a

single value that when subtracted from every value in the calibrated array reproduces the original
data (assumingstale of 1). Thecal andoffset values relate to the original data according to

the following equation:

original_data = cal * (calibrated_data - offset)

In addition tocal andoffset , SDsetcalalso includes both a scale and offset error. The argument
cal_err contains the potential error of the calibrated data due to scaffingr contains the
potential error for the calibrated data due to the offset.

The parameters @Dsetcalare described below. (See Table 3AD on page 92.)

3.11.6.2 Reading Calibrated Data: SDgetcal

SDgetcalreads calibration attributes for an SDS array as written3iysetcalcall or its equiva-
lent:

C: status = SDgetcal(sds_id, cal, cal_error, off, off_err,
num_type);

FORTRAN: status = sfgcal(sds_id, cal, cal_error, off, off_err,
num_type)

Because the HDF library does not actually apply calibration information to the&S@ajatcalcan
be called anytime before or after the data is read. If a calibration record does n&i®yéstal
returnsFALSE SDgetcaltakes six argumentsgs_id , cal , cal_error , offset , off_err and
num_type . These parameters are described in the following table.

TABLE 3AD SDsetcal and SDgetcal Parameter List
Routine Name Data Type o
(Fortran7) Parameter c —— Description
sds_id int32 integer Data set identifier.
cal float64 real*8 Calibration factor.
SDsetcal cal_error float64 real*8 Calibration error.
(sfscal) off floate4 real*8 Uncalibrated offset.
off_err float64 real*8 Uncalibrated offset error.
num_type int32 integer Data type of uncalibrated data.
sds_id int32 integer Data set identifier.
cal float64 * real*8 Pointer to the calibration factor.
SDgetcal cal_error float64 * real*8 Pointer to the calibration error.
(sfgcal) off float64 * real*8 Pointer to the uncalibrated offset.
off_err float64 * real*8 Pointer to the uncalibrated offset error.
num_type int32 * integer Pointer to the data type of uncalibrated data.
EXAMPLE 21. Calibrating Data
Suppose the values in the calibrated aceawal are the following integers:
3-92 May 14, 1997

National Center for Supercomputing Applications

cal_val[6] = {2, 4, 5, 11, 26, 81}

By applying the calibration equati@ng = cal * (cal_val - offset) with cal = 0.50
andoffset = -2000.0 , the calibrated arragal_val] ~ returns to its original floating-point
form:

original_val[6] = {1001.0, 1002.0, 1002.5, 1005.5, 1013.0, 1040.5}

3.12 netCDF

HDF supports the netCDF data model and interface developed at the Unidata Program Center
(UPC). Like HDF, netCDF is an interface to a library of data access programs that store and
retrieve data. The file format developed at the UPC to support netCDF uses XDR (eXternal Data
Representation) a non-proprietary external data representation developed by Sun Microsystems
for describing and encoding data . Full documentation on netCDF and the Unidata netCDF API is
available abttp:/mwww.unidata.ucar.edu/packages/netcdf/

The netCDF data model is interchangeable with the SDS data model in so far as it is possible to
use the netCDF calling interface to place an SDS into an HDF file and conversely the SDS inter-
face will read from an XDR-based netCDF file. Because the netCDF API has not changed and
netCDF files stored in XDR format are readable, existing netCDF programs and data are still
usable, although programs will need to be relinked to the new library. However, there are impor-
tant conceptual differences between the HDF and the netCDF data model that must be understood
to effectively use HDF for the purpose of working with netCDF data objects and to understand
enhancements to the API that will be included in the future to make the two APIs much more sim-
ilar.

In the HDF model, when an n-dimensional SDS is creatésuyeate data objects are also cre-

ated that provide information about the individual dimensions - one for each dimension. Each
SDS contains within its internal structure the array data as well as pointers to these dimensional
data objects. Each dimensional data object is stored in a structure that is in the HDF file, but sepa-
rate from the SDS array.

