HDF Configuration Record Definition

Version 2.0

Technical Document

Revised in October 1999

Prepared Under Subcontract #301684

Hughes Information Technology Systems

(U. of Illinois Ref. No. 96-NASA SBC-F-0162)

Albert Cheng

Michael Folk

Paul Harten

Raymond Lu

William Whitehouse

National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign
PART i. Introduction

1. INTRODUCTION……...………………………………………………………………...…1

 1.1
Purpose
1
 1.2
The Need for a Configuration Record
1
 1.3
Organization of this Document
1
 1.4
Version History
1
 1.4.1 Version 2.0 ………………………...………………………………………………..1

 1.4.2
Version 1.2
2
 1.4.3
Version 1.1
2
2.
Overview of the HCR
2
2.1 Overview of ODL statements
3
2.1.1
Assignment Statement
3
2.1.2
Object Statement
3
2.1.3
End Statement
3
2.1.4
Comment
3
2.1.5
Continuation
3
2.1.6
Case sensitivity
4
2.1.7
Example
4
PART II. HCR FOR HDF-EOS
3.
Swath Object
6
3.1
Swath Object Definition
6
3.2
Swath Dimension Definition
6
3.3
Swath Datafield Definition
6
3.3.1
Swath Field Storage Definition
7
3.4
Swath Geofield Definition
7
3.5
Reserved Field Names
7
3.6
Swath Dimension Mapping Definition
8
3.6.1
Regular Dimension Mapping Definition
8
 3.6.2
Implicit Mapping Name
8
3.6.3
Index Dimension Mapping Definition
8
3.7
Swath Object Example
8
4.
Grid Object
11
4.1
Grid Object Definition
11
4.2
Grid Parameters Definition
11
4.3
Grid Dimension Definition
12
4.4
Grid Datafield Definition
13
4.4.1
Grid Field Storage Definition
13
 4.4.2
Reserved Field Names
14
4.5
Grid Object Example
14
5.
Point Object
16
5.1
Point Object Definition
16
5.2
Point Table Definition
16
5.3
Point Field Definition
16
5.3.1
Reserved Field Names
17
5.4
Point LevelLink Definition
17
 5.4.1
Point LevelLink Name
17
5.5
Point Object Example
17
6.
Example HCR File
21
part III. HCR for hdf

7.
SDS Object……………………………………………………………………………...28

 7.1 SDS OBJECT DEFINITION……………….……………………………………………28

 7.2 OBJECT OF SDS DIMENSION WITH NAME OBJECT……...…….…………………28

 7.2.1 SDS Dimension With Name Object Definition….……………………………………...28

 7.2.2 Dimension Predefined Attribute Definition……………………...…………………… .28

 7.2.3 User-defined Dimension Attributes Definition…………………………...…………….28

 7.2.4 File Attribute Definition……………………………………………………..………29

 7.2.5 Dimension Scale Definition…...……………………………………………………...29

 7.3 SDS OBJECT DEFINITION…….……………………………………………………..30

 7.4 SDS DIMENSION WITHOUT NAME DEFINITION.………………………………..30

 7.5 SDS ATTRIBUTES DEFINITION………………………………………….…………31

 7.6 SDS OBJECT EXAMPLE…………………………………………………………...…31

8. GR OBJECT……………………..………………………………………………………..34

 8.1 GR OBJECT DEFINITION…………...…………………………………………….....34

 8.2 IMAGE ARRAY OBJECT DEFINITION……………………………………..……....34

 8.3 IMAGE PALETTE DEFINITION……………………………………………………..34

 8.4 IMAGE ATTRIBUTE DEFINITION………………………………………………….35

 8.5 GR OBJECT EXAMPLE……………………………………………………………....35

9. VDATA OBJECT……………………………………..………………………………….37

 9.1 VDATA OBJECT DEFINITION………………………………………………………37

 9.2 VDATA FIELD DEFINITION……………………………………………………...…37

 9.3 VDATA ATTRIBUTE DEFINITION AND FIELD ATTRIBUTE DEFINITION……37

 9.4 VDATA OBJECT EXAMPLE…………...……………………………………………38
10. VGROUP OBJECT...………………..…………………………………………………..40

 10.1 VGROUP OBJECT DEFINITION……………………………………………………..40

 10.2 VGROUP MEMBER DEFINITION…………………………………………………...40

 10.3 VGROUP ATTRIBUTE DEFINITION………………………………………………..40

 10.4 VGROUP OBJECT EXAMPLE……………………………………………………….41

11. PALETTE OBJECT……………………….…………………………………………...43

 11.1 PALETTE OBJECT DEFINITION…………………………………………………….43

 11.2 PALETTE OBJECT EXAMPLE………………………………………………………43

12. ANNOTATION OBJECT…………………………………..…………………………..45

 12.1 FILE ANNOTATION DATA DEFINITION…………………………………………. 45

 12.2 DATA ANNOTATION OBJECT DEFINITION……………………………………....45

 12.3 ANNOTATION OBJECT EXAMPLE………………………………………………...46

part IV. Related Documents

13. RELATED DOCUMENTS…………………..……………………………………...…49

 13.1 HDF-EOS Documents
49
 13.2 HDF Documents
49
 13.3 GCTP Document
50
 13.4 Object Description Language Documents
50
 13.5 Parameter Value Language Documents
50

PART I. INTRODUCTION

1. Introduction

1.1 Purpose

This document defines the standard of the HDF Configuration Record (HCR). It describes the syntax and definitions of the HCR script language. It also provides examples to illustrate the usage of the HCR. Readers would be able to compose an HCR to create HDF-EOS or HDF files.

The readers are assumed to have a good knowledge of the concepts of the HDF-EOS objects [EOS96-2, EOS96-3, EOS96-4, EOS96-5] and the HDF-EOS library [EOS96-1, EOS97-1, EOS97-2] and HDF objects [HDF].

1.2 The Need for a Configuration Record

End-users may wish to create an HDF-EOS or HDF file using the HDF-EOS or HDF library interface which supports grid, swath, and point objects in HDF-EOS or objects in HDF. In order to simplify this task, the HDF Configuration Record (HCR) provides a high-level description of the configuration of objects in an HDF-EOS or HDF file and the conceptual relationships among them. Additional software tools can then be used to automatically create a skeleton file based on the contents of the HCR.

1.3 Organization of this Document

There are totally four parts in this paper. Part I is introduction. Part II talks about the definition of HDF-EOS objects. Part III talks about the definition of HDF objects. Part IV are related documents.

In the sequence of chapters, Chapter 2 gives an overview of the HCR file and the Object Description Language (ODL). Chapter 3 describes the definition of the Swath object. Chapter 4 describes the definition of the Grid object. Chapter 5 describes the definition of the Point object. Chapter 6 shows an example HCR file for HDF-EOS. Chapter 7 talks about the definition of SDS object. Chapter 8 talks about GR object. Chapter 9 describes Vdata object. Chapter 10 talks about Vgroup object. Chapter 11 talks about Palette object. Chapter 12 handles Annotation object. While Chapter 13 are related documents.

1.4 Version History

1.4.1 Version 2.0

Six HDF4 Objects(SDS, GR, Pallete, Vdata, Vgroup and Annotation) are added to the tools of hcr2hdf and hdf2hcr. They may also be added to hcrhdfdiff and hcr_edit later.

1.4.2 Version 1.2

Added Swath Field Storage Definition, Grid Field Storage Definition, three kinds of storage definitions--Merge, Compression, and Tile.

1.4.3 Version 1.1

Initial version.

2. Overview of the HCR

An HCR is a block of ASCII text composed of Object Description Language (ODL [PDS95-12]) style statements describing HDF-EOS objects contained in a corresponding HDF-EOS file.

2.1 Overview of ODL statements

ODL statements are in the form of

parameter = value

Where parameter is an identifier or a keyword and value is any elementary value such as an integer, a real number, a character string, a list of values, a set of values or another identifier. E.g.,

COORDINATES = (45.0, -87.75)

DATATYPE = FLOAT32

OBJECT = Swath

HCR uses only a subset of ODL statements, namely, the Assignment Statement, the Object Statement and the End Statement. (The Group Statement and Pointer Statement are not used by HCR.)

2.1.1 Assignment Statement

The Assignment Statement is the most common type of statement and is used to specify the value for an attribute of an object. It has the form as attribute = Value.

2.1.2 Object Statement

The Object Statement has the keyword OBJECT as its parameter. Its value should be an identifier. A matching End_Object Statement that has END_OBJECT as its parameter, should contain the same identifier. (ODL does not require a value for the End_Object Statement but HCR recommends its use.) All statements between these two matching Object and End_Object statements are grouped as one concept.

2.1.3 End Statement

The End Statement consists of only the keyword END. It signifies the end of ODL statements input.

