
HDF Specification and
Developer’s Guide

ii of ii June 2017

The HDF Group

Copyright Notice and License Terms for Hierarchical Data Format (HDF)
Software Library and Utilities
Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 2006 by The HDF Group (THG)

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2006 by the Board of Trustees of the University of Illinois.

All rights reserved.

Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illinois, Fortner Software, Unidata
Program Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly and Mark Adler (gzip), and Digital Equipment
Corporation (DEC).

Redistribution and use in source and binary forms, with or without modification, are permitted for any purpose (including commer-
cial purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following dis-
claimer in the documentation and/or materials provided with the distribution.

3. In addition, redistributions of modified forms of the source or binary code must carry prominent notices stating that the
original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software are asked, but not required, to
acknowledge that it was developed by The HDF Group and by the National Center for Supercomputing Applications at the
University of Illinois at Urbana-Champaign and credit the contributors.

5. Neither the name of The HDF Group, the name of the University, nor the name of any Contributor may be used to endorse
or promote products derived from this software without specific prior written permission from THG, the University, or the
Contributor, respectively.

Disclaimer
THIS SOFTWARE IS PROVIDED BY THE HDF GROUP (THG) AND THE CONTRIBUTORS “AS IS” WITH NO WAR-
RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. In no event shall THG or the Contributors be liable for any dam-
ages suffered by the users arising out of the use of this software, even if advised of the possibility of such damage.

Trademarks
Sun is a registered trademark, and Sun Workstation, Sun/OS and Solaris are trademarks of Sun Microsystems Inc.
UNIX is a registered trademark of X/Open
VAX and VMS are trademarks of Digital Equipment Corporation
Macintosh is a trademark of Apple Computer, Inc.
CRAY and UNICOS are registered trademarks of Silicon Graphics , Inc.
IBM PC is a registered trademark of International Business Machines Corporation
MS-DOS is a registered trademark of Microsoft Corporation.
The SZIP Science Data Lossless Compression Program is Copyright (C) 2001 Science & Technology Corporation @ UNM. All
rights released. Copyright (C) 2003 Lowell H. Miles and Jack A. Venbrux. Licensed to ICs Corp. for distribution by the University
of Illinois' National Center for Supercomputing Applications as a part of the HDF data storage and retrieval file format and soft-
ware library products package. All rights reserved. Do not modify or use for other purposes. See for further information regarding
terms of use.

The HDF Group and HDF Information and Contacts
Information regarding The HDF Group and HDF products is available from The HDF Group’s website: https://www.hdfgroup.org/

HDF Help Desk assistance is available via email: help@hdfgroup.org

Business queries and contacts can be made through the website or by mail:

https://support.hdfgroup.org/about/contact.html

The HDF Group

1800 South Oak Street

Suite 203

Champaign, IL 61820 USA

June 2017 1-1

CHAPTER 1 -- Introduction

1.1 Overview

The Hierarchical Data Format (HDF) was designed to be an easy, straight-forward, and self-
describing means of sharing scientific data among people, projects, and types of computers. An
extensible header and carefully crafted internal layers provide a system that can grow as scientific
data-handling needs evolve.

This document, the HDF Specification and Developer's Guide, fully describes the HDF data mod-
els, the corresponding file format specifications, and library implementation, and discusses crite-
ria employed in the library’s development. Where appropriate, this document provides limited
guidelines for developers working on HDF itself or building applications that employ HDF.

This introduction provides a brief overview of HDF capabilities and design.

1.2 Why HDF?

A fundamental requirement of scientific data management is the ability to access as much infor-
mation in as many ways, as quickly and easily as possible. A data storage and retrieval system that
facilitates these capabilities must provide the following features:

Support for scientific data and metadata

Scientific data is characterized by a variety of data types and representations, data sets
(including images) that can be extremely large and complex, and the need to attach
accompanying attributes, parameters, notebooks, and other metadata. Metadata, supple-
mentary data that describes the basic data (sometimes referred to as the raw data),
includes information such as the dimensions of an array, the number type of the elements
of a record, or a color lookup table (LUT).

Support for a range of hardware platforms

Data can originate on one machine only to be used later on many different machines.
Scientists must be able to access data and metadata on as many hardware platforms as
possible.

Support for a range of software tools

Scientists need a variety of software tools and utilities for easily searching, analyzing,
archiving, and transporting the data and metadata. These tools range from a library of
routines for reading and writing data and metadata, to small utilities that simply display
an image on a console, to full-blown database retrieval systems that provide multiple
views of thousands of sets of data and metadata.

1-2 June 2017

The HDF Group

Rapid data transfer

Both the size and the dispersion of scientific data sets require that mechanisms exist to
get the data from place to place rapidly.

Extendibility

As new types of information are generated and new kinds of science are done, a means
must be provided to support them.

1.3 What is HDF?

The HDF Structure

HDF is a self-describing extensible file format using tagged objects that have standard meanings.
The idea is to store both a known format description and the data in the same file. HDF tags
describe the format of the data because each tag is assigned a specific meaning; for example, the
tag DFTAG_LUT indicates a color palette, the tag DFTAG_RI indicates an 8-bit raster image, and
so on . A program that has been written to understand a certain set of tag types can scan the file for
those tags and process the data. This program also can ignore any data that is beyond its scope.

Consider a data set representing a raster image in an HDF file as illustrated in Figure 1a below.
The data set consists of three data objects with distinct tags representing the three types of data.
The raster image object contains the basic data (or raw data) and is identified by the tag
DFTAG_RI; the palette and dimension objects contain metadata and are identified by the tags
DFTAG_LUT tags DFTAG_ID.

FIGURE 1a Raster Image Set in an HDF File .

The set of available data objects encompasses both basic data and metadata. Most HDF objects
are machine- and medium-independent, physical representations of data and metadata.

HDF Tags

The HDF design assumes that we cannot know a priori what types of data objects will be needed
in the future, nor can we know how scientists will want to view that data. As science progresses,
people will discover new types of information and new relationships among existing data. New
types of data objects and new tags will be created to meet these expanding needs. To avoid unnec-
essary proliferation of tags and to ensure that all tags are available to potential users who need to
share data, a portable public domain library is available that interprets all public tags. The library
contains user interfaces designed to provide views of the data that are most natural for users. As
we learn more about the way scientists need to view their data, we can add user interfaces that
reflect data models consistent with those views.

Types of Data and Structures

palette

dimensions

raster image

DFTAG_LUT

DFTAG_ID

DFTAG_RI

400 x 600

HDF Specification and Developer’s Guide

June 2017 1-3

HDF currently supports the most common types of data and metadata that scientists use, including
multidimensional gridded data, 2-dimensional raster images, polygonal mesh data, multivariate
data sets, finite-element data, non-Cartesian coordinate data, and text.

In the future there will almost certainly be a need to incorporate new types of data, such as voice
and video, some of which might actually be stored on other media than the central file itself.
Under such circumstances, it may become desirable to employ the concept of a virtual file. A vir-
tual file functions like a regular file but does not fit our normal notion of a monolithic sequence of
bits stored entirely on a single disk or tape.

HDF also makes it possible for the user to include annotations, titles, and specific descriptions of
the data in the file. Thus, files can be archived with human-readable information about the data
and its origins.

One collection of HDF tags supports a hierarchical grouping structure called a Vgroup that allows
scientists to organize data objects within HDF files to fit their views of how the objects go
together, much as a person in an office or laboratory organizes information in folders, drawers,
journal boxes, and on their desktops.

Backward and Forward Compatibility

An important goal of HDF is to maximize backward and forward compatibility among its inter-
faces, and storage and object types. This is not always achievable, because data formats must
sometimes change to enhance performance, to correct errors, or for other reasons. However,
whenever possible, HDF files should not become out of date. For example, suppose a site falls far
behind in the HDF standard so its users can only work with the portions of the specification that
are three years old. Users at this site might produce files with their old HDF software then read
them with newer software designed to work with more advanced data files. The newer software
should still be able to read the old files.

Conversely, if the site receives files that contain objects that its HDF software does not under-
stand, it should still be able to list the types of data in the file. It should also be able to access all
of the older types of data objects that it understands, despite the fact that the older types of data
objects are mixed in with new kinds of data. In addition, if the more advanced site uses the text
annotation facilities of HDF effectively, the files will arrive with complete human-readable
descriptions of how to decipher the new tag types.

Calling Interfaces

To present a convenient user interface made up of something more usable than a list of tag types
with their associated data requirements, HDF supports multiple calling interfaces, utilities, and
applications.

The low-level calling interface is used to manipulate tags and raw data, to perform error handling,
and to control the physical storage of data. This interface is designed to be used by developers
who are providing the higher level interfaces for applications like raster image storage or scien-
tific data archiving. See Chapter , Low-level Interface, and in Chapter , Software Overview, see
Section 3.3, "Software Organization."

The application interfaces, at the next level, include several modules specifically designed to sim-
plify the process of storing and accessing specific types of data. For example, the palette inter-
faces are designed to handle color palettes and lookup tables, the general raster (GR) interface is
designed to handle generalized raster images, and the scientific data (SD) interface is designed to
handle arrays of scientific data. If you are primarily interested in reading data from or writing
data to HDF files, you will spend most of your time working with the application interfaces. See
Section 3.3, "Software Organization," for a complete list of these APIs.

1-4 June 2017

The HDF Group

The HDF utilities and NCSA applications, at the top level, are special purpose programs designed
to handle specific tasks or solve specific problems. The utilities provide a command line interface
for data management. The applications provide solutions for problems in specific application
areas and often include a graphic user interface. Several third party applications are also available
at this level.

Machine Independence

An important issue in data file design is that of machine independence or transportability. The
HDF design defines standard representations for storing all data types that it supports. When data
is written to a file, it is typically written in the standard HDF representation. The conversion is
handled by the HDF software and need not concern the user. Users may override this convention
and install their own conversion routines, or they may write data to a file in the native format of
the machine on which it was generated.

1.4 Some History

In 1987 a group of users and software developers at NCSA searched for a file format that would
satisfy NCSA's data needs. There were some interesting candidates, but none that were in the pub-
lic domain, were targeted to scientific data, and yet were sufficiently general and extensible. In the
course of several months, borrowing concepts from several existing formats, the group designed
HDF.

The first version of HDF was implemented in the spring and summer of 1988. It included a gen-
eral purpose interface and an 8-bit raster image interface. In the fall of 1988, a scientific data set
interface was designed and implemented, enabling HDF users to store multidimensional arrays
and related data. Soon thereafter interfaces were implemented for storing color palettes, 24-bit
raster images, and annotations.

In 1989, it became clear that there was a need to support a general grouping structure and unstruc-
tured data such as that used to represent polyhedra in graphical applications. This led to Vsets,
whose interface routines were implemented as a separate HDF library.

Also in 1989 it became clear that the existing general purpose layer was not sufficiently powerful
to meet anticipated future needs and that the coding could use a substantial overhaul. From this,
the long process of redesigning the lower layers of HDF began. The first version incorporating
extended tags and the new lower layers of HDF was released in the summer of 1992 as HDF Ver-
sion 3.2.

In 1993, in response to the needs of flexibility in data ranges and sizes, HDF Version 3.3 was
released. In this version of HDF, the new SD interface was introduced with multi-file access and
an unlimited dimension feature for arrays. HDF Version 3.3 provided alternative physical storage
methods (external and linked block data elements) through extended tags, JPEG data compres-
sion, changes to some Vset interface functions, access to netCDF files through a complete
netCDF interface,1 hyperslab access routines for old-style SDS objects, and various performance
improvements.

In 1994, as standard ANSI C became more commonly used, HDF shifted from K&R to ANSI C to
support portability. After several beta versions, HDF Version 4.0 was released in 1996 and pro-
vided features such as support for n-bit integers and SDS compression, limited support for reading
CDF files, a parallel I/O interface for the CM5, auto configuration, multi-file versions of the AN

1. NetCDF is a network-transparent derivative of the original CDF (Common Data Format)
developed by the National Aeronautics and Space Administration (NASA). It is used widely in
atmospheric sciences and other disciplines requiring very large data structures. NetCDF is in the
public domain and was developed at the Unidata Program Center in Boulder, Colorado.

HDF Specification and Developer’s Guide

June 2017 1-5

and GR interfaces, and significant improvement in I/O performance and memory usage. In addi-
tion, more options were added to existing HDF utilities and two new programs were added to the
HDF utilities:

• hdp, to view the contents of HDF files

• hdfunpac, to unpack scientific datasets into external elements

HDF Version 4.1 was released in 1997. In this version, attributes were added to both the Vdata
and Vgroup APIs to provide more ways for meaningfully storing data, data chunking was intro-
duced in the SD API to improve I/O performance, and a new representation was used for storing
dimensions to improve storage efficiency.

In 1998, the second release of HDF Version 4.1, called Version 4.1r2, was announced. In this
release, data chunking was added for the GR API, the Java Products (the Java-based HDF Viewer,
JHV, and the Java HDF interface, JHI) were incorporated into the HDF release itself, and the HDF
Reference Manual and HDF User’s Guide were extensively updated. In addition, the new repre-
sentation of dimensions that was introduced in the previous release became the default representa-
tion.

HDF Version 4.1r3, released in May 1999, emphasized fixing problems in the SD and GR inter-
faces. The HDF User's Guide accompanying the release was significantly improved and updated.
The term Vset became obsolete, being replaced with the more specific terms Vgroup and Vdata.

The current release, HDF Version 4.1r4, released in October 2000, completes the enabling of all
GR chunking capabilities. In addition, new options were added to the hdp utility. This document,
the HDF Specification and Developer’s Guide, was largely rewritten for this release.

See the HDF website at https://support.hdfgroup.org/products/hdf4/ for release information, lists of
supported platforms, and the list of bugs fixed in the current release.

The HDF library is considered mature and complete at this time. Future work will focus on techni-
cal support, maintenance, and bug fixes; there are no plans to implement new features. All new
features and tools are being implemented in the HDF5 library, a new, next-generation product
from the same team that built and supports HDF. HDF5 is discussed in detail on the web at

https://support.hdfgroup.org/HDF5/.

1.5 About This Document

This document is designed for software developers who are designing applications or routines for
use with HDF files and for users who need detailed information about HDF. Users who are inter-
ested in using HDF to store or manipulate their data will not normally need the kind of detail pre-
sented in this manual. They should instead consult one of the user-level documents:1

Versions 4.x

HDF User's Guide

HDF Reference Manual

A tutorial is available online at the following URL:
https://support.hdfgroup.org/services/learning.html

New material appears throughout this edition of The HDF Specification and Developer’s Guide,
but the following chapters bear special mention. Chapters 7 and 8 and Appendix B are entirely

1. The user-level documents for Versions 3.2 and earlier were NCSA HDF Calling Interfaces and
Utilities and NCSA HDF Vset; for Version 3.3, they were Getting Started with NCSA HDF, NCSA
HDF User's Guide, and NCSA HDF Reference Manual. Library versions prior to Version 4.0 and
the corresponding documents are no longer supported or available.

https://support.hdfgroup.org/release4/doc/UsrGuide_html/UG_html.htm
https://support.hdfgroup.org/release4/doc/RefMan_html/RM_Top.html

1-6 June 2017

The HDF Group

new. Chapter 10 contains new compression and chunking information and some material that pre-
viously appeared in Chapter 9.

Users of third-party software that uses HDF may also have to consult a manual for that software.

1.6 Document Contents

The HDF Specification and Developer's Guide contains the following chapters and appendix:

Chapter 1: Introduction

Introduces the document and provides an overview.

Chapter 2: Basic Structure of HDF Files

Introduces and describes the components and organization of HDF files.

Chapter 3: Software Overview

Describes the organization of the software layers that make up the basic HDF library and
provides guidelines for writing HDF software.

Chapter 4: Low-level Interface

Describes the low-level HDF routines that make up the low-level interface (see also the
H routines section of the HDF Reference Manual).

Chapter 5: Sets and Groups

Explains the roles of sets and groups in an HDF file, and describes raster image sets, sci-
entific data sets, and Vgroups.

Chapter 6: Annotations

Explains the use of annotations in HDF files.

Chapter 7: Scientific Data Sets:The SD Model

Explains the role, structure, and usage of SDSs in HDF files.

Chapter 8: General Raster Images: The GR Model

Explains the role, structure, and usage of GRs in HDF files.

Chapter 9: Tag Specifications

Describes the tag identification space and the HDF-supported basic tags.

Chapter 10: Extended Tags and Special Elements

Describes the extended tag structure and the HDF-supported extended tags and special
elements.

Chapter 11: Portability Issues

Describes the measures taken to maximize HDF portability across platforms and to
ensure that HDF routines are available to both C and FORTRAN programs.

Appendix A: Tags and Extended Tag Labels

Presents a list of HDF-supported tags and a list of labels used with extended tags.

Appendix B: Library Calling Trees

Illustrates the calling structure of HDF library functions.

HDF Specification and Developer’s Guide

June 2017 1-7

Appendix C: Function Specifications

Provides detailed specifications for selected low-level interface functions.

1.7 Conventions Used in This Document

Most of the descriptive text in this guide is printed in 10 point Times. Other typefaces have spe-
cific meanings that will help the reader understand the functionality being described.

New concepts and newly defined terms are sometimes presented in bold italics on their first
occurrence to indicate that they are defined within the paragraph.

Cross references within the specification include the title of the referenced section in quotation
marks or the reference chapter in italics. (E.g., See Section 3.3, "Software Organization," in Chap-
ter , Software Overview, for a complete list of...)

References to documents italicize the title of the document. (E.g., See the HDF User’s Guide to
familiarize yourself with the basic principles of using HDF.)

Literal expressions and variables often appear in the discussion. Literal expressions are pre-
sented in Courier while variables are presented in italic Courier. A literal expression is any
expression that would be entered exactly as presented, e.g., commands, command options, literal
strings, and data. A variable is an expression that serves as a place holder for some other text that
would be entered. Consider the expression cp file1 file2, cp is a command name and would
be entered exactly as it appears, so it is printed in Courier. But file1 and file2 are variables,
place holders for the names of actual files, so they are printed in italic Courier; the user would
enter the actual filenames.

This guide frequently offers sample command lines. Sometimes these are examples of what
might be done; other times they are specific instructions to the user. Command lines may appear
within running text, as in the preceding paragraph, or on a separate line, as follows:

cp file1 file2

Command lines always include one or more literal expressions and may include one or more vari-
ables, so they are printed in Courier and italic Courier as described above.

Keys that are labeled with more than one character, such as the RETURN key, are identified with
all uppercase letters. Keys that are to be pressed simultaneously or in succession are linked with a
hyphen. For example, "press CONTROL-A" means to press the CONTROL key then, without
releasing the CONTROL key, press the A key. Similarly, "press CONTROL-SHIFT-A " means to
press the CONTROL and SHIFT keys then, without releasing either of those, press the A key.

Table 1A summarizes the use of typefaces as used in examples and illustrations of HDF code and
data, such as in literal strings and on sample command lines.

TABLE 1A Meaning of Entry Format Notations

Type Appearance Example Entry method
Literal expression (com-
mands, literal strings, data)

Courier do this Enter the expression exactly as it
appears.

Variables Italic Courier filename Enter the name of the file or the specific
data that this expression represents.

Special keys Uppercase RETURN Press the key indicated.

Key combinations Uppercase, with hyphens
between key names

CONTROL-A While holding down the first one or two
keys, press the last key.

1-8 June 2017

The HDF Group

Program listings and screen listings are presented in Courier typeface, as in Figure 1b. When
the listing is intended as a sample that the reader will use for an exercise or model, variables that
the reader will change are printed in italic Courier.

FIGURE 1b Sample screen listing

mars_53% ls -F
MinMaxer/ net.source
mars_54% cd MinMaxer
mars_55% ls -F
list.MinMaxer minmaxer.v1.04/
mars_56% cd minmaxer.v1.04
mars_57% ls -F
COPYRIGHT minmaxer.bin/ source.minmaxer/
README sample/ source.triangulation/
mars_58%

June 28, 2017 2-9

CHAPTER 2 -- Basic Structure of HDF Files

2.1 Chapter Overview

This chapter introduces and describes the components and organization of Hierarchical Data For-
mat (HDF) files. The components of an HDF file include a file header and a variety of data
objects.

2.2 File Header

The first component of an HDF file is the file header (FH), which takes up the first four bytes in
an HDF file. The file header is a signature that indicates that the file is an HDF file. Specifically, it
is a 4-byte block with the hexadecimal value 0x0E 0x03 0x13 0x01.1

To maintain HDF file portability, the characters must be read and written in the exact order shown.

2.3 Data Objects

The basic building block of an HDF file is the data object, which contains both data and informa-
tion about the data. A data object has two parts: a 12-byte data descriptor (DD) and a data ele-
ment. Figure 2a illustrates two data objects.

FIGURE 2a Two Data Objects

As the names imply, the data descriptor provides information about the data; the data element is
the data itself. In other words, all data in an HDF file has information about itself attached to it. In
this sense, HDF files are self-describing files.

1. 0x0E 0x03 0x13 0x01 is the hexadecimal representation of the characters control-N,
control-C, control-S, and control-A, or ^N^C^S^A.

Rank and dimensions

Data 63.2, 54.5, 12.3, . . .

18.2, 103.6, -7.4, . . .

 : : :

12.1, 6.9, 83.6, . . .

2; 90 by 100

Data Descriptors Data Elements

Tag Reference
number

Offset Length

Tag/ref
(data identifier)

16 bits 16 bits 32 bits32 bits

2-10 June 28, 2017

The HDF Group

Data Descriptor (DD)

A data descriptor (DD) has four fields: a 16-bit tag, a 16-bit reference number, a 32-bit data offset,
and a 32-bit data length. These are depicted in Figure 2c and are briefly described in Table 2a.
Explanations of each part appear in the paragraphs following Table 2a.

FIGURE 2c A Data Descriptor (DD)

TABLE 2a Parts of a Data Descriptor

Tag/ref (Data Identifier)

A tag and its associated reference number, abbreviated as tag/ref, uniquely identify a data element
in an HDF file. The tag/ref combination is also known as a data identifier.

Tag

A tag is the part of a data descriptor that tells what kind of data is contained in the corresponding
data element. A tag is actually a 16-bit unsigned integer between 1 and 65535, but every tag is
also given a name that programs can refer to instead of the number. If a DD has no corresponding
data element, its tag is DFTAG_NULL, indicating that no data is present. A tag may never be zero.

Tags are assigned by The HDF Group as part of the specification of HDF. The following ranges
are to be used to guide tag assignment:

00001 – 32767 Reserved for HDF use

32768 – 64999 User-definable

65000 – 65535 Reserved for expansion of the format

Chapter , “Tag Specifications,” provides full specifications for all currently supported HDF tags.
Appendix A, “Tags and Extended Tag Labels,” lists the current tag assignments. See Section 3.4,
"Some HDF Conventions," for more information on allocating tags.

Reference Number

Part Description

Tag/ref Unique identifier for each data element

(data identifier) Tag Type of data in a data element

Reference num-
ber

Number distinguishing data element from others with the
same tag

Offset Byte offset of data element from beginning of file

Length Length of data element in bytes

Note: Only the full tag/ref uniquely identifies a data element.

Block
size

Next
block Tag Ref Offset Length

DD Block

DDH DD DD DD

Tag Ref Offset Length Tag Ref Offset Length

HDF Specification and Developer’s Guide

June 28, 2017 2-11

Tags are not necessarily unique in an HDF file; there may be more than one data element of a
given type. Therefore, the data descriptor includes a unique reference number.

Reference numbers are not necessarily assigned consecutively, so you cannot assume that the
actual value of a reference number has any meaning beyond providing a means of distinguishing
among elements with the same tag. Furthermore, reference numbers are only unique for data ele-
ments with the same tag; two 8-bit raster images will never have the same reference number but
an 8-bit raster image and a 24-bit raster image might.

Reference numbers are 16-bit unsigned integers.

Data Offset and Length

The data offset states the byte position of the corresponding data element from the beginning of
the file. The length states the number of bytes occupied by the data element.

Offset and length are both 32-bit signed integers. This results in a file-size limit of 2 gigabytes.

DD Blocks

Data descriptors are stored physically in a linked list of blocks called data descriptor blocks or
DD blocks. The individual components of a DD block are depicted in Figure 2d. All of the DDs in
a DD block are assumed to contain significant data unless they have the tag DFTAG_NULL (no
data).

In addition to its DDs, each data descriptor block has a data descriptor header (DDH). The DDH
has two fields: a block size field and a next block field. The block size field is a 16-bit unsigned
integer that indicates the number of DDs in the DD block. The next block field is a 32-bit
unsigned integer giving the offset of the next DD block, if there is one. The DDH of the last DD
block in the list contains a 0 in its next block field.

FIGURE 2d Model of a Data Descriptor Block

Since the default number of DDs in a DD block is defined when the HDF library is compiled,
changing the default requires recompilation. (The default value, as distributed in the source code
and pre-compiled binaries for Version 4.1r4, is 16.)

Data Element

A data element is the raw data portion of a data object. Its data type can be determined by exam-
ining its tag, but other interpretive information may be required before it can be processed prop-
erly.

Each data element is stored as a set of contiguous bytes starting at the offset and with the length
specified in the corresponding DD. (See Figure 2e, "Physical Representation of Data Objects," on
page 13.)1

Note: All offsets are from the beginning of the file; they are not relative.

2-12 June 28, 2017

The HDF Group

Exceptions and Special Cases

Note that there are a few exceptions and special cases to the above standards.

• The data object identified by the tag DFTAG_MT, for machine type, consists of the tag imme-
diately followed by four number types. Since there can be only one DFTAG_MT tag in an
HDF file and the data can be stored in the DD with the tag, there is no need for a data ele-
ment. Consequently, the reference number, offset, and length are unnecessary.

• Several tags, specifically DFTAG_NULL, DFTAG_JPEG, and DFTAG_GREYJPEG, serve as
binary flags and convey all the required information by the mere fact of their presence in an
HDF file. These tags therefore point to no data element and have offset and length values of
0. DFTAG_NULL indicates a data object containing no data. DFTAG_JPEG and
DFTAG_GREYJPEG indicate that an associated data object, indicated by a different tag but
the same reference number, contains JPEG data image. The descriptions of these tags
include a sink pointer () in the diagrams in Chapter .

• It is possible to create a tag/ref object then to end access to that object before writing any
data or specifying its size. In such cases, the offset and length in the DD block will be set to
the invalid offset or invalid length value of 0xFFFFFFFF.

See the related entries in Chapter , Tag Specifications, for complete descriptions of these tags.

2.4 Physical Organization of HDF Files

The file header, DD blocks, and data elements appear in the following order in an HDF file:

• File header

• First DD block

• Data elements

• More DD blocks, more data elements, etc., as necessary

These relationships are summarized in Table 2B.

The only rule governing the distribution of DD blocks and data elements within a file is that the
first DD block must follow immediately after the file header. After that, the pointers in the DD
headers connect the DD blocks in a linked list and the offsets in the individual DDs connect the
DDs to the data elements.

TABLE 2B Summary of the Relationships among Parts of an HDF File

FH = file header, DD = data descriptor, DDH = DD header

1. Some HDF software provides the capability of storing objects as a series of linked blocks or
external elements, but this occurs at a higher level. At the lowest level, each object with a tag/ref
is stored contiguously.

Part Constituents

HDF file FH, DD block, data, DD block, data, DD block, data...

FH 0x0e031301 [32-bit HDF magic number]

DD block DDH, DD, DD, DD, ...

DDH Number of DDs [16 bits], offset to next DD block [32 bits]

DD Tag [16 bits], ref [16 bits], offset [32 bits], length [32 bits]

Data Data element, data element, data element ...

HDF Specification and Developer’s Guide

June 28, 2017 2-13

2.5 Sample HDF File

We are now ready to examine a sample file. Consider an HDF file that contains two 400-by-600 8-
bit raster images as described in Table 2C.

TABLE 2C Sample Data Objects in an HDF File

Assuming that a DD block contains 10 DDs, the physical organization of the file could be
described by Figure 2e.

In this instance, the file contains two raster images. The images have the same dimensions and are
to be used with the same palette, so the same data objects for the palette (DFTAG_IP8) and dimen-
sion record (DFTAG_ID8) can be used with both images.

FIGURE 2e Physical Representation of Data Objects

Tag Ref Data

DFTAG_FID 1 File identifier: user-assigned title for file

DFTAG_FD 1 File descriptor: user-assigned block of text describing overall file contents

DFTAG_LUT 1 Image palette (768 bytes)

DFTAG_ID 1 x- and y-dimensions of the 2-dimensional arrays that contain the raster images (4 bytes)

DFTAG_RI 1 First 2-dimensional array of raster image pixel data (x*y bytes)

DFTAG_RI 2 Second 2-dimensional array of pixel data (also x*y bytes)

Section Item Offset Contents

Header FH 0 0e031301 (HDF magic number, in hexadecimal)

DD block DDH 4 10 0

DD 10 DFTAG_FID 1 130 4

DD 22 DFTAG_FD 1 134 41

DD 34 DFTAG_LUT 1 175 768

DD 46 DFTAG_ID 1 943 4

DD 58 DFTAG_RI 1 947 240000

DD 70 DFTAG_RI 2 240947 240000

DD 82 DFTAG_NULL (Empty)

DD 94 DFTAG_NULL (Empty)

DD 106 DFTAG_NULL (Empty)

DD 118 DFTAG_NULL (Empty)

Data Data 130 sw3

Data 134 solar wind simulation: third try. 8/8/88

Data 175 (Data for the image palette)

Data 943 400 600 (Image dimensions)

Data 947 (Data for the first raster image)

Data 240947 (Data for the second raster image)

2-14 June 28, 2017

The HDF Group

June 2017 3-15

CHAPTER 3 -- Software Overview

3.1 Chapter Overview

This chapter describes the HDF software organization and provides guidelines for writing HDF
software.

HDF is an amalgam of code and functionality from many sources. For example, the netCDF code
came from the Unidata Program Center, and data compression and conversion software has been
acquired from a variety of third parties. The HDF development team wrote the code for the basic
HDF functionality and perfomed all of the integration work.

This document contains specifications for the HDF code and functionality. It does not include
specifications for code or functionality from non-NCSA sources, though it does sometimes refer
to specifications provided by other sources. Only the HDF interface to such code is specified in
this document.