If more than one SDS have the same dimension sizes, they may share dimensions by pointing to
the same dimensional data objects. This can be done in application programs bys€adtitg
dimname to assign the same dimension name to all dimensions that are shared by several SDS
objects. For example, suppose you make the following sequence of calls for every SDS in a file:

dim_id = SDgetdimid(sds_id, 0);

ret = SDsetdimname(dim_id, "Lat");
dim_id = SDgetdimid(sds_id, 1);

ret = SDsetdimname(dim_id, "Long");

This will cause every SDS to refer to the dimensional data object named "Lat" as its first dimen-
sion and to the dimensional data object named "Long" as its second dimension.

This same result is obtained differently in netCDF. Note that a netCDF "variable" is roughly the
same as an HDF SDS. The netCDF API requires application programs to define all dimensions,
usingncdimdef , before defining variables. Those defined dimensions are then used to define vari-
ables inncvardef . Each dimension is defined by a name and a size. All variables using the same
dimension will have the same dimension name and dimension size.

Although the HDF SDS API will read from and writearistingXDR-based netCDF files, HDF
cannot be used wreateXDR-based netCDF files.

3-93

May 14, 1997

National Center for Supercomputing Applications

There is currently no support for the mixing of HDF objects that are not SDSs and netCDF
objects. For example, a raster image can exist in the same HDF file as a netCDF object, but you
must use one of the HDF raster image interfaces to read the image and the HDF SD or netCDF
interface to read the netCDF object. The other HDF interfaces are currently being modified to
allow multifile access. Closer integration with the netCDF interface will probably be delayed until
the end of that project.

3.12.1 HDF Interface vs. netCDF Interface

Existing netCDF applications can be used to read HDF files and existing HDF applications can be
used to read XDR-based netCDF files. To read an HDF file using a netCDF application, the appli-
cation must be recompiled using the HDF library. For example, recompiling the netCDF utility
ncdump with HDF creates a utility that can dump scientific data sets from both HDF and XDR-
based files. To read an XDR-based file using an HDF application, the application must be relinked
to the HDF library.

The current version of HDF contains three APIs that support essentially the same data model:
The multifile SD interface.
The netCDF or NC interface.
The single-file DFSD interface.
The multifile GR interface.

The first three interfaces can create, read and write SDSs in HDF files. Both the SD and NC inter-
faces can read from and write to XDR-based netCDF files, but they cannot create them. This
interoperability means that a single program may contain both SD and NC function calls and thus
transparently read and write scientific data sets to HDF or XDR-based files.

The SD interface is the only HDF interface capable of accessing the XDR-based netCDF file for-
mat. The DFSD interface cannot access XDR-based files and can only access SDS arrays, dimen-
sion scales and predefined attributes. A summary of file interoperability among the three

interfaces is provided in the following table.

TABLE 3AE Summary of HDF and XDR File Compatibility for the HDF and netCDF APls
Files Created by | Files Created by Files Written by
DFSD Interface SD Interface NC Interface
HDE HDE NC_SA HDF Unida_ta netCDF
Library Library
Accessed by DFSD Yes Yes Yes No
Accessed by SD Yes Yes Yes Yes
Accessed by NC Yes Yes Yes Yes
A summary of NC function calls and their SD equivalents is presented in the following table.
3-94 May 14, 1997

National Center for Supercomputing Applications

TABLE 3AF NC Interface Routine Calls and Their SD Equivalents
Routine Name
Purpose Equilzlent Description
C Fortran-77

nccreate NCCRE SDstart Creates a file.
ncopen NCOPN SDstart Opens a file.
ncredef NCREDF Not Applicable Sets open file into define mode.
ncendef NCENDF Not Applicable Leaves define mode.