2.1.4 Comment

Comments are enclosed in a pair of ‘/*’ and ‘*/’ similar to the C language. But ODL also ignores any data on the same line after a comment. Comments are not allowed to be embedded in other statements. It is best to keep all comments on their own lines.

2.1.5 Continuation

An ODL statement may run across multiple input lines with some restrictions like not breaking a keyword. The following two statements are equivalent.

COORDINATES = (45.0, -87.75)

COORDINATES = (45.0,

 -87.75)

2.1.6 Case sensitivity

ODL is case insensitive in that all statements are interpreted as if they are coded in upper case. One exception is the quoted text strings, which are characters enclosed in a pair of quotation marks ("). Note that characters enclosed in a pair of apostrophes is called a Symbol String and is case insensitive. For examples, the following first three values are all equivalent but the last one is different.

 ShortRange

‘ShortRange’

‘SHORTRANGE’

“ShortRange”
2.1.7 Example

The following is a simple example of ODL statements.

/* Project XYZ */

/* First version defined on June 10th, 1996 */

OBJECT = SWATH

NAME = SCAN1

OBJECT = Dimension

NAME = GeoTrack

Size = 1200

END_OBJECT = Dimension

OBJECT = Dimension

NAME = GeoCrossTrack

Size = 205

END_OBJECT = Dimension

OBJECT = Dimension

NAME = DataX

Size = 2410

END_OBJECT = Dimension

END_OBJECT = SWATH

END

PART II. HCR FOR HDF-EOS

3. Swath Object

3.1 Swath Object Definition

<Swath Object> ::=

OBJECT = Swath

NAME = <SwathName>

<Swath Dimension Definition>

<Swath Geofield Definition>

<Swath Datafield Definition>

[<Swath Dimension Mapping Definition>]

END_OBJECT = Swath

Additional requirements:

<SwathName> can be any legal quoted name but must be unique among all HCR object names.

3.2 Swath Dimension Definition

<Swath Dimension Definition> ::=

<Dimension Definition>*
<Dimension Definition> ::=

OBJECT = Dimension
NAME = <DimensionName>

Size = <DimensionSize>

END_OBJECT = Dimension
Additional requirements:

<DimensionName> can be any legal quoted name but must be unique within <Swath Object>.

<DimensionSize> can be any non-negative integer representing the size of the dimension defined. A value zero or the keyword SD_UNLIMITED represents an unlimited dimension as defined in HDF.

3.3 Swath Datafield Definition

<Swath Datafield Definition> ::=

<Datafield Definition>*
<Datafield Definition> ::=

OBJECT = DataField
NAME = <DatafieldName>

DataType = <DataType>
DimList = (<DimName1>, <DimName2>, ...)

[<Swath Field Storage Definition>]

END_OBJECT = DataField
Additional requirements:

<DatafieldName> can be any legal quoted name but must be unique within <Swath Object>.

<DataType> can be any legal datatype as defined in HDF.

<DimName> must be the name of a dimension defined in <Swath Dimension Definition>.

3.3.1 Swath Field Storage Definition

The Swath Field Storage Definition contains one of Field Merge Definition or Field Compression Definition. See their definitions under Grid Field Storage Definition.

<Swath Field Storage Definition> ::=

<Field Merge Definition> |

<Field Compression Definition>

3.4 Swath Geofield Definition

<Swath Geofield Definition> ::=

<Geofield Definition>*
<Geofield Definition> ::=

OBJECT = GeoField

NAME = <GeofieldName>

DataType = <DataType>
DimList = (<DimName>, <DimName>, ...)
[<Swath Field Storage Definition>]

END_OBJECT = GeoField

Additional requirements:

<GeofieldName> can be any legal quoted name but must be unique within <Swath Object>.

<DataType> can be any legal datatype as defined in HDF.

<DimName> must be the name of a dimension defined in <Swath Dimension Definition>.

<Swath Field Storage Definition> is described under Swath Datafield Definition.

3.5 Reserved Field Names

HDF-EOS library version 1 reserves the following field names. If the fields are used in a swath definition, they must be defined with the following datatypes.

Keyword
Datatype
Comments

Latitude
FLOAT32 or FLOAT64
floating point latitude

Longitude
FLOAT32 or FLOAT64
floating point longitude

CoLatitude
FLOAT32 or FLOAT64
floating point colatitude

Time
FLOAT32 or FLOAT64
TAI93 time in float

3.6 Swath Dimension Mapping Definition

<Swath Dimension Mapping Definition> ::=

{ <Regular Dimension Mapping Definition> |

 <Index Dimension Mapping Definition> }*
The Mapping Definitions can be in any order.

3.6.1 Regular Dimension Mapping Definition

<Regular Dimension Mapping Definition> ::=

OBJECT = DimensionMap
GeoDimension = <GeoDimName>

DataDimension = <DataDimName>

Offset = <Offset>

Increment = <Increment>

END_OBJECT = DimensionMap
Additional requirements:

<GeoDimName> must be a Dimension name on which a Geofield is defined.

<DataDimName> must be a Dimension name on which a Datafield is defined.

<Increment> can be any non-zero integer value.

<Offset> can be any positive integer value.

3.6.2 Implicit Mapping Name

HDF-EOS library implicitly defines the name of a regular dimension map as GeoDimension and DataDimension joined by a slash.

3.6.3 Index Dimension Mapping Definition

The index dimension mapping is not defined yet and is not supported by this version of HCR.

3.7 Swath Object Example

OBJECT = Swath

/* Defining a swath object */

Name = "Swath 1"

OBJECT = Dimension

/* Dimension definitions */

Name = "GeoTrack"

Size = 20

END_OBJECT = Dimension

OBJECT = Dimension

Name = "GeoXtrack"

Size = 10

END_OBJECT = Dimension

OBJECT = Dimension

Name = "Res2tr"

Size = 40

END_OBJECT = Dimension

OBJECT = Dimension

Name = "Res2xtr"

Size = 20

END_OBJECT = Dimension

OBJECT = Dimension

Name = "Bands"

Size = 15

END_OBJECT = Dimension

OBJECT = Dimension

Name = "IndxTrack"

Size = 12

END_OBJECT = Dimension

OBJECT = Dimension

Name = "Unlim"

Size = 0

END_OBJECT = Dimension

OBJECT = DimensionMap

/* Dimension mapping definitions */

GeoDimension = "GeoTrack"

DataDimension = "Res2tr"

Offset = 0

Increment = 2

END_OBJECT = DimensionMap

OBJECT = DimensionMap

GeoDimension = "GeoXtrack"

DataDimension = "Res2xtr"

Offset = 1

Increment = 2

END_OBJECT = DimensionMap

OBJECT = GeoField

/* Geofield Definitions */

Name = "Time"

DataType = DFNT_FLOAT64

DimList = ("GeoTrack")

END_OBJECT = GeoField

OBJECT = GeoField

Name = "Longitude"

DataType = DFNT_FLOAT32

DimList = ("GeoTrack","GeoXtrack")

END_OBJECT = GeoField

OBJECT = GeoField

Name = "Latitude"

DataType = DFNT_FLOAT32

DimList = ("GeoTrack","GeoXtrack")

END_OBJECT = GeoField

OBJECT = DataField

/* Datafield Definitions */

Name = "Density"

DataType = DFNT_FLOAT32

DimList = ("GeoTrack")

END_OBJECT = DataField

OBJECT = DataField

Name = "Temperature"

DataType = DFNT_FLOAT32

DimList = ("GeoTrack","GeoXtrack")

Merge = HDFE_AUTOMERGE

END_OBJECT = DataField

OBJECT = DataField

Name = "DewPoint"

DataType = DFNT_FLOAT32

DimList = ("GeoTrack","GeoXtrack")

Merge = HDFE_AUTOMERGE

END_OBJECT = DataField

OBJECT = DataField

Name = "Pressure"

DataType = DFNT_FLOAT64

DimList = ("Res2tr","Res2xtr")

CompressionType = HDFE_COMP_DEFLATE

CompressionParameters = (9)

END_OBJECT = DataField

OBJECT = DataField

Name = "Spectra"

DataType = DFNT_FLOAT64

DimList = ("Bands","Res2tr","Res2xtr")

END_OBJECT = DataField

OBJECT = DataField

Name = "Count"

DataType = DFNT_INT16

DimList = ("Unlim")

END_OBJECT = DataField

END_OBJECT = Swath

END

Grid Object

3.8 Grid Object Definition

<Grid Object> ::=

OBJECT = Grid

NAME = <GridName>

<Grid Parameters Definition>

<Grid Dimension Definition>

<Grid Datafield Definition>

END_OBJECT = Grid

Additional requirements:

<GridName> can be any legal quoted name but must be unique among all HCR Object names.

3.9 Grid Parameters Definition

The Grid parameters definition contains the definitions as follows.

YDim
Grid Y Dimension size

XDim
Grid X Dimension size

UpperLeftPoint
Grid Upper-left-point

LowerRightPoint
Grid Lower-right-point

Projection
Grid Projection Type as used in GCTP

ProjectionParameters
GCTP parameters for the projection

SphereCode
Optional Sphere Code for the projection. Default value is 0.