3.2 HDF Software Layers

There are three basic levels of HDF software:

• HDF low-level interface

• HDF application interfaces

• HDF applications and utilities

The lowest layer, the low-level interface, includes general purpose routines that form the basis of
all higher-level HDF development. The low-level interface directly executes operations such as
file I/O, error handling, memory management, and physical storage.

The application interfaces support higher level views of data and provide the interfaces for build-
ing user-level applications. Routines that handle raster images, palettes, annotations, scientific
data sets, vdatas, vgroups, and netCDF appear at this level.

The applications and utilities are implemented at the highest level.

The utilities perform general functions, such as listing the contents of an HDF file, and more spe-
cialized functions, such as converting data from one HDF data type to another (e.g., raster images
to scientific data sets). In general, the utilities have simple command line interfaces and perform
data management tasks.

The applications usually perform data analysis tasks and have polished interactive user interfaces.
They include the NCSA Visualization Tool Suite, commercial software packages that use HDF,
and other packages created by various third party projects.

HDF Utilities NCSA Applications 3rd Party Applications

HDF Application Interfaces

HDF Low Level Interfaces

HDF File

3-16 June 2017

The HDF Group

Figure 3a illustrates this layered implementation.

FIGURE 3a HDF Software Layers 1

The low-level interface is described in detail in this document. The application interfaces and
command line utilities are described in the document NCSA HDF Calling Interfaces and Utilities
for Versions 3.2 and earlier and in the HDF User’s Guide and HDF Reference Manual for Ver-
sions 3.3 and 4.x. Other HDF-based software tools should have their own manuals.

Since the original HDF user community wrote programs primarily in C and FORTRAN, all HDF
application interfaces are callable from both C and FORTRAN programs. The functions of the
low-level interface, however, are provided only as C-callable routines.

3.3 Software Organization

3.3.1 Versions and Release Numbers

Since HDF is under continual development, new releases are periodically made available.
Releases are identified with a version number consisting of three elements:

< majorv > Major version number, integer

< minorv > Minor version number, integer

< rn > Release number, integer

The version number is presented in the following format:

< majorv >.< minorv >r< rn > (e.g., Version 3.2r1)

These elements are interpreted as follows:

Major version number

A new major version number is assigned when there is some fundamental difference
between a new version of the library and the previous version. When a new major ver-
sion is released, HDF users and developers are strongly encouraged to obtain the new
source code and documentation. There will probably be added functionality in succes-

1. This is a simplified illustration of the HDF software layers. Though the basic principles illus-
trated here continue to apply, the introduction of netCDF and multiple-file HDF data structures
renders the implementation considerably more complex.

HDF Specification and Developer’s Guide

June 2017 3-17

sive major versions of the library and some obsolete code may be deleted. Some user
code may have to be modified to use the new library.

Minor version number

A new minor version number indicates an intermediate release between one major ver-
sion and the next. Changes will probably be significant. When a new minor version is
released, users and developers are strongly encouraged to obtain the new source code
and documentation. There may be minor interface changes.

Release number

A new release number is assigned when bug fixes or other small modifications have
been made. Using a new release of the same version of the library will not usually
require modifying existing user code.

3.3.2 ANSI C and Portability

To ensure that HDF can be easily ported to new platforms, all versions of the HDF source code
from Version 3.2 on are written in ANSI standard C, with special provisions for non-ANSI com-
pilers. For more information about porting HDF and writing portable HDF-based code, refer to
Chapter 11, Portability Issues.

3.3.3 Modules and Interfaces

The HDF distribution contains many source files or modules that can be grouped into families.
For example, dfp.c, dfpf.c, and dfpff.f all share the root name dfp and, therefore, all
belong to the dfp family. In general, each family of source modules represents one HDF applica-
tions interface; the dfp family represents the HDF Palette Interface (DFP).

For each interface, there is necessarily one file that contains the C code that provides the basic
functionality of that interface. Some interfaces may have one or two additional code modules that
provide FORTRAN callability for the interface, so a family may have one, two, or three files:

1 file Modules of this sort are generally not calling interfaces themselves; they provide
useful support functions for actual calling interfaces. Since they are not meant to
be called by any routine outside the HDF library, they do not need to be FOR-
TRAN-callable. Example: hblocks.c is called only by internal HDF routines
and has only the C-callable interface.

2 files Some interfaces need only one extra source module to provide FORTRAN com-
patibility. In such cases, there are only two source modules for the interface.
Example: mfan.c and mfanf.c make up the Multifile Annotation Interface.

3 files Most current implementations of FORTRAN-callable HDF interfaces require
that character string arguments be passed to some of their functions. Due to dif-
ferences in the way C and FORTRAN represent strings, passing strings requires
that there be a small amount of special purpose FORTRAN code written for each
function that takes a string argument.

Therefore, most FORTRAN-callable HDF interfaces consist of three source
modules:

•The primary C module

•A FORTRAN-callable C module

•A FORTRAN module

3-18 June 2017

The HDF Group

Example: dfsd.c, dfsdf.c, and dfsdff.f make up the Single-file Scien-
tific Data Interface. dfsd.c contains the basic functionality of the interface.
dfsdf.c provides the major part of FORTRAN callability. And dfsdff.f
contains the special purpose FORTRAN code that enables passing character
string arguments.

Table 3a, "HDF Version 4.x Source Code Modules," on page 20 lists the families of source code
modules and header files of HDF Version 4.x. The first column of the table lists the name of the
interface or the category of the modules, depending on their functionality. The modules are cate-
gorized as follows:

• Low-level interface, or H-level interface, includes modules that facilitate portability and
provide physical storage management, error handling mechanisms, support for simultaneous
access to multiple objects within a single file, support for simultaneous access to multiple
files, and an interface for key lower-level modules. Low-level routines begin with an H
(e.g., Hopen/Hclose or Hread/Hwrite).

• Multifile Scientific Data interface (SD API) includes modules that provide the mechanisms
for managing scientific data sets in a multifile environment. These modules reside in the
directory mfhdf/, which is separate from that of the other interfaces. Library routines in this
interface begin with SD. This interface replaces the Single-file Scientific Data interface
(DFSD API). (A subtantial number of local or internal routine names in this code are influ-
enced by netCDF.)

• Vdata interface (VS API) includes modules that provide mechanisms for managing Vdatas.
Library routines in this interface begin with VS.

• Vgroup interface (V API) includes modules that provide mechanisms for managing
Vgroups. Library routines in this interface begin with a V. Note that in the Content Descrip-
tion column, the V and VS routines share some modules and header files.

• Multifile Annotation interface (AN API) includes modules that provide mechanisms for
managing annotations in a multifile environment. Library routines in this interface begin
with AN. This interface replaces the Single-file Annotation interface (DFAN API).

• General Raster Image interface (GR API) includes modules that provide mechanisms for
managing general raster images in a multifile environment. Library routines in this interface
begin with GR. This interface replaces the 8-bit Raster Image interface (DFR8 API) and the
24-bit Raster Image interface (DFR24 API), which operate in the single-file environment.

• Palette interface (DFP API) includes modules that provide mechanisms for managing the
palettes that are used by the raster image interfaces. Library routines in this interface begin
with DFP.

• Compression/Decompression includes modules that provide mechanisms for managing file
and image compresion and decompression.

• Conversion includes modules that provide mechanisms to support conversion to and from
the HDF format.

• Single-file Scientific Data interface (DFSD API) includes modules that provide mecha-
nisms for managing scientific data sets in a single-file environment. Library routines in this
interface begin with DFSD. This interface is replaced by the Multifile SD interface (SD API).

• Single-file General Raster Image interface (DFGR API) includes modules that provide
mechanisms for managing general raster images in the single-file environment. This inter-
face is an older version of the GR interface.

• 8-bit Raster Image interface (DFR8 API) includes modules that provide mechanisms for
managing 8-bit raster images. This interface is replaced by the Multifile GR interface.

HDF Specification and Developer’s Guide

June 2017 3-19

• 24-bit Raster Image interface (DFR24 API) includes modules that provide mechanisms for
managing 24-bit raster images. This interface is replaced by the Multifile GR interface.

• Single-file Annotation interface (DFAN API) includes modules that provide mechanisms
for managing annotations in the single-file environment. This interface is replaced by the
Multifile AN interface.

• Developer-level interface includes modules that are at a lower level than the H-level mod-
ules, which heavily use the developer-level routines. These modules simplify the task of
writing HDF applications by providing low-level routines for internal I/O handling,
dynamic storage handling, memory management, and data descriptor handling.

• Mac Only interface includes modules that implement UNIX-like directory reading for the
Macintosh.

The second column of Table 3a divides the modules in the interface into three groups: header
files, C modules, and FORTRAN interface and support. The header files are discussed in the next
section. The C modules group contains the primary C modules. The FORTRAN interface and sup-
port group contains either or both the FORTRAN-callable C module and the FORTRAN module
of the interface.

3.3.4 Header Files

In addition to the source code modules discussed above, some interfaces also have C header files
associated with them that are meant to be included by C applications programmers with the
#include preprocessor directive. They contain useful constants and data structures for interaction
with the interface from C programs. The header files can be identified by the same name as the
root name for the rest of the family with the .h extension. For example, dfsd.h is the header file
for the Single-file Scientific Data Interface.

Of particular importance among the C header files are mfhdf.h, hdf.h and hdfi.h:

mfhdf.h Contains symbolic constants and public data structures for HDF’s SD interface.
mfhdf.h must be included by any program that uses the SD API of the HDF
library.

hdf.h Contains all the symbolic constants and public data structures required by HDF.
hdf.h must be included by any program that uses the HDF library. (Note that this
file is automatically included by the inclusion of mfhdf.h and need not be
included separately.)

hdfi.h Contains specific portability information about each platform on which HDF is
supported. hdfi.h is automatically included in a program when hdf.h is
included, so programmers need not explicitly include it.

Refer to Chapter 11, Portability Issues, for more information on hdfi.h and other portability
issues. Refer to Table 3a for the listing of the header files provided in the current version of the
HDF library.

3-20 June 2017

The HDF Group

TABLE 3a HDF Version 4.x Source Code Modules

Category Module type Module name Content Description

H-level

Header files
hchunks.h
hdf.h
hdfi.h
herr.h
hfile.h
hkit.h
hlimits.h

hntdefs.h
hproto.h
htags.h
patchlevel.h

Definitions for chunked elements
HDF user-level definitions, for applications using HDF routines
Definitions for portability
Definitions for HDF error handling/reporting routines
Definitions for HDF low-level file I/O routines
Definitions for string mapping routines
Defined limits for the library, reserved Vdata/Vgroup names and
classes, and pre-attribute names. Definitions for most of the con-
stants in the library.
Number-type definitions for HDF
Useful macros, potential for future functions
HDF tag definitions
Definition of PATCHLEVEL

C modules hblocks.c
hchunks.c
herr.c
hextelt.c
hfile.c
hkit.c

Routines to implement linked-block elements
Routines to implement chunked elements
Routines for error handling/reporting
Routines for external elements
Low-level file I/O routines
Various string mapping routines

FORTRAN inter-
face and support

herrf.c C stubs for FORTRAN error handling/reporting routines

Multifile
Scientific Data

(SD API)

Header files alloc.h
error.h
hdf2netcdf.h
local_nc.h
mfhdf.h
mfhdfi.h
win32cdf.h

Definitions for memory management
Prototypes for error handling routines
HDF names of netCDF API functions
Definitions of structures for CDF and its components
Definitions for applications using SD routines
Definitions that are used in both local_nc.h and mfhdf.h
Definitions used for the Windows version of the library

C modules array.c
attr.c
cdf.c
dim.c
error.c

file.c

globdef.c

hdfsds.c
iarray.c
mfsd.c
nssdc.c
putget.c

putgetg.c
sharray.c
string.c
var.c
xdrposix.c
xdrstdio.c

Routines that operate the structure NC_array
Routines that operate the structure NC_attr
Routines that operate the CDF structure NC its components
Routines that operate NC_dim and locally related routines
Utility routines to implement consistent error logging mecha-
nisms for netCDF
Low-level "nc" routines and other routines that operate the struc-
tures NC and XDR
Initialization of global variables that allow the creation of
SunOS sharable libraries
Routines that read old SDS objects out of HDF files
Routines that operate NC_iarray
SD and SDI library routines that are local to this module
Routines that read CDF V2.x files created with the CDF library
Routines that read/write SD objects at the Vgroup and Vdata
level
Routines that perform I/O on a generalized hyperslab
Internal routines for short integers
Routines that operate NC_string
Routines that operate NC_var and locally related routines
Routines that implement XDR on a POSIX file descriptor
Routines that implement XDR on a stdio stream

FORTRAN inter-
face and support

mfsdf.c
mfsdff.f

C stubs for SD library routines
FORTRAN stubs for SD library routines

HDF Specification and Developer’s Guide

June 2017 3-21

Vdata (VS API)

Header files vattr.h definitions for vgroup/vdata attribute interface

C modules vattr.c
vg.c
vhi.c
vio.c
vrw.c
vsfld.c

V and VS library routines that handle Vgroup/Vdata attributes
Mostly Vdata library routines, but also some Vgroups routines
VH library routines for vdata high-level access
VS library routines that handle vdatas and locally used routines
VS library routines that read and write vdatas
VF and VS library routines that handle vdata fields

FORTRAN inter-
face and support

vattrf.c
vattrff.f
vgf.c
vgff.f

C stubs for handling vgroup/vdata attributes
FORTRAN stubs for handling vgroup/vdata attributes
C stubs for vgroups and vdatas library routines
FORTRAN stubs for vgroups and vdatas library routines

Vgroup (V API)

Header files dfgroup.h
vg.h
vgint.h

Definitions for dfgroup.c
Defined symbols and structures used in all v*.c files
Private defined symbols and structures used in all v*.c files

C modules vconv.c

vgp.c
vparse.c

Routines that handle Vgroup/Vdata compatibility and conver-
sion
V library routines that handle Vgroups and locally used routines
Routines for parsing

FORTRAN inter-
face and support

listed in Vdata API

Multifile
Annotation
(AN API)

Header files mfan.h Definitions for multifile annotations

C modules mfan.c AN library routines that read and write multifile annotations

FORTRAN inter-
face and support

mfanf.c C stubs for handling multifile annotations

Multifile
General Raster

Image (GR API)

Header files mfgr.h Definitions for multifile general raster images

C modules mfgr.c GR library routines that access multifile general raster images

FORTRAN inter-
face and support

mfgrf.c
mfgrff.f

C stubs for accessing multifile general raster images
FORTRAN stubs for accessing multifile general raster images

Palette
(DFP API)

Header files This interface uses only the header file hdf.h

C modules dfp.c DFP routines that read and write palettes

FORTRAN inter-
face and support

dfpf.c
dfpff.f

C stubs for palette routines
FORTRAN stubs for palette routines

Compression/
Decompression

Header files cnbit.h
crle.h
hcomp.h
hcompi.h

Definitions for N-bit encoding
Definitions for run-length encoding
Definitions for compression information and structures
Internal library header file for compression information

C modules crle.c
dfcomp.c
dfjpeg.c
dfrle.c
dfunjpeg.c
hcomp.c
hcompri.c

Internal I/O routines for HDF run-length encoding
Routines that perform file compression
Routines that perform JPEG image compression
Routines that perform RLE image compression
Routines that perform JPEG image decompression
I/O routines for compressed data
Routines for reading and writing old-style compressed raster
images, such as JPEG, (raster specific) RLE, and IMCOMP

FORTRAN inter-
face and support

none

Category Module type Module name Content Description

3-22 June 2017

The HDF Group

Conversion

Header files dfconvrt.h
dfufp2i.h
hconv.h

The macro DFconvert to speed up the conversion process
Definitions for dfufp2i.c
Definitions for data conversion

C modules dfconv.c
dfkconv.c

dfkcray.c
dfkfuji.c

dfknat.c

dfkswap.c
dfkvms.c
dfufp2i.c

Routines that support conversion to and from HDF format
Routines to support Convex-native conversion to/from HDF for-
mat
Routines to support Cray conversion to/from HDF format
Routines to support Fujitsu-native (VP) conversion to/from HDF
format
Routines to support native-mode conversion to/from HDF for-
mat
Routines to support little-endian conversion to/from HDF format
Routines to support Vax-native conversion to/from HDF format
Utility functions to convert floating point data to 8-bit raster
image set (RIS8) format

FORTRAN inter-
face and support

none

Single-file
Scientific Data

(DFSD API)

Header files dfsd.h Definitions for single-file scientific data

C modules dfsd.c DFSD routines that read and write Scientific Data Sets

FORTRAN inter-
face and support

dfsdf.c
dfsdff.f

C stubs for single-file scientific data routines
FORTRAN stubs for single-file Scientific Data routines

Single-file
General Rasters

(DFGR API)

Header files dfgr.h Definitions for single-file general and 24-bit raster images

C modules dfgr.c
dfimcomp.c

DFGR routines that read and write general raster images (old)
Routines that perform color image compression

FORTRAN inter-
face and support

none

8-bit Raster
Images

(DFR8 API)

Header files dfrig.h Definitions for 8-bit raster image groups

C modules dfr8.c DFR8 routines that read and write 8-bit raster image groups

FORTRAN inter-
face and support

dfr8f.c
dfr8ff.f

C stubs for 8-bit raster image group routines
FORTRAN stubs for 8-bit raster image group routines

24-bit Raster
Images

(DFR24 API)

Header files This interface uses dfgr.h in the single-file General Raster inter-
face

C modules df24.c Routines that read and write 24-bit raster images

FORTRAN inter-
face and support

df24f.c
df24ff.f

C stubs for 24-bit raster image routines
FORTRAN stubs for 24-bit raster image routines

Single-file
Annotations
(DFAN API)

Header files dfan.h Definitions for single-file annotations

C modules dfan.c Routines that read and write single-file annotations

FORTRAN inter-
face and support

dfanf.c
dfanff.f

C stubs for annotation routines
FORTRAN stubs for annotation routines

Category Module type Module name Content Description

HDF Specification and Developer’s Guide

June 2017 3-23

Developer-level

Header files atom.h
bitvect.h
cdeflate.h
cnbit.h
cnone.h
cskphuff.h
cszip.h
df.h
dfi.h
dfivms.h
dfstubs.h

dfutil.h
dgroup.h
dynarray.h
glist.h
hbitio.h

hqueue.h

linklist.h
maldebug.h
mcache.h

mstdio.h
tbbt.h

Definitions for atom code
Definitions for bit vector code
Definitions for deflate encoding
Definitions for N-bit encoding
Definitions for none-encoding
Definitions for Skipping Huffman encoding
Definitions for szip encoding
Definitions for data descriptors
HDF internal header file
HDF internal header file for VMS
Definitions for dfstubs.c HDF 3.1 emulation using new routines
from hfile.c
Definitions for low-level utility routines
Definitions for low-level implementation of groups
Definitions for dynamic storage handling
Definitions for general list
Data structures and macros for bitfile access to HDF data
objects; mainly used for compression I/O and N-bit data objects
Modified version of Berkley code for manipulating memory
pool
Definition for generic linked lists
Definitions for dynamic memory handling
Modified version of Berkley code for manipulating memory
pool
Definitions for stdio-like routines
Definitions for using threaded, balanced, binary trees

C modules atom.c
bitvect.c
cdeflate.c
cnbit.c
cnone.c
cskphuff.c
cszip.c
dfstubs.c
dfgroup.c
dfutil.c
dynarray.c
glist.c
hbitio.c
hbuffer.c
hdfalloc.c
hfiledd.c
linklist.c
maldebug.c
mcache.c

mstdio.c
tbbt.c

Internal storage routines for handling atoms
Routines that operate ordered sets of bits, or bit vectors
Internal I/O routines for HDF gzip deflate encoding
Internal I/O routines for HDF N-bit encoding
Internal I/O routines for HDF noencoding
Internal I/O routines for HDF Skipping Huffman encoding
Internal I/O routines for HDF szip encoding
V3.x stubs for V4.0 H-level I/O routines
Low-level routines (DF*) for implementing groups
General-purpose utility routines
Internal routines that handle dynamic storage
Implementation of general list
HDF bit level I/O routines
Routines that manage buffered elements
HDF routines for memory management
Routines that manage DDs and DD blocks
Internal storage routines for handling generic linked lists
Utility routines for memory management
Modified version of Berkley code for manipulating memory
pool
HDF stdio-like routines
Routines for using threaded, balanced, binary trees

FORTRAN inter-
face and support

dff.c
dfff.f
dfutilf.c
dfutilff.f
hfilef.c
hfileff.f

C stubs for low-level I/O routines
FORTRAN stubs for low-level I/O routines
C stubs for general-purpose utility routines
FORTRAN stubs for general-purpose utility routines
C stubs for low-level routines
FORTRAN stubs for low-level routines

Mac only

Header files dir_mac.h
sys_dir_mac.h

Definitions for dir_mac.c
Additional definitions to be included in dir_mac.h

C modules dir_mac.c
Implementation of UNIX-like directory reading for the Macin-
tosh

Category Module type Module name Content Description

3-24 June 2017

The HDF Group

3.3.5 The HDF Test Suite

In addition to the source code for the HDF library, Versions 3.2 and higher include a test suite.
There are two test modules: one for C and one for FORTRAN. Each module tests all of the rou-
tines in all of the application interfaces and in the low-level interface. The exact form of these test
modules may vary from one release to the next; consult the release code and online test documen-
tation for details.

Every effort has been made to ensure that the test programs provide a thorough and accurate
assessment of the health of the HDF library. Although the test suite will greatly improve the reli-
ability of HDF code, it is almost inevitable that some parts of the code will remain untested.
Therefore, no guarantees can be made on the basis of test suite performance.

3.3.6 Sample HDF Programs

Sample programs, illustrating some of the common techniques employed by HDF programmers,
are available on the HDF web site at https://support.hdfgroup.org/services/learn-
ing.html.

To help users become familiar with HDF, each release includes several sample programs illustrat-
ing common techniques employed by HDF programmers.

3.4 Some HDF Conventions

The HDF specification described in the previous chapter is not sufficient to guarantee its success.
It is also important that HDF programmers and users adhere to certain conventions. Some guide-
lines are implicit in the discussions in other sections of this document. Others are presented in the
document NCSA HDF Calling Interfaces and Utilities for Versions 3.2 and earlier, or in the HDF
User’s Guide and the HDF Reference Manual for Versions 3.3 and 4.x.

Guidelines not covered elsewhere are introduced in this section.

Naming and Assigning Tags

Tags that are to be made available to a general population of HDF users should be assigned and
controlled by The HDF Group (THG). Tags of this type are given numbers in the range 1 to
32,767. If you have an application that fits this criterion, contact THG at the address listed in the
front matter at the beginning of this manual and specify the tags you would like. For each tag,
your specifications should include a suggested name, information about the type and structure of
the data that the tag will refer to, and information about how the tag will be used. Your specifica-
tions should be similar to those contained in Chapter , Tag Specifications. THG will assign a set of
tags for your application and will include your tag descriptions in the HDF documentation.

Tags in the range 32,768 to 64,999 are user-definable. That is, you can assign them for any private
application. If you use tags in this range, be aware that they may conflict with other people's pri-
vate tags.

Using Reference Numbers to Organize Data Objects

The HDF library itself uses reference numbers solely to distinguish among objects with the same
tag. While application programmers may find it convenient to impart some meaning to reference
numbers, they should be forewarned that the HDF library will be ignorant of any such meaning.

HDF Specification and Developer’s Guide

June 2017 3-25

Multiple References

Multiple references to a single data element are quite common in HDF. The low-level routine
Hdupdd generates a new reference to data that is already pointed to by another DD. If Hdupdd is
used several times, there may be several DDs that point to the same data element.

It is important to note that when a multiply-referenced data element is deleted or moved, the vari-
ous DDs that previously pointed to the data element are not automatically deleted or adjusted to
point to the data element in its new location. Consequently, each DD to be deleted or moved
should be checked for multiple references and handled appropriately.

Note: Users are discouraged from assigning any meaning to reference numbers beyond that
imparted by the HDF library.

3-26 June 2017

The HDF Group

June 2017 4-27

CHAPTER 4 -- Low-level Interface

4.1 Chapter Overview

This chapter provides a detailed description of the routines that make up the HDF low-level inter-
face, sometimes referred to as the H-level interface.

4.2 Introduction

HDF Utilities NCSA Applications 3rd Party Applications

HDF Application Interfaces

HDF Low Level Interfaces

HDF File

HDF supports several interfaces which can be categorized as high-level and low-level interfaces:

• High-level interfaces support utilities and applications.

• Low-level interface functions perform basic operations on HDF files.

These levels are illustrated in Figure 4b.

FIGURE 4b HDF Software Layers

This chapter is concerned only with the low-level interface.

Using these routines of the low-level interface, you will be able to build and manipulate HDF
objects of any type, including those of your own design. All HDF applications use them as basic
building blocks.

The low-level routines are all written in C.

4-28 June 2017

The HDF Group

4.3 New Low-level Routines with Version 3.2 and Higher

The low-level routines described in this chapter are new with HDF Version 3.2 and higher; they
replace the routines provided with earlier versions. The new routines provide better performance
and increased functionality and users are strongly advised to use them in new applications. The
old routines are supported through emulation, but may be eliminated from the HDF library in a
future release.

The new lower layer incorporates the following improvements:

• More consistent data and function types

• More meaningful and extensive error reporting

• Simplification of key lower-level functions

• Simplified techniques to facilitate portability

• Support for alternate forms of physical storage, such as linked blocks storage and storage of
the data portion of an object in an external file

• A version tag to indicate which version of the HDF library last changed a file

• Support for simultaneous access to multiple files

• Support for simultaneous access to multiple objects within a single file

The previous lower layer was called the DF layer because all routines began with the letters DF
(e.g., DFopen and DFclose). The new lower layer is called the H layer because all routines
begin with the letter H (e.g., Hopen, Hclose, and Hwrite). The source modules containing
these routines begin with the letter h (see Table 3a, "HDF Version 4.x Source Code Modules"):

hfile.c Basic I/0 routines

herr.c Error-handling routines

hkit.c General purpose routines

hblocks.c Routines to support linked block storage

hextelt.c Routines to support external storage of HDF data elements

hchunks.c Routines to support chunked elements

HDF Specification and Developer’s Guide

June 2017 4-29

4.4 Overview of the Low-level Interface

This section provides the name and purpose of each public function and selected private routines
of the low-level interface. The private routines are intended only for internal use by the library.
Detailed specifications for many of these routines are provided in Appendix , Function Specifica-
tions; detailed specifications for all of these routines are provided as comments in the distributed
source code.

Summary of Prefixes

The low-level functions are named with the following prefixes.

TABLE 4B Low-level routine prefixes

Opening and Closing HDF Files

These functions are used to open and close HDF files:

Hopen Provides an access path to an HDF file and reads all of the DD blocks in the
file into memory

Hclose Closes the access path to a file

HDerr Closes a file and returns FAIL

HsetaccesstypeSets the I/O access type (serial, parallel, ...)

Locating Elements for Access and Getting Information

These routines locate elements or acquire other information about an HDF file or its data objects.
Except for Hendaccess, they initialize the element that they locate and return an access ID that
is used in later references to the data element. Calls can include wildcards so that one can search
for unknown tags and reference numbers (tag/refs).

H General and file-handling operations

HC Compression special element operations

HD DD block operations

HL Linked block special element operations

HM
C

Chunking special element operations

HR Raster image special element operations

HT Tag/ref operations

HX External file special element operations

*P
Routine private to the library. No guarantee of stable external interface; may change
without notice.

*I
Static routine private to the library. No guarantee of stable external interface; may
change without notice.

4-30 June 2017

The HDF Group

Hstartread Locates an existing data element with matching tag/ref and returns an access
ID for reading it

Hnextread Continues the search with the same access ID

Hendaccess Disposes of access ID for a tag/ref pair

Hinquire Returns access information about a data element

Hishdf Determines whether a file is an HDF file

Hnumber Returns the number of occurrences of a specified tag/ref pair in a file

Hexist Determines whether an object exists in an HDF file

Hmpset Sets pagesize and maximum number of pages to cache on the next open/cre-
ate operation

Hmpget Gets last pagesize and max number of pages cached for open/create

HgetlibversionReturns version information for the current HDF library

HgetfileversionReturns version information for an HDF file

HPgetdiskblockGets the offset of a free block in the file

HPfreediskblockReleases a block in a file to be re-used

Reading and Writing Entire Data Elements

There are two sets of routines for reading and writing data elements. The routines described here
are used to store and retrieve entire data elements.

Hputelement Adds or replaces elements in a file

Hgetelement Reads data elements in a file

A second set of routines, described in the next section, may be used if you wish to access only part
of a data element.

Reading and Writing Part of a Data Element

The second set of routines for reading and writing data elements makes it possible to read or write
all or part of a data element. One of the access routines Hstartread or Hstartwrite must be
called before these Hwrite, Hread, or Hseek:

Hstartwrite Sets up writing to the object with the supplied tag/ref. If the object exists, it
will be modified; otherwise it will be created.

Hwrite Writes data to a data element where the last Hwrite or Hseek stopped. If the
space reserved is less than the length to write, then only as data as can fit in
the allocated space is written.

Hread Reads a portion of a data element. It starts at the last position left by an
Hread or Hseek call and reads any data that remains in the element up to
a specified number of bytes.

Hseek Sets the access pointer to an offset within a data element. The next time
Hread or Hwrite is called, the access occurs from this new position. The

HDF Specification and Developer’s Guide

June 2017 4-31

location to seek can be specified as an offset from the current location, from
the start of the element, or from the end of the element.

Htrunc Truncates a data set to a specified length.

Manipulating Data Descriptors (DDs)

The routines listed here perform operations on DDs without modifying the data to which the DDs
refer. The first list indicates public routines that are available to users and applications; the second
list indicates private routines that are used internally by the library.