Operations ncclose NCCLOS SDend Closes an open file.
ncinquire CINQ BDfileinfo Inquires about an open file.
ncsync NCSNC Not Applicable Synchronizes a file to disk.
ncabort NCABOR Not Applicable Backs out of recent definitions.
ncsetfill NCSFIL Not Implemented Sets fill mode for writes.
ncdimdef NCDDEF SDsetdimname Creates a dimension.
nedimid NCDID SDgetdimid Returns a dimension identifier from it

Dimensions name.
ncdiming NCDINQ SDdiminfo Inquires about a dimension.
ncdimrename NCDREN Not Implemented Renames a dimension.
ncvardef INCVDEF SDcreate Creates a variable.
nevarid NCVID SDnametoindex Returns a variable identifier from its name

and SDselect

nevaring NCVINQ SDgetinfo Returns information about a variable.
ncvarputl NCVPT1 Not Implemented Writes a single data value.

Variables ncvargetl NCVGTL Not Implemented Reads a single data value.
nevarput NCVPT SDwritedata Writes a hyperslab of values.
ncvarget INCVGT/NCVGTC SDreaddata Reads a hyperslab of values.
ncvarrename NCVREN Not Implemented Renames a variable.
nctypelen CTLEN DFKNTsize Returns the number of bytes for a data tyge.
ncattput CAPT/NCAPTC SDsetattr Creates an attribute.
ncatting CAINQ [SDattrinfo Returns information about an attribute.
ncattcopy CACPY Not Implemented Copies attribute from one file to another.

Attributes ncattget CAGT/NCAGTC SDreadattr Returns attributes values.
ncattname NCANAM SDattrinfo Returns name of attribute from its number
ncattrename CAREN Not Implemented Renames an attribute.
ncattdel CADEL Not Implemented Deletes an attribute.

3-95 May 14, 1997

National Center for Supercomputing Applications

3-96 May 14, 1997

	Scientific Data Sets (SD API)
	3.1 Chapter Overview
	3.2 The SD Scientific Data Set Data Model
	FIGURE 3a The Contents of a Three-Dimensional SD S...
	3.2.1 Required SD SDS Objects
	3.2.1.1 SDS Array
	3.2.1.2 SDS Array Name
	3.2.1.3 Data Type
	3.2.1.4 Dimensions

	3.2.2 Optional SD SDS Objects
	3.2.3 Annotations and the SD Data Model

	3.3 The SD Scientific Data Set API
	3.3.1 SD Library Routines
	TABLE 3A SD Library Routines

	3.3.2 SDS Identifiers in the SD Interface
	3.3.3 Tags in the SD Interface

	3.4 Programming Model for the SD Interface
	1. Open a file and initialize the SD interface.
	2. Open an existing SDS by obtaining an SDS id fro...
	3. Perform desired operations on the SDS.
	4. Terminate access to the data set.
	5. Terminate access to the SD interface and close ...
	3.4.1 Establishing Access to Files and Data Sets: ...
	3.4.2 Terminating Access to Files and Data Sets: S...
	TABLE 3B SDstart, SDselect, SDend and SDendaccess ...
	EXAMPLE 1. Accessing and Closing an SDS

	3.5 Creating and Writing to Simple Scientific Data...
	3.5.1 Creating Scientific Data Sets: SDcreate
	1. Open a file and initialize the SD interface.
	2. Define the characteristics of the SDS.
	3. Perform optional operations on the SDS.
	4. Terminate access to the data set.
	5. Terminate access to the SD interface and close ...
	TABLE 3C SDcreate Parameter List
	EXAMPLE 2. Creating an Empty SDS

	3.5.2 Writing Data to an SDS Array: SDwritedata
	1. Create an SDS.
	2. Write a slab or series of slabs.
	FIGURE 3b Description of "Strides"
	TABLE 3D SDwritedata Parameter List

	3.5.2.1 Filling an Entire Array
	EXAMPLE 3. Creating and Writing to an SDS

	3.5.2.2 Writing Slabs to an SDS Array
	EXAMPLE 4. Writing a Slab of Data to an SDS
	EXAMPLE 5. Altering Values Within an Array Data Se...