ZoneCode
Zone Code for UTM projection only. Default value is 0.

PixelRegistration
Defines pixel origin.
Possible Registration Codes are:

HDFE_CENTER (default)

HDFE_CORNER
OriginType
Defines location of first datapoint. Possible Origin Codes are:

HDFE_GD_UL (default)

HDFE_GD_UR

HDFE_GD_LL

HDFE_GD_LR

Users should consult the HDF-EOS library User Guide for the projection types supported and the GCTP documents for the appropriate values for the projection parameters and the two codes. Currently supported projection types are as follows.

ProjCode
Projection Type
GCTP_GEO
Geographic

GCTP_UTM
Universal Transverse Mercator

GCTP_PS
Polar Stereographic

GCTP_SOM
Space Oblique Mercator

GCTP_GOOD
Interrupted Goodes Homolosine

<Grid Parameters Definition> ::=

YDim = <XYdimSize>

XDim = <XYdimSize>

UpperLeftPoint = (<Pt>)
LowerRightPoint = (<Pt>)
Projection = <Projcode>

ProjectionParameters = (<ProjParamList>)
SphereCode = <Spherecode>

ZoneCode = <Zonecode>

PixelRegistration = <PixelReg>

OriginType = <OriginCode>

Additional requirements:

All definitions can be in any order.

<XYdimSize> can be any positive integer representing the size of the dimension defined.

<PT> is a pair of float64 numbers separated by a comma.

<Projcode> is a projection code supported by HDF-EOS library.

<ProjParamList> is a list of 15 float64 numbers separated by commas.

<Spherecode> is an integer representing the sphere code.

<Zonecode> is an integer representing the zone code.

<PixelReg> is a pixel registration code supported by HDF-EOS library.

<OriginCode> is a legal origin code supported by HDF-EOS library.

3.10 Grid Dimension Definition

<Grid Dimension Definition> ::=

<Dimension Definition>*
<Dimension Definition> ::=

OBJECT = Dimension

NAME = <DimensionName>

Size = <DimensionSize>
END_OBJECT = Dimension

Additional requirements:

<DimensionName> can be any legal quoted name but must be unique within <Grid Object>.

<DimensionSize> can be any non-negative integer representing the size of the dimension defined. A value zero or the keyword SD_UNLIMITED represents an unlimited dimension as defined in HDF.

3.11 Grid Datafield Definition

<Grid Datafield Definition> ::=

<Datafield Definition>*
<Datafield Definition> ::=

OBJECT = DataField

NAME = <DatafieldName>

DataType = <DataType>
DimList = (<DimName1>, <DimName2>, ...)
[<Grid Field Storage Definition>]

END_OBJECT = DataField

Additional requirements:

<DatafieldName> can be any legal quoted name but must be unique within <Grid Object>.

<DataType> can be any legal datatype as defined in HDF.

<DimName> can be XDim, YDim or any dimension defined in <Grid Dimension Definition>. If XDim is used, it must be immediately preceded by YDim.

3.11.1 Grid Field Storage Definition

<Grid Field Storage Definition> ::=

<Field Merge Definition> |

<Field Compression Definition> |

<Field Tile Definition>

3.11.1.1 Field Merge Definition

<Field Merge Definition> ::=

Merge = <MergeCode>

Additional requirements:

<MergeCode> can be one of HDFE_NOMERGE (default) or HDFE_AUTOMERGE.
3.11.1.2 Field Compression Definition

<Field Compression Definition> ::=

CompressionType = <CompressionCode>

CompressionParameters = (<CompParamList>)

Additional requirements:

<CompressionCode> can be one of HDFE_COMP_RLE, HDFE_COMP_SKPHUFF, HDFE_COMP_DEFLATE or HDFE_COMP_NONE (default).

<CompParamList> is a list of integers separated by commas. Its requirements and ranges depend on <CompressionCode>. See the HDF-EOS document for more details.

3.11.1.3 Field Tile Definition

<Field Tile Definition> ::=

TileDimList = (<TileSize1>, <TileSize2>, ...)
Additional requirements:

<TileSize> are positive integers defining the sizes of the tile. The number of members in the TileDimList must equal to that of the DimList in the same field definition.

3.11.2 Reserved Field Names

HDF-EOS library version 1 reserves Time as a special field name. If it is used in a grid definition, it must be defined with the following datatype.

Keyword
Datatype
Comments

Time
FLOAT32 or FLOAT64
TAI93 time in float

3.12 Grid Object Example

/* Defining the structure of two */

/* grid objects */

OBJECT = Grid

/* First grid object */

Name = "UTMGrid"

/* Grid parameters */

XDim = 120

YDim = 200

UpperLeftPoint = (210584.500410,3322395.954450)

LowerRightPoint = (813931.109590,2214162.532780)

Projection = GCTP_UTM

ZoneCode = 40

SphereCode = 0

OBJECT = Dimension

/* Dimension definitions */

Name = "Time"

Size = 10

END_OBJECT = Dimension

OBJECT = DataField

/* Datafield definitions */

Name = "Pollution"

DataType = DFNT_FLOAT32

DimList = ("Time","YDim","XDim")

TileDimList = (2, 50, 60)

END_OBJECT = DataField

OBJECT = DataField

Name = "Vegetation"

DataType = DFNT_FLOAT32

DimList = ("YDim","XDim")

END_OBJECT = DataField

OBJECT = DataField

Name = "Extern"

DataType = DFNT_FLOAT32

DimList = ("YDim","XDim")

END_OBJECT = DataField

END_OBJECT = Grid

OBJECT = Grid

/* Second grid object */

Name = "PolarGrid"

/* Grid parameters */

XDim = 100

YDim = 100

UpperLeftPoint = (0.0, 30000000.0)

LowerRightPoint = (15000000.0, 20000000.0)

Projection = GCTP_PS

ProjectionParameters = (0.,0.,0.,0.,0.,9.0E7,0.,0.,0.,0.,0.,0.,0.,0.,0.)

SphereCode = 3

OriginType = HDFE_GD_LR

OBJECT = Dimension

/* Dimension definitions */

Name = "Bands"

Size = 3

END_OBJECT = Dimension

OBJECT = DataField

/* Datafield definitions */

Name = "Temperature"

DataType = DFNT_FLOAT32

DimList = ("YDim","XDim")

END_OBJECT = DataField

OBJECT = DataField

Name = "Pressure"

DataType = DFNT_FLOAT32

DimList = ("YDim","XDim")

END_OBJECT = DataField

OBJECT = DataField

Name = "Soil Dryness"

DataType = DFNT_FLOAT32

DimList = ("YDim","XDim")

END_OBJECT = DataField

OBJECT = DataField

Name = "Spectra"

DataType = DFNT_FLOAT64

DimList = ("Bands","YDim","XDim")

END_OBJECT = DataField

END_OBJECT = Grid

END

Point Object

3.13 Point Object Definition

<Point Object> ::=

OBJECT = Point

NAME = <PointName>

<Point Table Definition>

[<Point LevelLink Definition>]

END_OBJECT = Point

Additional requirements:

<PointName> can be any legal quoted name but must be unique among all HCR Object names.

3.14 Point Table Definition

<Point Table Definition> ::=

<Table Definition>*
<Table Definition> ::=

OBJECT = Level

NAME = <TableName>

<Point Field Definition>*
END_OBJECT = Level

Additional requirements:

<TableName> can be any legal quoted name but must be unique within <Point Object>.

3.15 Point Field Definition

<Point Field Definition> ::=

OBJECT = PointField
NAME = <FieldName>

DataType = <DataType>

Order = <Order>

END_OBJECT = PointField
Additional requirements:

<FieldName> can be any legal quoted name but must be unique within <Point Table Definition>.

<DataType> can be any legal datatype as defined in HDF.

<Order> is any positive integer. It is optional and the default value is 1. The concept of Order is defined in HDF Vdata.

3.15.1 Reserved Field Names

HDF-EOS library version 1 reserves the following field names. If the fields are used in a point definition, they must be defined with the following datatypes.

Keyword
Datatype
Comments

Latitude
FLOAT32 or FLOAT64
floating point latitude

Longitude
FLOAT32 or FLOAT64
floating point longitude

CoLatitude
FLOAT32 or FLOAT64
floating point colatitude

Time
FLOAT32 or FLOAT64
TAI93 time in float

3.16 Point LevelLink Definition

There are two kinds of linking definitions, representing two kinds of Point objects, namely Simple Point object and Linked Field Point object.
 A point object is a Simple Point object unless defined otherwise by the Point LevelLink Definition.

<Point LevelLink Definition> ::=

<Linked Field Definition>*
<Linked Field Definition> ::=

OBJECT = LevelLink

Parent = <ParentTableName>

Child = <ChildTableName>

LinkField = <FieldName>

END_OBJECT = LevelLink

Additional requirements:

<ParentTableName> is the name of a table defined in <Point Table Definition>.