Public user routines

Hdupdd Generates new references to a data element that is already referenced from
somewhere else

Hdeldd Deletes a tag/ref pair from the list of DDs

HDcheck_tagrefChecks to see whether a tag/ref pair is in the DD list

HDreuse_tagrefReuses a data descriptor of a tag/ref pair in a DD list of an HDF file

Hnewref Returns a reference number that is unique in the file

Htagnewref Returns a reference number that is unique in the file for a given tag

Hfind Locates the next object of a search in an HDF file

Private library routines (internal)

HTPcreate Creates (and attaches to) a tag/ref pair and inserts it into the DD list

HTPselect Attaches to an existing DD in the DD list

HTPendaccess Ends access to an attached DD in the DD list

HTPdelete Marks a tag/ref pair as free and ends access to it

HTPupdate Changes the offset and/or length of a data object

HTPinquire Gets the DD information for a DD (i.e. tag/ref/offset/length)

HTPis_special Checks whether a DD identifier is associated with a special tag

HTPstart Initializes the DD list from disk, i.e., creates the DD list in memory

HTPinit Creates a new DD list in memory

HTPsync Flushes the DD list to disk

HTPend Closes the DD list to disk

Creating Special Data Elements

Prior to release 3.2, any data element had to be stored contiguously and all of the objects in an
HDF file had to be in the same physical file. The contiguous requirement caused many problems,
especially with regard to appending to existing objects. If you wanted to append data to an object,
the entire data element had to be deleted and rewritten to the end of the file. Later HDF versions
introduced alternate methods of storing HDF objects: linked blocks and external elements at the

4-32 June 2017

The HDF Group

release of HDF Version 3.2 and chunking at HDF Version 4.1. These special elements, plus com-
pression, are discussed in detail in Chapter 10, Extended Tags and Special Elements.

Linked blocks improve storage management by allowing elements in a single HDF file to be non-
contiguous. The routines listed here operate on linked blocks The first list indicates the public rou-
tines that are available to users and applications; the second list indicates the private routines that
are used internally by the library.

Public user routines

HLcreate Creates a new linked-block special data element

HLconvert Converts an AID into a linked-block element

HDinqblockinfoReturns information about linked blocks

Private library routines (internal)

HLPread Reads some data out of a linked-block element

HLPwrite Writes out some data to a linked-block element

HLPinquire Returns information about a linked-block element

HLPendacess Closes a linked-block AID

HLPinfo Returns information about a linked-block element

HLPstread Opens an access record for reading

HLPstwrite Opens an access record for writing

HLPseek Sets position for the next access

External elements allow a single HDF object to be stored in an external file. The following rou-
tines operate on external elements:

HXcreate Creates a new external file special data element

HXsetcreatedir Sets the directory variable for creating external file

HXsetdir Sets the directory variable for locating external file

It is not currently possible to store a single object (such as a very large data set) in multiple files.
Nor can multiple objects be stored in one external file.

Once they are created with the routines HLcreate and HXcreate, these special data elements can
be accessed with the routines used for normal data elements. These routines have two modes of
operation. Calling HLcreate with a tag/ref that does not exist in a file will create a new element
with the given tag/ref pair which will be stored as linked blocks. On the other hand, if the tag/ref
pair already exists in the file, the referenced object will be promoted to linked block status. All
data which had been stored in the object before the promotion will be retained. HXcreate
behaves similarly.

Chunking allows elements in large arrays to be stored as chunks in such a way that I/O perfor-
mance can be significantly improved. The routines listed here perform operations on chunking
elements. The first list indicates the public routines that are available to users and applications; the
second list indicates the private routines that are used internally by the library.

Public user routines

HDF Specification and Developer’s Guide

June 2017 4-33

HMCcreate Creates a chunked element.

HMCwriteChunkWrites out the specified chunk to a chunked element.

HMCreadChunk Reads the specified chunk from a chunked element.

HMCsetMaxcacheSets the maximum number of chunks to cache.

HMCPcloseAID Closes the file but keeps AID active (for Hnextread()).

Private library routines (internal)

HMCPstread Opens an access record for reading.

HMCPstwrite Opens an access record for writing.

HMCPseek Sets the seek position.

HMCPchunkreadReads a single chunk from a chunked element.

HMCPread Reads a more arbitrarily sized piece of data from a chunked element.

HMCPchunkwriteWrites out a single chunk of data to a chunked element.

HMCPwrite Writes out a more arbitrarily sized piece of data to a chunked element.

HMCPinquire Implements Hinquire for a chunked element.

HMCPendacess Closes a chunked element AID

HMCPinfo Returns information about a chunked element.

Compression provides for the compression of data sets. The routines listed here perform those
compression operations. The first list indicates the public routines that are available to users and
applications; the second list indicates the private routines that are used internally by the library.1

Public user routines

HCcreate Create a compressed data element

Private library routines (internal)

1. These are the general compression functions. Additional compression functions, specific to
each compression style, can be found in the compression style-specific modules in the source
code distribution. As of HDF Version 1.4r4, those modules included the files c*.c (e.g., cde-
flate.c., crle.c) in the directory ./hdf/src/.

4-34 June 2017

The HDF Group

HCIinit_coderSet the coder function pointers

HCIinit_modelSet the model function pointers

HCIread_headerRead the compression header info from a file

HCIstaccess Start accessing a compressed data element.

HCIwrite_headerWrite the compression header info to a file

HCPcloseAID Get rid of the compressed data element data structures

HCPdecode_headerDecode the compression header info from a memory buffer

HCPencode_headerEncode the compression header info to a memory buffer

HCPendaccess Close the compressed data element and free the AID

HCPinfo return info about a compressed element

HCPinquire Inquire information about the access record and data element.

HCPmstdio_endaccess
Close the compressed data element

HCPmstdio_inquire Inquire information about the access record and data element

HCPmstdio_readRead in a portion of data from a compressed data element

HCPmstdio_seekSeek to offset within the data element

HCPmstdio_streadstart read access for compressed file

HCPmstdio_stwritestart write access for compressed file

HCPmstdio_writeWrite out a portion of data from a compressed data element

HCPquery_encode_header
Query the length of compression header for a memory buffer

HCPread Read in a portion of data from a compressed data element.

HCPseek Seek to offset within the data element

HCPstread Start read access on a compressed data element.

HCPstwrite Start write access on a compressed data element.

HCPwrite Write out a portion of data from a compressed data element.

HRPcloseAID Free memory but keep AID active

HRPconvert Wrap an existing raster image with the special element routines.

HRPendacess Free AID

HRPinfo Return info about a compressed raster element

HRPinquire Retreive information about a compressed raster element

HRPread Read some data out of compressed raster element

HRPseek Set the seek posn

HRPstread Open an access record for reading

HRPstwrite Open an access record for reading

HRPwrite Write data out to a compressed raster image

HDF Specification and Developer’s Guide

June 2017 4-35

General special element routines: In addition to the routines specific to a particular type of spe-
cial element, the library provides general routines for use on any special element:

HDget_special_infoGets information about a special element

HDset_special_infoResets information about a special element

Development Routines

The HDF library provides the following developer-level routines that simplify the task of writing
HDF applications. Many of these routines mirror basic C library functions which are, unfortu-
nately, not always completely portable in their library form:

4-36 June 2017

The HDF Group

HDgettagnameReturns a pointer to a text string describing a given tag

HDgetspace Allocates space

HDfreespace Frees space

HDclearspace Creates storage on the heap for a number of items of the given size

HDregetspace Resizes to the new given size

HDstrcat Appends a string to the end of another string

HDstrcmp Compares two strings

HDstrncmp Compares two strings up to a given number of characters

HDstrcpy Copies a string from one location to another

HDstrncpy Copies a string from one location to another up to a given number of charac-
ters

HDstrlen Returns the length of a string

HDstrchr Returns the position of a character within a string

HDstrrchr Returns the position of the last occurence of a character within a string

HDstrtol Converts the initial portion of a string to a type long int representation

HDc2fstr Converts a C string into a Fortran string using the in place approach

HDf2cstring Converts a Fortran string to a C string

HDpackFstringConverts a C string to a Fortran string

HDflush Flushes the HDF file to disk

HDgettagnum Returns the tag number for a text description of a tag

HDgetNTdesc Returns a text description of a number type

HDfidtoname Returns the filename that the given file identifier corresponds to

Hexist Locates an object in an HDF file

HDgetc Reads a byte from a data element

HDputc Writes a byte to a data element

Hlength Returns the length of a data element

Hoffset Gets the offset of a data element in a file

Htrunc Truncates a dataset to the given length

Hcache Sets low-level caching for a file

HDvalidfid Checks whether a file identifier is valid

Error Reporting

HDF Specification and Developer’s Guide

June 2017 4-37

The HDF library incorporates the notion of an error stack. This allows much of the context to be
known when trying to decipher an error message.

Error reporting is handled by the following routines:

HEprint Prints out all of the errors on the error stack to a specified file

HEclear Clears the error stack

HERROR Reports an error and pushes the following information onto the error stack.

•Error type

•Source file name

•Line number and the name of the function reporting the error

HEreport Adds a text string to the description of the most recently reported error
(Note: only one text string per error)

HEstring Returns error description

HEpush Pushes an error onto the stack

HEvalue Returns an error off the error stack

Standard C does not enable the code inside a function to know the name of the function. There-
fore, to use the macro HERROR to report errors, there must exist a variable FUNC which points to a
string containing the name of the reporting function.

Other

The Hsync routine has been defined and implemented to synchronize a file with its image in
memory. Currently it is not very useful because the HDF software includes no buffering mecha-
nism and the two images are always identical. Hsync will become useful when buffering is
implemented:

Hsync Synchronizes the stored version of an HDF file with the image in memory

4-38 June 2017

The HDF Group

June 2017 5-39

CHAPTER 5 -- Sets and Groups

5.1 Chapter Overview

This chapter discusses the roles of the following sets and groups in organizing data stored in an
HDF file:

Raster image sets (RIS)Raster image groups (RIG)

Scientific data sets (SDS)Scientific data groups (SDG)
Numeric data groups (NDG)
SDG-like NDGs

Vsets Vgroups and Vdatas

Raster-8 sets (obsolete)

This chapter introduces several tags used in support of sets and groups. All of these tags are fully
described in Chapter , Tag Specifications, and are listed in the table in Appendix A, Tags and
Extended Tag Labels.

5.2 Data Sets

HDF files frequently contain several closely related data objects. Taken together, these objects
form a data set which serves a particular user requirement. For example, five or six data objects
might be used to describe a raster image; eight or more data objects might be used to describe the
results of a scientific experiment.

The HDF mechanism for specifying and controlling data sets is the group. The data element of a
group consists of a single record listing the tag/refs for all the objects contained in the data set.
For example, the raster image groups described in the following sections each contain three tag/
refs that point to three data objects that, taken as a set, fully describe an 8-bit raster image.

5.2.1 Types of Sets

The current HDF implementation supports three kinds of sets:

Raster image setA set containing a raster image and descriptive information such as the
image dimensions and an optional color lookup table

Scientific data setA set containing a multidimensional array and information describing the
data in the array

Vset A general grouping structure containing any kinds of HDF objects that a user
wishes to include

5-40 June 2017

The HDF Group

Each HDF set is defined with a minimum collection of data objects that will make sense when the
set is used. For example, every raster image set must contain at least the following data objects:

Raster image groupThe list of the members of the set

Image dimension recordThe width, height, and pixel size of the raster image

Raster image dataThe pixel values that make up the image

In addition to the required objects, a set may include optional data objects. An 8-bit raster image
set, for instance, often contains a palette, or color lookup table, which defines the red, green, and
blue values associated with each pixel in the raster image.

5.2.2 Calling Interfaces for Sets

The HDF Group provides calling interfaces for all the HDF sets that it supports. These interfaces
provide routines for reading and writing the data associated with each set. The currently supported
HDF libraries are callable from either C or FORTRAN programs.

In addition to the libraries, a growing number of command-line utilities are available to manipu-
late sets. For example, a utility called r8tohdf converts one or more raw raster images to HDF 8-
bit raster image set format.

The calling interfaces are described in the document NCSA HDF Calling Interfaces and Utilities
for Versions 3.2 and earlier and in the HDF User's Guide and HDF Reference Manual for Ver-
sions 3.3 and 4.x.

5.3 Groups

As discussed above, HDF data objects are frequently associated as sets. But without some
explicit identifying mechanism, there is often no way to tie them together. To address this prob-
lem, HDF provides a grouping mechanism called a group. A group is a data object that explicitly
identifies all of the data objects in a set.

Since a group is just another type of data object, its structure is like that of any other data object; it
includes a DD and a data element. But instead of containing the pixel values for a raster image or
the dimensions of an array, a group data element contains a list of tag/refs for the data objects that
make up the corresponding set.

A group tag can be defined for any set. For instance, the raster image group tag (DFTAG_RIG) is
used to identify members of raster image sets; the RIG data element lists the tag/refs for a particu-
lar raster image set.

An Example

Suppose that the two images shown in Figure 2e, "Physical Representation of Data Objects," are
organized into two sets with group tags. Since they are raster images, they may be stored as RIGs.
Figure 5a, "Physical Organization of Sample RIG Groupings," illustrates the use of RIGs with
these images.

FIGURE 5a Physical Organization of Sample RIG Groupings

Offset Item Contents

0 FH 0e031301 (HDF magic number)

4 DDH 10 0L

10 DD DFTAG_FID 1 130 4

HDF Specification and Developer’s Guide

June 2017 5-41

The file depicted in this figure contains the same raster image information as the file in Figure 2e,
"Physical Representation of Data Objects," but the information is organized into two sets. Note
that there is only one palette (DFTAG_IP8/1) and that it is included in both groups.

5.3.1 General Features of Groups

Figure 5a, "Physical Organization of Sample RIG Groupings," also illustrates a number of import-
ant general features of groups:

• The contents of a group must be consistent with one another. Since the palette (DFTAG_IP8)
is designed for use with 8-bit images, the image must be an 8-bit image.

• An application program can easily process all of the images in the file by accessing the
groups in the file. The non-RIG information in the example can be used or ignored, depend-
ing on the needs and capabilities of the application program.

• There is usually more than one way to group sets. For example, an extra copy of the image
palette (DFTAG_IP8) could have been stored in the file so that each grouping would have its
own image palette. That is not necessary in this instance because the same palette is to be
used with both images. On the other hand, there are two image dimension records in this
example, even though one would suffice.

• Group status does not alter the fundamental role of an HDF object; it is still accessible as an
individual data object despite the fact that it also belongs to a larger set.

• A group provides an index of the members of a set. There is nothing to prevent the imposi-
tion of other groupings (indexes) that provide a different view of the same collection of data
objects. In fact, HDF is designed to encourage the addition of alternate views.

22 DD DFTAG_FD 1 134 41

34 DD DFTAG_LUT 1 175 768

46 DD DFTAG_ID 1 943 4

58 DD DFTAG_RI 1 947 240000

70 DD DFTAG_ID 2 240947 4

82 DD DFTAG_RI 2 240951 240000

94 DD DFTAG_RIG 1 480951 12

106 DD DFTAG_RIG 2 480963 12

118 DD DFTAG_NULL (Empty)

130 Data sw3

134 Data solar wind simulation: third try. 8/8/88

175 Data . . . (Data for image palette)

943 Data 400, 600 ... (Data for 1st image dimension record)

947 Data ... (Data for 1st raster image)

240947 Data 400, 600 ... (Data for 2nd image dimension record)

240951 Data ... (Data for 2nd raster image)

480951 Data DFTAG_IP8/1, DFTAG_ID/1, DFTAG_RI/1

(Tag/refs for 1st RIG)

480963 Data DFTAG_IP8/1, DFTAG_ID/2, DFTAG_RI/2

(Tag/refs for 2nd RIG)

Offset Item Contents

5-42 June 2017

The HDF Group

The following sections formally describe raster image sets (RIS), scientific data sets (SDS), Vsets,
and several related groups. The last section of this chapter discusses an obsolete structure known
as the raster-8 set.

5.4 Raster Image Sets (RIS)

The raster image set (RIS) provides a framework for storing images and any number of optional
image descriptors. An RIS always contains a description of the image data layout and the image
data. It may also contain color look-up tables, aspect ratio information, color correction informa-
tion, associated matte or other overlay information, and any other data related to the display of the
image.

5.4.1 Raster Image Groups (RIG)

Tying everything together is the raster image group (RIG, see Figure 5a, "Physical Organization of
Sample RIG Groupings," and the related discussion for an example). An RIG contains a list of
tag/refs that point in turn to the data objects that make up and describe the image.

The number of entries in an RIG is variable and most of the descriptive information is optional.
Complex applications may include references to image-modifying data, such as the color table
and aspect ratio, along with the reference to the image data itself. Simple applications may use
simple application-level calls and ignore specialized video production or film color correction
parameters.

THG currently supports two RIG calling interfaces: RIS8 and RIS24. These interfaces are
described in the document NCSA HDF Calling Interfaces and Utilities for Versions 3.2 and earlier
and in the HDF User's Guide and HDF Reference Manual for Versions 3.3 and 4.x.

5.4.2 RIS Tags

RIS implementations must fully support all of the tags presented in Table 5a.

TABLE 5a RIS Tags

With these tags, images can be stored and read from HDF files at any bit depth, with several dif-
ferent component ordering schemes. As illustrated in Figure 5b, the RIG tag points to the collec-
tion of tag/refs that fully describe the RIS. The data element attached to the tag DFTAG_ID
specifies the dimensions of the image, the number type of the elements that make up its pixels, the
number of elements per pixel, the interlace scheme used, and the compression scheme used, if
any. The data element attached to the tag DFTAG_RI contains the actual raster image data.

Tag Contents of Data Element

DFTAG_RIG Raster image group

DFTAG_ID Image dimension record

DFTAG_RI Raster image data

HDF Specification and Developer’s Guide

June 2017 5-43

FIGURE 5b RIS Tags

The tags listed in Table 5C identify optional RIS information such as color properties and aspect
ratio. Note that the RI interface supports only DFTAG_LUT at this time; the other tags in Table 5C
are defined but the interfaces have not been implemented.

TABLE 5C Optional RIS Tags

Figure 5c illustrates the structure of an RIS that contains an image palette (DFTAG_IP8).

Tag Contents of Data Element

DFTAG_XYP XY position of image

DFTAG_LD Look-up table dimension record

DFTAG_LUT Color look-up table for non true-color images

DFTAG_MD Matte channel dimension record

DFTAG_MA Matte channel data

DFTAG_CCN Color correction factors

DFTAG_CFM Color format designation

DFTAG_AR Aspect ratio

DFTAG_MTO Machine-type override

DD List (tag/ref):

"Data:"

RIG/1 ID/1 RI/1

ID/1 RI/1 IP/1

200 x 300, etc.

5-44 June 2017

The HDF Group

FIGURE 5c RIS Tags for Sets Containing a Palette

5.4.3 Raster Image Compression

HDF currently supports the following raster image compression tags:

DFTAG_RLE Run-length encoding

DFTAG_IMCOMP Aerial averaging

DFTAG_JPEG JPEG compression

RIG support does not require support for all compression tags. Be sure to provide a suitable error
message to the user when an unknown compression tag is encountered.

Since new forms of data compression can be added to HDF raster images, incompatibilities can
arise between old libraries and files created by newer libraries. For example, HDF Versions 3.3
and later include JPEG compression for images. A JPEG-compressed raster image in a file cre-
ated by an HDF Version 4.1 library cannot be read by an HDF Version 3.2 library.

5.5 Scientific Data Sets

The scientific data set (SDS) provides a framework for storing multidimensional arrays of data
with descriptive information that enhances the data. Current specifications support the following
types of numbers in SDS arrays.

• 8-bit, 16-bit, and 32-bit signed and unsigned integers

• 32-bit and 64-bit floating point numbers

Data in an SDS can be stored either as two's complement big endian integers, as IEEE Standard
floating point numbers, or in native mode, the format used by the machine from which they were
written.

The user interface for storing and retrieving SDSs is fully described in the document NCSA HDF
Calling Interfaces and Utilities for Versions 3.2 and earlier and in the HDF User's Guide and
HDF Reference Manual for Versions 3.3 and 4.x.

DD List (tag/ref):

"Data:"

RIG/1 ID/1 RI/1 IP8/1

ID/1 RI/1 IP8/1

200 x 300, etc.

HDF Specification and Developer’s Guide

June 2017 5-45

5.5.1 Backward and Forward Compatibility

One concerns in HDF development is always to maximize backward and forward compatibility;
as much as possible, any application written to use HDF should be able to read data files written
with an older or a newer version of the libraries. To maximize this compatibility, the HDF devel-
opement team had to consider the following factors in upgrading the SDS capabilities:

• Support for future variations (e.g., new number types, data compression, and new physical
arrangements for SDS storage)

• Older versions of the library should be able to read new data files if the data itself can be
interpreted by the older version. To do so, the older version must be able to determine
whether the data in a given data object will be comprehensible to it. For example, if a newly
created file contains 32-bit IEEE floating point or Cray floating point data objects, older
versions of the library should be able determine that fact then read and interpret the data.

• New libraries must be able to read and interpret files created by older versions.

Unfortunately, such compatibility concerns yield an SDS structure somewhat more complex than
would otherwise be the case. Two examples illustrate the problem:

• HDF 3.2 development had to accommodate the fact that HDF Version 3.1 and previous ver-
sions only supported 32-bit IEEE floating-point numbers and Cray floating point numbers in
SDSs. SDSs in HDF versions since Version 3.2 support 8-bit, 16-bit, and 32-bit signed and
unsigned integers, 32-bit and 64-bit floating-point numbers, and the local machine format
(native mode) for all supported architectures.

• HDF 3.3 includes support for the netCDF data model, which involved the creation of an
entire new structure for supporting netCDF objects, based on Vgroups and Vdatas. At the
same time, a goal of HDF 3.3 was to harmonize the SDS and the netCDF data model, which
was best accomplished by storing SDS objects in the same way that netCDF objects are
stored. In order to maintain backward compatibility, two structures had to be created for
every SDS or netCDF object: one that could be recognized by older HDF libraries, and the
new structure.

In the following sections we describe how the first problem was solved. A later issue of this man-
ual will describe how the second problem was addressed.

5.5.2 Internal Structures

The SDS capability was substantially enhanced for HDF Version 3.2. Previous versions
employed a structure known as a scientific data group (SDG); Version 3.2 and subsequent ver-
sions use the numeric data group (NDG). To accommodate the enhanced structure and to remain
compatible with previous releases, the current HDF library supports the following scientific and
numerical data groups:

SDGs Created by old libraries and containing 32-bit IEEE and Cray floating-point data.

NDGs Created by the newer libraries (Version 3.2 and later) and containing any acceptable
floating-point or non-floating-point data. This data group will not be recognized by
old libraries.

The NDG structure supports 8-bit, 16-bit, and 32-bit signed and unsigned integers,
and 32-bit and 64-bit floating-point numbers. It also supports native mode, data sets
written to HDF files in the local machine format.

SDG-like NDGs

Created by the new library and containing IEEE 32-bit floating-point data only. The
old libraries will recognize and interpret these numerical data groups correctly.

5-46 June 2017

The HDF Group

The following sections describe the SDG, NDG, and SDG-like NDG structures.

5.5.3 SDG Structures

SDGs must contain at least the data objects listed in Table 5D.

TABLE 5D Required SDG Tags

In addition to the required data objects listed above, SDGs may contain any of the objects listed in
Table 5E. Note that the optional data objects are the same for SDGs, NDGs, and SDG-like NDGs;
the only differences are the number types that may be used.

TABLE 5E Optional SDG, NDG, and SDG-like NDG Tags

As illustrated in Figure 5d, the SDG tag points to the collection of tag/refs that define the SDG.

Tag Contents of Data Element

DFTAG_SDG Scientific data group.

DFTAG_SDD

Dimension record for array-stored data. Includes the rank (number of dimensions), the size of
each dimension, and the tag/refs representing the number type of the array data and of each
dimension.
All SDG number types are 32-bit IEEE floating-point.

DFTAG_SD Scientific data.

Tag Contents of Data Element

DFTAG_SDS
Scales of the different dimensions. To be used when interpreting or displaying the data (32-bit
floating point numbers only for SDGs and SDG-like NDGs).

DFTAG_SDL
Labels for all dimensions and for the data. Each of the dimension labels can be interpreted as
an independent variable; the data label is the dependent variable.

DFTAG_SDU Units for all dimensions and for the data.

DFTAG_SDF Format specifications to be used when displaying values of the data.

DFTAG_SDM
Maximum and minimum values of the data. (32-bit floating point numbers only for SDGs and
SDG-like NDGs.)

DFTAG_SDC Coordinate system to be used when interpreting or displaying the data.

HDF Specification and Developer’s Guide

June 2017 5-47

FIGURE 5d SDG Structure

5.5.4 NDG Structures

NDGs must contain at least the data objects listed in Table 5F

TABLE 5F Required NDG Tags

In addition to these required data objects, an NDG may contain any of the data objects listed in
Table 5E, "Optional SDG, NDG, and SDG-like NDG Tags," on page 46.

As illustrated in Figure 5e, the basic NDG and SDG structures are identical. The first clue to the
difference is that the NDG tag replaces the SDG tag. This is a flag to prevent older libraries from
stumbling over the more important difference; the NDG data element can accommodate data that
pre-Version 3.2 libraries cannot interpret. The new tag ensures that older libraries will not recog-
nize the data object and thus will not try to interpret the new data types. For example, NDG data
can include number types or a data compression scheme that a pre-Version 3.2 library will not rec-
ognize.

Tag Contents of Data Element

DFTAG_NDG Numerical data group.

DFTAG_SDD

Dimension record for array-stored data. Includes the rank (number of dimensions), the size of
each dimension, and the tag/refs representing the number types of the data and of each dimension.
In HDF 3.2 , the number types of dimension scales must be the same as that of the array-stored
data. Later implementations allow dimension scales to be typed separately.

DFTAG_SD Scientific data.

DFTAG_NT
Number type of the data set. Default is the most recent DFSDsetNT() setting. If DFSD-
setNT() has not been called, the default will be 32-bit IEEE floating-point.

DD list (tag/ref)

Data

SDG/1 SDD/1 SD/1 SDM/1

SDD/1 SD/1 SDM/1 2.3 4.5 4.1 ...
2.5 4.8 4.3 ...
...
1.6 3.9 7.2 ...

max: 11.6
min: 0.2

54 x 60, etc.

5-48 June 2017

The HDF Group

FIGURE 5e NDG Structure

5.5.5 SDG-like NDG Structures

As we have said earlier,

• SDGs, the SDS grouping structure available prior to HDF Version 3.2, could include only
32-bit floating point and Cray floating point numbers.

• NDGs, available since Version 3.2, can include 8-bit, 16-bit, and 32-bit signed and unsigned
integers, and 32-bit and 64-bit floating point numbers.

• SDG-like NDGs, also available since Version 3.2, distinguish SDSs that can still be read by
the older versions of the library.

This backward compatibility is achieved by examining every SDS that is written to an HDF file. If
the SDS is compatible with older libraries, it is written to the file with both SDG and NDG struc-
tures. If it is not compatible with older libraries, only the NDG structure is used.

Table 5G lists the objects that SDG-like NDGs must contain.

TABLE 5G Required SDG-like NDG Tags

SDG-like NDGs can include the same optional data objects as described for SDGs and NDGs in
Table 5E, "Optional SDG, NDG, and SDG-like NDG Tags," on page 46.

Figure 5f illustrates the SDG-like NDG structure.

Tag Contents of Data Element

DFTAG_NDG Numerical data group.

DFTAG_SDG Scientific data group.

DFTAG_SDLNK The NDG and SDG linked to the scientific data set in this group.

DFTAG_SDD

Dimension record for array-stored data. Includes the rank (number of dimensions), the size of
each dimension, and the tag/refs representing the number types of the data and of each dimen-
sion.
In an SDG-like NDG, the number types are all 32-bit IEEE floating-point.

DFTAG_SD Scientific data.

DD list (tag/ref)

Data

NDG/1 SDD/1 SD/1 SDM/1

SDD/1 SD/1 SDM/1 2.3 4.5 4.1 ...
2.5 4.8 4.3 ...
...
1.6 3.9 7.2 ...

max: 11.6
min: 0.2

54 x 60, etc.

HDF Specification and Developer’s Guide

June 2017 5-49

FIGURE 5f SDG-like NDG Structure

5.5.6 Compatibility with Future NDG Structures

Future HDF releases will probably support additional optional SDS features. These features will
fall into the following categories:

Optional and compatible features

Optional features that are compatible with older HDF versions even though they may
not be supported in the older libraries.

For example, a new time stamp attribute might be added. The time stamp would not be
understood by older libraries, but it would not render them unable to read the SDS data
either

Optional and incompatible features

Optional new features that may render the data unreadable by older HDF libraries.

For example, a compression attribute could be added. Older HDF libraries that contain
no compression routines would not be able to read the compressed data.

A tag numbering convention has been developed to address this problem:

Required tags

These tags are listed in Table 5D, "Required SDG Tags," on page 46; Table 5F,
"Required NDG Tags," on page 47; and Table 5G, "Required SDG-like NDG Tags," on
page 48. All SDSs must contain all of the tags in at least one of these sets. (See Chapter
, "Tag Specifications," for the assigned tag numbers.)

Optional-incompatible tags

Tags for new SDS features that might render the data set unreadable by older libraries
are each assigned a number t that falls in a special range determined by the constants
DFTAG_EREQ and DFTAG_BREQ. That is, t must have a value such that DFTAG_EREQ <

DD List (tag/ref)

Data

SDG/1 NDG/1 SDLNK/1 SDD/1 SD/1 SDM/1

SDD/1 SD/1 SDM/1

2.3 4.5 4.1 ...
2.5 4.8 4.3 ...
...
1.6 3.9 7.2 ...

max: 11.6
min: 0.2

54 x 60, etc.

SDD/1 SD/1 SDM/1 SDLNK/1

SDG/1 NDG/1

5-50 June 2017

The HDF Group

t < DFTAG_BREQ. When old software encounters a tag in this range that it is not able to
interpret, it should not process the group.

Optional-compatible tags

These tags can have any valid tag number not allocated to one of the other two catego-
ries.

5.6 Vsets, Vdatas, and Vgroups

Vsets, Vdatas, and Vgroups enable users to create their own grouping structures. Unlike RIGs,
SDGs, and NDGs, HDF imposes no required structure; they are implemented almost entirely at
the user level and are not specified in detail in HDF or in this document.1 The only specifications
define DFTAG_VG, DFTAG_VH, and DFTAG_VS and the formats of their respective data elements. A
detailed discussion similar to that for the other grouping structures is, therefore, inappropriate
here. Detailed information regarding the DFTAG_VG, DFTAG_VH, and DFTAG_VS tags can be
found in Chapter , "Tag Specifications." Conceptual and usage information can be found in the
document NCSA HDF Vset Version 2.0 for HDF Versions 3.2 and earlier and in the HDF User's
Guide and the HDF Reference Manual for HDF Versions 3.3 and 4.x.