	3.5.2.3 Appending Data to an SDS Array Using the U...
	EXAMPLE 6. Appending Data to an SDS Array Using an...

	3.5.3 Compressing SD SDS Array Data: SDsetcompress...
	TABLE 3E SDsetcompress Parameter List
	3.5.3.1 Rules for Writing to a Compressed Data Set...
	1. Write the compressed data, in its entirety, to ...
	2. Append to a compressed data set. In other words...
	3. Write the compressed data, in its entirety, to ...

	3.5.4 External File Operations
	3.5.4.1 Specifying the Directory Search Path of an...
	1. The directory path specified by the last call t...
	2. The directory path specified by the $HDFEXTDIR ...
	3. The locations searched by the standard open(3) ...
	TABLE 3F HXsetdir Parameter List

	3.5.4.2 Specifying the Location of the Next Extern...
	1. The directory specified by the last call to the...
	2. The directory specified by the $HDFEXTCREATEDIR...
	3. The locations searched by the standard open(3) ...
	TABLE 3G HXsetcreatedir Parameter List

	3.5.4.3 Creating a Data Set in an External File: S...
	1. Create the array.
	2. Specify that an external data file is to be use...
	3. Write data to the array.
	4. Terminate access to the data set.
	TABLE 3H SDsetexternalfile Parameter List

	3.5.4.4 Moving Data to an External File
	1. Select the array.
	2. Specify the external data file.
	3. Terminate access to the data set.
	EXAMPLE 7. Writing SDS Data to an HDF File Startin...

	3.6 Reading Data from an SDS Array: SDreaddata
	1. Select an SDS.
	2. Read a slab or series of slabs.
	TABLE 3I SDreaddata Parameter List
	EXAMPLE 8. Reading an Entire SDS
	EXAMPLE 9. Reading a Subset of an SDS Array
	EXAMPLE 10. Sampling SDS Data
	3.6.1 Reading Data from an External File

	3.7 Obtaining Information About SD Data Sets
	3.7.1 Obtaining Information About the SDSs in a Fi...
	3.7.2 Obtaining Information About a Specific SDS: ...
	TABLE 3J SDfileinfo and SDgetinfo Parameter List
	EXAMPLE 11. Printing Data Set Names

	3.7.3 Locating a SDS Data Set by Name: SDnametoind...
	1. Convert the SDS name into a valid index number....
	2. Select the SDS by obtaining its identifier from...

	3.7.4 Locating an SDS by Reference Number: SDrefto...
	1. Convert the reference number for the SDS into a...
	2. Select the SDS by obtaining its identifier from...
	TABLE 3K SDnametoindex and SDreftoindex Parameter ...
	EXAMPLE 12. Searching for the Index of an SDS

	3.7.5 Creating SDS Arrays Containing Variable-Leng...
	TABLE 3L SDsetnbitdataset Parameter List

	3.8 Chunked (or Tiled) Scientific Data Sets
	3.8.1 Making a Non-Chunked SDS a Chunked SDS: SDse...
	TABLE 3M SDsetchunk Parameter List

	3.8.2 Setting the Maximum Number of Chunks in the ...
	TABLE 3N SDsetchunkcache Parameter List

	3.8.3 Writing Data to Chunked SDSs: SDwritechunk a...
	TABLE 3O SDwritechunk Parameter List

	3.8.4 Reading Data From Chunked SDSs: SDreadchunk ...
	TABLE 3P SDreadchunk Parameter List

	3.8.5 Obtaining Information About a Chunked SDS: S...
	TABLE 3Q SDgetchunkinfo Parameter List
	EXAMPLE 13. Writing and Reading Chunked Data Using...
	EXAMPLE 14. Writing and Reading Chunked Data Using...
	EXAMPLE 15. Writing and Reading Chunked Data Using...
	EXAMPLE 16. Writing and Reading Compressed Chunked...