<ChildTableName> is the name of a table defined in <Point Table Definition>.

<FieldName> is a field name defined in both Parent and Child tables.

3.16.1 Point LevelLink Name

HDF-EOS library implicitly defines the name of a Linked Field Definition as Parent table name and Child table name joined by a slash.

3.17 Point Object Example

/* Defining the structure of three */

/* point objects */

OBJECT = Point

/* A simple point object */

Name = "SimplePoint"

OBJECT = Level

/* Level table definitions */

Name = "Sensor"

OBJECT = PointField

Name = "Time"

DataType = DFNT_FLOAT64

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "Concentration"

DataType = DFNT_FLOAT32

Order = 4

END_OBJECT = PointField

OBJECT = PointField

Name = "Species"

DataType = DFNT_CHAR8

Order = 4

END_OBJECT = PointField

END_OBJECT = Level

END_OBJECT = Point

OBJECT = Point

/* A linked field point object */

Name = "FixedBuoyPoint"

OBJECT = Level

/* 1st table definition */

Name = "DescLoc"

OBJECT = PointField

Name = "Label"

DataType = DFNT_CHAR8

Order = 8

END_OBJECT = PointField

OBJECT = PointField

Name = "Longitude"

DataType = DFNT_FLOAT64

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "Latitude"

DataType = DFNT_FLOAT64

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "DeployDate"

DataType = DFNT_INT32

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "ID"

DataType = DFNT_CHAR8

Order = 1

END_OBJECT = PointField

END_OBJECT = Level

OBJECT = Level

/* 2nd table definition */

Name = "Observations"

OBJECT = PointField

Name = "Time"

DataType = DFNT_FLOAT64

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "Rainfall"

DataType = DFNT_FLOAT32

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "Temperature"

DataType = DFNT_FLOAT32

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "ID"

DataType = DFNT_CHAR8

Order = 1

END_OBJECT = PointField

END_OBJECT = Level

OBJECT = LevelLink

/* Level link definitions */

Parent = "DescLoc"

Child = "Observations"

LinkField = "ID"

END_OBJECT = LevelLink

END_OBJECT = Point

OBJECT = Point

/* Another linked field object */

Name = "FloatBuoyPoint"

OBJECT = Level

/* 1st table definition */

Name = "ClusterGroup"

OBJECT = PointField

Name = "TeamCode"

DataType = DFNT_INT32

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "DeployDate"

DataType = DFNT_INT32

Order = 1

END_OBJECT = PointField

END_OBJECT = Level

OBJECT = Level

/* 2nd table definition */

Name = "Description"

OBJECT = PointField

Name = "Label"

DataType = DFNT_CHAR8

Order = 8

END_OBJECT = PointField

OBJECT = PointField

Name = "DeployDate"

DataType = DFNT_INT32

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "Weight"

DataType = DFNT_INT16

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "ID"

DataType = DFNT_CHAR8

Order = 1

END_OBJECT = PointField

END_OBJECT = Level

OBJECT = Level

/* 3rd table definition */

Name = "Measurements"

OBJECT = PointField

Name = "Time"

DataType = DFNT_FLOAT64

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "Longitude"

DataType = DFNT_FLOAT64

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "Latitude"

DataType = DFNT_FLOAT64

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "Rainfall"

DataType = DFNT_FLOAT32

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "Temperature"

DataType = DFNT_FLOAT32

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "ID"

DataType = DFNT_CHAR8

Order = 1

END_OBJECT = PointField

END_OBJECT = Level

OBJECT = LevelLink

/* Level link definition */

Parent = "ClusterGroup"

Child = "Description"

LinkField = "DeployDate"

END_OBJECT = LevelLink

OBJECT = LevelLink

/* Level link definition */

Parent = "Description"

Child = "Measurements"

LinkField = "ID"

END_OBJECT = LevelLink

END_OBJECT = Point

END

Example HCR File For HDF-EOS

Below is example of HCR file containing all HDF-EOS objects.

OBJECT = Swath

/* Defining a swath object */

Name = "Swath 1"

OBJECT = Dimension

/* Dimension definitions */

Name = "GeoTrack"

Size = 20

END_OBJECT = Dimension

OBJECT = Dimension

Name = "GeoXtrack"

Size = 10

END_OBJECT = Dimension

OBJECT = Dimension

Name = "Res2tr"

Size = 40

END_OBJECT = Dimension

OBJECT = Dimension

Name = "Res2xtr"

Size = 20

END_OBJECT = Dimension

OBJECT = Dimension

Name = "Bands"

Size = 15

END_OBJECT = Dimension

OBJECT = Dimension

Name = "IndxTrack"

Size = 12

END_OBJECT = Dimension

OBJECT = Dimension

Name = "Unlim"

Size = 0

END_OBJECT = Dimension

OBJECT = DimensionMap

/* Dimension mapping definitions */

GeoDimension = "GeoTrack"

DataDimension = "Res2tr"

Offset = 0

Increment = 2

END_OBJECT = DimensionMap

OBJECT = DimensionMap

GeoDimension = "GeoXtrack"

DataDimension = "Res2xtr"

Offset = 1

Increment = 2

END_OBJECT = DimensionMap

OBJECT = GeoField

/* Geofield Definitions */

Name = "Time"

DataType = DFNT_FLOAT64

DimList = ("GeoTrack")

END_OBJECT = GeoField

OBJECT = GeoField

Name = "Longitude"

DataType = DFNT_FLOAT32

DimList = ("GeoTrack","GeoXtrack")

END_OBJECT = GeoField

OBJECT = GeoField

Name = "Latitude"

DataType = DFNT_FLOAT32

DimList = ("GeoTrack","GeoXtrack")

END_OBJECT = GeoField

OBJECT = DataField

/* Datafield Definitions */

Name = "Density"

DataType = DFNT_FLOAT32

DimList = ("GeoTrack")

END_OBJECT = DataField

OBJECT = DataField

Name = "Temperature"

DataType = DFNT_FLOAT32

DimList = ("GeoTrack","GeoXtrack")

Merge = HDFE_AUTOMERGE

END_OBJECT = DataField

OBJECT = DataField

Name = "DewPoint"

DataType = DFNT_FLOAT32

DimList = ("GeoTrack","GeoXtrack")

Merge = HDFE_AUTOMERGE

END_OBJECT = DataField

OBJECT = DataField

Name = "Pressure"

DataType = DFNT_FLOAT64

DimList = ("Res2tr","Res2xtr")

CompressionType = HDFE_COMP_DEFLATE

CompressionParameters = (9)

END_OBJECT = DataField

OBJECT = DataField

Name = "Spectra"

DataType = DFNT_FLOAT64

DimList = ("Bands","Res2tr","Res2xtr")

END_OBJECT = DataField

OBJECT = DataField

Name = "Count"

DataType = DFNT_INT16

DimList = ("Unlim")

END_OBJECT = DataField

END_OBJECT = Swath

/* Defining the structure of two */

/* grid objects */

OBJECT = Grid

/* First grid object */

Name = "UTMGrid"

/* Grid parameters */

XDim = 120

YDim = 200

UpperLeftPoint = (210584.500410,3322395.954450)

LowerRightPoint = (813931.109590,2214162.532780)

Projection = GCTP_UTM

ZoneCode = 40

SphereCode = 0

OBJECT = Dimension

/* Dimension definitions */

Name = "Time"

Size = 10

END_OBJECT = Dimension

OBJECT = DataField

/* Datafield definitions */

Name = "Pollution"

DataType = DFNT_FLOAT32

DimList = ("Time","YDim","XDim")

TileDimList = (2, 50, 60)

END_OBJECT = DataField

OBJECT = DataField

Name = "Vegetation"

DataType = DFNT_FLOAT32

DimList = ("YDim","XDim")

END_OBJECT = DataField

OBJECT = DataField

Name = "Extern"

DataType = DFNT_FLOAT32

DimList = ("YDim","XDim")

END_OBJECT = DataField

END_OBJECT = Grid

OBJECT = Grid

/* Second grid object */

Name = "PolarGrid"

/* Grid parameters */

XDim = 100

YDim = 100

UpperLeftPoint = (0.0, 30000000.0)

LowerRightPoint = (15000000.0, 20000000.0)

Projection = GCTP_PS

ProjectionParameters = (0.,0.,0.,0.,0.,9.0E7,0.,0.,0.,0.,0.,0.,0.,0.,0.)