FIGURE 5g Illustration of a Vset

An HDF Vset can contain any logical grouping of HDF data objects within an HDF file. Vsets
resemble the UNIX file system in that they impose a basically hierarchical structure but also allow
cross-linked data objects. Unlike SDSs and RISs, Vsets have no prespecified content or structure;

1. Specialists in various fields are developing application program interfaces (APIs) that are
becoming accepted standard interfaces within their fields. Since these APIs are implemented with
high level HDF functionality and using the standard HDF user interface, they are user-level appli-
cations from the HDF development team's point of view. From the final enduser's point of view,
however, these APIs create a new level of user interface. When necessary, technical specifica-
tions for these APIs and the associated interfaces will be presented by the specialized developers.

03 04 451.33 43 17

-3 72 523.21 34 22

45 77 684.19 57 57

45 67 762.93 45 36

March 15, 1990. Simulation
with k=10.0, beta=1.22e3.
Calculate the magnitude ...

vgroup

text

raster images

palette

vdata

3D mesh

HDF Specification and Developer’s Guide

June 2017 5-51

users can use them to create structural relationships among HDF objects according to their needs.
Figure 5g illustrates a Vset.

A Vset is identified by a Vgroup, an HDF object that contains information about the members of
the Vset. The tag DFTAG_VG identifies the Vgroup which contains the tag/refs of its members, an
optional user-specified name, an optional user-specified class, and fields that enable the Vgroup to
be extended to contain more information.

The only required Vgroup tag is the tag that defines the Vgroup itself.

TABLE 5H The Vgroup Tag

Vgroups are fully described in the document NCSA HDF Vset, Version 2.0 for Versions 3.2 and
earlier and in the HDF User's Guide and HDF Reference Manual for Versions 3.3 and 4.x.

5.7 The Raster-8 Set (Obsolete)

Current HDF versions use the raster image set (RIS) to manage raster images. But before the RIS
was implemented, a simpler, less flexible set called the raster-8 set was used for storing 8-bit ras-
ter images. This set is no longer supported in the HDF software, although it may turn up in some
older HDF files.1

5.7.1 Raster-8 Sets

The raster-8 set is defined by a set of tags that provide the basic information necessary to store 8-
bit raster images and display them accurately without requiring the user to supply dimensions or
color information. The raster-8 set tags are listed in Table 5I.

TABLE 5I Raster-8 Set Tags

Software that does not support DFTAG_CI8 or DFTAG_II8 must provide appropriate error indica-
tors to higher layers that might expect to find these tags.

5.7.2 Compatibility Between Raster-8 and Raster Image Sets

To maintain backward compatibility with raster-8 sets, the RIS interface stores tag/refs for both
types of sets. For example, if an image is stored as part of a raster image set, there is one copy
each of the image dimension data, the image data, and the palette data. But there were two sets of

Tag Contents of Data Element

DFTAG_VG Vgroup

1. In fact, during the first three years that RIS was used, the HDF software stored raster images in
both RIS and raster-8 sets.

Tag Contents of Data Element

DFTAG_RI8 8-bit raster image data

DFTAG_CI8 8-bit raster image data compressed with run-length encoding

DFTAG_II8 IMCOMP compressed image data

DFTAG_ID8 Image dimension record

DFTAG_IP8 Image palette data

5-52 June 2017

The HDF Group

tag/refs pointing to each data element: one for the RIS and one for the raster-8 set. The image data,
for example, is associated with the tags DFTAG_RI8 and DFTAG_RI.

Note that future HDF releases will phase out support for the raster-8 set. Therefore, new software
should not expect to find both raster-8 and RIS structures supporting 8-bit raster images. Eventu-
ally, only RIS structures will be supported.

5.8 Deleted information from "Vsets, Vdatas, and Vgroups:"

A table structure known as a Vdata is often used as a data object in connection with Vsets. The
data in a Vdata is organized into fields. Each field is identified by a unique fieldname. The type of
each field may be any of the data types supported by the SDS interface: 8-, 16-, and 32-bit inte-
gers (signed or unsigned), and 32- and 64-bit floating point numbers. Several fields of different
types may exist within a Vdata.

The use of Vdatas requires two tags, DFTAG_VS and DFTAG_VH, listed in Table 5J. The flexibility
of the Vgroup structure allows the use of any HDF tag.

TABLE 5J Optional Vgroup Tags

Note: Raster-8 set support will not be maintained in future HDF releases.

Tag Contents of Data Element

DFTAG_VS Vdata.

DFTAG_VH Vdata description.

Any HDF tag The flexibility of the Vgroup structure allows the optional use of any HDF tag.

June 2017 6-53

CHAPTER 6 -- Annotations

6.1 Chapter Overview

This chapter introduces annotations, HDF data objects used to annotate HDF files and objects.

The tags introduced in this chapter are fully described in Chapter , "Tag Specifications," and are
listed in the table in Appendix A, "Tags and Extended Tag Labels."

6.2 General Description

It is often useful to attach a text annotation to an HDF file or its contents and to store that annota-
tion in the same HDF file. HDF provides this capability in two ways: through the annotation data
object and by the assignment of attributes. This chapter discusses annotations.

The data element of an annotation is a sequence of ASCII characters that can be associated with
any of three types of objects:

• The file itself

• An individual HDF data object in the file

• A tag that identifies a data element

The current annotation interface supports only the first two.

Annotations come in two forms:

Label A short, NULL-terminated string. Labels may include no embedded
NULLs.

Description A longer and more complex body of text of a pre-defined length. Descrip-
tions may contain embedded NULLs.

Annotations are never required; they are used strictly at the discretion of the creator or user of an
HDF file.

Table 6K shows the currently defined annotation types and their assigned tags.

6-54 June 2017

The HDF Group

TABLE 6K Annotation Tags

The annotation interface is fully described in the document NCSA HDF Calling Interfaces and
Utilities for Versions 3.2 and earlier and in the HDF User’s Guide and HDF Reference Manual
for Versions 3.3 and 4.x.

6.3 File Annotations

Any HDF file can include label annotations (DFTAG_FID) and/or description annotations
(DFTAG_FD). The file annotation interface routines provided in the HDF software read and write
file labels and file descriptions.

6.4 Object Annotations

DFTAG_NDG

DFTAG_NDG

DFTAG_NDG

2

4

9

Tag Ref

HDF data object annotation is complicated by the fact that you must uniquely identify the object
being annotated. Since a tag/ref uniquely identifies a data object, the data object that a particular
annotation refers to can be identified by storing the object's tag and reference number with the
annotation.

Note that an HDF annotation is itself a data object, so it has its own DD. This DD has a tag/ref that
points to the data element containing the annotation. The annotation data element contains the fol-
lowing information:

• The tag of the annotated object

• The reference number of the annotated object

• The annotation itself

For example, suppose you have an HDF file that contains three scientific data sets (SDSs). Each
SDS has its own DD consisting of the SDS tag DFTAG_NDG and a unique reference number, as
illustrated in Figure 6a.

FIGURE 6a Three SDS Tag/refs

Suppose you wish to attach the following annotation to the second SDS:
Data from black hole experiment 8/18/87.

Label Types Description Types

File annotations DFTAG_FID DFTAG_FD

Object annotations DFTAG_DIL DFTAG_DIA

Tag annotations DFTAG_TID DFTAG_TD

DFTAG_NDG 4 Data from black hole experiment 8/18/87

DFTAG_DIA 2

Annotation DD

Tag Ref Description

HDF Specification and Developer’s Guide

June 2017 6-55

This text will be stored in a description annotation data object. The data element will include the
tag/ref, DFTAG_NDG/4, and the annotation itself. Figure 6b illustrates the annotation data object.

FIGURE 6b Sample Annotation Data Object

Getting Reference Numbers for Object Annotations

To use annotation routines, you need to know the tags and reference numbers of the objects you
wish to annotate.

The following routines return the most recent reference number used in either reading or writing
the specified type of data object:

DFSDlastref SDS data objects

DFR8lastref RIS data objects

DFPlastref Palettes

DFANlastref Annotations

Reference numbers for other objects can be obtained with the routine Hfindnextref, a low
level HDF routine that searches an HDF file sequentially for reference numbers associated with a
given tag.

These routines are described in the document NCSA HDF Calling Interfaces and Utilities for
Versions 3.2 and earlier and in the HDF User’s Guide and HDF Reference Manual for Versions
3.3 and 4.x.

6-56 June 2017

The HDF Group

June 2017 7-57

CHAPTER 7 -- Scientific Data Sets:The SD Model

7.1 Chapter Overview

This chapter provides functional descriptions of the SD User’s Model, the SD Developer’s Model,
and the HDF file structures used to represent these models.

• Standard UML notation is used extensively in the formal data model descriptions.
Section 7.2, "UML Notation and Object Symbols in HDF Data Model Descriptions,"
describes the relevant UML elements.

• Section 7.3, "Introduction to the SD Model," introduces the HDF SD model.

• Section 7.4, "The SD User’s Model," and Section 7.5, "The SD Developer’s Model," pro-
vide more details, introducing the SD User’s Model as an intermediate step, and presenting
the formal data model required to implement the SD Developer’s Model.

• Section 7.6, "Mapping between SD Developer's Model and HDF File Structures," and
Section 7.7, "SDS Memory Structures and Storage Layout," map the elements of the SD
Developer’s Model to HDF file structures and provide a detailed description of those mem-
ory structures and the storage layout in the file.

• Section 7.8, "Library Implementation Details with Example File and SDS," illustrates the
HDF library implementation of the SD model.

7.2 UML Notation1 and Object Symbols in HDF Data Model
Descriptions

Many of the figures in this chapter and in Chapter , General Raster Images: The GR Model,
employ UML notation (Unified Modeling Language notation) to show object relationships. The
symbols and the relationships they describe are illustrated in Figure 7a. Note that UML can repre-
sent other objects and relationships as well; this discussion, Figure 7a, and Figure 7c present only
what is required for this chapter.

FIGURE 7a UML symbols and interpretations as used in formal HDF data model descriptions

1. For a condensed description of UML, see UML Distilled: Applying the Standard Object
Modeling Language, Martin Fowler with Kendall Scott, Addison-Wesley, 1997.

An HDF object is represented as a rectangle.

Associations or relationships among object instances are indicated by arrows.

A diamond indicates the aggregation association, i.e., the a part of relationship.

A

7-58 June 2017

The HDF Group

For example, the following statements describe the dia-
gram at the right:

• Object A is composed of exactly one object B.

• Object B is associated with exactly N objects of type A.

The figures that make up the formal definition of the data model, such as Figure 7g, "SD User’s
Model -- The SD Model from the User’s Point of View," or Figure 7i, "SD Developer’s Model --
The SD Model from the Developer’s Point of View," use the above UML notation rigorously.

Figures that are intended to informally illustrate points of discussion, such as Figure 7f, "A sample
user’s view of the SD model," or that illustrate the file layout, such as Figure 7p, "SDS View of
the HDF File Structure," often use only a subset of the UML notation and treat the relationships
less rigorously.

The formal data model discussions also include formal object descriptions clearly delineating the
types of HDF objects and their attributes. The layout of these object descriptions is illustrated in
Figure 7c.

FIGURE 7c Formal object descriptions

In object description figures, e.g.Figure 7j, "SD Developer’s Model Objects," the top line speci-
fies the name of the object. The entries immediately below the first horizontal bar list object attri-
butes that are specified by either the user or the library when the object is created.

Object D is part of object B.
Object B is composed of object D.

The numbers at either end of the arrow indicate the multiplicity of associations.
N exactly N
0...N zero up to N
0...* zero or more

Object A includes exactly one of objects B or C.

An HDF object is represented as a rectangle.
A

B D

0...* N

B
A

C

A B
N 1

attribute

name
type

data

Object name

Object attributes: characteristics specified
at creation time by the user or the library

HDF Specification and Developer’s Guide

June 2017 7-59

7.3 Introduction to the SD Model

An HDF file may contain many elements, including scientific data sets (SDSs, the subject of this
chapter), general raster images (GRs), groups of HDF objects, images, palettes, annotations, etc.
Figure 7d provides a high-level illustration of one potential HDF file.

FIGURE 7d An HDF file may contain several objects and object collections

A scientific data set, or SDS, is an HDF data structure used to store a multidimensional array of
scientific data and the supporting metadata. An SDS is stored in a group of HDF objects collec-
tively known as an SD collection. A file may contain only one SD collection; an SD collection
may contain several SDSs. Chapter 3, “Scientific Data Sets (SD API),” in the HDF User's Guide
describes the SD model, in terms of required and optional components that comprise a scientific
data set, and the SD interface routines provided by the HDF library to create and access SDSs in
the file.

When a file is opened with the SD interface, also called the SD API, only the SD collection is
available A file opened with the SD interface should therefore be thought of in terms of Figure 7e.
Other objects in the file are unavailable through the SD interface; they can, however, be accessed
through other interfaces, e.g., the H, V, and SD interfaces.

FIGURE 7e An HDF file opened with the SD interface

• When a file is opened with the SD interface, only the SD collection is available (cir-
cled above in blue; grey if medium is black-and-white). Other objects in the file are
unavailable to the application.

• An SD collection may contain zero or more SDSs.

This chapter introduces two formal data models. The first version of the model, called the SD
User's Model and illustrated in Figure 7g, formally describes the concepts introduced in Chapter 3
of the HDF User's Guide. The second model, called the SD Developer's Model or the Internal SD
Model and illustrated in Figure 7i, is a generalization of the SD User's Model that reflects the
technical implementation and the integration of the NetCDF data model into HDF. These models

HDF4 file

imageSDS

Vdata

0…*

1

0…*

11

GR

0…*

1

other object

0…*

1

0…*

SD collection

GR collection

HDF4 file

SD collection other objects
(invisible to the application)

0...1 0…*

11

7-60 June 2017

The HDF Group

are described in Section 7.4, "The SD User’s Model," and Section 7.5, "The SD Developer’s
Model."

Following the discussion of the data models, the mapping of the SD Developer's Model to HDF
file structures is presented in Section 7.6, "Mapping between SD Developer's Model and HDF
File Structures." Memory structures and storage layout are discussed in Section 7.7, "SDS Mem-
ory Structures and Storage Layout."

The last section, Section 7.8, "Library Implementation Details with Example File and SDS,"
offers an example of an HDF file containing an SD collection and describes the evolution of the
file as different components of the SD collection and the SDS it contains are written to the file.

7.4 The SD User’s Model

This section provides a logical description of an HDF file containing an SD collection. An exam-
ple of a user’s view of the data model is presented in Figure 7f; a formal graphical representation
is presented in Figure 7g, "SD User’s Model -- The SD Model from the User’s Point of View."

From a user’s point of view, an HDF file containing SDSs is structured as follows and as illus-
trated in Figure 7f:

• The file contains SDSs and possibly global attributes, which apply to all SDSs in the file.

• Each SDS may have associated attribute(s), dimension scale(s), and data.

An SDS is a multidimensional array of elements designed to store scientific data. Elements of the
array may have one of the HDF predefined datatypes (see Section 5.5, "Scientific Data Sets," in
this HDF Specification and Developer’s Guide). Spatial information (rank=N and dimension
sizes) describes the shape and the size of the array and is specified by the user. Each SDS is iden-
tified by a user-defined name. (If the user does not define a name, the HDF library will assign a
default name at creation time.) An SDS always has a storage layout associated with it which is
defined at creation time and describes how the SDS raw data is stored. Raw data storage options
are contiguous (the default), external, chunked, compressed, chunked and compressed, and
extendible. Name, spatial information, datatype, and storage layout are required components of an
SDS. An SDS may optionally include raw data, denoted as data in the UML diagram (Figure 7g).

FIGURE 7f A sample user’s view of the SD model

The Formal SD User’s Model

HDF4 file

SDS1
name = “sds1”
spatial information

rank = 2
dim sizes = 100 x 200

type = floating point

global attribute(s)
value=“ConSi”

. . .
attributes

value=“time”

dimension
scale

data
chunked &
compressed

data

SDS2
name = “sds2”
spatial information

rank= 2
dim sizes = 10 x 5

type = integer

data
not chunked &
not compressed

SDS3
name = “sds3”
spatial information

rank = 2
dim sizes = 4 x 3

type = floating point

(Note: No data)

SDSn
name = “sdsn”
spatial information

rank = 2
dim sizes = 10 x 5

type = integer

data

external file

HDF Specification and Developer’s Guide

June 2017 7-61

The formal SD User’s Model includes one type of object the user does not actually see, the SD
collection. An HDF file may contain zero or one SD collection which may, in turn, contain zero or
more SDSs. The global attributes, of which there may be zero or more, are actually associated
with the SD collection. Global attributes are optional, are defined by the user, and usually describe
the intended usage of the SDSs in the file. The SDSs and the associated objects (see Figure 7g) are
generally intended to be accessed only through the SD interface. When possible, however, the
data sets are created to be readable via the older DFSD APIs.

An SDS may have zero or more associated attributes. These attributes are distinct from global
attributes, which apply to all SDSs in the file.

The HDF library creates N dimensions associated with an SDS where N is the rank of the SDS.
The library will assign a name to each dimension; if desired, these may be overwritten with user-
defined names. Each dimension can be associated with more than one SDS. The size of the
dimension is set up by the library, based on the SDS’s spatial information. When a dimension is
associated with more than with one SDS, it is called a shared dimension. Shared dimensions are
created by the user.

Each dimension may have zero or more dimension attributes. Each dimension may also have data
associated with it, in which case the data is called a dimension scale or dimension variable, as in
netCDF.

FIGURE 7g SD User’s Model -- The SD Model from the User’s Point of View

The formal model is based on relationships among user-specified objects of the SD User’s Model
and the associated object attributes, as described in Figure 7h.

FIGURE 7h SD User’s Model Objects

dimension SDS

SD collection

attribute

global attribute

data

1

0...1

1

attribute data

1

0...1

1

(file opened with SD interface)
Shading indicates objects
or associations created by
library

1

1..LN

0...*

0...*

1 0...*

0...*

 file

name

SDS

name
rank
dimension sizes
type
storagetype
data

attribute

name
type
data

7-62 June 2017

The HDF Group

The SD interface provides routines to access the objects depicted in Figure 7f, "A sample user’s
view of the SD model." If an object is part of another object, it cannot be accessed by the SD inter-
face without first accessing the enclosing object. E.g., dimension information can be accessed
only after accessing the associated SDS.

7.5 The SD Developer’s Model

SD User’s Model focuses on aspects of data and relationships among objects that facilitate the
user’s scientific work. Since the library must translate that data into something that can be stored
to and retrieved from the file in an efficient, universally-accessible manner, the SD Developer’s
Model presents a slightly modified set of objects and relationships.

While the SD collection is a virtual object in the user’s model and the user never sees it or has any
practical means of perceiving it, the SD collection is a very real object in the developer’s model.
Different kinds of objects from the user’s model are generalized as a simple type of object in the
developer’s model and some object relationships become more generalized.

As one can see in the UML diagram in Figure 7g, the dimension-data-attribute association is
very similar to the SDS-data-attribute association. This leads to the generalized UML diagram
in Figure 7i, called the SD Developer's Model or the Internal SD Model. In this diagram, SDS and
dimension scales are replaced by a variable. The dimension object associated with the variable
describes the spatial information of the corresponding variable (i.e., the corresponding SDS or
dimension scale) and is independently a part of the SD collection.

Less formally expressed, when an attribute is assigned to the dimension, or data is associated with
the dimension, the HDF library creates internal structures in which to store this information.
These structures are the same as for an SDS. See Section 7.6, "Mapping between SD Developer's
Model and HDF File Structures," for further discussion. The HDF library uses the terminology “a
dimension is promoted to an SDS” and that promotion is transparent to the user. The user still
accesses a dimension's data and dimension attributes via the SD interface routines and the SDS to
which that dimension belongs.

Since a dimension scale is stored in the same type of HDF object as an SDS, there is no difference
between them from the HDF library’s (and hence the developer’s) point of view. A dimension is
simply a special case of the more general SDS and both objects are viewed by the library and the
developer as variables. In the user’s view, an SDS can have associated attribute(s), data, and
dimension(s) and a dimension can have associated attribute(s) and data. Therefore, in the devel-
oper’s view, a variable can have associated attribute(s), data, and dimension(s)

FIGURE 7i SD Developer’s Model -- The SD Model from the Developer’s Point of View

• variable can be either an SDS or a dimension scale.

dimension variable

SD collection

attribute

attribute

data

1

0...1

1

Shading indicates objects
or associations created by
library

1

1..LN

0...*

0...*

1 0...*

1

M

HDF Specification and Developer’s Guide

June 2017 7-63

• N is a rank of the variable.

• L is 1 if variable is a dimension scale.

• Neither the link from SD_collection to dimension nor the link from
variable to dimension is available through the SD interface, though they are
available via other HDF interfaces.

Each object in Figure 7i is represented by a set of HDF objects in the file as defined in Section 7.6,
"Mapping between SD Developer's Model and HDF File Structures."

The SD collection is created automatically by the HDF library. The attributes, variables, and data
are created by the user via the SD interface.

Figure 7j summarizes the data and metadata associated with each SD model object.

FIGURE 7j SD Developer’s Model Objects

A variable is an array structure that has a name, spatial information (rank and dimension sizes),
datatype, and storage layout type and represents either an SDS or a dimension variable. The dif-
ference between two objects is in their rank and storage layout. The rank of a dimensional vari-
able is always 1 and its storage layout type can be contiguous or extendible (unlimited). See Table
7a for a list of storage layout options.

A variable always has N associated dimensions with it. If variable is a dimension variable,
then the multiplicity factor N is 1. A variable may have zero or more attribute objects
associated with it.

TABLE 7a SDS Storage layouts

•Contiguous storage is the default layout and requires no special storage tag.

7.6 Mapping between SD Developer's Model and HDF File
Structures

This section describes the mapping between the objects represented in the UML diagram in Figure
7i, "SD Developer’s Model -- The SD Model from the Developer’s Point of View," and the HDF
objects in the file.

variable

SDS dimension variable

contiguous

special storage

default extendiblechunked
com-

pressed

chunked
and com-
pressed external

file

name

variable

name
rank
dimension sizes
type
storagetype

attribute

name
type
data

dimension

name
size

data

raw data

7-64 June 2017

The HDF Group

The illustrations in this section employ the symbols in Figure 7k to identify the indicated file
structures.

FIGURE 7k File structure symbols

7.6.1 SD Collection

SD_collection, which is the view of the file as revealed by the SD interface, is mapped to an
HDF Vgroup with name=file_name and class=CDF0.0. For purposes of this discussion only
and to distinguish this Vgroup from other Vgroups in the discussion, this is referred to as the top
Vgroup in the file. All objects shown in Figure 7i, "SD Developer’s Model -- The SD Model from
the Developer’s Point of View," are mapped to the HDF objects which are members of this top
Vgroup, as illustrated in Figure 7l through Figure 7q.

FIGURE 7l Model-to-File Mapping -- SD_collection

Note that at the user level, the SD collection is a virtual entity; it has no real existence for the user.
At the developer level and in the file, however, the SD collection is a real object corresponding to
the top Vgroup. All of the HDF file structures that make up the SD collection are gathered
together into this Vgroup.

7.6.2 Attribute

An attribute is mapped to the Vdata as follows:

• The Vdata has the name=attribute_name and the class=Attr0.0.

• The Vdata has only one field with the name [Values].

• For numerical attributes:

• The order of the field is 1 for a numerical attribute

• The data type of the field is the same as that of attribute.

• The Vdata has N records, where N is the number of attribute values.

• For character attributes:

• The order of the field is N, where N is the number of characters.

• The data type of the field is the same as that of attribute.

• The Vdata has exactly one record.

• If attribute is attached to the file, then the corresponding Vdata will be a member of the
top Vgroup. If attribute is attached to the variable (an SDS or a dimensional scale), then
the Vdata is a member of the variable Vgroup. (See Section 7.6.3, "Variable.")

Vgroup HDF element identified with
tag/ref pair

Vdata Abstract SD model object

Vgroup
name = file_name
class = CDF0.0

SD collection
name = file_name

1 1

(file opened with SD interface)

HDF Specification and Developer’s Guide

June 2017 7-65

FIGURE 7m Model-to-File Mapping -- attribute

7.6.3 Variable

A variable is mapped to a variable Vgroup with name=variable_name and class=Var0.0.
All variable Vgroups are members of the top Vgroup. A Vgroup that represents a variable has as
members N Vgroups which represent dimensions, and where N is the rank of variable.

FIGURE 7n Model-to-File Mapping -- variable, data, and attribute

In Figure 7n, note that NT, SD, SDD, and NDG are discrete and identifiable objects in an HDF file
and are accessible via the H interface. In this figure, the variable’s rank is stored in SDD, the stor-
age type in NT, the data in SD, and the attribute in the Vdata. NDG exists to enable backward com-
patibility with the DFSD interface.

For a more complete discussion of the SDD, NT, SD and NDG structures, see Chapter , Tag Speci-
fications. DFTAG_SDD, DFTAG_SD, and DFTAG_NDG are discussed in Section 9.3.7, "Scientific
Data Set Tags." DFTAG_NT is discussed in Section 9.3.1, "Utility Tags."

7.6.4 Dimension

A dimension is mapped to the following group of HDF objects:

• The Vgroup with the name of dimension_name and class of (U)Dim0.0. The U indicates
that this is an unlimited dimension; otherwise the order of the dimension would be fixed.

• A Vdata within this Vgroup with the name dimension_name and class DimVal0.0 or
DimVal0.1. (See Figure 7o).

• Note the two possible classes. This is a versioning mechanism sometimes used within
the HDF library to identify internal technical changes. In this case, DimVal0.0 iden-
tifies a dimension created under the original approach while DimVal0.1 identifies a
dimension created under a subsequent revision.

Vdata

name = attribute_name
class = Attr0.0

attribute
name = attribute_name

1 1

Vgroup
name = variable_name
class = Var0.0

NDG

SDDSDNT

variable

name = variable_name
rank
type
storagetype

data

Vdata
name = attribute_name
class = Attr0.0

1 1

0…*
0…*

1

1

attribute
name = attribute_name

1
1

1 1

1 1

1 1
1 1

1 1 0...1

0...1

0...1

1

7-66 June 2017

The HDF Group

• If the class is DimVal0.1, the default behavior is that the Vdata has one integer field
(int32) of order 1 and contains only one record with the size of the dimension. If the
user has explicitly created/stored dimension information, then the Vdata will be of
size k, as described in the following DimVal0.0 bullet.

• If the class is DimVal0.0, the Vdata will have k records, where k is the size of the
dimension and the default value of each record equals the record’s position in the
Vdata.

• The dimension Vgroup representing dimension is a member of the variable Vgroup repre-
senting variable (see Figure 7p).

• If dimension is shared, then the dimension Vgroup can be a member of more than one vari-
able Vgroup.

FIGURE 7o Model-to-File mapping - dimension

As illustrated in Figure 7o, the dimension value is stored in the Vdata with name=dimen-
sion_name, which is itself a member of the Vgroup with name=dimension_name.

7.6.5 Overall Correspondence of SDS Elements and the HDF File Structure

The aggregation of the preceding elements and relationships, at the HDF file structure level, is
summarized in Figure 7p.

FIGURE 7p SDS View of the HDF File Structure

Vdata
name = dimension_name
class = DimVal0.0(1)

Vgroup
name = dimension_name
class = (U)Dim0.0

dimension
name= dimension_name
size

1 1

1

1

Vdata
name = dimension_name
class = DimVal0.0(1)

Vdata
name = attribute_name
class = Attr0.0

Vdata
name = attribute_name
class = Attr0.0

Vgroup
name = dimension_name
class = (U)Dim0.0

Vgroup
name = file_name
class = CDF0.0

Vgroup
name = variable_name
class = Var0.0

NDG

SDSDDNT

0…* 1

1

1 1
1

1

1

1

0...1

0...11

11

1

0…*

11
1

1

1...LN

0…*

1

0…*

HDF Specification and Developer’s Guide

June 2017 7-67

Note the correspondence between the elements of the SDS view of the HDF file structure, as illus-
trated in Figure 7p, and the SD Developer’s Model, as illustrated in Figure 7i. This correspon-
dence is illustrated in Figure 7q.

• The SD collection is represented by a Vgroup, the top Vgroup.

• Each variable, which can be either an SDS or a dimension scale, is represented by a variable
Vgroup which is a member of the top Vgroup.

• Dimensions and attributes are represented by Vgroups and Vdatas, respectively, which are
members of the SDS’s variable Vgroup.

• The raw data, data types, storage layout, and specialized information used by the library are
represented by low-level tag/ref elements which are members of the variable Vgroup.

• A dimension attribute is represented by a Vdata which is a member of a dimension scale’s
variable Vgroup.

The HDF SDS file structures are illustrated by the background elements (black) of Figure 7q. The
foreground elements (blue or gray, depending on whether this is viewed in color or black-and-
white) show the relationship between the SD Developer’s Model and the HDF SDS file structures.
Note that Vgroups and Vdatas play several different roles in this scheme; the roles of individual
Vgroups and Vdatas are indicated by their class.

FIGURE 7q Developer’s view of the SD model (Figure 7i) and 
the corresponding elements of the HDF file structure (Figure 7p)

7.6.6 Accessing SD Objects via non-SD Interfaces

The SD interface is the only HDF interface that carefully maintains objects, file structures, and the
relationships among them to ensure the integrity of scientific data sets. While all elements of an

Vdata
name = dimension_name
class = DimVal0.0(1)

Vdata
name = attribute_name
class = Attr0.0

Vdata
name = attribute_name
class = Attr0.0

Vgroup
name = dimension_name
class = (U)Dim0.0

Vgroup
name = file_name
class = CDF0.0

Vgroup
name = variable_name
class = Var0.0

NDG

SDSDDNT

0…* 1

1

1 1
1

1

1

1

0...1

0...11

11

1

0…*

11
1

1

1...LN

0…*

1

0…*

Dimension

SD collection point of entry (top Vgroup)
(File opened with SD interface)

Number type
Dimensional

Data(For backward

Variable attributes

Variable (variable Vgroup)

compatibility)
record for
variableof variable

SD collection attribute

(SDS or dimension scale)

7-68 June 2017

The HDF Group

SD collection are individually accessible and manipulatable via the more general HDF interfaces,
such as the H interface, to do so introduces a significant risk of corrupting relationships and/or
data within the SD collection and is not recommended.

