Automatically Generating DTD-Specific XML Parsers
Karl Nyberg

Grebyn Corporation
P. O. Box 47
Sterling, VA 20167-0047
703-406-4161

karl@nyberg.net

ABSTRACT

This paper presents an automated approach to reBffD-specific XML parsers in Ada. It describesveork in progress” with
discussion of current performance, limitations &rtdre plans.

Categories and Subject Descriptors
D.3.3 [Programming L anguages]: Ada, Algorithm, Performance, Standards.

General Terms
Algorithms, Performance, Experimentation.

Keywords
DTD, XML, Ada, automation, parsing.

1. INTRODUCTION

Large quantities of scientific data are publishadheyear by NASA. These data are often accompdmnjiadetadata files that describe the
contents of individual files of the data. One epéerof this data is the ASTER (Advanced Spacebdimmal Emission and Reflection
Radiometer) [1]. Each file of data (consistingsafellite imagery) in HDF (Hierarchical Data Forjng] is accompanied by a metadata
file in XML (Extensible Markup Language) [3], enaadiaccording to a published DTD (Document Type iiidin) [6] that indicates the
components and types of data in the metadata file.

Each ASTER data file consists of an image of thelli as it passes over the earth. Informatiorttee location of the data collected as
the satellite passes is contained in the metadata ©ver time, multiple images of the same lamaton earth are obtained. For many
purposes of analysis (erosion, building patterme$oréstation, glacier movement, etc.), these imajdbe same location are compared
over time.

A tool parses the metadata describing these imagdstermine which images contain data from comfooations and generates a list of
files according to location. The remainder of théper describes an approach to automaticallyingeatDTD-specific parser and its use
in selecting images from common locations for sucther analysis.

2. THE ASTER PROJECT
The ASTER project is:

an imaging instrument flying on Terra, a satelldenched in December 1999 as part of NASA's Eatise@ving System.
ASTER is a cooperative effort between NASA, Japafisistry of Economy, Trade and Industry (METI) addpan's Earth
Remote Sensing Data Analysis Center. ASTER is besagl to obtain detailed maps of land surface testye, reflectance and
elevation. The three EOS platforms are part of NASFcience Mission Directorate and the Earth-SisteBy, whose goal is to
observe, understand, and model the Earth systalis¢over how it is changing, to better predict dgrand to understand the
consequences for life on Earth [4].

The Terra platform operates on a “sun-synchrondiistiay cycle, providing 233 orbit paths during thisle. Data from the ASTER
instrument is downloaded to a ground station, psee and packaged and made available at both MEEITNASA web sites. Additional
higher level data products are also produced fimenuinderlying raw data. It was an interest in poielg such a higher level product (a
Digital Elevation Model — DEM) that lead to thif@t. (Of course, in classic form, as this effads taking shape, an equivalent higher
level product was released by the ASTER projec) [5]

Images from the ASTER project come paired — a fil@gcontained in HDF format) and a metadata (dentained in XML). Although
significantly related to the underlying project@siated with the ASTER data, description of therbliehial Data Format and development
of a parser for HDF files in Ada is not describesteh but rather is the subject of a separate,dbated, paper [11].

3. EXTENSIBLE MARKUP LANGUAGE

Extensible Markup Language (XML) is a subset of Standardized General Markup Language (SGML) teldgyofor document
descriptions designed for use in the web enviroriniere. manner similar to the HyperText Markup Laage (HTML). The two
components of XML technology are the Document TRgénition (DTD) file, which present a descriptiofithe document and individual
XML document files, which contain the data.

3.1 DTD

At the simplest level, a DTD is a definition of tls&ucture of the components of a document. Th® D&fines the elements of an
associated document and the hierarchy of the elsmaithin that document. A simple DTD example disog a person (e.g.,
person.dtd):

<IELEMENT Person (Name, Height, Weight)>
<IELEMENT Name (First, Middle?, Last)>
<IELEMENT First (#PCDATA)>

<IELEMENT Middle (#PCDATA)>
<IELEMENT Last (#PCDATA)>

<IELEMENT Height (#PCDATA)>
<IELEMENT Weight (#PCDATA)>

The 'ELEMENT keyword indicates a toplevel desigmatnd the #PCDATA keyword indicates arbitrary teXhe parenthesized grouping
indicates that the contained elements appear ierarbhial manner. The question mark after thedtta” indicates that it is optional
(other punctuation is used to indicate zero or mone or more, etc.).