SphereCode = 3

OriginType = HDFE_GD_LR

OBJECT = Dimension

/* Dimension definitions */

Name = "Bands"

Size = 3

END_OBJECT = Dimension

OBJECT = DataField

/* Datafield definitions */

Name = "Temperature"

DataType = DFNT_FLOAT32

DimList = ("YDim","XDim")

END_OBJECT = DataField

OBJECT = DataField

Name = "Pressure"

DataType = DFNT_FLOAT32

DimList = ("YDim","XDim")

END_OBJECT = DataField

OBJECT = DataField

Name = "Soil Dryness"

DataType = DFNT_FLOAT32

DimList = ("YDim","XDim")

END_OBJECT = DataField

OBJECT = DataField

Name = "Spectra"

DataType = DFNT_FLOAT64

DimList = ("Bands","YDim","XDim")

END_OBJECT = DataField

END_OBJECT = Grid

/* Defining the structure of three */

/* point objects */

OBJECT = Point

/* A simple point object */

Name = "SimplePoint"

OBJECT = Level

/* Level table definitions */

Name = "Sensor"

OBJECT = PointField

Name = "Time"

DataType = DFNT_FLOAT64

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "Concentration"

DataType = DFNT_FLOAT32

Order = 4

END_OBJECT = PointField

OBJECT = PointField

Name = "Species"

DataType = DFNT_CHAR8

Order = 4

END_OBJECT = PointField

END_OBJECT = Level

END_OBJECT = Point

OBJECT = Point

/* A linked field point object */

Name = "FixedBuoyPoint"

OBJECT = Level

/* 1st table definition */

Name = "DescLoc"

OBJECT = PointField

Name = "Label"

DataType = DFNT_CHAR8

Order = 8

END_OBJECT = PointField

OBJECT = PointField

Name = "Longitude"

DataType = DFNT_FLOAT64

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "Latitude"

DataType = DFNT_FLOAT64

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "DeployDate"

DataType = DFNT_INT32

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "ID"

DataType = DFNT_CHAR8

Order = 1

END_OBJECT = PointField

END_OBJECT = Level

OBJECT = Level

/* 2nd table definition */

Name = "Observations"

OBJECT = PointField

Name = "Time"

DataType = DFNT_FLOAT64

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "Rainfall"

DataType = DFNT_FLOAT32

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "Temperature"

DataType = DFNT_FLOAT32

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "ID"

DataType = DFNT_CHAR8

Order = 1

END_OBJECT = PointField

END_OBJECT = Level

OBJECT = LevelLink

/* Level link definitions */

Parent = "DescLoc"

Child = "Observations"

LinkField = "ID"

END_OBJECT = LevelLink

END_OBJECT = Point

OBJECT = Point

/* Another linked field object */

Name = "FloatBuoyPoint"

OBJECT = Level

/* 1st table definition */

Name = "ClusterGroup"

OBJECT = PointField

Name = "TeamCode"

DataType = DFNT_INT32

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "DeployDate"

DataType = DFNT_INT32

Order = 1

END_OBJECT = PointField

END_OBJECT = Level

OBJECT = Level

/* 2nd table definition */

Name = "Description"

OBJECT = PointField

Name = "Label"

DataType = DFNT_CHAR8

Order = 8

END_OBJECT = PointField

OBJECT = PointField

Name = "DeployDate"

DataType = DFNT_INT32

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "Weight"

DataType = DFNT_INT16

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "ID"

DataType = DFNT_CHAR8

Order = 1

END_OBJECT = PointField

END_OBJECT = Level

OBJECT = Level

/* 3rd table definition */

Name = "Measurements"

OBJECT = PointField

Name = "Time"

DataType = DFNT_FLOAT64

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "Longitude"

DataType = DFNT_FLOAT64

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "Latitude"

DataType = DFNT_FLOAT64

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "Rainfall"

DataType = DFNT_FLOAT32

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "Temperature"

DataType = DFNT_FLOAT32

Order = 1

END_OBJECT = PointField

OBJECT = PointField

Name = "ID"

DataType = DFNT_CHAR8

Order = 1

END_OBJECT = PointField

END_OBJECT = Level

OBJECT = LevelLink

/* Level link definition */

Parent = "ClusterGroup"

Child = "Description"

LinkField = "DeployDate"

END_OBJECT = LevelLink

OBJECT = LevelLink

/* Level link definition */

Parent = "Description"

Child = "Measurements"

LinkField = "ID"

END_OBJECT = LevelLink

END_OBJECT = Point

END

PART III. HCR FOR HDF

4. SDS Object

SDS Object refers to Scientific Data Set in HDF.
4.1 SDS Object Definition

<SDS Object> ::=

 OBJECT = SDS

 [<SDS Dimension With Name Definition>]*

 <SDS Array Definition>*

 [<File Attribute Definition>]*

 END_OBJECT = SDS

7.2 Object of SDS Dimension With Name

SDS Dimension With Name is defined as an object so that different SDS Array objects can share them. This design can enhance reusability.

7.2.1 SDS Dimension With Name Object Definition
<SDS Dimension With Name Object> ::=

 OBJECT = SDSDimensionWithName

 NAME = <DimensionName>

 SIZE = <DimensionSize>
 [<Dimension Predefined Attribute Definition>]

 [<User-defined Dimension Attribute Definition>]

 [<Dimension Scale Definition>]

 END_OBJECT = SDSDimensionWithName

Additional requirements:

<DimensionName> can be any legal quoted name but must be unique among the same

type of objects.

<DimensionSize> is a positive integer.

7.2.2 Dimension Predefined Attribute Definition

<Dimension Predefined Attribute Definition> ::=

 OBJECT = Predefined_Dimension_Attribute

 [LABEL = <NameString>]

 [UNIT = <UnitString>]

 [FORMAT = <FormatString>]

 END_OBJECT = Predefined_Dimension_Attribute

7.2.3 User-defined Dimension Attribute Definition

<User-defined Dimension Attribute Definition> ::=

 <User-defined Attribute Definition>*

<User-defined Attribute Definition> ::=

 OBJECT = User_Defined_Attribute

 NAME = <AttributeName>
 DATATYPE = <AttributeType>
 N_VALUES = <AttributeCount>
 DATA = <AttributeData>

 END_OBJECT = User_Defined_Attribute

<AttributeData> ::=

<AttributeDataString> | (<data1>, <data2>,…,<dataN>)

Additional requirements:

<AttributeName> can be any legal quoted string.

<AttributeType> can be DFNT_FLOAT32, DFNT_FLOAT64,

 DFNT_INT8, DFNT_INT16, DFNT_INT32,

 DFNT_UINT8, DFNT_UINT16, DFNT_UINT32, or

 DFNT_CHAR8.

<AttributeCount> is the number of attribute data elements.

<AttributeDataString> can be any legally quoted string(like “Seconds”).

(<data1>, <data2>,…, <dataN>) can be any legal HDF integer or real number, each datum is separated by a comma(like (0, 1, 2, 3, 4)).

7.2.4 File Attribute Definition

We discuss file attribute here although it does not belong to the scope of dimension.

File Attribute has the same definition with User-defined Attribute in SDS dimension with name. Please refer to 7.2.3.

<File Attribute Definition> ::=

<User-defined Attribute Definition>
7.2.5 Dimension Scale Definition
<Dimension Scale Definition> ::=

 OBJECT = SDSDimensionScale

 N_VALUES = <ScaleValueNum>
 DATATYPE = <ScaleDataType>
 DATA = <ScaleData>
 END_OBJECT = SDSDimensionScale

<ScaleData> ::=

<ScaleDataString> | (<data1>, <data2>,…, <dataN>)

Additional requirements:

<ScaleValueNum> is the number of data elements.

<ScaleDataType> can be DFNT_FLOAT32, DFNT_FLOAT64,

 DFNT_INT8, DFNT_INT16, DFNT_INT32,

 DFNT_UINT8, DFNT_UINT16, DFNT_UINT32 or

 DFNT_CHAR8.

<ScaleDataString> can be any legally quoted string(like “Seconds”).

(<data1>, <data2>,…, <dataN>) can be any legal HDF integer or real number, each datum is separated by a comma(like (0, 1, 2, 3, 4)).

7.3 SDS Array Definition

<SDS Array Object> ::=

 OBJECT = SDSArray

 NAME = <SDSArrayName>
 DATATYPE = <DataType>
 DIMENSIONRANK = <DimRank>
 DIMENSIONSIZE = (<DimSize1>,<DimSize2>,…,<DimSizeN>)
 DIMENSIONLIST = (<DimName1>,<DimName2>,…,<DimSizeN>)
 [<SDS Dimension Without Name Definition>]*

 [<User-defined Attribute Definition>]*

 END_OBJECT = SDSArray
Additional requirements:

<SDSArrayName> can be any legal quoted name but must be unique among all SDS

 Array objects. This rule is different from HDF API, which

 allows duplicate names.

<DataType> can be DFNT_FLOAT32, DFNT_FLOAT64,

 DFNT_INT8, DFNT_INT16, DFNT_INT32,

 DFNT_UINT8, DFNT_UINT16, DFNT_UINT32 or

 DFNT_CHAR8.

<DimRank> is the number of dimensions in the current SDS Array object.