HDF Specification and Developer’s Guide

June 2017 7-69

7.7 SDS Memory Structures and Storage Layout

The preceding sections of this chapter have focused on SD model objects and HDF file structures.
With this section and the next, the focus shifts to the HDF library implementation of the SD mod-
els, including an extensive discussion of the memory structures employed.

The file data structures in which the objects of the SD models are stored are mapped by the library
to data structures in memory either when an HDF file is opened with the SD interface or as the
objects are created during execution. The UML diagram in Figure 7r illustrates this mapping.

FIGURE 7r File Structures to Memory Structures Mapping

These memory structures, NC, NC_ATTR, NC_ARRAY, NC_var and NC_dim, are described in detail in
Section 7.8, "Library Implementation Details with Example File and SDS." The HDF file struc-
tures are mapped to the memory structures as follows:

• The top Vgroup, the Vgroup containing all elements of the SD collection, is mapped to the
NC memory structure.

• Vdatas, containing data array attributes or dimension attributes, are mapped to the
NC_ARRAY of NC_ATTR memory structure.

• Dimension Vgroups, each containing the elements of a dimension, are mapped to the
NC_ARRAY of NC_dim memory structure.

• Variable Vgroups, each containing the elements of an SDS, are mapped to the NC_ARRAY of
NC_var memory structure.

Vdata
name = attribute_name
class = Attr0.0

Vgroup
name = dimension_name
class = (U)Dim0.0

Vgroup
name = variable_name
class = Var0.0

NC_ARRAY of NC_ATTR

NC_ARRAY of NC_dim

NC_ARRAY of NC_var

NC
Vgroup
name = file_name
class = CDF0.0

1 1

0…* 1

0…* 1

0…* 1

File objects Memory objects

7-70 June 2017

The HDF Group

FIGURE 7s Data structures for HDF file contents

nc_type type
size_t len - total length originally allocated
size_t szof - size of each value
unsigned count - length of the array
Void *values - the actual data

NC_array

unsigned count
unsigned len
uint32 hash
char *values

NC_string

(counted array of ints for assoc list)
unsigned count
int *values

NC_iarray
NC_string *name
long size
int32 dim00_compat - compatible w/ Dim0.0
int32 vgid - vg of this dim
int32 count - # of pointers to this dim

NC_dim

NC_string *name
NC_array *data
int32 HDFtype

NC_attr

char path[FILENAME_MAX + 1]
unsigned flags
XDR *xdrs
long begin_rec - postion of the first 'record'
unsigned long recsize - length of 'record'
int redefid ;
/* below gets xdr'd */
unsigned long numrecs - # of 'records' allocated
NC_array *dims
NC_array *attrs
NC_array *vars
int32 hdf_file;
int file_type;
int32 vgid;
int hdf_mode - mode attached for
hdf_file_t cdf_fp - file ptr for CDF files

NC

NC_string *name
NC_iarray *assoc - user definition
unsigned long *shape - compiled info?
unsigned long *dsizes - compiled info?
NC_array *attrs
nc_type type - the discriminant?
unsigned long len - total length originally alloc?
size_t szof - sizeof each value
long begin - seek index, often an off_t
NC *cdf - the file which this var belongs to
int32 vgid - id of the variable's vgroup
uint16 data_ref - ref of var's data storage (if

exists, 0 otherwise)
uint16 data_tag - tag of var's data storage (if

exists)
uint16 ndg_ref - ref of ndg for this dataset
intn data_offset - non-traditional data may not

begin at 0
int32 block_size - size of the blocks for

unlimited dim. datasets
int numrecs - # of records this has been filled
int32 aid - aid for DFTAG_SD data
int32 HDFtype - type of this var as HDF thinks
int32 HDFsize - size of this var as HDF thinks
int32 is_ragged - this is a ragged array
int32 * rag_list - size of ragged array lines
int32 rag_fill - last line in rag_list to be set
vix_t * vixHead - list of VXR records for

CDF data storage

NC_var

HDF Specification and Developer’s Guide

June 2017 7-71

7.8 Library Implementation Details with Example File and SDS

This section describes the interface routines that are used to create, open, and modify an SDS and
its components in the file. In particular, the following evolutionary stages of accessing and manip-
ulating the SDS are discussed:

• The file is created or open.

• An SDS is created.

• Data is written to the SDS.

• Global attributes are set for the file.

• Local attributes are set for the SDS (data string and attribute name) and the dimension
(dimension scale and dimension string).

• Access to the file is terminated.

At each stage, the correspondence between storing the contents in memory and representing the
data in the file is discussed.

Illustrations in this section adhere to the conventions used previously in this chapter, with the fol-
lowing additional elements:

• New items introduced for the next step are lightly shaded.

• Items being removed are heavily shaded and/or labeled in white text.

7.8.1 Creating or opening an HDF file

The routine SDstart creates a new HDF file or opens an existing one.

• When SDstart creates a file, a structure NC is created with the pointers dims, attrs, and
vars set to NULL.

• When SDstart opens a file, a structure NC is created and the structures NC_array, NC_var,
NC_dim, and NC_attr are created and attached to the pointers vars, dims, and attrs cor-
responding to the contents of the file.

The objects are stored in these internal data structures (except for writing values) until the com-
pletion of SDend, which writes the contents in these data structures to the file in the form of
Vgroups, Vdatas, and other objects, as described below in each stage of the file evolution.

7.8.2 Creating an empty SDS

The routine SDcreate creates an SDS by the following steps:

• Creates an NC_dim for each dimension then inserts it into NC_array pointed to by dims. If
dims is NULL, a structure of NC_array is created for it.

• For each NC_dim, creates a structure of NC_string to hold the name of the dimension.

• Creates an NC_var then inserts it into NC_array pointed to by vars. If vars is NULL, a
structure of NC_array is created for it.

• Creates a structure of NC_string to hold the name of the SDS.

• Creates a structure of NC_iarray to hold the indices of the SDS dimensions.

Figure 7t illustrates the contents of the SD collection in the HDF file in memory at this point,
when the collection contains an empty two-dimensional SDS.

7-72 June 2017

The HDF Group

FIGURE 7t SD collection contents in memory after a 2-dimensional SDS is created

dims

vars

name

name

assoc

name

cdf

NC_array

NC_array

NC_string

NC_string

NC_string

NC_dim

NC_dim

NC_iarray

NC

values

values

NC_var
SDS

values

list of dim indices

HDF Specification and Developer’s Guide

June 2017 7-73

Figure 7u illustrates the corresponding representation in the file of the contents of the SD collec-
tion after the access to the file is terminated, i.e., SDend is called. Refer to Section 7.8.9, "Termi-
nating access to the SD collection and file," for the description of the termination process carried
out by this routine. In Figure 7u, a Vgroup at the top level represents the SD collection and con-
tain three other Vgroups. The first two second-level Vgroups represent the two dimensions of the
SDS. Each of these dimension Vgroups includes a one-field Vdata that has one record storing the
size of the dimension. The third second-level Vgroup represents the SDS. This Vgroup includes
several low-level objects, which have been described earlier in the chapter (see Section 7.6.3,
"Variable"):

• NT, SDD, NDG, and SD (introduced in Figure 7v) are tag/ref objects.

• NT, the number type of the SDS, is identified by the tag DFTAG_NT.

• SDD, the scientific data dimension, is identified by the tag DFTAG_SDD.

• NDG, the numeric data group, is identified by the tag DFTAG_NDG.

• SD, the scientific data, is identified by the tag DFTAG_SD. SD is present only after
data has been written to the SDS.

• NT contains a number type definition which can be used by different data objects.

• NDG contains two pointers, one to the NT and one to the SDD. The NDG is included solely
to enable backward compatibility with earlier versions of HDF.

FIGURE 7u SD collection contents in the file with a 2-dimensional empty SDS

name: <filename>
class: "CDF0.0"

Vgroup - Top level

Numeric Data Group
(NDG)

name: name of SDS
class: "Var0.0"

Vgroup - SDS info

Number type
(NT)

Scientific data dimension
record (SDD)

name: name of dimension
class: "DimVal0.0"
 or "DimVal0.1"

Vdata - Dimension

name: name of dimension
class: "Dim0.0"
 or "UDim0.0"

Vgroup - Dimension Info

name: name of dimension
class: "DimVal0.0"
 or "DimVal0.1"

Vdata - Dimension

name: name of dimension
class: "Dim0.0"
 or "UDim0.0"

Vgroup - Dimension Info

7-74 June 2017

The HDF Group

7.8.3 Writing data to an SDS

The routine SDwritedata writes data to an SDS. Since the writes are directly to the file, no new
internal data structures are introduced. The writing process includes searching the Vgroup that
holds the SDS information for the SD object (tag DFTAG_SD.). If this object is not found among
the elements of the SDS information Vgroup, i.e., data has never been written to this SDS, a new
reference number is assigned for the SD object. This new object is then added to the SDS. The
reference number of this new object is stored in (NC_var)->data_ref.

Figure 7v shows the change in the contents of the SD collection in the file after the SDS is written
with data. A new object is added to the SDS Vgroup.

FIGURE 7v SD collection contents in the file after a 2-dimensional SDS is written

When more than one SDS is created, the process of writing to the file is the same as when only
one SDS is created. The dimensions, variable record, and attributes of the succeeding SDSs are
added to the pointer (NC)->dims, (NC)->vars, and (NC)->attrs and are written to the file in
the same manner as for the first SDS.

If a storage layout is specified for the SDS (e.g., compression, chunking, or external storage), then
the SD tag is promoted to a special tag, as described in Chapter 10, Extended Tags and Special
Elements.

name: <filename>
class: "CDF0.0"

Vgroup - Top level

Numeric Data Group
(NDG)

name: name of SDS
class: "Var0.0"

Vgroup - SDS info

Number type
(NT)

Scientific data dimension
(SDD)

name: name of dimension
class: "DimVal0.0"
 or "DimVal0.1"

Vdata - Dimension

name: name of dimension
class: "Dim0.0"
 or "UDim0.0"

Vgroup - Dimension Info

name: name of dimension
class: "DimVal0.0"
 or "DimVal0.1"

Vdata - Dimension

name: name of dimension
class: "Dim0.0"
 or "UDim0.0"

Vgroup - Dimension Info

Scientific data
(SD)

Multidimensional
array - SDS data

HDF Specification and Developer’s Guide

June 2017 7-75

7.8.4 Adding global and local attributes

The routine SDsetattr adds an attribute to

A: the SD collection by the following steps:

Creates an NC_attr for the attribute.

Attaches the new attribute record to the pointer values of NC_array pointed to by
attrs. If attrs is NULL, a structure of NC_array is created for it first.

B: an SDS by the following steps:

Creates an NC_attr for the attribute.

If this object has not yet had any attribute created, i.e., attrs is NULL, starts the attri-
bute list by creating a structure of NC_array, then attaches the new attribute record to the
pointer values of NC_array.

If this object already has an attribute list, searches the attribute list for an attribute with
the same name as the one to be added.

• If one is found, replaces the found attribute structure with the new one.

• If none is found, adds the new attribute structure to the attribute list. Note: the
number of attributes must not exceed the maximum number of attributes allowed
(MAX_NC_ATTRS.)

C: a dimension by the following steps:

• Creates an NC_attr for the attribute

• If the SD collection contains no variable record (from the list (NC)->vars) that rep-
resents this dimension, promotes the dimension to a variable record, i.e. creates an
NC_var for this dimension and attaches it to the variable list of the SD collection,
(NC)->vars. At this point, the dimension has a variable record and, therefore, the
rest of the attribute-setting process is identical to the process for an SDS.

7-76 June 2017

The HDF Group

Figure 7w, below, Figure 7x on page 77, and Figure 7y on page 78 illustrate the changes in the
data structures as a global SDS attribute, an SDS attribute, and a dimension attribute are added,
respectively.

FIGURE 7w SD collection contents in memory after adding a global attribute

NC_arrayattrs

name

data
values ?

NC_attr

NC_array

NC_string

values

dims

vars

name

name

assoc

name

cdf

NC_array

NC_array

NC_string

NC_string

NC_string

NC_dim

NC_dim

NC_iarray

NC

values

values

NC_var
SDS

values

list of dim indices

HDF Specification and Developer’s Guide

June 2017 7-77

FIGURE 7x SD collection contents in memory after adding an SDS attribute

NC_arrayattrs

name

data
values ?

NC_attr

NC_array

NC_string

values

dims

vars

name

name

assoc

name

cdf

NC_array

NC_array

NC_string

NC_string

NC_string

NC_dim

NC_dim

NC_iarray

NC

values

values

NC_var
SDS

values

list of dim indices

attrs NC_array

name

data

values

?

NC_array

NC_string

values NC_attr

7-78 June 2017

The HDF Group

FIGURE 7y SD collection contents in memory after adding a dimension attribute

NC_array

dims

vars

attrs

name

data
values

cdf

?

name

name

assoc

name

cdf

attrs

NC_attr

NC_array

NC_array

NC_array

NC_array

NC_string

NC_string

NC_string

NC_string

NC_dim

NC_dim

NC_iarray

NC

values

values

values

NC_var
SDS

values

list of dim indices

name

data

values

?

NC_array

NC_string

values

NC_var
dimension

attrs NC_array

assoc

name NC_string

NC_iarray values

list of dim indices

NC_attr

name

data

values

?

NC_array

NC_string

values NC_attr

HDF Specification and Developer’s Guide

June 2017 7-79

It is worthwhile to pause at this point and review Figure 7z which highlights the relationship of
the memory structures that have been built up by the library to the elements of the SD model dis-
cussed earlier in this chapter.

FIGURE 7z Example of HDF memory structures describing an SD collection

NC_array

dims

vars

attrs

name

data
values

cdf

?

name

name

assoc

name

cdf

attrs

NC_attr

NC_array

NC_array

NC_array

NC_array

NC_string

NC_string

NC_string

NC_string

NC_dim

NC_dim

NC_iarray

NC

values

values

values

NC_var
SDS

values

list of dim indices

name

data

values

?

NC_array

NC_string

values

NC_var
dimension

attrs NC_array

assoc

name NC_string

NC_iarray values

list of dim indices

NC_attr

name

data

values

?

NC_array

NC_string

values NC_attrS
D

 C
ol

le
ct

io
n

Attribute

Dimension

Variable (SDS)

Variable (dimension scale)

7-80 June 2017

The HDF Group

If SDend is called after adding the preceding elements, Figure 7aa illustrates the representation of
the SD collection in the closed and written file. The top level Vgroup, the SDS Vgroup, and one of
the dimension Vgroups now each has another element, a Vdata, that holds its newly added attri-
bute. Each attribute is stored in a one-field Vdata that has one record containing the attribute val-
ues. The Vdata's order is the number of values in the attribute.

FIGURE 7aa SD collection contents in the file after adding a global attribute, an SDS attribute, and a
dimension attribute

name: name of attribute
class: "Attr0.0"

Vdata - Dimension Attribute
also "local" attribute

name: name of attribute
class: "Attr0.0"

Vdata - "Local" attribute
name: name of attribute
class: "Attr0.0"

Vdata - "global" attribute
name: <filename>
class: "CDF0.0"

Vgroup - Top level

Numeric Data Group
(NDG)

name: name of SDS
class: "Var0.0"

Vgroup - SDS info

Number type
(NT)

Scientific data
dimension (SDD)

name: name of dimension
class: "DimVal0.0"
 or "DimVal0.1"

Vdata - Dimension

name: name of dimension
class: "Dim0.0"
 or "UDim0.0"

Vgroup - Dimension Info

name: name of dimension
class: "DimVal0.0"
 or "DimVal0.1"

Vdata - Dimension

name: name of dimension
class: "Dim0.0"
 or "UDim0.0"

Vgroup - Dimension Info
Scientific data
(SD)

Multidimensional
array - SDS data

HDF Specification and Developer’s Guide

June 2017 7-81

7.8.5 Setting a data string

The routine SDsetdatastrs sets values for the pre-defined attributes label, unit, format, and coor-
dinate system. The process of setting each of these attributes is similar to that of setting a user-
defined attribute, as described in Section 7.8.4, "Adding global and local attributes," except that
the names of these attributes are pre-defined rather than being set by the user.

7.8.6 Setting a dimension name

Figure 7ab shows the dimension list attached to the SD collection structure in a simplified dia-
gram so that the following illustrations will be easy to describe and understand. In this figure,
there are four dimensions named as fakeDimn by default, where n is the index of the dimensions
as they are created.

FIGURE 7ab Structures of the dimension list (example)

The routine SDsetdimname sets the name for a given dimension according to the following crite-
ria:

• If a dimension already exists having the same name as the name being set but having a size
different from that of the given dimension, SDsetdimname fails.

• If no dimension with the given name exists, a new name structure is created and the dimen-
sion is set to the new name. The structure holding the dimension's old name, which can be a
default name or one that was previously set, will be removed. Figure 7ac on page 82 shows
the dimension fakeDim2 renamed to dimname.

• If a dimension already exists having the same name as the name being set and having the
same size as the dimension being set, the found dimension structure (NC_dim) will be used
for the dimension being set as well. Figure 7ad on page 82 illustrates this event. Let's say
that we are setting name for the dimension fakeDim3 to a name, dim_name, that is the
same as that of the third dimension. When the matched dimension is found, all pointers to
the dimension being named are reset to point to the dimension dim_name. The old structure
and its elements are then removed.

name

name

name

NC_string
fakeDim0

NC_string
fakeDim3

NC_string
fakeDim1

NC_array

NC_dim

dimsNC

NC_dim

NC_dim

NC_dim

values

name
NC_string
fakeDim2

7-82 June 2017

The HDF Group

At this point, the SD collection illustrated in Figure 7t on page 72 and Figure 7u is considered
completely evolved. The dimension settings are described in detail in Figure 7ab, Figure 7ac, and
Figure 7ad.

FIGURE 7ac Setting a dimension name to a new name

FIGURE 7ad Setting a dimension name to an existing name

NC_string
fakedim2

NC_string
dim name

new

dim

name

name

name

NC_string
fakedim0

NC_string
fakedim3

NC_string
fakedim1

NC_array

NC_dim

dimsNC

NC_dim

NC_dim

NC_dim

name

values

name

old

NC_string
dim name

dim

name

name

name

NC_string
fakedim0

NC_string
fakedim3

NC_string
fakedim1

NC_array

NC_dim

dimsNC

NC_dim

NC_dim

NC_dim

values

name

ap

dp

HDF Specification and Developer’s Guide

June 2017 7-83

7.8.7 Setting a dimension scale

The routine SDsetdimscale sets values to a given dimension as follows.

• If the SD collection contains no variable record (from the list (NC)->vars) that represents
this dimension, promote the dimension to a variable record as described in the case of set-
ting dimension attribute in Section 7.6.4, "Dimension." and illustrated in Figure 7y, "SD col-
lection contents in memory after adding a dimension attribute." At this point, the dimension
has a variable record and the scale values are written to the variable record.

• If this dimension already has a variable record, the record is updated with the scale values.

In both cases, the number type of the dimension is set via a call to SDsetdimscale.

7.8.8 Setting a dimension string

The routine SDsetdimstrs sets values to the pre-defined attributes label, unit, and format for a
dimension. The process of setting each of these attributes is similar to that of setting a user-
defined attribute described in Section 7.6.4, "Dimension," except that the names of these attri-
butes are pre-defined rather than being set by the user. Before setting values for any of these attri-
butes, a variable record is created for this dimension if the record does not already exist. The
creation of the variable record for a dimension is illustrated in Figure 7.6.4, "Dimension."

If SDsetdimstrs is called before SDsetdimscale, then the number type of this dimension will be
set to DFNT_FLOAT32 (5).

7.8.9 Terminating access to the SD collection and file

The routine SDend terminates access to the SD collection and the HDF file and, if the contents of
the structures have changed, writes all the structures to the file. The following steps will be car-
ried out:

• For each dimension

• a Vdata is created containing the size of the corresponding dimension.

• a Vgroup for this dimension is created. Its reference number is stored in
(NC_dim)->vgid, a Vgroup containing the above Vdata.

• For each SDS

• the record SD that stores the SDS data is written if data has been written to this SDS.

• the record NT that stores the number type is written.

• the record SDD that stores the dimension values is written.

• the NDG record that is formed by the records SD, NT, and SDD is written.

• a Vgroup for this variable is created. Its reference number is stored in 
(NC_var)->vgid, a Vgroup containing all of the dimensions' Vgroups, the attri-
butes' Vgroups if there are any, and the SD, NT, SDD and NDG records.

• For the SD collection and the HDF file

• global attributes are written.

• a Vgroup for the top level is created. Its reference number is stored in (NC)->vgid, a
Vgroup containing all of the global attributes' Vgroups, the dimensions' Vgroups, and
the SDS Vgroups.

7-84 June 2017

The HDF Group

June 2017 8-85

CHAPTER 8 -- General Raster Images:

The GR Model

8.1 Chapter Overview

This chapter provides functional descriptions of the GR Data Model, the GR implementation in
the HDF library, and the HDF file structures employed.

• Section 8.2, "Images in an HDF File," describes the types of images that may be found in an
HDF file.

• Section 8.3, "The GR Data Model," and Section 8.4, "Mapping between GR Data Model
and HDF File Structures," describe the GR data model, including a rigorous UML represen-
tation, and the mapping of the model’s elements to HDF data structures.

• Section 8.5, "Modifying an RIG or RI8 Image via the GR Interface," discusses the interac-
tion of the GR interface with older-style RIG and RI8 images.

• Section 8.6, "Backwards Compatibility when Creating New Images via the GR Interface,"
through Section 8.8, "Relationships among Main Data Structures," describe the GR imple-
mentation in the HDF library and the data structures employed.

• Section 8.9, "The Evolution of an HDF File in the GR Interface," then illustrates several
steps in the evolution of the contents in an HDF file under the GR interface. At each step,
the correspondence between the information as stored in memory and as represented in the
file is described.

Many of the figures in this chapter employ UML notation (Unified Modeling Language notation)
to show object relationships. See Section 7.2, "UML Notation and Object Symbols in HDF Data
Model Descriptions."

8-86 June 2017

The HDF Group

8.2 Images in an HDF File

An HDF file may contain many elements, including general raster images (GR data sets, the sub-
ject of this chapter) and older-style images, palettes, scientific data sets (SDSs), groups of HDF
objects, annotations, etc. Figure 8a provides a high-level illustration of the elements of an HDF
file.

FIGURE 8a An HDF file may contain several objects and object collections

When a file is opened with the GR interface, all of the raster images in the file, including the older
RI8, RIS8, and RIS24 images, become visible to the application, as illustrated in Figure 8ae
below. Other objects in the file are unavailable through the GR interface; they can, however, be
accessed through other interfaces, e.g., the H, V, and SD interfaces.

FIGURE 8ae An HDF file opened with the GR interface

As indicated in these figures, an HDF file may contain any of several styles of raster images; this
is due to the history of HDF development and the need to maintain backwards compatibility. The
older-style raster images, RIG and RI8, will occur in HDF files created with older versions of the
HDF library. (See also Section 8.6, "Backwards Compatibility when Creating New Images via the
GR Interface" regarding the current library’s ability to create these older-style images.) Figure 8af
lists the properties of the three types of images, GR, RIG, and RI8, providing a tabulated compari-
son. The three following subsections describe these images in more detail.

HDF4 file

image**SDS

Vdata

0…*

1

0…*

11

GR data set

0…*

1

other object

0…*

1

0…*

SD collection

Raster images

GR collection

**older style image: RI8, RIS8, or RIS24

HDF4 file

other objects
(invisible to the application)

GR data set

0…*

1

0…*

1

older image**

0…*

1

(opened with GR interface)

**older style image: RI8, RIS8, or RIS24

HDF Specification and Developer’s Guide

June 2017 8-87

FIGURE 8af Three types of raster image

8.2.1 GR data sets

The newest form of raster image in HDF is the general raster image. These images are represented
by GR data sets and are referred to as such throughout this and other HDF documents. GR data
sets were introduced at HDF Release 4.0.

GR data sets provide an extended color capability, global and local attributes, and special storage
capabilities. The elements of a GR data set include the following HDF objects:

• Raster image data

• compressed image data (RLE or run length encoding, SKPHUFF or Skipping-Huff-
man, DEFLATE, and JPEG)

• special storage layout (compressed, chunked, compressed and chunked, or external)

• Image dimension

• Image attribute

• Palette

• Palette dimension

In the file, a GR data set consists of a Vgroup and several elements, as discussed in Section 8.4,
"Mapping between GR Data Model and HDF File Structures," and illustrated in Figure 8am on
page 93.

The GR data sets in a file constitute a GR collection, described in Section 8.3, "The GR Data
Model."

GR data sets are created and manipulated via the GR interface (the GR API); see Section 8.9,
"The Evolution of an HDF File in the GR Interface.". The GR interface also reads, and can manip-
ulate, older-style raster images; see Section 8.5, "Modifying an RIG or RI8 Image via the GR
Interface."

raster image

GR data set RIG
n-component
compression types
 RLE
 SKPHUFF
 DEFLATE
 JPEG

special storage
 compressed
 chunked
 chunked & compressed
 external storage

attributes

RIS8 (1-component)
 compression types
 RLE
 IMCOMP
 JPEG

RIS24 (3-component)
 compression type
 JPEG

RI8 (1-component)
compression types
 RLE
 IMCOMP

P
ro

pe
rt

ie
s

RI8

8-88 June 2017

The HDF Group

8.2.2 RIG images (RIS8 and RIS24)

Raster image groups (RIGs), including RIS8 and RIS24 images, were the first HDF images to
employ a grouping structure and provided the first 24-bit color image capability in HDF, while
also providing extended compression capabilities. RIGs were the immediate predecessors to the
GR approach and were introduced at HDF Release 2.0.

RIG images are represented by a raster image group (RIG) that contains pointers to other HDF
objects. This type of raster image does not have attributes but does have all the other elements in
the GR list above. Characteristics particular to RIGs are as follows:

• All RIG images are made up of 8-bit components.

• An RIS8 image is a 1-component, or 8-bit, RIG; an RIS24 image is a 3-component, or 24-
bit, RIG.

• RIG compression modes are RLE (run-length encoding), IMCOMP, and JPEG.

Figure 8ag presents the file elements that make up an RIG image with a palette, which is optional.

FIGURE 8ag RIG with raster image and palette

An RIG is a tag/ref object and is fully described in Section 9.3.4, "Raster Image Tags," in Chapter
, Tag Specifications. The DFTAG_RI, DFTAG_ID, DFTAG_LUT, and DFTAG_LD objects are
fully described in the same chapter.

8.2.3 RI8 images

The RI8 image is the original HDF 8-bit raster image and provides basic compression capabilities.
RI8 images are characterized as follows:

• RI8 images employ no grouping structure.

• There are three compression modes for RI8 images:

• uncompressed images identified by the tag DFTAG_RI8

• RLE-compressed images identified by the tag DFTAG_CI8

• IMCOMP-compressed images identified by the tag DFTAG_II8

• Image dimensions are identified by the tag DFTAG_ID8.

• Palette dimensions are identified by the tag DFTAG_IP8.

An RI8 image is a tag/ref object and is fully described in Section 9.3.9, "Obsolete Tags," in Chap-
ter , Tag Specifications.

0...1

1…*

RIG
tag: DFTAG_RIG

palette
tag: DFTAG_LUT

1

palette dimension
tag: DFTAG_LD

image dimension
tag: DFTAG_ID

11

raster image data
tag: DFTAG_RI
or compression tag

1

HDF Specification and Developer’s Guide

June 2017 8-89

The ability of the current library to process RIG and RI8 images is intended only to support back-
ward compatibility. The RIG and RI8 interfaces are both obsolete APIs and it is highly recom-
mended that only the GR interface be used in new applications.

8.3 The GR Data Model

This section provides a logical description of an HDF file containing GR images. A user’s view of
the data model is presented in Section 8.3.1, "A Casual View," and Figure 8ah, "A sample user’s
view of the GR model." The formal data model and a graphical representation are presented in
Section 8.3.2, "The Formal GR Data Model," and Figure 8ai, "GR data model."

8.3.1 A Casual View

From a user’s point of view, an HDF file containing GR data sets is structured as follows and as
illustrated in Figure 8ah on page 90:

• The file contains GR data sets and optional global attributes.

• Every GR data set includes the following information:

• Name

• Number of components

• Dimension sizes (2 dimensions only)

• Pixel data type

• Image interlace mode (by pixel, line, or plane)

• Each GR data set may have the following associated elements and properties

A palette is described by the following characteristics:

• Data type

• Number of entries

• Number of components

• Interlace mode

Global attributes, when present, are defined by the user, apply to all raster images in the file, and
usually describe the intended usage of the GR data sets in the file. GR data set attributes, some-
times known as local attributes, are also optional, defined by the user, and describe only that data
set.

GR data sets can have one of several storage layouts, as listed in Table 8a.

TABLE 8a GR storage layouts

•Contiguous storage is the default layout and requires no special storage tag.