3.2 XML

An XML document indicates the DTD to which it confts and the associated contents. For examplee(lipsis below is used to
indicate material irrelevant to this discussiont, hecessary for a well-formed document):

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE person ...>
<Person>
<Name>
<First>Karl</First>
<Last>Nyberg</Last>
</Name>
<Height>1.75</Height>
<Weight>190</Weight>
</Person>

Notice that we have specifically mixed units ofdtgiand weight for both Metric and English unitghie document. Nothing in the DTD
specifies that information. Such information woblkale to be validated outside of the DTD.

4. USING GENERATED CODE
4.1 DATATYPES

The DTD parser reads in the DTD file, calculatesliferarchical relationship among the elementsgamérates a set of data types specific
to the underlying elements of the DTD. A portidritee types generated for the above DTD (all geedraode is available online at [8])

package person is

t ype Element_First is record
The_First : String_Ptr;

end record;

t ype Element_First_Ptr i s access Element_First;
t ype Element_First_Ptr_Array is array (natural r ange <>) of Element_First_Ptr;
t ype Element_First_Ptr_Array_Ptr i s access Element_First_Ptr_Array;
package First_List i s newlList
(Element_First, Element_First_Ptr, Element_First _Ptr_Array, Element_First_Ptr_Array_Ptr);

use First_List;
t ype Element_First_Ptr_Array_Ptr_Record (Ct : Count_Typ e) is record

The_First_Ptr_Array : Element_First_Ptr_Array P tr;
end record;

t ype Element_Name is record

The_First_Ptr_Array : Element_First_Ptr_Array_ Pt r_Record (ONCE);
The_Middle_Ptr_Array : Element_Middle_Ptr_Array Ptr_Record (OPTIONAL);
The_Last_Ptr_Array : Element_Last_Ptr_Array Ptr_ Record (ONCE);

end record;

-- Person

t ype Element_Person is record
The_Name_Ptr_Array : Element_Name_Ptr_Array Ptr_ Record (ONCE);
The_Height_Ptr_Array : Element_Height_Ptr_Array Ptr_Record (ONCE);
The_Weight_Ptr_Array : Element_Weight_Ptr_Array_ Ptr_Record (ONCE);

end record;

end person;

These types are somewhat “heavy” or verbose bedhegeare intended to be more general than thosersltin this simple example,
particularly the optional and multiple occurrengeations. What these declarations provide isrggafy an infrastructure into which an
instance of the document can be parsed.

4.2 PARSER
Once the infrastructure for the elements in the BB been created, a corresponding parser for andddument of that structure is also
generated. These procedures are essentially gedénaa similar hierarchical pattern to the tygeldrations.

pr ocedur e Parse_Element_Name (E : i n out Element_Name_Ptr; Quantity : Count_Type) is
begi n

read_token ("Name", xml, location);

Parse_Element_First_Ptr_Array Ptr_Record (E.The_ First_Ptr_Array, ONCE);
Parse_Element_Middle_Ptr_Array_Ptr_Record (E.The _Middle_Ptr_Array, OPTIONAL);
Parse_Element_Last_Ptr_Array_Ptr_Record (E.The_L ast_Ptr_Array, ONCE);

read_token ("/Name", xml, location);
end Parse_Element_Name;

pr ocedur e Parse_Element_Person (E : i n out Element_Person_Ptr; Quantity : Count_Type) is
begi n
read_token ("Person", xml, location);
Parse_Element_Name_Ptr_Array_Ptr_Record (E.The_Na me_Ptr_Array, ONCE);
Parse_Element_Height_Ptr_Array Ptr_Record (E.The _Height_Ptr_Array, ONCE);
Parse_Element_Weight Ptr_Array_ Ptr_Record (E.The _Weight_Ptr_Array, ONCE);

read_token ("/Person”, xml, location);
end Parse_Element_Person;