(<DimSize1>,<DimSize2>,…<DimeSizeN>) is a list of all dimension sizes. For example, if an SDS Array Object has three dimensions, this list should be like (5, 16, 10).

(<DimName1>,<DimName2>,…,<DimSizeN>) can be either a dimension name defined by SDS Dimension With Name Object or “-“ which stands for no name. For example, for (“X_Axis”, “Y_Axis”, “-“), the first two dimensions refer to the ones has been defined as SDS Dimension With Name Object; the third one has no name, whose dimension scale and attributes can be defined in [<SDS Dimension Without Name Definition>].

[<SDS Dimension Without Name Definition>] is used when <DimName> in dimension list is “-“ and user wants to add dimension attributes and scale.

An optional parameter <SDS Array Data Storage Definition> may be added later.

7.4 SDS Dimension Without Name Definition

This definition is used when <DimName > in DIMENSIONLIST is “-“.

<SDS Dimension Without Name Definition> ::=

 OBJECT = DimensionWithoutName

 INDEX = <IndexInDimensionList>

 [<Dimension Predefined Attribute Definition>]

 [<User-defined Attribute Definition>]*

 [<Dimension Scale Definition>]

 END_OBJECT = DimensionWithoutName

Additional requirements:

<IndexInDimensionList> is the position of this dimension in DIMENSIONLIST in SDS Array Object definition. For the example of (“X_Axis”, “Y_Axis”, “-“), the index value should be 2.

[<Dimension Predefined Attribute Definition>], please refer to 7.2.2 for definition.

[<User-defined Attributes Definition>], please refer to 7.2.3 for definition.

[<Dimension Scale Definition>], please refer to 7.2.5 for definition.

7.5 SDS Array Attribute Definition

The SDS Array attributes include predefined dataset attributes and user-defined attributes.

<SDS Attributes Definition> ::=

 <SDS Predefined Dataset Attribute Definition> |

 <User-defined Attribute Definition>*

<SDS Predefined Dataset Attribute Definition> ::=

 OBJECT = Predefined_Dataset_Attribute

 [LABEL = <ArrayNameString>]

 [UNIT = <Units>]

 [FORMAT = <FormatString>]

 [COORDINATE_SYSTEM = <CoordinateSystemString>]

 [RANGE = <ValidRange>]

 [FILL_VALUE = <FillValue>]

 [SCALE_FACTOR = <ScaleFactor>]

 [SCALE_FACTOR_ERROR = <ScaleFactorError>]

 [ADD_OFFSET = <AddOffset>]

 [ADD_OFFSET_ERROR = <AddOffsetError>]

 [CALIBRATED_NT = <CalibratedNt>]

 END_OBJECT = Predefined_Dataset_Attribute

7.6 SDS Object Example

OBJECT = SDS

OBJECT = SDSDimensionWithName

Name = "X_Axis"

Size = 5

OBJECT = SDSDimensionScale

N_Values = 5

DataType = DFNT_INT32

Data = (0, 1, 2, 3, 4)

END_OBJECT = SDSDimensionScale

OBJECT = User_Defined_Attribute

Name = "Dim_metric"

DataType = DFNT_CHAR8

N_Values = 7

Data = "Seconds"

END_OBJECT = User_Defined_Attribute

END_OBJECT = SDSDimensionWithName

OBJECT = SDSDimensionWithName

Name = "Y_Axis"

Size = 16

OBJECT = SDSDimensionScale

N_Values = 16

DataType = DFNT_FLOAT32

Data = (0.000, 0.100, 0.200, 0.300,

0.400, 0.500, 0.600, 0.700,

0.800, 0.900, 1.000, 1.100,

1.200, 1.300, 1.400, 1.500)

END_OBJECT = SDSDimensionScale

OBJECT = Predefined_Dimension_Attribute

Label = "aaaa"

Unit = "bbbb"

Format = "cccc"

END_OBJECT = Predefined_Dimension_Attribute

END_OBJECT = SDSDimensionWithName

OBJECT = SDSArray

Name = "SDStemplate"

DataType = DFNT_INT16

DimensionRank = 3

DimensionSize = (5, 16, 10)

DimensionList = ("X_Axis", "Y_Axis", "-")

OBJECT = SDSDimensionWithoutName

Index = 2

OBJECT = SDSDimensionScale

N_Values = 10

DataType = DFNT_FLOAT64

Data = (0.000, 0.100, 0.200, 0.300,

0.400, 0.500, 0.600, 0.700,

0.800, 0.900)

END_OBJECT = SDSDimensionScale

OBJECT = User_Defined_Attribute

Name = "Dim_Metrics"

DataType = DFNT_CHAR8

N_Values = 7

Data = "Minutes"

END_OBJECT = User_Defined_Attribute

OBJECT = Predefined_Dimension_Attribute

Label = "ffff"

Unit = "dddd"

Format = "eeee"

END_OBJECT = Predefined_Dimension_Attribute

END_OBJECT = SDSDimensionWithoutName

OBJECT = User_Defined_Attribute

Name = "Valid_range"

DataType = DFNT_FLOAT32

N_Values = 2

Data = (2., 10.)

END_OBJECT = User_Defined_Attribute

OBJECT = Predefined_Dataset_Attribute

Label = "aaaa"

Unit = "bbbb"

Format = "cccc"

Coordinate_System = "Cardinal"

Range = (0, 255)

Fill_Value = (5)

Scale_Factor = 0.1

Scale_Factor_Error = 0.002

Add_Offset = 0.01

Add_Offset_Error = 0.0003

Calibrated_Nt = DFNT_FLOAT64

END_OBJECT = Predefined_Dataset_Attribute

END_OBJECT = SDSArray

OBJECT = User_Defined_Attribute

Name = "File_contents"

DataType = DFNT_CHAR8

N_Values = 16

Data = "Storm_track_data"

END_OBJECT = User_Defined_Attribute

END_OBJECT = SDS

OBJECT = Data_Annotation

OwnerType = SDS

OwnerName = "SDStemplate"

Type = AN_DATA_LABEL

Content = "Common A SDS"

END_OBJECT = Data_Annotation

OBJECT = Data_Annotation

OwnerType = SDS

OwnerName = "SDStemplate"

Type = AN_DATA_DESC

Content = "This is an SDS that is used to test data annotation."

END_OBJECT = Data_Annotation

END

5. GR Object

GR Object refers to General Raster Image in HDF.

5.1 GR Object Definition

<GR Object> :=

<Image Array Definition>

 [<User-defined GR Attribute Definition>]

<User-defined GR Attribute Definition> ::=

<User-defined Attribute Definition>*

5.2 Image Array Object Definition
<Image Array Object> ::=

OBJECT = ImageArray

 NAME = <ImageName>

 N_COMPS = <NumberOfComponents>

 PIXELTYPE = <ImagePixelType>

 INTERLACEMODE = <InterlaceMode>

 DIMENDSIONSIZE = (<integer>, <integer>)
 [<Image Palette Definition>]*

 [<Image Attribute Definition>]*

 END_OBJECT = ImageArray
Additional requirements:

<ImageName> can be any legal quoted but must be unique among the same kind of objects.

<NumberOfComponents> is at least 1.

<ImagePixelType> can be DFNT_FLOAT32, DFNT_FLOAT64,

 DFNT_INT8, DFNT_INT16, DFNT_INT32,

 DFNT_UINT8, DFNT_UINT16, DFNT_UINT32 or

 DFNT_CHAR8.

<InterlaceMode> is either MFGR_INTERLACE_PIXEL(0), MFGR_INTERLACE_LINE(1) or MFGR_INTERLACE_COMPONENT(2).

(<integer>, <integer>) are the sizes of the X and Y dimensions of the image.

An optional parameter <Image Data Storage Definition> may be added later.

8.3 Image Palette Definition

Image Palette has an index and 768(256x3) data elements.

<Image Palette Definition> ::=

OBJECT = Palette
 Index = <PaletteIndex>

Data = (<integer>, …, <integer>)

END_OBJECT = Palette

Additional requirements:
<PaletteIndex> starts from 0, for a certain image,.

(<integer>, …, <integer>) must be 768 entries of data elements.

5.3 Image Attribute Definition

Image Attribute has the same definition as the User-defined Attributes Definition in SDS Dimension With Name. Please refer to 7.2.3.