• Attribute(s)

• A palette

• Data

• Storage layout

GR data set

contiguous

special storage

chunked
com-

pressed

chunked
and com-
pressed external

8-90 June 2017

The HDF Group

FIGURE 8ah A sample user’s view of the GR model

H
D

F
4

fi
le

G
R

 im
ag

e
1

na
m

e
=

 “
ri

1”
sp

at
ia

l i
nf

or
m

at
io

n

 c
om

po
ne

nt
s

=
 1

 d

im
 s

iz
es

 =
 1

00
 x

 2
00

ty
pe

 =
 f

lo
at

in
g

po
in

t

gl
ob

al
 a

tt
ri

bu
te

(s
)

va
lu

e=
“C

on
S

i”
(a

pp
li

es
 o

nl
y

to
 G

R
 im

ag
es

)

. .
 .

at
tr

ib
u

te
s

va
lu

e=
“t

im
e”

im
ag

e
da

ta
ch

un
ke

d
&

co
m

pr
es

se
d

G
R

 im
ag

e
2

na
m

e
=

 “
ri

2”
sp

at
ia

l i
nf

or
m

at
io

n

 c
om

po
ne

nt
s

=
 1

 d

im
 s

iz
es

 =
 1

0
x

5
ty

pe
 =

 in
te

ge
r

im
ag

e
da

ta
no

t c
hu

nk
ed

 &
no

t c
om

pr
es

se
d

G
R

 im
ag

e
3

na
m

e
=

 “
ri

3”
sp

at
ia

l i
nf

or
m

at
io

n

 c
om

po
ne

nt
s

=
 1

 d

im
 s

iz
es

 =
 4

 x
 3

ty
pe

 =
 f

lo
at

in
g

po
in

t

(N
ot

e:
 N

o
da

ta
)

G
R

 im
ag

e
n

na
m

e
=

 “
ri

n”
sp

at
ia

l i
nf

or
m

at
io

n

 c
om

po
ne

nt
s

=
 1

 d

im
 s

iz
es

 =
 1

0
x

5
ty

pe
 =

 in
te

ge
r

im
ag

e
da

ta
ex

te
rn

al
 f

ile

G
R

 im
ag

e
4

na
m

e
=

 “
ri

4”
sp

at
ia

l i
nf

or
m

at
io

n

 c
om

po
ne

nt
s

=
 3

 d

im
 s

iz
es

 =
 1

0
x

5
x

3
ty

pe
 =

 in
te

ge
r

im
ag

e
da

ta
no

t c
hu

nk
ed

 &
no

t c
om

pr
es

se
d

pa
le

tte
pa

le
tt

e

O
ld

-s
ty

le

 im
ag

e(
s)

e.
g.

, R
IG

 o
r

R
I8

at
tr

ib
ut

es

va
lu

e=
“t

im
e”

HDF Specification and Developer’s Guide

June 2017 8-91

For descriptions and definitions of the required and optional components that make up a general
raster image, and of the GR interface routines provided by the HDF library to create and access
GR data sets in the file, see Chapter 8, “General Raster Images (GR API),” in the HDF User’s
Guide. For a complete description of palettes, see Chapter 9, “Palettes,” in the HDF User’s Guide.

8.3.2 The Formal GR Data Model

The formal GR Data Model includes one type of object the user does not actually see, the GR col-
lection. An HDF file may contain zero or one GR collection which may, in turn, contain zero or
more GR data sets. The optional global attributes are actually associated with the GR collection.

A GR data set is an HDF data structure used to store a generalized raster image and the supporting
metadata. Each GR data set may have zero or more associated attributes, sometimes referred to as
local attributes.

The GR data sets and the associated objects (see Figure 8ai) can be accessed only through the GR
interface.

FIGURE 8ai GR data model

The formal model is based on relationships among user-specified objects of the GR Data Model
and the associated object attributes, as described in Figure 8aj.

FIGURE 8aj GR Data model objects

GR collectionattribute

GR data set

palette attribute

0…*

0…*

0…*

1

1

11

image data

0...1

1

(file opened with GR interface)

Shading indicates
objects or associations
created by library.

0…1

HDF4 file

0…1

1

file

name

GR data set

name
dimension sizes
of components
data type
interlace mode
data

attribute

name
type
data

palette

data type
(uint8 only)

of entries
of components
interlace mode

8-92 June 2017

The HDF Group

The GR interface provides routines to access the objects depicted in Section FIGURE 8ah, "A
sample user’s view of the GR model," and Section FIGURE 8aj, "GR Data model objects." If an
object is part of another object, it cannot be accessed by the GR interface without first accessing
that other object; e.g., palette or attribute information can be accessed only after accessing the
associated raster image.

8.4 Mapping between GR Data Model and HDF File Structures

This section describes the mapping between the objects represented in the UML diagram in Figure
8ai, "GR data model," and the HDF objects in the file.

The illustrations in this section employ the symbols in Figure 8ak to identify file structures.

FIGURE 8ak File structure symbols

Elements of the GR data model map to HDF file objects as illustrated in Figure 8al

FIGURE 8al Model-to-file mapping -- GR_collection

A GR attribute is represented by a Vdata with one
field. The field name is the name of the attribute.
The field contains the value of the attribute; the
number of records in the field corresponds to the
number of attribute values. For example, the fig-
ure to the right represents an attribute named
attribute_name with the value abcd.

Vgroup Other low-level HDF objects,
usually identified by a tag/ref pair

Vdata Abstract GR model object

{ + }
{ + }

Vgroup
name = RIG0.0
class = RIG0.0

GR collection

GR data set

1 1

11

(file opened with GR interface)

Vdata
name = RIATTR0.0N
class = RIATTR0.0C

Attribute 11

Vgroup
name = image_name
class = RI0.0

Palette 11 palette
tag: DFTAG_LUT

palette dimension
tag: DFTAG_LD

Two tag/ref elements added to GR data set Vgroup

Image data 11 image data
tag: DFTAG_RI
 or extended tag

image dimension
tag: DFTAG_ID

Two tag/ref elements added to GR data set Vgroup

Vdata
name = RIATTR0.0N
class = RIATTR0.0C
field_name = “attribute_name”

Records

a

b

c

d

1

2

3

4

Record
content

HDF Specification and Developer’s Guide

June 2017 8-93

Figure 8am presents the file elements that make up an image, or GR data set, and the relationships
among them as created by the GR interface.

FIGURE 8am File structures representing a GR data set

• For any given image, the Vgroup may contain either

• raster image data, DFTAG_RI or

• raster image data in a special storage format, indicated by an extended tag. Extended
tags are described in Chapter 10, Extended Tags and Special Elements.

• The image dimension object, DFTAG_ID, includes image dimension, interlace mode and
compression information. Image compression may be RLE (run length encoding),
SKPHUFF (Skipping-Huffman), DEFLATE, or JPEG.

• The GR data set Vgroup must have a class name of RI0.0. Should changes in the GR data
structures ever become necessary, the class mechanism will enable the HDF library to man-
age evolving versions.

Figure 8an graphically presents the relationships among the elements of the formal GR data
model. The GR collection is represented by a Vgroup whose members are the global attribute
Vdata and the GR data set Vgroups. Each GR data set is represented by a Vgroup whose members
are the image data and dimension objects, the palette objects, and the local attribute Vdata.

FIGURE 8an File structures representing a GR collection

Vdata
name = attribute_name
class = Attr0.0

Vgroup
name = image_name
class = RI0.0

palette
tag: DFTAG_LUT

0…*

1 1

local attribute

palette dimension
tag: DFTAG_LD

0...1

1…*

image dimension
tag: DFTAG_ID

1

1

1

raster image data
tag: DFTAG_RI
 or extended tag

1

Vdata
name = RIATTR0.0N
class = RIATTR0.0C

Vgroup
name = RIG0.0
class = RIG0.0

0…*

1

1
local attribute

Vgroup
name = name_of_image
class = RI0.0

1

0…1

1

0…*

global attribute

Vdata
name = RIATTR0.0N
class = RIATTR0.0C

palette
tag: DFTAG_LUT

palette dimension
tag: DFTAG_LD

image dimension
tag: DFTAG_ID

11

raster image data
tag: DFTAG_RI
 or extended tag

11

0...1

GR data set

GR collection

8-94 June 2017

The HDF Group

8.5 Modifying an RIG or RI8 Image via the GR Interface

This section discusses the consequences of using the GR API to access and modify older-style
RIG and RI8 images. This situation is likely to arise only when using the current version of the
HDF library to edit a file that was created with an on older version.

Consider the file illustrated in Figure 8ao. This file contains one GR data set, one local attribute
on that GR data set, one global attribute, one RIG image, and one palette on that RIG image.

FIGURE 8ao File with one GR data set and one RIG image

Now consider the use of the GR API to modify the RIG image.

First note that if the GR API modifies just the data of the RIG, e.g., the image or palette values or
dimensions, but does not add an attribute, GR makes no changes to the file structure.

If an attribute is added, however, GR creates a Vgroup for a new GR data set, links the elements of
the image (DFTAG_RI or extended tag in the case of special storage, DFTAG_ID, DFTAG_LUT,
and DFTAG_LD) into that Vgroup, and adds the attribute Vdata.

The RIG group element (DFTAG_RIG) is not linked into the GR data set Vgroup. The RIG image
remains available via the older interfaces, though those interfaces will not show the attribute. Fig-
ure 8ap illustrates the structure of the file after an attribute has been added to the RIG image by
means of the GR interface.

An RI8 image is incorporated into the GR collection under the same circumstances and in the
same manner as the elements of an RIG image. The only difference is that there is not RIG object
(DFTAG_RIG) to consider.

When the GR interface is initiated, the information about the HDF file and its contents are
mapped into memory and stored in the GR interface's main data structures, as discussed in
Section 8.7, "Main Data Structures and their Relationships." These structures then maintain and
update the information during processing of the application, and they are described in more details

Vdata
name = RIATTR0.0N
class = RIATTR0.0C

Vgroup
name = RIG0.0
class = RIG0.0

image dimension
tag: DFTAG_ID

local attribute
Vgroup
name = name_of_image
class = RI0.0

raster image data
tag: DFTAG_RI

GR global attribute

Vdata
name = RIATTR0.0N
class = RIATTR0.0C

File

RIG

GR collection

GR data set

RIG
name: name of image
tag: DFTAG_RIG
class: RI0.0

palette
tag: DFTAG_LUT

palette dimension
tag: DFTAG_LD

image dimension
tag: DFTAG_ID

raster image data
tag: DFTAG_RI
 or extended tag

HDF Specification and Developer’s Guide

June 2017 8-95

in the next section. When all processing is done, if the file contents have changed, the physical
file will be updated with the information stored in the data structures.

FIGURE 8ap File of Figure 8ao after GR API has been used to add an attribute to the RIG image

8.6 Backwards Compatibility when Creating New Images via the GR
Interface

The HDF library makes extensive efforts to maintain backwards compatibility. When a new image
is created via the GR interface, the library creates as many as possible of the following versions of
the image:

• A GR data set is always created.

• An RIG is created for every image that meets the RIG criteria. For example, an RIG can be
created for 1-component or 3-component images if the components are 8-bit integers and
the compression mode is available for an RIG image. The images would be RIS8 or RIS24,
respectively. If the image includes an attribute, that attribute will appear in the GR version
of the image but will not be accessible in the RIG version.

• An RI8 image is created if the image meets the RI8 criteria. For example, an RI8 can be cre-
ated for a 1-component, 8-bit image that uses a compression mode available for an RI8
image.

Vdata
name = RIATTR0.0N
class = RIATTR0.0C

Vgroup
name = RIG0.0
class = RIG0.0

image dimension
tag: DFTAG_ID

local attribute
Vgroup
name = name_of_image
class = RI0.0

raster image data
tag: DFTAG_RI

GR global attribute

Vdata
name = RIATTR0.0N
class = RIATTR0.0C

File

Vdata
name = RIATTR0.0N
class = RIATTR0.0C

local attribute

Vgroup
name = name_of_image
class = RI0.0

RIG
name: name of image
tag: DFTAG_RIG
class: RI0.0

palette
tag: DFTAG_LUT

palette dimension
tag: DFTAG_LD

image dimension
tag: DFTAG_ID

raster image data
tag: DFTAG_RI
 or extended tag

GR collection

GR data set

New GR data set
containing elements of RIG

RIG

8-96 June 2017

The HDF Group

8.7 Main Data Structures and their Relationships

This section provides the description of the main data structures used in the GR interface to store
a GR data set's contents in memory. Figure 8aq lists these data structures and all their elements.

gr_info_t File information structure storing information about the HDF file.

ri_info_t Raster image information structure storing information about a raster image.

at_info_t Attribute information structure storing local and global attribute information.

dim_info_t Dimension information structure storing both image and palette dimension
information.

These structures are somewhat self-described in Figure 8aq, except for some details too complex
to present in the figure. The following subsections provide additional details about these struc-
tures. The last subsection in this section describes the relationships among the data structures.

HDF Specification and Developer’s Guide

June 2017 8-97

FIGURE 8aq Main data structures in GR interface

int32 index - index of the attribute

int32 nt - number type of the attribute

int32 len - length/order of the attribute

uint16 ref - ref of the attribute (stored in VData)

uintn data_modified - whether the attribute data has been modified

uintn new_at - whether the attribute was added to the Vgroup

char *name - name of the attribute

void * data - data for the attribute

at_info_t: this structure holds the attribute information

int32 hdf_file_id - the corresponding HDF file ID

uint16 gr_ref - ref # of the Vgroup of the GR in the file

int32 gr_count - # of image entries in grtree so far

TBBT_TREE *grtree - root of image B-Tree

uintn gr_modified - whether any images have been modified

int32 gattr_count - # of global attr entries in gattree so far

TBBT_TREE *gattree - root of global attribute B-Tree

uintn gattr_modified - whether any global attributes have been modified

intn access - the number of active pointers to this file

uint32 attr_cache - the threshhold for the attribute sizes to cache

gr_info_t: this structure holds the file information

int32 index - index of this image

uint16 ri_ref - ref # of the RI Vgroup

uint16 rig_ref - ref # of the RIG group

gr_info_t *gr_ptr - ptr to the GR info that this ri_info applies to

dim_info_t img_dim - image dimension information

dim_info_t lut_dim - palette dimension information

uint16 img_tag, img_ref - tag & ref of the image data

int32 img_aid - AID for the image data

intn acc_perm - Access permission (read/write) for image AID

uint16 lut_tag,lut_ref - tag & ref of the palette data

gr_interlace_t im_il - interlace of image when next read (default PIXEL)

gr_interlace_t lut_il - interlace of LUT when next read

uintn data_modified - whether the image or palette data has been modified

uintn meta_modified - whether the image or palette meta-info has been modified

uintn attr_modified - whether the attributes have been modified

char *name - name of the image

int32 lattr_count - # of local attr entries in ri_info so far

TBBT_TREE *lattree - Root of the local attribute B-Tree

intn access - the number of times this image has been selected

uintn use_buf_drvr - access to image needs to be through the buffered special element driver

uintn use_cr_drvr - access to image needs to be through the compressed raster special element driver

uintn comp_img - whether to compress image data

int32 comp_type - compression type

comp_info cinfo - compression information

uintn ext_img - whether to make image data external

char *ext_name - name of the external file

int32 ext_offset - offset in the external file

uintn acc_img - whether to make image data a different access type

uintn acc_type - type of access-mode to get image data with

uintn fill_img - whether to fill image, or just store fill value

void * fill_value - pointer to the fill value (NULL means use default fill value of 0)

uintn store_fill - whether to add fill value attribute or not

ri_info_t: this structure holds the raster image information

uint16 dim_ref - reference # of the Dim record

int32 xdim, ydim - dimensions of the image or palette

int32 ncomps - number of comps of each pixel in image

int32 nt - number type of the components

int32 file_nt_subclass - number type subclass of data on disk

gr_interlace_t il - interlace of the comps (stored on disk)

uint16 nt_tag, nt_ref - tag & ref of the number-type info

uint16 comp_tag, comp_ref - tag & ref of the compression info

dim_info_t: this structure holds the image and palette
dimension information

8-98 June 2017

The HDF Group

8.7.1 File Information Structure (gr_info_t)

The gr_info_t structure contains the information describing the HDF file whose identifier is
stored in hdf_file_id (refer to Figure 8aq).

Additional details are as follows:

• gr_ref is the reference number of the top level Vgroup in Figure 8an.

• grtree points to the tree whose nodes link to the raster image information structure
describing an image in the file (see Figure 8at). Note that the images stored in this tree may
include images read in from an existing file and images created in the application.

• gr_count indicates the number of nodes in the tree grtree, i.e., the number of images cur-
rently stored in the file information structure.

• gr_modified and gattr_modified ensure that the file will be updated during GRend
processing.

• gattree points to the tree whose nodes link to the attribute information structure which
describes a global attribute in the file (see Figure 8at). Note that the attributes stored in this
tree may include attributes read in from an existing file and attributes created in the applica-
tion.

• gattr_count indicates the number of nodes in the global attribute tree gattree, i.e., the
number of global attributes currently stored in the file information structure.

8.7.2 Raster Image Information Structure (ri_info_t)

The ri_info_t structure contains information describing a raster image.

When an existing file is opened, its contents are retrieved and stored in the data structures. The
contents may include raster images, which may be of any type described in Section 8.2, "Images
in an HDF File." The following table illustrates how different reference numbers in this structure
are used to store the in-file representation of the three types of raster images. Notice that
dim_ref in the table belongs to the dimension information structure; however, because the
dimension information structure is used by this image for both the image dimension and the
image's palette dimension, it makes more sense to describe the dimensions' reference number
here.

HDF Specification and Developer’s Guide

June 2017 8-99

TABLE 8b Reference numbers and the in-file representation of raster images

Additional details are as follows:

• img_dim is a structure describing the image dimension, as in Figure 8am and Figure 8an.

• lut_dim is a structure describing the palette dimension in Figure 8am and Figure 8an.

• data_modified, meta_modified, and attr_modified ensure that the file will be
updated as necessary during the GRend processing.

• lattree points to the tree whose nodes link to the attribute information structure which
describes an attribute of the image (see Figure 8au). Note that the attributes stored in this
tree may include attributes read in from an existing file and attributes created in the applica-
tion.

• lattr_count indicates the number of nodes in the local attribute tree lattree, i.e., the
number of image attributes currently stored in the file information structure.

8.7.3 Attribute Information Structure (at_info_t)

The at_info_t structure is used to store the information describing a local or global attribute.

Additional details are as follows:

• ref is the reference number of the Vdata representing a global or local attribute in Figure
8an.

• new_at ensures that an attribute that is newly created in an application is permanently
recorded in the file before the file is closed. If this flag is set, GRend will add the tag/refer-
ence number pair of the Vdata that represents a local or global attribute to its RI Vgroup or
the GR Vgroup, accordingly.

8.7.4 Dimension Information Structure (dim_info_t)

The dim_info_t structure is used to store the information describing an image or palette dimen-
sion.

8.8 Relationships among Main Data Structures

Figure 8ar provides a high-level illustration of the relationships among these data structures while
Figure 8as, Figure 8at, and Figure 8au depict the relationships in more detail. As illustrated, the
data structures TBBT_TREE and TBBT_NODE are widely used in the GR interface. TBBT_TREE is a
threaded, balanced, binary tree that is used to store different lists of objects and their information.

GR data set RIG raster image Non-group raster image

ri_ref Ref# of GR data set Vgroup DFREF_WILDCARD DFREF_WILDCARD

rig_ref aux_ref? or DFREF_WILDCARD Ref# of RIG group DFREF_WILDCARD

img_ref

Ref# of either the raster image data
or the compressed image data

Ref# of either the raster image
data or the compressed image
data

Ref# of one of the following:
• 8-bit raster image
• RLE compressed 8-bit raster image
• IMCOMP compressed 8-bit raster image

lut_ref

Ref# of the palette Ref# of the palette Ref# of one of the following:
• 8-bit palette
• RLE compressed 8-bit palette
• IMCOMP compressed 8-bit palette

img_dim.dim_ref Ref# of the image dimension Ref# of the image dimension DFREF_WILDCARD

lut_dim.dim_ref Ref# of the palette dimension Ref# of the palette dimension DFREF_WILDCARD

8-100 June 2017

The HDF Group

Part of the definition of the tree can be found in Figure 8as. Basically, the tree is a structure that
has a pointer, called root, pointing to another structure, TBBT_NODE, which is a node of the tree.
The main elements of TBBT_NODE include two void pointers, data and key, and an array of
three pointers that point to the parent, the left child, and the right child of the current node. The
pointer data points to the data structure that is stored in this tree. The pointer key points to the
value that is used to search for the data in the tree.

HDF Specification and Developer’s Guide

June 2017 8-101

FIGURE 8ar High-level description of the relationships among the main data structures

V
O

ID
P

...

T
B

B
T

_T
R

E
E

 gr_tree
data

T
B

B
T

_N
O

D
E

root

gr_info_t

ri_info_t

at_info_t

at_info_t
...

...

V
O

ID
P

...

T
B

B
T

_T
R

E
E

T
B

B
T

_T
R

E
E

...

T
B

B
T

_N
O

D
E

...

T
B

B
T

_N
O

D
E

...

grtree

gattree

root

root

T
B

B
T

_T
R

E
E

...

dim
_info_t

lut_dim

dim
_info_t

im
g_dim

lattree

T
B

B
T

_N
O

D
E

...
root

V
O

ID
P

...

data

data

V
O

ID
P

...

data

...

8-102 June 2017

The HDF Group

Figure 8as shows a global tree gr_tree that holds the GR file structure gr_info_t, which is
used to store the file contents that are read into memory for processing or that are newly created
and will be written to the file. The global tree gr_tree is allocated when GRstart is first invoked
in an application. A new structure of gr_info_t is also created and inserted into the tree at this
time (routine New_grfile). If GRstart is invoked more than once for a file in an application, then
the global tree gr_tree already exists and the current structure gr_info_t will be used (routine
Get_grfile). The key value used for searching in this tree is the HDF file identifier.

FIGURE 8as The global GR tree

Figure 8at describes the elements of the GR file structure gr_info_t. This structure contains
two TBBT_TREE trees, grtree and gattree. The tree grtree contains the information for all
the images in the file; thus, the pointer data in its nodes points to a raster image information
structure, ri_info_t. Similarly, the tree gattree contains the information for all the global
attributes in the file and its nodes point to the attribute information structure, at_info_t. If the
file, which gr_info_t represents, has not been accessed in the current application, GRstart fills
in the initial information of the GR file structure, which includes the creation of the two trees,
grtree and gattree. GRstart then invokes GRIget_image_list to read in the file contents and
store in the global tree gr_tree as follows:

• For each of the global attributes, an attribute structure, at_info_t, is created and inserted
into the attribute tree gattree, branching out from gr_tree.

• For each of the raster images, a raster image structure, ri_info_t, is created and inserted
into the grtree. Figure 8au illustrates the raster image structure and its main elements.
These elements include two dimension information structures, dim_info_t, describing the
image dimension and the image's palette dimension; a compression information structure,
comp_info, describing the image's compression; and a tree, TBBT_TREE, holding all the
attributes of the image.

• For each attribute of a raster image, an attribute structure, at_info_t, is created and
inserted into the attribute tree lattree branching out from the raster image's structure.

gr_info_t

VOIDP VOIDP
TBBT_NODE

link[0] | link[1] | link[2] ...
TBBT_NODE

count...

root

Parent Lchild Rchild

NULL NULLNULL

hdf_file_id

TBBT_TREE* gr_tree
- global, static

keydata

HDF Specification and Developer’s Guide

June 2017 8-103

FIGURE 8at Illustration of data structure gr_info_t

FIGURE 8au Illustration of data structure ri_info_t

ri_info_t

VOIDP VOIDP
TBBT_NODE

link[0] | link[1] | link[2] ...
TBBT_NODE

count...

root

Parent Lchild Rchild

NULL NULLNULL

index

at_info_t

VOIDP VOIDP
TBBT_NODE

link[0] | link[1] | link[2] ...
TBBT_NODE

count...
root

Parent Lchild Rchild

NULL NULLNULL

index

gr_info_t

data key

keydata

gr_info_t* gr_ptr

TBBT_TREE

TBBT_TREE

...

grtree

gattree

at_info_t

VOIDP VOIDP
TBBT_NODE

link[0] | link[1] | link[2] ...
TBBT_NODE

count...

root

Parent Lchild Rchild

NULL NULLNULL

index

ri_info_t

lattree

keydata

dim_info_t lut_dim

TBBT_TREE

comp_info cinfo

...
dim_info_t img_dim

8-104 June 2017

The HDF Group

8.9 The Evolution of an HDF File in the GR Interface

This section illustrates several steps in the evolution of the contents in an HDF file under the GR
interface. At each step, the correspondence between the information as stored in memory and as
represented in the file is described.

• The file is created for access from the GR interface.

• Two raster images are created and written with data.

• Attributes are added to the file and to one of the raster images.

• A palette is added for one of the raster images.

The section also illustrates how the main GR structures represent the file elements in memory.
The routines involved in constructing the file are described as necessary.

8.9.1 Creating or Opening an HDF File

A typical HDF5 application calls the routine Hopen to create a new HDF file or to open an exist-
ing file.

Next, the routine GRstart is called to initiate the GR interface. GRstart does the following:

• Allocates the file information tree, gr_tree. (Note that if GRstart is called more than
once for the same HDF file, this tree will not be allocated again.)

• Initializes the atom groups for GR data sets (and older-style raster images).

• Retrieves the information of all contents in the file into the tree by invoking GRIget_im-
age_list, which fills in gr_tree with structures such as gr_info_t, ri_info_t, at_in-
fo_t, and dim_info_t.

At the end of GRstart, a newly created HDF file is represented in memory as shown in Figure
8av. Since there are neither images nor global attributes in the file, the roots of the image tree
grtree and global attribute tree gattree point to NULL.

HDF Specification and Developer’s Guide

June 2017 8-105

FIGURE 8av Data structures of a newly created HDF file in memory

Note that the reference number gr_ref in gr_info_t is DFREF_WILDCARD at this time. That
indicates that there is not yet a corresponding GR Vgroup in the file. This Vgroup is created
during the GRend processing and gr_ref will then have a valid reference number, which is that
of the GR Vgroup and which will then be written into the file.

8.9.2 Creating and Writing to a Raster Image

The routine GRcreate creates a raster image in the following steps:

• Creates an ri_info_t structure and fills it with initial information.

• Creates a Vgroup for this raster image, i.e., for this GR data set.

• Inserts the structure into the image tree (gr_info_t)grtree.

Figure 8aw illustrates the data structures after two raster images are created. The dashed boxes
indicate the new data structures for the two new GR data sets. Notice that the local attribute trees
lattree point to NULL indicating that the raster images have no attributes at this time. For the
similar reason, the global tree gattree points to NULL. When GRend is invoked, the contents of
the file are updated, causing these new images to be written to the file.

The file being assembled in these sections is illustrated in Figure 8ay, "File with two GR data sets,
global attribute, local attribute, and image palette."

TBBT_NODE

count...

root

VOIDP VOIDP
TBBT_NODE

link[0] | link[1] | link[2] ...
TBBT_NODE

count...
root

Parent Lchild Rchild

??? NULLNULL

hdf_file_id

TBBT_TREE* gr_tree
- global, static

TBBT_NODE

count...

root
NULL

gr_info_t

key

data

NULL

TBBT_TREE

TBBT_TREE

...

gr_ref =
DFREF_WILDCARD

grtree

gattree

8-106 June 2017

The HDF Group

FIGURE 8aw Data structures storing two raster images

V
O

ID
P

V
O

ID
P

link[0] | link[1] | link[2]
T

B
B

T
_N

O
D

E
...

T
B

B
T

_N
O

D
E

count

...

root

L
child

L
child

index

T
B

B
T

_N
O

D
E

count

...

root

N
U

L
L

gr_info_t

data

key

T
B

B
T

_T
R

E
E

T
B

B
T

_T
R

E
E

...

grtree

gattree

T
B

B
T

_N
O

D
E

count

...

root
N

U
L

L

N
U

L
L

dim
_info_t lut_dim

T
B

B
T

_T
R

E
E

com
p_info cinfo

dim
_info_t im

g_dim

lattree

gr_info_t* gr_ptr

ri_info_t, stores first raster im
age's info

V
O

ID
P

V
O

ID
P

link[0] | link[1] | link[2]
T

B
B

T
_N

O
D

E
...

R
child

N
U

L
L

index
data

key

P
arent

P
arent

...

R
child

N
U

L
L

T
B

B
T

_N
O

D
E

count
...

root
N

U
L

L

dim
_info_t lut_dim

T
B

B
T

_T
R

E
E

com
p_info cinfo

dim
_info_t im

g_dim

lattree

...

ri_info_t, stores second raster im
age's info

gr_info_t* gr_ptr

HDF Specification and Developer’s Guide

June 2017 8-107

8.9.3 Adding Attributes

The routine GRsetattr creates an attribute for a file or for a raster image in the following steps:

• If the attribute already exists in the file, then simply updates it, although, the number type
cannot be changed

• If the attribute's data is small enough to be cached, keeps the data in memory where
specified by (at_info_t)data.

• Otherwise, writes the data to the attribute Vdata on disk.

• If the attribute is new, the following actions are performed:

• Creates the attribute structure at_info_t and stores the attribute information.

• If the attribute's data is small enough to be cached, keeps the data in memory where
specified by (at_info_t)data.

• Otherwise, writes the data to the attribute Vdata on disk.

• Adds the attribute structure to the attribute tree, which can be either the global attri-
bute tree (gr_info_t)gattree or the local attribute tree (ri_info_t)lattree.

Figure 8ax shows the memory data structures with two raster images, one file attribute, and one
local attribute. An at_info_t structure is also added to the global attribute tree for the new file
attribute. When GRend is invoked, the contents of the file are updated, causing these attributes
be written to the file.

8-108 June 2017

The HDF Group

FIGURE 8ax Data structures after adding two attributes

V
O

ID
P

V
O

ID
P

link[0] | link[1] | link[2]
T

B
B

T
_N

O
D

E
...

T
B

B
T

_N
O

D
E

count

...

root

L
child

L
child

index

T
B

B
T

_N
O

D
E

count

...

root

gr_info_t

data

key

T
B

B
T

_T
R

E
E

T
B

B
T

_T
R

E
E

...

grtree

gattree

T
B

B
T

_N
O

D
E

count

...

root

N
U

L
L

dim
_info_t lut_dim

T
B

B
T

_T
R

E
E

com
p_info cinfo

dim
_info_t im

g_dim

lattree

gr_info_t* gr_ptr

ri_info_t, stores first raster im
age's info

V
O

ID
P

V
O

ID
P

link[0] | link[1] | link[2]
T

B
B

T
_N

O
D

E
...

R
childN

U
L

L

index

data

key

Parent

Parent

...

R
child

N
U

L
L

ri_info_t, stores second raster im
age's info

gr_info_t* gr_ptr

at_info_t

V
O

ID
P

V
O

ID
P

T
B

B
T

_N
O

D
E

link[0] | link[1] | link[2]
...