	3.8.6 Ghost Areas
	FIGURE 3c Array Locations Created Beyond the Defin...

	3.9 SD Dimension and Dimension Scale Operations
	3.9.1 Selecting a Dimension: SDgetdimid
	3.9.2 Naming a Dimension: SDsetdimname
	1. Get the identifier of the dimension.
	2. Assign a name to the dimension - the dimension ...
	TABLE 3R SDsetdimname Parameter List

	3.9.3 Old and New Dimension Implementations
	3.9.3.1 Setting the Future Compatibility Mode of a...
	TABLE 3S SDsetdimval_comp Parameter List

	3.9.3.2 Setting the Current Compatibility Mode of ...
	TABLE 3T SDisdimval_bwcomp Parameter List

	3.9.4 Dimension Scales
	3.9.4.1 Writing Dimension Scales: SDsetdimscale
	1. Get the identifier of the dimension.
	2. Create the dimension scale, setting the data ty...

	3.9.4.2 Obtaining Dimension Scale and Other Dimens...
	1. Get the identifier of the dimension.
	2. Retrieve the dimension information.

	3.9.4.3 Reading Dimension Scales: SDgetdimscale
	1. Get the identifier of the dimension.
	2. Read the scale.
	TABLE 3U SDgetdimid, SDsetdimname, SDsetdimscale, ...
	EXAMPLE 17. Writing Dimension Information

	3.9.5 Distinguishing SDS Arrays from Dimension Sca...
	TABLE 3V SDiscoordvar Parameter List
	EXAMPLE 18. Retrieving SDS Information from an HDF...

	3.9.6 Dimension Scales for Multiple Data Sets
	FIGURE 3d Dimension Records and Attributes Shared ...

	3.10 User-defined Attributes
	3.10.1 Writing User-defined Attributes: SDsetattr
	1. Obtain the appropriate identifiers:
	2. Create the attribute.
	3. Terminate access by disposing of any existing i...
	EXAMPLE 19. Setting Attribute Values

	3.10.2 Querying User-defined Attributes: SDfindatt...
	3.10.3 Reading User-defined Attributes: SDreadattr...
	TABLE 3W SDsetattr, SDfindattr, SDattrinfo and SDr...
	EXAMPLE 20. Retrieving Attribute Information

	3.11 Predefined Attributes
	TABLE 3X Predefined Attribute List
	3.11.1 Accessing Predefined Attributes
	TABLE 3Y Predefined Attribute Parameter List

	3.11.2 SDS String Attributes
	3.11.2.1 Writing String Attributes: SDsetdatastrs
	3.11.2.2 Reading String Attributes: SDgetdatastrs
	TABLE 3Z SDsetdatastrs and SDgetdatastrs Parameter...

	3.11.3 Dimension String Attributes
	3.11.3.1 Writing a Dimension String Attribute: SDs...
	3.11.3.2 Reading a Dimension String Attribute: SDg...
	TABLE 3AA SDsetdimstrs and SDgetdimstrs Parameter ...

	3.11.4 Range Attributes
	3.11.4.1 Writing a Range Attribute: SDsetrange
	3.11.4.2 Reading a Range Attribute: SDgetrange
	TABLE 3AB SDsetrange and SDgetrange Parameter List...

	3.11.5 Fill Values
	3.11.5.1 Writing a Fill Value Attribute: SDsetfill...
	3.11.5.2 Reading a Fill Value Attribute: SDgetfill...
	3.11.5.3 Setting the Fill Mode for all SDSs in the...
	TABLE 3AC SDsetfillvalue, SDgetfillvalue and SDset...

	3.11.6 Calibration Attributes
	3.11.6.1 Writing Calibrated Data: SDsetcal
	3.11.6.2 Reading Calibrated Data: SDgetcal
	TABLE 3AD SDsetcal and SDgetcal Parameter List
	EXAMPLE 21. Calibrating Data

	3.12 netCDF
	3.12.1 HDF Interface vs. netCDF Interface
	TABLE 3AE Summary of HDF and XDR File Compatibilit...
	TABLE 3AF NC Interface Routine Calls and Their SD ...