<Image Attribute Definition> ::=

<User-defined Attribute Definition>
5.4 GR Object Example

OBJECT = GR

OBJECT = ImageArray

Name = "Image Array 1"

N_Comps = 2

PixelType = DFNT_INT16

InterlaceMode = MFGR_INTERLACE_PIXEL

DimensionSize = (10, 5)

END_OBJECT = ImageArray

OBJECT = ImageArray

Name = "Image Array 2"

N_Comps = 1

PixelType = DFNT_INT16

InterlaceMode = MFGR_INTERLACE_PIXEL

DimensionList = (20, 25)

OBJECT = Palette

Index = 0

Data = (1, 1, 1,

 255, 255, 255,

 : : :

 0, 0, 0)

END_OBJECT = Palette

OBJECT = User_Defined_Attribute

Name = "Scale 1"

DataType = DFNT_INT32

N_Values = 4

Data = (2, 4, 6, 8)

END_OBJECT = User_Defined_Attribute

END_OBJECT = ImageArray

OBJECT = User_Defined_Attribute

Name = "Scale 2"

DataType = DFNT_CHAR8

N_Values = 3

Data = "FFF"

END_OBJECT = User_Defined_Attribute

END_OBJECT = GR

OBJECT = Data_Annotation

OwnerType = GR

OwnerName = “Image Array 1”

Type = AN_DATA_LABEL

Content = “Common A GR”

END_OBJECT = Data_Annotation

OBJECT = Data_Annotation

OwnerType = GR

OwnerName = “Image Array 2”

Type = AN_DATA_DESC

Content = “This is 2 GR that is used to test data annotation.”

END_OBJECT = Data_Annotation

END

9. Vdata Object
Vdata Object is the same as Vdata in HDF.

9.1 Vdata Object Definition
<Vdata Object> ::=

 OBJECT = Vdata

 NAME = <VdataName>
 [CLASS = <VdataClass>]

 [INTERLACEMODE = <InterlaceMode>]

 <Vdata Field Definition>*

 [<Vdata Attribute Definition>]*

 END_OBJECT = Vdata

Additional requirements:

<VdataName> can be any legal quoted name but must be unique among the same objects.

<VdataClass> can be any legal quoted name.

<InterlaceMode> can be either FULL_INTERLACE(default) or

NO_INTERLACE.

9.2 Vdata Field Definition

<Vdata Field Definition> ::=

 OBJECT = Field

 NAME = <FieldName>
 DATATYPE = <DataType>
 ORDER = <EntryOrder>
 [<Field Attribute Definition>]*

 END_OBJECT = Field

Additional requirements:

<FieldName> is quoted name and must be unique among the same type of objects.

<DataType> can be DFNT_FLOAT32, DFNT_FLOAT64,

 DFNT_INT8, DFNT_INT16, DFNT_INT32,

 DFNT_UINT8, DFNT_UINT16, DFNT_UINT32 or

 DFNT_CHAR8.

<EntryOrder> is the number of entries in each field.

9.3 Vdata Attribute Definition and Field Attribute Definition

Vdata Attribute and Field Attribute have the same definition as User-defined Attribute Definition in SDS Object. Please refer to 7.2.3.

<Vdata Attribute Definition> |

<Field Attribute Definition> ::=

<User-defined Attribute Definition>

9.4 Vdata Object Example

OBJECT = Vdata

 Name = "Solid Particle"

 Class = "Particle Data"

 InterlaceMode = NO_INTERLACE

 OBJECT = Field

Name = "Position"

DataType = DFNT_FLOAT32

Order = 3

 END_OBJECT = Field

 OBJECT = Field

Name = "Mass"

DataType = DFNT_FLOAT32

Order = 1

OBJECT = User_Defined_Attribute

Name = "Scale1"

DataType = DFNT_INT16

N_Values = 4

Data = (2, 4, 6, 8)

END_OBJECT = User_Defined_Attribute

OBJECT = User_Defined_Attribute

Name = "Scale2"

DataType = DFNT_CHAR8

N_Values = 5

Data = "aaaaa"

END_OBJECT = User_Defined_Attribute

 END_OBJECT = Field

 OBJECT = Field

Name = "Temperature"

DataType = DFNT_FLOAT32

Order = 2

OBJECT = User_Defined_Attribute

Name = "Scale3"

DataType = DFNT_FLOAT32

N_Values = 4

Data = (10.1, 20.2, 30.3, 40.4)

END_OBJECT = User_Defined_Attribute

 END_OBJECT = Field

 OBJECT = User_Defined_Attribute

Name = "Site Ident1"

DataType = DFNT_FLOAT64

N_Values = 3

Data = (1.2, 3.2, 6.5)

 END_OBJECT = User_Defined_Attribute

 OBJECT = User_Defined_Attribute

Name = "Site Ident2"

DataType = DFNT_CHAR8

N_Values = 3

Data = "ABC"

 END_OBJECT = User_Defined_Attribute

END_OBJECT = Vdata

OBJECT = Vdata

Name = "Solid Particle2"

Class = "Particle Data"

InterlaceMode = FULL_INTERLACE

OBJECT = Field

Name = "Position2"

DataType = DFNT_FLOAT32

Order = 3

END_OBJECT = Field

OBJECT = User_Defined_Attribute

Name = "Site Ident3"

DataType = DFNT_CHAR8

N_Values = 3

Data = "DEF"

END_OBJECT = User_Defined_Attribute

END_OBJECT = Vdata

OBJECT = Data_Annotation

OwnerType = Vdata

OwnerName = "Solid Particle"

 Type = AN_DATA_LABEL

Content = "Common A Vdata"

END_OBJECT = Data_Annotation

OBJECT = Data_Annotation

OwnerType = Vdata

OwnerName = "Solid Particle"

 Type = AN_DATA_DESC

Content = "This is an Vdata that is used to test data annotation."

END_OBJECT = Data_Annotation

END

6. Vgroup Object

Vgroup Object is the same as Vgroup in HDF.

6.1 Vgroup Object Definition

<Vgroup Object> ::=

 OBJECT = Vgroup

 NAME = <VgroupName>

 [CLASS = <VgroupClass>]

 [<Vgroup Member Definition>]*

 [<Vgroup Attribute Definition>]*

 END_OBJECT = Vgroup

Additional requirements:

<VgroupName> is a legal quoted name and must be unique among the same objects.

<VgroupClass> can be any legal quoted name.

6.2 Vgroup Member Definition

<Vgroup Member Definition> ::=

 OBJECT = Member

 MEMBERTYPE = <ObjectType>
 [MEMBERNAME = <VgroupMemberName>]

 [PALETTEINDEX = <MemberIndex>]

 END_OBJECT = Member

<ObjectType> ::= SDS | GR | Vgroup | Vdata | Palette_Object

Additional requirements:

<VgroupMemberName> is for SDS, GR, Vgroup or Vdata object. It is used to indentify these objects. The object having this name has to be existent.

<MemberIndex> is only for Palette Object. The <VgroupMemberType> has to be ‘Palette_Object’ for this field to be valid. Starting from 0, this index is the same as the sequence in which palettes are inserted into file.

6.3 Vgroup Attribute Definition

Vgroup Attribute has the same definition as the one in SDS Dimension. Please refer to 7.2.3.

[<Vgroup Attribtute Definition> ::=

<User-defined Attribute Definition>

6.4 Vgroup Object Example

OBJECT = Palette_Object

Index = 0

Data = (1, 1, 1,

 255, 255, 255,

 0, 0, 0,

 1, 1, 1,

 1, 1, 1,

 : : :

 1, 1, 1,

 1, 1, 1)

END_OBJECT = Palette_Object

OBJECT = SDS

OBJECT = SDSArray

Name = "SDStemplate"

DataType = DFNT_INT32

DimensionRank = 1

DimensionSize = (10)

DimensionList = ("-")

OBJECT = SDSDimensionWithoutName

Index = 0

OBJECT = SDSDimensionScale

N_Values = 10

DataType = DFNT_FLOAT64

Data = (0.000, 0.100, 0.200, 0.300,

0.400, 0.500, 0.600, 0.700,

0.800, 0.900)

END_OBJECT = SDSDimensionScale

END_OBJECT = SDSDimensionWithoutName

END_OBJECT = SDSArray

END_OBJECT = SDS

OBJECT = GR

OBJECT = ImageArray

Name = "Image Array 1"

N_Comps = 2

PixelType = DFNT_INT16

InterlaceMode = MFGR_INTERLACE_PIXEL

DimensionSize = (10, 5)

END_OBJECT = ImageArray

END_OBJECT = GR

OBJECT = Vgroup

Name = "Vertices2"

Class = "Vertex Set"

END_OBJECT = Vgroup

OBJECT = Vdata

 Name = "Solid Particle"

Class = "Particle Data"

OBJECT = Field

Name = "Position2"

DataType = DFNT_FLOAT32

Order = 3

END_OBJECT = Field

END_OBJECT = Vdata

OBJECT = Vgroup

Name = "Vertices"

Class = "Vertex Set"

OBJECT = Member

MemberType = SDS

MemberName = "SDStemplate"

END_OBJECT = Member

OBJECT = Member

MemberType = GR

MemberName = "Image Array 1"

END_OBJECT = Member

OBJECT = Member

MemberType = Vgroup

MemberName = "Vertices2"

END_OBJECT = Member

OBJECT = Member

MemberType = Vdata

MemberName = "Solid Particle"

END_OBJECT = Member

OBJECT = Member

MemberType = Palette_Object

PaletteIndex = 0

END_OBJECT = Member

OBJECT = User_Defined_Attribute

Name = "Dim_metric"

DataType = DFNT_CHAR8

N_Values = 7

Data = "Minutes"

END_OBJECT = User_Defined_Attribute

END_OBJECT = Vgroup

OBJECT = File_Annotation

Type = AN_FILE_LABEL

Content = "General HDF Objects"

END_OBJECT = File_Annotation

OBJECT = File_Annotation

Type = AN_FILE_DESC

Content = "This is an HDF file that contains general HDF objects"

END_OBJECT = File_Annotation

END

7. Palette Object

Palette Object is the same as Palette in HDF.