Parent
L

child
R

child

N
U

L
L

N
U

L
L

N
U

L
L

index

key
data

TBBT_N
O

D
E

c
o

u
n

t
...

ro
o

t

N
U

LL
d

im
_in

f

lu
t_d

im
TBBT_TR

EE
c

o
m

p
_in

fo
 c

in
fo

d
im

_in
fo

_t im
g

_d
im

...

...

at_info_t

V
O

ID
P

V
O

ID
P

T
B

B
T

_N
O

D
E

link[0] | link[1] | link[2]
...

Parent
L

child
R

child

N
U

L
L

N
U

L
L

N
U

L
L

index

key
data

d
im

_in
fo

_t lu
t_d

im

la
t t re

e

HDF Specification and Developer’s Guide

June 2017 8-109

8.9.4 Adding Palettes

The routine GRwritelut writes the palette of a raster image in the following steps:

• Makes certain that only standard palettes are written.

• If the palette object already exists for the image, simply writes the palette data to the file.

• Otherwise, creates the palette dimension, initializes it, then creates the palette object and
writes the palette data to the file.

There are no structural changes in the data structures. The palette dimension is filled with initial
information and the palette object's tag and reference number are stored in the raster image infor-
mation structure. Figure 8ay shows the representation of the file with the new palette object.

FIGURE 8ay File with two GR data sets, global attribute, local attribute, and image palette

8.9.5 Opening an Existing File

When the HDF file already exists and is opened for processing, the data structure gr_info_t,
which includes the part enclosed in the dotted box in Figure 8av, is filled with the file contents.
For example, Figure 8aw shows the in-memory storage of the file that is represented in Figure
8ay. The routine GRIget_image_list is responsible for retrieving the file contents and storing
them in memory. The retrieval process is carried out as follows:

• Collect all the raster images in the file, including all three types.

• Collect all the global attributes and, for each attribute, create an at_info_t structure and
store it on the global attribute tree gattree, branched out from the gr_info_t structure.

• Eliminate any duplications among the raster images found.

• For each raster image, the following actions are performed:

• Create an ri_info_t structure and fill it with information about the raster image.

• If any raster image has attributes, for each attribute, create an at_info_t structure
and store it on the local attribute tree lattree, branched out from the ri_info_t
structure.

• Store image dimension information in the structure img_dim of the ri_info_t
structure.

Vdata
name = RIATTR0.0N
class = RIATTR0.0C

Vgroup
name = RIG0.0
class = RIG0.0

image dimension

local attribute
Vgroup
name = name_of_image
class = RI0.0

raster image data

global attribute

Vdata
name = RIATTR0.0N
class = RIATTR0.0C

image dimension

Vgroup
name = name_of_image
class = RI0.0

raster image data image palette

8-110 June 2017

The HDF Group

• Store palette dimension information in the structure lut_dim of the ri_info_t
structure.

• Finally, store the ri_info_t structure for this raster image on the image tree
grtree, branched out from the gr_info_t structure.

June 28, 2017 9-111

CHAPTER 9 -- Tag Specifications

9.1 Chapter Overview

This chapter and the next address issues related to HDF tags and the data they represent. The first
section of this chapter provides general information about tags and their interpretation. The
remainder of the chapter contains a complete list of the HDF basic tags supported by HDF Version
4.1r3 and detailed tag specifications. The next chapter, Extended Tags and Special Elements, pro-
vides detailed information regarding HDF-supported extended tags and the special elements they
define.

9.2 The HDF Tag Space

As discussed in Chapter , "Basic Structure of HDF Files," 16 bits are allotted for an HDF tag num-
ber. This provides for 65535 possible tags, ranging from 1 to 65535; zero (0) is not used. This tag
space is divided into three ranges:

1 – 32767 Reserved for HDF-supported tags

32768 – 64999 Set aside as user-definable tags

65000 – 65535 Reserved for expansion of the format

No restrictions are placed on the user-definable tags. Note that tags from this range are not
expected to be unique across user-developed HDF applications.

The rest of this chapter is devoted to the HDF-supported basic tags in the range 1 (0x0001) to
16383 (0x3FFF). The next chapter, Extended Tags and Special Elements, is devoted to HDF-sup-
ported extended tags in the range 16384 (0x4000) to 32767 (0x7FFF).

9.3 Tag Specifications

The following pages contain the specifications of the HDF-supported basic tags in HDF Version
4.1r3. Each entry contains the following information:

• The tag (in capital letters in the left margin)

• The full name of the tag (on the first line to the right)

• The type and, where possible, the amount of data in the corresponding data element (on the
second line to the right)

When the data element is a variable-sized data structure—such as text, a string, or a vari-
able-sized array—the amount of data cannot be specified exactly. Where possible, a formula
is provided to estimate the amount of data. The string ? bytes appears when neither the
size nor the structure of the data element can be specified.

9-112 June 28, 2017

The HDF Group

• The tag number in decimal/(hexadecimal) (on the third line to the right)

• A diagram illustrating the structure of the tag and its associated data

Since all DDs that point to a data element contain data length and data offset fields, these
fields are not included in the illustrations.

• A full specification of the tag, including a description of the data element and a discussion
of its intended use.

Tags are roughly grouped according to the roles they play:

• Utility tags

• Annotation tags

• Compression tags

• Raster Image tags

• Composite image tags

• Vector image tags

• Scientific data set tags

• Vset tags

• Obsolete tags

• Extended tags (see Chapter 10, "Extended Tags and Special Elements)

These groupings imply a general context for the use of each tag; they are not meant to restrict their
use.

Please note Section 9.3.9, "Obsolete Tags." These tags have fallen out of use with the continuing
development of HDF. They are still recognized by the HDF library, but users should not write new
objects using them; they may eventually be dropped from the HDF specification.

In the following discussion, the ground symbol indicates that the DD for this tag includes no
pointer to a data element. I.e., there is never a data element associated with the tag.

This symbol indicates that there is
no data element associated with the tag.

HDF Specification and Developer’s Guide

June 28, 2017 9-113

9.3.1 Utility Tags

DFTAG_NULL No data
0 bytes
1 (0x0001)

ref_no Reference number (16-bit integer; always 0)

This tag is used for place holding and to fill empty portions of the data description block. The
length and offset fields (not shown) of a DFTAG_NULL DD must be zero (0).

DFTAG_VERSION Library version number
12 bytes plus the length of a string
30 (0x001E)

ref_no Reference number (16-bit integer)

majorv Major version number (32-bit integer)

minorv Minor version number (32-bit integer)

release Release number (32-bit integer)

string Non-null terminated ASCII string (any length)

The data portion of this tag contains the complete version number and a descriptive string for the
latest version of the HDF library to write to the file.

ref_noDFTAG_NULL

DFTAG_VERSION

minorv

ref_no

majorv release string

9-114 June 28, 2017

The HDF Group

DFTAG_NT Number type
4 bytes
106 (0x006A)

ref_no Reference number (16-bit integer)

version Version number of NT information (8-bit integer)

type Unsigned integer, signed integer, unsigned character, character, floating
point, double precision floating point (8-bit code)

width Number of bits, all of which are assumed to be significant (8-bit code)

class A generic value, with different interpretations depending on type: floating
point, integer, or character (8-bit code)

Several values that may be used for each of the three types in the field CLASS are listed in Table
9a. This is not an exhaustive list.

TABLE 9a Number Type Values

The number type flag is used by any other element in the file to indicate specifically what a
numeric value looks like. Other tag types should contain a reference number pointer to an
DFTAG_NT instead of containing their own number type definitions.

The version field allows expansion of the number type information, in case some future number
types cannot be described using the fields currently defined. Successive versions of the DFTAG_NT

Type Mnemonic Value

Floating point DFNTF_NONE 0

DFNTF_IEEE 1

DFNTF_VAX 2

DFNTF_CRAY 3

DFNTF_PC 4

DFNTF_CONVEX 5

Integer DFNTI_MBO 1

DFNTI_IBO 2

DFNTI_VBO 4

Character DFNTC_ASCII1 1

DFNTC_EBCDOC 2

DFNTC_BYTE 0

DFTAG_NT

type

ref_no

version width class

HDF Specification and Developer’s Guide

June 28, 2017 9-115

may be substantially different from the current definition, but backward compatibility will be
maintained. The current DFTAG_NT version number is 1.

DFTAG_MT Machine type
0 bytes
107 (0x006B)

double Specifies method of encoding double precision floating point (4-bit code)

float Specifies method of encoding single precision floating point (4-bit code)

int Specifies method of encoding integers (4-bit code)

char Specifies method of encoding characters (4-bit code)

DFTAG_MT specifies that all unconstrained or partially constrained values in this HDF file are of
the default type for that hardware. When DFTAG_MT is set to VAX, for example, all integers will be
assumed to be in VAX byte order unless specifically defined otherwise with a DFTAG_NT tag.
Note that all of the headers and many tags, the whole raster image set for example, are defined
with bit-wise precision and will not be overridden by the DFTAG_MT setting.

For DFTAG_MT, the reference field itself is the encoding of the DFTAG_MT information. The refer-
ence field is 16 bits, taken as four groups of four bits, specifying the types for double-precision
floating point, floating point, integer, and character respectively. This allows 16 generic specifica-
tions for each type.

To the user, these will be defined constants in the header file hdf.h, specifying the proper descrip-
tive numbers for Sun, VAX, Cray, Convex, and other computer systems. If there is no DFTAG_MT
in a file, the application may assume that the data in the file has been written on the local machine;
any portability problems must be addressed by the user. For this reason, we recommend that all
HDF files contain a DFTAG_MT for maximum portability.

Currently available data encodings are listed in Table 9L.

DFTAG_MT intdouble float char

9-116 June 28, 2017

The HDF Group

TABLE 9L Available Machine Types

New encodings can be added for each data type as the need arises.

9.3.2 Annotation Tags

DFTAG_FID File identifier
String
100 (0x0064)

ref_no Reference number (16-bit integer)

character_string
Non-null terminated ASCII text (any length)

This tag points to a string which the user wants to associate with this file. The string is not null ter-
minated. The string is intended to be a user-supplied title for the file.

Type Available Encodings

Double precision floating point IEEE64
VAX64
CRAY128

Floating point IEEE32
VAX32
CRAY64

Integers VAX32
Intel16
Intel32
Motorola32
CRAY64

Characters ASCII
EBCDIC

DFTAG_FID ref_no

character_string

HDF Specification and Developer’s Guide

June 28, 2017 9-117

DFTAG_FD File description
Text
101 (0x0065)

ref_no Reference number (16-bit integer)

text_block Non-null terminated ASCII text (any length)

This tag points to a block of text describing the overall file contents. The text can be any length.
The block is not null terminated. The text is intended to be user-supplied comments about the file.

DFTAG_TID Tag identifier
String
102 (0x0066)

tag Tag number to which this tag refers (16-bit integer)

character_string
Non-null terminated ASCII text (any length)

The data for this tag is a string that identifies the functionality of the tag indicated in the space
normally used for the reference number. For example, the tag identifier for DFTAG_TID might
point to data that reads "tag identifier."

Many tags are identified in the HDF specification, so it is usually unnecessary to include their
identifiers in the HDF file. But with user-defined tags or special-purpose tags, the only way for a
human reader to diagnose what kind of data is stored in a file is to read tag identifiers. Use tag
descriptions to define even more detail about your user-defined tags.

Note that with this tag you may make use of the user-defined tags to check for consistency.
Although two persons may use the same user-defined tag, they probably will not use the same tag
identifier.

DFTAG_FD ref_no

text_block

DFTAG_TID tag

character_string

9-118 June 28, 2017

The HDF Group

DFTAG_TD Tag description
Text
103 (0x0067)

tag Tag number to which this tag refers (16-bit integer)

text_block Non-null terminated ASCII text (any length)

The data for this tag is a text block which describes in relative detail the functionality and format
of the tag which is indicated in the space normally occupied by the reference number. This tag is
intended to be used with user-defined tags and provides a medium for users to exchange files that
include human-readable descriptions of the data.

It is important to provide everything that a programmer might need to know to read the data from
your user-defined tag. At the minimum, you should specify everything you would need to know in
order to retrieve your data at a later date if the original program were lost.

DFTAG_DIL Data identifier label
String
104 (0x0068)

ref_no Reference number (16-bit integer)

obj_tag Tag number of the data to which this label applies (16-bit integer)

obj_ref_no Reference number of the data object to which this label applies (16-bit inte-
ger)

character_string
Non-null terminated ASCII text (any length)

The DFTAG_DIL data object consists of a tag/ref followed by a string. The string serves as a label
for the data identified by the tag/ref.

By including DFTAG_DIL tags, you can give a data object a label for future reference. For exam-
ple, DFTAG_DIL can be used to assign titles to images.

DFTAG_TD tag

text_block

DFTAG_DIL

obj_ref_no

ref_no

obj_tag character_string

HDF Specification and Developer’s Guide

June 28, 2017 9-119

DFTAG_DIA Data identifier annotation
Text
105 (0x0069)

ref_no Reference number (16-bit integer)

obj_tag Tag number of the data to which this annotation applies (16-bit integer)

obj_ref_no Reference number of the data object to which this annotation applies (16-bit
integer)

text_block Non-null terminated ASCII text (any length)

The DFTAG_DIA data object consists of a tag/ref followed by a text block. The text block serves
as an annotation of the data identified by the tag/ref.

With a DFTAG_DIA tag, any data object can have a lengthy, user-written description. This can be
used to include comments about images, data sets, source code, and so forth.

9.3.3 Compression Tags

DFTAG_RLE Run length encoded data
0 bytes
11 (0x000B)

ref_no Reference number (16-bit integer)

This tag is used in the DFTAG_ID compression field and in other places to indicate that an image
or section of data is encoded with a run-length encoding scheme. The RLE method used is byte-
wise. Each run is preceded by a count byte. The low seven bits of the count byte indicate the num-
ber of bytes (n). The high bit of the count byte indicates whether the next byte should be replicated
n times (high bit = 1), or whether the next n bytes should be included as is (high bit = 0).

See also: DFTAG_ID in “Raster Image Tags”

DFTAG_NDG in “Scientific Data Set Tags”

DFTAG_DIA

obj_ref_no

ref_no

obj_tag text_block

DFTAG_RLE ref_no

9-120 June 28, 2017

The HDF Group

DFTAG_IMC IMCOMP compressed data
0 bytes
12 (0x000C)

ref_no Reference number (16-bit integer)

This tag is used in the DFTAG_ID compression field and in other places to indicate that an image
or section of data is encoded with an IMCOMP encoding scheme. This scheme is a 4:1 aerial
averaging method which is easy to decompress. It counts color frequencies in 4x4 squares to opti-
mize color sampling.

See also: DFTAG_ID in “Raster Image Tags”

DFTAG_NDG in “Scientific Data Set Tags”

DFTAG_JPEG 24-bit JPEG compression information
? bytes
13 (0x000D)

ref_no Reference number (16-bit integer)

This tag is a flag indicating that the corresponding compressed object is a 24-bit JPEG image. The
DFTAG_JPEG flag and the corresponding DFTAG_CI object will share the same reference number.

DFTAG_GREYJPEG 8-bit JPEG compression information
? bytes
14 (0x000E)

ref_no Reference number (16-bit integer)

This tag is a flag indicating that the corresponding compressed object is an 8-bit JPEG image. The
DFTAG_GREYJPEG flag and the corresponding DFTAG_CI object will share the same reference
number.

DFTAG_IMC ref_no

ref_noDFTAG_JPEG

ref_noDFTAG_GREYJPEG

HDF Specification and Developer’s Guide

June 28, 2017 9-121

DFTAG_CI Compressed raster image
? bytes 
303 (0x012F

ref_no Reference number (16-bit integer)

This tag points to a stream of bytes that make up a compressed image. The type of compression,
together with any necessary parameters, are stored as a separate data object. For example, if
DFTAG_JPEG is contained in the same raster image group, the stream of bytes contains the JFIF
header and all further data for the JPEG image. Other parameters are stored in the DFTAG_JPEG
object.

The JFIF header is the header data stored in a JFIF (JPEG File Interchange Format) file up to the
start-of-frame parameter. See the document JPEG File Interchange Format1 for a detailed
description of the file format.

9.3.4 Raster Image Tags

DFTAG_RIG Raster image group
n*4 bytes (where n is the number of data objects in the group)
306 (0x0132)

ref_no Reference number (16-bit integer)

tag_n Tag number for nth member of the group (16-bit integer)

ref_n Reference number for nth member of the group (16-bit integer)

The RIG data element contains the tag/refs of all the data objects required to display a raster
image correctly. Application programs that deal with RIGs should read all the elements of a RIG

1. The document JPEG File Interchange Format has not been published again since its latest ver-
sion v1.02, on September 1, 1992. An electronic copy is available at http://www.w3.org/Graphics/
JPEG/jfif3.pdf.

DFTAG_CI ref_no

DFTAG_RIG

ref_1

ref_no

tag_1 ref_2tag_2

9-122 June 28, 2017

The HDF Group

and process those identifiers which it can display correctly. Even if the application cannot process
all of the objects, the objects that it can process will be usable.

Table 9M lists the tags that may appear in an RIG.

TABLE 9M Available RIG Tags

Example

DFTAG_ID, DFTAG_RI, DFTAG_LD, DFTAG_LUT

Assume that an image dimension record, a raster image, an LUT dimension record, and an LUT
are all required to display a particular raster image correctly. These data objects can be associated
in an RIG so that an application can read the image dimensions then the image. It will then read
the lookup table and display the image.

Tag Description

DFTAG_ID Image dimension record

DFTAG_RI Raster image

DFTAG_XYP X-Y position

DFTAG_LD LUT dimension

DFTAG_LUT Color lookup table

DFTAG_MD Matte channel dimension

DFTAG_MA Matte channel

DFTAG_CCN Color correction

DFTAG_CFM Color format

DFTAG_AR Aspect ratio

HDF Specification and Developer’s Guide

June 28, 2017 9-123

DFTAG_ID Image dimension
20 bytes
300 (0x012C)

DFTAG_LD LUT dimension
20 bytes
307 (0x0133)

DFTAG_MD Matte dimension
20 bytes
308 (0x0134)

ref_no Reference number (16-bit integer)

x_dim Length of x (horizontal) dimension (32-bit integer)

y_dim Length of y (vertical) dimension (32-bit integer)

NT_ref Reference number for number type information

elements Number of elements that make up one entry (16-bit integer)

interlace Type of interlacing used (16-bit integer)

0 The components of each pixel are together.

1 Color elements are grouped by scan lines.

2 Color elements are grouped by planes.

comp_tag Tag which tells the type of compression used and any associated parameters
(16-bit integer)

comp_ref Reference number of compression tag (16-bit integer)

These three dimension records have exactly the same format; they specify the dimensions of the
2-dimensional arrays after which they are named and provide information regarding other attri-
butes of the data in the array:

• DFTAG_ID specifies the dimensions of a DFTAG_RI.

• DFTAG_LD specifies the dimensions of a DFTAG_LUT.

• DFTAG_MD specifies the dimensions of a DFTAG_MA.

Other attributes described in the image dimension record include the number type of the elements,
the number of elements per pixel, the interlace scheme used, and the compression scheme used (if
any).

DFTAG_ID

y_dim

ref_no

x_dim NT_refDFTAG_NT

interlaceelements comp_refcomp_tag

9-124 June 28, 2017

The HDF Group

For example, a 512x256 row-wise 24-bit raster image with each pixel stored as RGB bytes would
have the following values:

x_dim 512

y_dim 256

NT_ref UINT8

elements 3 (3 elements per pixel: e.g., R, G, and B)

interlace 0 (RGB values not separated)

comp_tag 0 (no compression is used)

The diagram above illustrates the tag DFTAG_ID. The DFTAG_LD and DFTAG_MD diagrams
would be identical except for the tag name in the fist cell, whch would be DFTAG_LD and
DFTAG_MD, respectively.

DFTAG_RI Raster image
xdim*ydim*elements*NTsize bytes (xdim, ydim, elements, 

and NTsize are specified in the corresponding DFTAG_ID)
302 (0x012E)

ref_no Reference number (16-bit integer)

This tag points to raster image data. It is stored in row-major order and must be interpreted as
specified by interlace in the related DFTAG_ID.

DFTAG_RI ref_no

P0_0 P0_1 P0_m

Pn_m

P1_0 P1_1 P1_m

Pn_0 Pn_1

DFTAG_LUT ref_no

OR

P0_0

P0_1

P0_m Pn_m

P1_0

P1_1

P1_m

Pn_0

Pn_1

HDF Specification and Developer’s Guide

June 28, 2017 9-125

DFTAG_LUT Lookup table
xdim*ydim*elements*NTsize bytes (xdim, ydim, elements, 

and NTsize are specified in the corresponding DFTAG_ID)
301 (0x012D)

ref_no Reference number (16-bit integer)

Pn_m mth value of parameter n (size is specified by the DFTAG_NT in the corre-
sponding DFTAG_LD)

The DFTAG_LUT, sometimes called a palette, is used to assign colors to data values. When a raster
image consists of data values which are going to be interpreted through an LUT capability, the
DFTAG_LUT should be loaded along with the image.

The most common lookup table is the RGB lookup table which will have X dimension = 256 and
Y dimension = 1 with three elements per entry, one each for red, green, and blue. The interlace
will be either 0, where the LUT values are given RGB, RGB, RGB, ..., or 1, where the LUT values
are given as 256 reds, 256 greens, 256 blues.

9-126 June 28, 2017

The HDF Group

DFTAG_MA Matte channel
xdim*ydim*elements*NTsize bytes (xdim, ydim, elements, 

and NTsize are specified in the corresponding DFTAG_ID)
309 (0x0135)

ref_no Reference number (16-bit integer)

The DFTAG_MA data object contains transparency data which can be used to facilitate the overlay-
ing of images. The data consists of a 2-dimensional array of unsigned 8-bit integers ranging from
0 to 255. Each point in a DFTAG_MA indicates the transparency of the corresponding point in a ras-
ter image of the same dimensions. A value of 0 indicates that the data at that point is to be consid-
ered totally transparent, while a value of 255 indicates that the data at that point is totally opaque.
It is assumed that a linear scale applies to the transparency values, but users may opt to interpret
the data in any way they wish.

DFTAG_MA ref_no

HDF Specification and Developer’s Guide

June 28, 2017 9-127

DFTAG_CCN Color correction
52 bytes (usually)
310 (0x0136)

ref_no Reference number (16-bit integer)

gamma Gamma parameter (32-bit IEEE floating point)

red_x, red_y, and red_z
Red x, y, and z correction factors (32-bit IEEE floating point)

green_x, green_y, and green_z
Green x, y, and z correction factors (32-bit IEEE floating point)

blue_x, blue_y, and blue_z
Blue x, y, and z correction factors (32-bit IEEE floating point)

white_x, white_y, and white_z
White x, y, and z correction factors (32-bit IEEE floating point)

Color correction specifies the Gamma correction for the image and color primaries for the genera-
tion of the image.

DFTAG_CCN ref_no

green_x green_y

white_ywhite_x white_z

green_z

blue_yblue_x blue_z

red_xgamma red_y red_z

9-128 June 28, 2017

The HDF Group

DFTAG_CFM Color format
String
311 (0x0137)

ref_no Reference number (16-bit integer)

character_stringNon-null terminated ASCII string (any length)

The color format data element contains a string of uppercase characters that indicates how each
element of each pixel in a raster image is to be interpreted. Table 9N lists the available color for-
mat strings.

TABLE 9N Color Format String Values

DFTAG_AR Aspect ratio
4 bytes
312 (0x0138)

ref_no Reference number (16-bit integer)

ratio Ratio of width to height (32-bit IEEE float)

The data for this tag is the visual aspect ratio for this image. The image should be visually correct
if displayed on a screen with this aspect ratio. The data consists of one floating-point number
which represents width divided by height. An aspect ratio of 1.0 indicates a display with perfectly
square pixels; 1.33 is a standard aspect ratio used by many monitors.

String Description

VALUE Pseudo-color, or just a value associated with the pixel

RGB Red, green, blue model

XYZ Color-space model

HSV Hue, saturation, value model

HSI Hue, saturation, intensity

SPECTRAL Spectral sampling method

DFTAG_CFM ref_no

character_string

DFTAG_AR ref_no

ratio

HDF Specification and Developer’s Guide

June 28, 2017 9-129

9.3.5 Composite Image Tags

DFTAG_DRAW Draw
n*4 bytes (where n is the number of data objects that make up 

the composite image)
400 (0x0190)

ref_no Reference number (16-bit integer)

tag_n Tag number of the nth member of the draw list (16-bit integer)

ref_n Reference number of the nth member of the draw list (16-bit integer)

The DFTAG_DRAW data element consists of a list of tag/refs that define a composite image. The
data objects indicated should be displayed in order. This can include several RIGs which are to be
displayed simultaneously. It can also include vector overlays, like DFTAG_T14, which are to be
placed on top of an RIG.

Some of the elements in a DFTAG_DRAW list may be instructions about how images are to be
composited (XOR, source put, anti-aliasing, etc.). These are defined as individual tags.

DFTAG_XYP XY position
8 bytes
500 (0x01F4)

ref_no Reference number (16-bit integer)

x X-coordinate (32-bit integer)

y Y-coordinate (32-bit integer)

DFTAG_XYP is used in composites and other groups to indicate an XY position on the screen. For
this, (0,0) is the lower left corner of the print area. X is the number of pixels to the right along the
horizontal axis and Y is the number of pixels up on the vertical axis. The X and Y coordinates are
two 32-bit integers.

For example, if DFTAG_XYP is present in a DFTAG_RIG, the DFTAG_XYP specifies the position of
the lower left corner of the raster image on the screen.

DFTAG_DRAW

ref_1

ref_no

tag_1 ref_2tag_2 . . .

DFTAG_XYP ref_no

x y

9-130 June 28, 2017

The HDF Group

See also: DFTAG_DRAW in this section

9.3.6 Vector Image Tags

DFTAG_T14 Tektronix 4014
? bytes
602 (0x25A)

ref_no Reference number (16-bit integer)

This tag points to a Tektronix 4014 data stream. The bytes in the data field, when read and sent to
a Tektronix 4014 terminal, will display a vector image. Only the lower seven bits of each byte are
significant. There are no record markings or non-Tektronix codes in the data.

DFTAG_T105 Tektronix 4105
? bytes
603 (0x25B)

ref_no Reference number (16-bit integer)

This tag points to a Tektronix 4105 data stream. The bytes in the data field, when read and sent to
a Tektronix 4105 terminal, will be displayed as a vector image. Only the lower seven bits of each
byte are significant. Some terminal emulators will not correctly interpret every feature of the Tek-
tronix 4105 terminal, so you may wish to use only a subset of the available Tektronix 4105 vector
commands.

DFTAG_T14 ref_no

DFTAG_T105 ref_no

HDF Specification and Developer’s Guide

June 28, 2017 9-131

9.3.7 Scientific Data Set Tags

DFTAG_NDG Numeric data group
n*4 bytes (where n is the number of data objects in the group.)
720 (0x02D0)

ref_no Reference number (16-bit integer)

tag_n Tag number of nth member of the group (16-bit integer)

ref_n Reference number of nth member of the group 
(16-bit integer)

The NDG data contains a list of tag/refs that define a scientific data set. DFTAG_NDG supersedes
the old DFTAG_SDG, which became obsolete upon the release on HDF Version 3.2. A more com-
plete explanation of the relationship between DFTAG_NDG and DFTAG_SDG can be found in Chap-
ter , “Sets and Groups.”

All of the members of an NDG provide information for correctly interpreting and displaying the
data. Application programs that deal with NDGs should read all of the elements of a NDG and
process those data objects which it can use. Even if an application cannot process all of the
objects, the objects that it can understand will be usable.

Table 9O lists the tags that may appear in an NDG.

DFTAG_NDG

ref_1

ref_no

tag_1 ref_2tag_2 . . .

9-132 June 28, 2017

The HDF Group

TABLE 9O Available NDG Tags

Example

DFTAG_SDD, DFTAG_SD, DFTAG_SDM

Suppose that an NDG contains a dimension record, scientific data, and the maximum and mini-
mum values of the data. These data objects can be associated in an NDG so that an application can
read the rank and dimensions from the dimension record and then read the data array. If the appli-
cation needs maximum and minimum values, it will read them as well.

See also: Chapter , "Sets and Groups”

Tag Description

DFTAG_SDD Scientific data dimension record (rank and dimensions)

DFTAG_SD Scientific data

DFTAG_SDS Scales

DFTAG_SDL Labels

DFTAG_SDU Units

DFTAG_SDF Formats

DFTAG_SDM Maximum and minimum values

DFTAG_SDC Coordinate system

DFTAG_CAL Calibration information

DFTAG_FV Fill value

DFTAG_LUT Color lookup table

DFTAG_LD Lookup table dimension record

DFTAG_SDLNK Link to old-style DFTAG_SDG

HDF Specification and Developer’s Guide

June 28, 2017 9-133

DFTAG_SDD Scientific data dimension record
6 + 8*rank bytes 
701 (0x02BD)

ref_no Reference number (16-bit integer)

rank Number of dimensions (16-bit integer)

dim_n Number of values along the nth dimension (32-bit integer)

data_NT_ref Reference number of DFTAG_NT for data 
(16-bit integer)

scale_NT_ref_n
Reference number for DFTAG_NT for the scale for the nth dimension (16-bit
integer)

This record defines the rank and dimensions of the array in the scientific data set. For example, a
DFTAG_SDD for a 500x600x3 array of floating-point numbers would have the following values
and components.

• Rank: 3

• Dimensions: 500, 600, and 3.

• One data NT

• Three scale NTs

DFTAG_SDD ref_no

DFTAG_NT data_NT_ref

dim_1rank dim_2 dim_n. . .

DFTAG_NT scale_NT_ref_1

DFTAG_NT scale_NT_ref_2 . . .

DFTAG_NT scale_NT_ref_n

9-134 June 28, 2017

The HDF Group

DFTAG_SD Scientific data
NTsize*x*y*z*... bytes (where NTsize is the size of the 

data NT specified in the corresponding DFTAG_SDD and 
x, y, z, etc. are the dimension sizes)

702 (0x02BE)

ref_no Reference number (16-bit integer)

This tag points to an array of scientific data. The type of the data may be specified by an
DFTAG_NT included with the SDG. If there is no DFTAG_NT, the type of the data is floating-point
in standard IEEE 32-bit format. The rank and dimensions must be stored as specified in the corre-
sponding DFTAG_SDD. The diagram above shows a 3-dimensional data array.