4.3 DISPLAY ROUTINES

Similar to the parsing routines, a collection o$play routines are generated to walk an objectaléby and display the contents
human-readable format. Some examples:

n

pr ocedur e Display_Element_Person (E : Element_Person) is
begin
Display_Element_Name_Ptr_Array_Ptr_Record (E.The _Name_Ptr_Array);
Display_Element_Height_Ptr_Array Ptr_Record (E.T he_Height_Ptr_Array);
Display_Element_Weight_Ptr_Array_Ptr_Record (E.T he_Weight_Ptr_Array);
end Display_Element_Person;
procedure Display_Element_Person_Ptr_Array Ptr_Reco rd
(E: Element_Person_Ptr_Array_Ptr_Record) is
begin
i f E.The_Person_Ptr_Array = null t hen
return;
end if;
put ("<Person>");
new_line;
for | inE.The_Person_Ptr_Array' range | oop
Display_Element_Person (E.The_Person_Ptr_Arra y(). all);
end | oop;
put ("</Person>");
new_line;

end Display_Element_Person_Ptr_Array_Ptr_Record;

4.4 APPLICATION CODE

One of the advantages of this approach is thetybdidirectly reference components of an XML doemtusing standard Ada language
constructs (record structures and arrays), rath@n having necessarily to hierarchically or segaéntsearch through the object by
looking for keyword and value pairs (it will, howavstill be necessary to make conditional decisibased on optional or multiple
occurrence components). Parsing a list of filermommtaining XML documents is straightforward.

forl in1l. Argument_Count | oop
Open (F, In_File, Argument (1));
Docs (I) := new Person.
Element_Person_Ptr_Array_Ptr_Record (Once);
Parse_File (F, Docs (l). all);
Close (F);
end | oop;

The following two examples show how the structufeéhe data types would be used for a required ELENME“weight”) and for an
optional ELEMENT (“Middle”) where individual XML fies have been parsed into corresponding elemettte @frray “docs”.

-- find all the people with weight > 100

Put_Line (" ");
Put_Line ("people with the weight > 100");
Put_Line (" ");

decl are
Weight : Integer;
Dummy : Natural;

begi n
forl in2l. Argument_Count | oop
My_Integer_lo.Get (Docs (1).The_Person_Ptr_Ar ray (1).
The_Weight_Ptr_Array.The_Weight_Ptr_Array Q).

The_Weight.all, Weight, Dummy);
i f Weight > 100 t hen

Display_Element_Person_Ptr_Array_Ptr_Recor d (Docs (). all);
end if;
end | oop;
end;

-- find all the people with a middle name

Put_Line (" ");
Put_Line ("people with a middle name");
Put_Line (" ");
forl in1.. Argument_Count | oop

i f Docs (I).The_Person_Ptr_Array (1).
The_Name_Ptr_Array.The_Name_Ptr_Array (1).

The_Middle_Ptr_Array.The_Middle_Ptr_Array /= null then
Display_Element_Person_Ptr_Array_Ptr_Record (Docs (). all);
end if;
end | oop;

5. RESULTSAND LIMITATIONS

The parser generator was only implemented for theset of DTD and XML that was encountered by thebjgm at hand. Additional
work would be necessary to extend it to handlébaitie lists (ATTLIST) and namespaces. There isantutt of error-checking performed
either, under the reasonable assumption that the Kk were well-formed when received. This asption held for the almost 50,000
XML files that were processed.

No consideration is provided for parsing XML corttesing attributes, as none of the input files reggplithis form.
A set of routines for walking an object hierarcmglaleallocating the memory associated with theatlijeeds to be generated.

The DTD used for the image data in the ASTER ptojexs approximately 200 lines long, consisting 0100 ELEMENTS [7]. The
generated data types were about 5,000 lines ofaAddathe parser an additional 4,500 lines. Thelalgpackage that walked instances of
the structure and displayed the contents was an8tbe0 lines. Parsing the DTD and generatiorhef@TD-specific parse code takes
mere seconds to perform. Compilation of the singplelication used at this juncture is less thas&@nds.