7.1 Palette Object Definition

Each object contains the data of 768(256x3) integers, representing a RGB mode lookup table, totaling 256 colors.

<Palette Object> ::=

 OBJECT = Palette_Object

 INDEX = (<paletteIndex>)
 DATA = (<data>, <data>, ...)

 END_OBJECT = Palette_Object

Requirements:

<paletteIndex> is a sequencial number starting from 0.

(<data>, <data>, …) must be 768 entries of 8-bit unsigned integer.

7.2 Palette Object Example

OBJECT = Palette_Object

Index = 0

Data = (0, 0, 0,

 255, 255, 255,

 0, 0, 0,

 1, 1, 1,

 : : :

 1, 1, 1,

 1, 1, 1)

END_OBJECT = Palette_Object

OBJECT = Palette_Object

 Index = 1

Data = (1, 1, 1,

 255, 255, 255,

 0, 0, 0,

 1, 1, 1,

 1, 1, 1,

 : : :

 1, 1, 1,

 10, 10, 10,

 11, 11, 11,

 12, 12, 12)

END_OBJECT = Palette_Object

OBJECT = Data_Annotation

OwnerType = Palette

OwnerIndex = 0

 Type = AN_DATA_LABEL

Content = "Common A Palette"

END_OBJECT = Data_Annotation

OBJECT = Data_Annotation

OwnerType = Palette

OwnerIndex = 1

 Type = AN_DATA_DESC

Content = "This is an Palette that is used to test data annotation."

END_OBJECT = Data_Annotation

END

8. Annotation Object

There are two kinds of Annotation Objects, File Annotation and Data Annotation.

File Annotation is for a whole file, while Data Annotation is for HDF objects like

SDS, GR, Vdata and Vgroup.

12.1 File Annotation Object Definition
<File Annotation Object> ::=

 OBJECT = FileAnnotation

 TYPE = <AnnotationType>
 CONTENT = <AnnotationContent>
 END_OBJECT = FileAnnotation

<AnnotationContent> ::=

<Label> | <Description>
Additional requirements:

<AnnotationType> is either AN_FILE_LABEL for label, or AN_FILE_DESC for description.

<Label> is a null-terminated string of characters. It is assumed to be a short message.

<Description> can be any sequence of ASCII characters. It is assumed to be a

 longer message compared to <Label>.

8.1 Data Annotation Object Definition

<Data Annotation Object> ::=

 OBJECT = DataAnnotation

 OWNERTYPE = <OwnerObjectType>
 [OWNERNAME = <OwnerObjectName>]

 [OWNERINDEX = <OwnerObjectIndex>]

 Type = <AnnotationType>
 CONTENT = <AnnotationContent>
 END_OBJECT = DataAnnotation

<OwnerObjectType> ::=

 <ObjectType>

The definition of <ObjectType> is in 10.2.

Additional requirements:

<OwnerObjectType> refers to the object to which this annotation will be attached. It is same as Vgroup member type.

<OwnerObjectName> is only used for SDS, GR, Vdata, Vgroup.

<OwnerObjectIndex> is only used for Palette Object.

<AnnotationType> is either AN_DATA_LABEL for label, or AN_DATA_DESC for description.

<AnnotationContent> is same as the description in 12.1.

12.3 Annotation Object Example
OBJECT = File_Annotation

Type = AN_FILE_LABEL

Content = "General HDF Objects"

END_OBJECT = File_Annotation

OBJECT = File_Annotation

Type = AN_FILE_DESC

Content = "This is an HDF file that contains general HDF objects"

END_OBJECT = File_Annotation

OBJECT = Vgroup

Name = "Vertices2"

Class = "Vertex Set"

END_OBJECT = Vgroup

OBJECT = Palette_Object

Index = 0

Data = (1, 1, 1,

 255, 255, 255,

 0, 0, 0,

 1, 1, 1,

 1, 1, 1,

 : : :

 1, 1, 1,

 1, 1, 1)

END_OBJECT = Palette_Object

OBJECT = Data_Annotation

OwnerType = Vgroup

OwnerName = “Vertices2”

 Type = AN_DATA_LABEL

Content = "Common A Vgroup"

END_OBJECT = Data_Annotation

OBJECT = Data_Annotation

OwnerType = VGroup

OwnerName = “Vertices2”

 Type = AN_DATA_DESC

Content = "This is a Vgroup that is used to test data annotation."

END_OBJECT = Data_Annotation

OBJECT = Data_Annotation

OwnerType = Palette_Object

OwnerIndex = 0

 Type = AN_DATA_LABEL

Content = "Common A Palette"

END_OBJECT = Data_Annotation

OBJECT = Data_Annotation

OwnerType = Palette_Object

OwnerIndex = 0

 Type = AN_DATA_DESC

Content = "This is a Palette that is used to test data annotation."

END_OBJECT = Data_Annotation

END

PART IV. Related Documents

13. Related Documents

13.1 HDF-EOS Documents

For a detailed description of the HDF-EOS library, refer to the following documents.

[EOS96-1]

"Draft Design Document for Proposed HDF-EOS Library",

http://edhs1.gsfc.nasa.gov/ftp/hdf_eos/doc/HDFEOSLib/

[EOS96-2]

"The HDF-EOS Swath Concept",

http://edhs1.gsfc.nasa.gov/ftp/hdf_eos/doc/SwathPaper/

[EOS96-3]

"The HDF-EOS Grid Concept",

http://edhs1.gsfc.nasa.gov/ftp/hdf_eos/doc/GridPaper/

[EOS96-4]

"The HDF-EOS Point Concept",

http://edhs1.gsfc.nasa.gov/ftp/hdf_eos/doc/PointPaper/

[EOS96-5]

"Thoughts on HDF-EOS Metadata",

http://edhs1.gsfc.nasa.gov/ftp/hdf_eos/doc/MetaThought/

[EOS97-1]

"HDF-EOS Library User's Guide Volume 1: Overview and Examples",

http://edhs1.gsfc.nasa.gov/waisdata/sdp/html/tp1700503.html, April 1997.

 [EOS97-2]

"HDF-EOS Library Users Guide Volume 2: Function Reference Guide",

http://edhs1.gsfc.nasa.gov/waisdata/sdp/html/tp1700602.html, April 1997.

 [HDF96-2]

"HDF Configuration Record Requirements ",

ftp://hdf.ncsa.uiuc.edu/pub/HCR/Doc/HCR-Requirements.ps, April 1996.

13.2 HDF Documents

For a detailed description of the Hierarchical Data Format (HDF) software, refer to the following documents.

[HDF]

"HDF Information Server",

http://hdf.ncsa.uiuc.edu/

[HDF96]

"HDF Users Guide", version 4.0,

ftp://hdf.ncsa.uiuc.edu/pub/dist/HDF/Documentation/HDF4.0/Users_Guide

13.3 GCTP Document

For a detailed description of the GCTP software, refer to the following document.

[GCTP96]

"General Cartographic Transformation Package",

ftp://edcftp.cr.usgs.gov/pub/software/gctpc/getpc.tar.Z

13.4 Object Description Language Documents

The Metadata are stored in the form of Object Description Language (ODL) as defined in the Planetary Data System (PDS) of the Jet Propulsion Laboratory. The following are related ODL and PDS documents.

[PDS95]

"Planetary Data System Standards Reference", Version 3.2,

http://pds.jpl.nasa.gov/stdref/stdref.htm

[PDS95-12]

“Object Description Language (ODL) Specification and Usage”,

http://pds.jpl.nasa.gov/stdref/chap12.htm

13.5 Parameter Value Language Documents

ODL is related to the Parameter Value Language (PVL) as defined in the Standard Formatted Data Units (SFDU). The following are related PVL and SFDU documents.

[SFDU92]

"Recommendation for Space Data System Standards, Standard Formatted Data Units -- Structure and Construction Rules",

ftp://nssdc.gsfc.nasa.gov/pub/sfdu/p2docs/postscript/ccsds-641-0-b-1.ps

[PVL92]

"Recommendation for Space Data System Standards, Parameter Value Language Specification",

ftp://nssdc.gsfc.nasa.gov/pub/sfdu/p2docs/postscript/ccsds-641-0-b-1.ps

� Indexed field point objects are not supported.