In a couple instances the DTD being used contaameelement consisting of multiple common sub-elémeuch as:
<IELEMENT Boundary (Point, Point, Point, Point*)>
In such cases, the underlying record data strucméined components disambiguated by numeriaritistion:
Type Element_Boundary is record
The_Point_Ptr_Array : ...
The_Point_2_Ptr_Array : ...
The_Point_3_Ptr_Array : ...
The_Point_4_Ptr_Array : ...
end record;
The generated types and referencing structurdisverbose and clunky, to say the least at tligestand could probably be cleaned up.

6. RELATED WORK

6.1 Existing XML AdaParsers

There are a number of XML parsers for Ada, botliveadnd as bindings to underlying libraries in otlaaguages [10]. For the most part,
these tools provided less DTD-specific opportusifier individual applications. This tool providas approach similar to that with the
Data Object Model (DOM) approach, but carries thpraach one level further by making the referereoéeemely concrete rather than
needing to search through the DOM object (esséntigharse tree) at runtime for individual elements

6.2 DTD Parsersand Tools

There are numerous tools for parsing DTDs and doomgsistency checking and such with the underlgata. An interesting tool for

hierarchical display of DTD schemas is the Mati@ toAn XML DTD Parser Utility [9]. Adding a simdr feature to the current software
would simply require a straightforward top-down aking of the parsed hierarchy. Other applicatioosld include normalization tools,

cross referencers, etc.

7. PERFORMANCE

Image data from the NASA web site was downloadeds® as input to the DEM generation process. @SEER project subsequently
generated a Global DEM using data that was deffred 1.3 million images and required over a yeéri®e to process and create). For
this effort, approximately 50,000 images and asgedi XML metadata files, restricted to US terrigstriwere used.

Pundits have often complained about Ada’s perfogeaso we were curious to see how quickly the geedrcode would be able to parse
XML files. (Based on the adage “it's easier to makworking program fast than it is to make a ffmsgram work”, we wanted to see how
well the straightforward approach performed.) Athe time of the writing of this article, there r@eapproximately 50,000 XML metadata
files, each consisting of approximately 250 linesl 40,000 characters (just over 500MB total). Reaih and parsing these files took
about one minute. Cycling through all possiblegitudes (-180 .. 179) and Northern latitudes (89) to determine the set of files for
each one degree tile and generate approximatelyBl6Mistings in 2500 files took an additional mteu All times are reported on a
several year old 3.2GHz Pentium IV Dell running gc2.1 on Fedora 5 Linux with Raptor disk drivé§ith acceptable performance like
that, there seemed no need to focus on additipesdsimprovements.

(We note that although the effort reported in théper is not comparable to that reported by the S project in the creation of their
Global DEM. They reported that its generation taokr a year in processing time to complete. Bagmh their estimate of 1.3 million
data files, and a linear scaling of the performanicthe underlying software used in this paperedeination of the set of files for each
longitude / latitude tile portion of a similar geaton would take approximately a couple hours tiMiéne processing effort required for
parsing the HDF files and the actual DEM generaicemother work in progress.)

8. ACKNOWLEDGMENTS

Thanks to Richard Biby for the suggestion to do eirimg interesting with the ASTER data and to Daliidery for encouraging the
writeup of this approach and reviewing the rougditdrof it.

9. REFERENCES
[1] http://asterweb.jpl.nasa.gov

[2] http://www.hdfgroup.org/products/hdf4/

[3] http://mvww.w3.0rg/TR/REC-xml/

[4] http://lwww.science.aster.ersdac.or.jp/en/documdfSASTER_Ref V1.pdf
[5] http://asterweb.jpl.nasa.gov/gdem.asp

[6] http://en.wikipedia.org/wiki/Document_type defiiti
[7] http://observer.gsfc.nasa.gov/ECSInfo/ecsmetadd0PL/ECS/ScienceGranuleMetadata.dtd
[8] http://karl.nyberg.net/Automatically Generating_ DTEpecific XML_Parsers/

[9] http://matra.sourceforge.net/
[10] http://www.adapower.com/index.php?Command=Class&R=AdaWeb&Title=Ada+Web+and+XML
[11] Nyberg, Karl A. “Nyberg, Karl A. “Parsing Hieraraal Data Format (HDF) FilesS GAda Ada Letters, to appear...