2.1 2.9 8.7 ... 6.4

 7.7

 8.3

 6.1

1.1 2.5 9.8 ... 6.7

 7.2

 8.6

 6.4

DFTAG_SD ref_no

1.2 3.6 8.4 ... 9.1

2.4 2.8 6.3 ... 7.5

1.7 2.0 5.3 ... 8.2

4.3 3.6 7.1 ... 6.2

HDF Specification and Developer’s Guide

June 28, 2017 9-135

DFTAG_SDS Scientific data scales
rank + NTsize0*x + NTsize1*y +NTsize2*z +... bytes (where rank 

is the number of dimensions, x, y, z, etc. are the dimension
sizes, and NTsize# are the sizes of each scale NT from the 
corresponding DFTAG_SDD)

703 (0x02BF)

ref_no Reference number (16-bit integer)

is_n A flag indicating whether a scale exists for the nth dimension (8-bit integer;
0 or 1)

scale_n List of scale values for the nth dimension (type specified in corresponding
DFTAG_SDD)

This tag points to the scales for the data set. The first n bytes indicate whether there is a scale for
the corresponding dimension (1 = yes, 0 = no). This is followed by the scale values for each
dimension. The scale consists of a simple series of values where the number of values and their
types are specified in the corresponding DFTAG_SDD.

DFTAG_SDL Scientific data labels
? bytes
704 (0x02C0)

ref_no Reference number (16-bit integer)

label_n Null terminated ASCII string (any length)

This tag points to a list of labels for the data in each dimension of the data set. Each label is a
string terminated by a null byte (0).

DFTAG_SDS

is_2

ref_no

is_1 is_nis_3

scale_2scale_1 scale_3

. . .

scale_n. . .

DFTAG_SDL

label_2

ref_no

label_1 label_nlabel_3 . . .

9-136 June 28, 2017

The HDF Group

DFTAG_SDU Scientific data units
? bytes
705 (0x02C1)

ref_no Reference number (16-bit integer)

unit_n Null terminated ASCII string (any length)

This tag points to a list of strings specifying the units for the data and each dimension of the data
set. Each unit's string is terminated by a null byte (0).

DFTAG_SDF Scientific data format
? bytes
706 (0x02C2)

ref_no Reference number (16-bit integer)

format_n Null terminated ASCII string (any length)

This tag points to a list of strings specifying an output format for the data and each dimension of
the data set. Each format string is terminated by a null byte (0).

DFTAG_SDU

unit_2

ref_no

unit_1 unit_nunit_3 . . .

DFTAG_SDF

format_2

ref_no

format_1 format_nformat_3 . . .

HDF Specification and Developer’s Guide

June 28, 2017 9-137

DFTAG_SDM Scientific data max/min
8 bytes
707 (0x02C3)

ref_no Reference number (16-bit integer)

max Maximum value (type is specified by the data NT in the corresponding
DFTAG_SDD)

min Minimum value (type is specified by the data NT in the corresponding
DFTAG_SDD)

This record contains the maximum and minimum data values in the data set. The type of max and
min are specified by the data NT of the corresponding DFTAG_SDD.

DFTAG_SDC Scientific data coordinates
? bytes
708 (0x02C4)

ref_no Reference number (16-bit integer)

string Null terminated ASCII string (any length)

This tag points to a string specifying the coordinate system for the data set. The string is termi-
nated by a null byte.

DFTAG_SDM ref_no

max min

DFTAG_SDC ref_no

string

9-138 June 28, 2017

The HDF Group

DFTAG_SDLNK Scientific data set link
8 bytes
710 (0x02C6)

ref_no Reference number (16-bit integer)

DFTAG_NDG NDG tag (16-bit integer)

NDG_ref NDG reference number (16-bit integer)

DFTAG_SDG SDG tag (16-bit integer)

SDG_ref SDG reference number (16-bit integer)

The purpose of this tag is to link together an old-style DFTAG_SDG and a DFTAG_NDG in cases
where the NDG contains 32-bit floating point data and is, therefore, equivalent to an old SDG.

See also: Chapter , "Sets and Groups”

DFTAG_CAL Calibration information
36 bytes
731 (0x02DB)

ref_no Reference number (16-bit integer)

cal Calibration factor (64-bit IEEE float)

cal_err Error in calibration factor (64-bit IEEE float)

off Calibration offset (64-bit IEEE float)

off_err Error in calibration offset (64-bit IEEE float)

data_type Constant representing the effective data type of the calibrated data (32-bit
integer)

This tag points to a calibration record for the associated DFTAG_SD. The data can be calibrated by
first multiplying by the cal factor, then adding the off value. Also included in the record are
errors for the calibration factor and offset and a constant indicating the effective data type of the
calibrated data. Table 9P lists the available data_type values.

DFTAG_SDLINK

NDG_ref

ref_no

DFTAG_NDG SDG_refDFTAG_SDG

DFTAG_CAL

cal_err

ref_no

cal data_typeoff off_err

HDF Specification and Developer’s Guide

June 28, 2017 9-139

TABLE 9P Available Calibrated Data Types

DFTAG_FV Fill value
? bytes (size determined by size of data NT in corresponding

DFTAG_SDD)
732 (0x02DC)

ref_no Reference number (16-bit integer)

fill_value Value representing unset data in the corresponding DFTAG_SD (size deter-
mined by size of data NT in corresponding DFTAG_SDD)

This tag points to a value which has been used to indicate unset values in the associated
DFTAG_SD. The number type of the value (and, therefore, its size) is given in the corresponding
DFTAG_SDD.

Data Type Description

DFTNT_INT8 Signed 8-bit integer

DFTNT_UINT8 Unsigned 8-bit integer

DFTNT_INT16 Signed 16-bit integer

DFTNT_UINT16 Unsigned 16-bit integer

DFTNT_INT32 Signed 32-bit integer

DFTNT_UINT32 Unsigned 32-bit integer

DFTNT_FLOAT32 32-bit floating point

DFTNT_FLOAT64 64-bit floating point

DFTAG_FV ref_no

fill_value

9-140 June 28, 2017

The HDF Group

9.3.8 Vset Tags

DFTAG_VG Vgroup
14 + 4*nelt + namelen + classlen bytes 
1965 (0x07AD)

ref_no Reference number (16-bit integer)

nelt Number of elements in the Vgroup (16-bit integer)

tag_n Tag of the nth member of the Vgroup (16-bit integer)

ref_n Reference number of the nth member of the Vgroup (16-bit integer)

namelen Length of the name field (16-bit integer)

name Non-null terminated ASCII string (length given by namelen)

classlen Length of the class field (16-bit integer)

class Non-null terminated ASCII string (length given by classlen)

extag Extension tag (16-bit integer)

exref Extension reference number (16-bit integer)

version Version number of DFTAG_VG information (16-bit integer)

more Unused (2 zero bytes)

DFTAG_VG provides a general-purpose grouping structure which can be used to impose a hierar-
chical structure on the tags in the group. Any HDF tag may be incorporated into a Vgroup, includ-
ing other DFTAG_VG tags.

See also: “Vsets, Vdatas, and Vgroups” in Chapter , "Sets and Groups”

NCSA HDF Vsets, Version 2.0 for HDF Versions 3.2 and earlier

HDF User’s Guide and HDF Reference Manual for Versions 3.3 and 4.x

DFTAG_VG ref_no

tag_1nelt tag_2 tag_n. . .

namelen name

extag

classlen class

ref_1 ref_2 . . . ref_n

versionexref more

HDF Specification and Developer’s Guide

June 28, 2017 9-141

DFTAG_VH Vdata description
22 + 10*nfields + Sfldnmlen n + namelen + classlen bytes
1962 (0x07AA)

ref_no Reference number (16-bit integer)

interlace Constant indicating interlace scheme used (16-bit integer)

nvert Number of entries in Vdata (32-bit integer)

ivsize Size of one Vdata entry (16-bit integer)

nfields Number of fields per entry in the Vdata (16-bit integer)

type_n Constant indicating the data type of the nth field of the Vdata (16-bit integer)

DFTAG_VH ref_no

nvertinterlace ivsize nfields

namelen name

extag

classlen class

. . .

versionexref more

fldnmlen_1 fldnm_1

order_1 order_2 . . . order_n

offset_1 offset_2 . . . offset_n

isize_1 isize_2 . . . isize_n

type_1 type_2 . . . type_n

fldnmlen_2 fldnm_2

fldnmlen_n fldnm_n

9-142 June 28, 2017

The HDF Group

isize_n Size in bytes of the nth field of the Vdata (16-bit integer)

offset_n Offset of the nth field within the Vdata (16-bit integer)

order_n Order of the nth field of the Vdata (16-bit integer)

fldnmlen_n Length of the nth field name string (16-bit integer)

fldnm_n Non-null terminated ASCII string (length given by corresponding fld-
nmlen_n)

namelen Length of the name field (16-bit integer)

name Non-null terminated ASCII string (length given by namelen)

classlen Length of the class field (16-bit integer)

class Non-null terminated ASCII string (length given by classlen)

extag Extension tag (16-bit integer)

exref Extension reference number (16-bit integer)

version Version number of DFTAG_VH information (16-bit integer)

more Unused (2 zero bytes)

DFTAG_VH provides all the information necessary to process a DFTAG_VS.

See also: DFTAG_VS (this section)

“Vsets, Vdatas, and Vgroups” in Chapter , "Sets and Groups”

NCSA HDF Vsets, Version 2.0 for HDF Versions 3.2 and earlier

HDF User’s Guide and HDF Reference Manual for Versions 3.3 and 4.x

HDF Specification and Developer’s Guide

June 28, 2017 9-143

DFTAG_VS Vdata

nvert, isize_n, and order_n are specified in the 
corresponding DFTAG_VH

1963 (0x07AB)

ref_no Reference number (16-bit integer)

vdata Data block interpreted according to the corresponding DFTAG_VH
(value of the summation above, where nvert, isize_n, and order_n are
specified in the correspondingDFTAG_VH)

DFTAG_VS contains a block of data which is to be interpreted according to the information in the
corresponding DFTAG_VH.

See also: DFTAG_VH (this section)

“Vsets, Vdatas, and Vgroups” in Chapter , "Sets and Groups”

NCSA HDF Vsets, Version 2.0 for HDF Versions 3.2 and earlier

HDF User’s Guide and HDF Reference Manual for Versions 3.3 and 4.x

nvert * (isize_n * order_n)

n=1

nfields

 bytes where

DFTAG_VS ref_no

vdata

9-144 June 28, 2017

The HDF Group

9.3.9 Obsolete Tags

DFTAG_ID8 Image dimension-8
4 bytes
200 (0x00C8)

ref_no Reference number (16-bit integer)

x_dim Length of x dimension (16-bit integer)

y_dim Length of y dimension (16-bit integer)

The data for this tag consists of two 16-bit integers representing the width and height of an 8-bit
raster image in bytes.

This tag has been superseded by DFTAG_ID.

DFTAG_IP8 Image palette-8
768 bytes
201 (0x00C9)

ref_no Reference number (16-bit integer)

Table entries 256 triples of 8-bit integers

The data for this tag can be thought of as a table of 256 entries, each containing one value for red,
green, and blue. The first triple is palette entry 0 and the last is palette entry 255.

This tag has been superseded by DFTAG_LUT.

DFTAG_ID8 ref_no

x_dim y_dim

DFTAG_IP8 ref_no

Red Green Blue

R0

R1

R255

G0

G1

B0

B1

G255 B255

HDF Specification and Developer’s Guide

June 28, 2017 9-145

DFTAG_RI8 Raster image-8
xdim*ydim bytes (where xdim and ydim are the dimensions 

specified in the corresponding DFTAG_ID8)
202 (0x00CA)

ref_no Reference number (16-bit integer)

Image data 2-dimensional array of 8-bit integers

The data for this tag is a row-wise representation of the elementary 8-bit image data. The data is
stored width-first (i.e., row-wise) and is 8 bits per pixel. The first byte of data represents the pixel
in the upper-left hand corner of the image.

This tag has been superseded by DFTAG_RI.

DFTAG_CI8 Compressed image-8
? bytes
203 (0x00CB)

ref_no Reference number (16-bit integer)

compressed_imageSeries of run-length encoded bytes

The data for this tag is a row-wise representation of the elementary 8-bit image data. Each row is
compressed using the following run-length encoding where n is the lower seven bits of the byte.
The high bit indicates whether the following n bytes will be reproduced exactly (high bit = 0) or
whether the following byte will be reproduced n times (high bit = 1). Since DFTAG_CI8 and
DFTAG_RI8 are basically interchangeable, it is suggested that you not have a DFTAG_CI8 and a
DFTAG_RI8 with the same reference number.

This tag has been superseded by DFTAG_RLE.

DFTAG_RI8 ref_no

DFTAG_CI8 ref_no

compressed_image

9-146 June 28, 2017

The HDF Group

DFTAG_II8 IMCOMP image-8
? bytes
204 (0x00CC)

ref_no Reference number (16-bit integer)

compressed_image
Compressed image data

The data for this tag is a 4:1 compressed 8-bit image, using the IMCOMP compression scheme.

This tag has been superseded by DFTAG_IMC.

DFTAG_SDG Scientific data group
n*4 bytes (where n is the number of data objects in the group)
700 (0x02BC)

ref_no Reference number (16-bit integer)

tag_n Tag number of nth member of the group (16-bit integer)

ref_n Reference number of nth member of the group (16-bit integer)

The SDG data element contains a list of tag/refs that define a scientific data set. All of the mem-
bers of the group provide information required to correctly interpret and display the data. Applica-
tion programs that deal with SDGs should read all of the elements of an SDG and process those
which it can use. Even if an application cannot process all of the objects, the objects that it can
understand will be usable.

Table 9Q lists the tags that may appear in an SDG.

DFTAG_II8 ref_no

compressed_image

DFTAG_SDG

ref_1

ref_no

tag_1 ref_2tag_2

tag_n ref_n

. . .

HDF Specification and Developer’s Guide

June 28, 2017 9-147

TABLE 9Q Available SDG Tags

Example

DFTAG_SDD, DFTAG_SD, DFTAG_SDM

Assume that a dimension record, scientific data, and the maximum and minimum values of the
data are required to read and interpret a particular data set. These data objects can be associated in
an SDG so that an application can read the rank and dimensions from the dimension record and
then read the data array. If the application needs the maximum and minimum values, it will read
them as well.

This tag has been superseded by DFTAG_NDG.

See also: Chapter , "Sets and Groups”

DFTAG_SDT Scientific data transpose
0 bytes
709 (0x02C5)

ref_no Reference number (16-bit integer)

The presence of this tag in a group indicates that the data pointed to by the corresponding
DFTAG_SD is in column-major order, instead of the default row-major order. No data is associated
with this tag.

This tag is no longer written by the HDF library. When it is encountered in an old file, it is inter-
preted as originally intended.

Tag Description

DFTAG_SDD Scientific data dimension record (rank and dimensions)

DFTAG_SD Scientific data

DFTAG_SDS Scales

DFTAG_SDL Labels

DFTAG_SDU Units

DFTAG_SDF Formats

DFTAG_SDM Maximum and minimum values

DFTAG_SDC Coordinate system

DFTAG_SDT Transposition (obsolete)

DFTAG_SDLNK Link to new DFTAG_NDG

DFTAG_SDT ref_no

9-148 June 28, 2017

The HDF Group

June 2017 10-147

CHAPTER 10 -- Extended Tags and Special Elements

10.1 Chapter Overview

This chapter provides detailed information regarding HDF-supported HDF extended tags and the
special elements they define. General information about tags and detailed specifications of basic
tags are presented in Chapter , “Tag Specifications."

10.2 Extended Tags and Alternate Physical Storage Methods

Prior to HDF Version 3.2, each data element had to be stored in one contiguous block in the basic
HDF file. Version 3.2 introduced extended tags, a mechanism supporting alternate physical data
element storage structures. All HDF-supported tags with variable-sized data elements can take
advantage of the extended tag features.

10.2.1Extended Tag Implementation

Extended tags are automatically recognized by current versions of the HDF library and interpreted
according to a description record. The description record, a complete data element, identifies the
type of extended element and provides the relevant parameters for data retrieval.

Extended tags currently support four styles of alternate physical storage:

• Linked block elements are stored in several non-contiguous blocks within the basic HDF
file.

• External elements are stored in a separate file, external to the basic HDF file.

• Chunked elements are stored in blocks within the basic HDF file to facilitate selective I/O.

• Compressed elements are stored in a configurable compressed mode within the basic HDF
file to save storage space and to speed I/O and data transfer.

Every HDF-supported tag is represented in HDF libraries and files by a tag number. HDF-sup-
ported tags that take advantage of alternative physical storage features have an alternative tag
number, called an extended tag number, that appears instead of the original tag number when an
alternative physical storage method is in use.

When The HDF Group determines that an extended tag should be defined for a given tag, the
extended tag number is determined by performing an arithmetic OR with the original tag number
and the hexadecimal number 0x4000. Since all basic tags are numbered 0x0001 through 0x3FFF,
this arithmetic OR effectively adds 0x4000, or a decimal value of 16384, to derive the extended
tag value.

For example, the tag DFTAG_RI points to a data element containing a raster image. If the data
element is stored contiguously in the same HDF file, the DD contains the tag number 302; if the

10-148 June 2017

The HDF Group

data element is stored either in linked blocks or in an external file, the DD contains the extended
tag number 16686.

If a data object uses a regular tag number, its storage structure will be exactly as described in the
"Section 9.3, "Tag Specifications." Figure 10a illustrates this general structure with the DD point-
ing directly to a single, contiguous data block.

FIGURE 10a Regular Data Object

regular_tag Tag number

ref_no Reference number

data_elementThe data element

If a data object uses an extended tag, the storage structure will appear generally as illustrated in
Figure 10b. The DD will point to an extended tag description record which in turn will point to
the data.

FIGURE 10b Data Object with Extended Tag

extended_tagExtended tag number

ref_no Reference number

ext_tag_descA 32-bit constant defined in Hdfi.h that identifies the type of alternative
storage involved. Current definitions include EXT_LINKED for linked
block elements or EXT_EXTERN for external elements.

data_location_information
Information identifying and describing the linked blocks or external file

data The data, stored either in linked blocks or in an external file

Since the HDF tools were modified for HDF Version 3.2 to handle extended tags automatically,
the only thing the user ever has to do is specify the use of either the linked blocks mechanism or
an external file. Once that has been specified, the user can forget about extended tags entirely; the
HDF library will manage everything correctly.

regular_tag ref_no

data_element

extended_tag ref_no

ext_tag_desc data_location_information

data (in linked blocks or external file)

HDF Specification and Developer’s Guide

June 2017 10-149

There is only one circumstance under which an HDF user will need to be concerned with the dif-
ference between regular tag numbers and extended tag numbers. If a user bypasses the regular
HDF interface to examine a raw HDF file, that user will have to know the extended tag numbers,
their significance, and the alternative storage structures.

10.3 Linked Block Elements

As mentioned above, data elements had to be stored as single contiguous blocks within the basic
HDF file prior to HDF Version 3.2. This meant that if a data element grew larger than the allotted
space, the file had to be erased from its current location and rewritten at the end of the file.

Linked blocks provide a convenient means of addressing this problem by linking new data blocks
to a pre-existing data element. Linked block elements consist of a series of data blocks chained
together in a linked list (similar to the DD list). The data blocks must be of uniform size, except
for the first block, which is considered a special case.

The linked block data element is a description record beginning with the constant EXT_LINKED,
which identifies the linked block storage method. The rest of the record describes the organization
of the data element stored as linked blocks. Figure 10c illustrates a linked block description
record.

FIGURE 10c Linked Block Description Record

extended_tagThe extended tag counterpart of any HDF standard tag (16-bit integer)

ref_no Reference number (16-bit integer)

EXT_LINKED Constant identifying this as a linked block description record (32-bit integer)

length Length of entire element (32-bit integer)

first_len Length of the first data block (32-bit integer)

blk_len Length of successive data blocks (32-bit integer)

num_blk Number of blocks per block table (32-bit integer)

link_ref Reference number of first block table (16-bit integer)

The link_ref field of the description record gives the reference number of the first linked
block table for the element. This table is identified by the tag/ref DFTAG_LINKED/link_ref and
contains num_blk entries. There may be any number of linked block tables chained together to
describe a linked block element. Figure 10d illustrates a linked block table.

extended_tag ref_no

EXT_LINKED first_len

num_blkblk_len link_ref

length

10-150 June 2017

The HDF Group

FIGURE 10d A Linked Block Table

link_ref Reference number for this table (16-bit integer)

next_ref Reference number for next table (16-bit integer)

blk_ref_n Reference number for data block (16-bit integer)

The next_ref field contains the reference number of the next linked block table. A value of zero
(0) in this field indicates that there are no additional linked block tables associated with this ele-
ment.

The blk_ref_n fields of each linked block table contain reference numbers for the individual
data blocks that make up the data portion of the linked block element. These data blocks are iden-
tified by the tag/ref DFTAG_LINKED/blk_ref_n as illustrated in Figure 10e. Although it may
seem ambiguous to use the same tag to refer to two different objects, this ambiguity is resolved by
the context in which the tags appear.

FIGURE 10e A Data Block

blk_ref_n Reference number for this data block (16-bit integer)

data_block Block of actual data (size specified by first_len or blk_len in the
description record)

Linked block elements can be created using the function HLcreate(), which is discussed in
Chapter , “Low-level Interface.”

10.4 External Elements

External elements allow the data portion of an HDF element to reside in a separate file. The poten-
tial of external data elements is largely unexplored in the HDF context, although other file formats
(most notably the Common Data Format, CDF, from NASA) have used external data elements to
great advantage.

Because there has been little discussion of external elements within the HDF user community, the
structure of these elements is still not completely defined. Figure 10f shows a diagram of the sug-
gested structure for an external element.

DFTAG_LINKED link_ref

. . .next_ref blk_ref2blk_ref1

DFTAG_LINKED blk_ref_n

data_block

HDF Specification and Developer’s Guide

June 2017 10-151

FIGURE 10f External Element Description Record

extended_tag The extended tag counterpart of any HDF standard tag (16-bit integer)

ref_no Reference number (16-bit integer)

SPECIAL_EXT Constant identifying this as an external element description record (16-bit
integer)

length Length in bytes of the data in the external file (32-bit integer)

offset Location of the data within the external file (32-bit integer)

filename Non-null terminated ASCII string naming the external file (any length)

An external element description record begins with the constant SPECIAL_EXT, which identifies
the data object as having an externally stored data element. The rest of the description record con-
sists of the specific information required to retrieve the data.

External elements can be created using the function HXcreate(), which is discussed in Chapter ,
“Low-level Interface.”

10.5 Chunked Data Storage

10.5.1Chunked Element Description Record

The file format, or layout, of a chunked data element is specified in a chunked element descrip-
tion record. Figure 10g, "DD for a chunked element (12 bytes) pointing to a chunked element
description record (>52 bytes)," provides a complete description, via illustration, of this record.

The fields that define a chunked element, as illustrated in Figure 10g, are as follows:

sp_tag_desc SPECIAL_CHUNKED (a 16-bit constant) identifies this as a chunked element
description record.

sp_tag_head_lenLength of this special element header only (4 bytes). Does not include
length of header with additional specialness headers. Note: This is
done to make this header layout similar to the multiple specialness
layout.

version Version information (8-bit field).

flag Bit field to set additional specialness (32-bit field). Only the bottom 8 bits
are currently used.

elem_tot_lenValid logical length of the entire element (4 bytes). The logical physical
length is this value multiplied by nt_size. The actual physical
length used for storage can be greater than the dataset size due to
the presence of ghost areas in chunks. Partial chunks are not distin-
guished from regular chunks.

chunk_size Logical size of data chunks (4 bytes).

extended_tag ref_no

SPECIAL_EXT offsetlength filename

10-152 June 2017

The HDF Group

nt_size Number type size, i.e the size of the data type (4 bytes).

chk_tbl_tag Tag for the chunk table, i.e. the Vdata (2 bytes).

chk_tbl_ref Reference number for the chunk table, i.e. the Vdata (2 bytes).

sp_tag For future use. Special table for 'ghost' chunks (2 bytes).

sp_ref For future use (2 bytes).

ndims Number of dimensions of the chunked element.(4 bytes).

file_val_num_bytesNumber of bytes in fill value (4 bytes).

fill value Fill value (variable bytes).

.

FIGURE 10g DD for a chunked element (12 bytes) pointing to a chunked element description record 
(>52 bytes)

Extended tag Reference # Offset Length

2 bytes 2 bytes 4 bytes 4 bytes

Chunking Flag elm_tot_length

1 byte 4 bytes 4 bytes

nt_size

4 bytes 4 bytes

chunk_size

2 bytes 2 bytes

chk_tbl_tag chk_tbl_ref

sp_tag_desc sp_tag_head_len

4 bytes2 bytes

sp_ref ndims

4 bytes2 bytes

sp_tag

2 bytes

dim_length

4 bytes 4 bytes

flag chunk_length

4 bytes

times the number of

fill value

variable bytes

fill_val_num_types

4 bytes
dimensions

variable bytes

sp_tag_header_len

4 bytes2 bytes

sp_tag_headersp_tag_desc
variable number of these, depending
on specialness set in flag field

(12 x ndims bytes)

(6 + variable bytes)

(4 + variable bytes)

(8 bytes)

(12 bytes)

(9 bytes)

(6 bytes)

(12 bytes)

DD

D
escrip

tion
 record

version

HDF Specification and Developer’s Guide

June 2017 10-153

In addition to the above fields, each chunked element dimension requires a set of the following
fields:

flag (32-bit field) This field is divided as follows:
| High, 8 bits | Medium High, 8 bits | Medium Low, 8 bits | Low, 8 bits |

•distrib_type (Low 8 bits, bits 0-7)
Type of data distribution along this dimension 
0x00 -> None
0x01 -> Block
Currently only block distribution is supported but this is not currently
checked or verified.

•Other (Medium Low 8 bits, bits 7-15) 
0x00 -> Regular dimension
0x01 -> UNLIMITED dimension

dim_length Current length of this dimension (4 bytes).

chunk_lengthLength of the chunk along this dimension (4 bytes).

Further, additional specialnesses may be used. Each additional specialness requires a set of the
following fields:

sp_tag_desc SPECIAL_xxx (16-bit constant) identifies this as an xxx element description
record (16-bit field).

sp_tag_header_lenLength of special element header (4 bytes).

sp_tag_header Special header (variable bytes).

10.5.2Chunk Table

Information regarding a chunked data set is stored in the chunk table, described in Figure 10h on
page 154.

The chunk table fields are defined as follows:

origin Specifies the coordinates of the chunk in the overall chunk array. This is a
variable-size field, depending on the number of dimensions of the chunked
element.

chunk_tag Currently DFTAG_CHUNK. Could be another chunked element to allow recur-
sive chunked elements (DFTAG_CHUNKED). (16-bit field)

chunk_ref Reference number of the chunk itself. (16-bit field)

10-154 June 2017

The HDF Group

FIGURE 10h Chunk table

10.6 Data Compression

The HDF library supprts the following compression formats for scientific data sets.

• Skipping-Huffman

• GNU ZIP deflation (Lempel/Ziv-77 dictionary coder)

• N-bit run-length encoding

• SZIP

The compression format of a data set is specified in an extended tag description known as a com-
pressed element description record. Figure 10i, "Compression header extended tag description,"
describes the common elements of this record. Subsequent figures describe the remainder of the
record, which varies for each type of compression.

10.6.1Compression Header: The Common Elements of Compressed Element
Description Records

The compression header comprises the common elements of all compressed element description
records and is contained in the first ten fields of the record. As illustrated in Figure 10i, the com-
presion header is made up of the following fileds.

2 bytes 2 bytesvariable bytes

Data chunk

origin chunk_ref_1chunk_tag

origin chunk_ref_Nchunk_tag

N = number of chunk records
in Vdata

Number of bytes per record will
vary with the size of origin

2 bytes 2 bytes 4 bytes 4 bytes

chunk_ref_NDFTAG_CHUNK Offset Length

Length here is specified as
chk_size x nt_size.

HDF Specification and Developer’s Guide

June 2017 10-155

The first four fields of the compression header are common among all special element headers:

Extended tag
Reference # These two fields contain the tag/ref pair that identifies any HDF object.

Offset This is the offset, in bytes, to the location of the fifth field, or the
sp_tag_desc field, of the compression header. This field always contains
the value SPECIAL_COMP in a compressed element description record.

Length This field specifies the space requirement, in bytes, of the fifth through last
fields of the compressed element description record.

The fifth through tenth fields are particular to the compression header:

sp_tag_desc SPECIAL_COMP (a 16-bit constant) identifies this as a compressed element
description record.

Version Version information (16-bit field).

Length of uncompressed data
Length, in bytes of the uncompressed data.

Ref # of compressed data
As illustrated in Figure 10j, "Compressed element reference number," this
field contains a pointer to a DFTAG_COMPRESSED structure which, in turn,
provides the offset location and size, both in bytes, of the actual compressed
data.

Model type Currently only streaming I/O.

Compression type
A string identifying the type of compression in use.

The remainder of the compressed element description record is different for each type of compres-
sion. The following sections discuss each of those types of records in turn.

FIGURE 10i Compression header extended tag description

4 bytes2 bytes

(Remainder varies in
length and content by
compression format.)

Offset LengthExtended tag Reference #

2 bytes 4 bytes

2 bytes2 bytes

Length ofSPECIAL_COMPCompression

2 bytes 4 bytes

version uncompressed data
Ref # of

compressed data

2 bytes

Compression

2 bytes

typeModel type

10-156 June 2017

The HDF Group

FIGURE 10j Compressed element reference number

10.6.2Compressed Element Description Record: NBIT Run-length Encoding

FIGURE 10k Extended tag description for NBIT run-length encoding compression

DFTAG_COMPRESSED

Ref # Offset Length

Data

Ref # of compressed data

4 bytes2 bytes

Offset Length (16 bytes)Extended tag Reference #

2 bytes 4 bytes

2 bytes2 bytes

Length ofSPECIAL_COMPCompression

2 bytes 4 bytes

version uncompressed data
Ref # of

compressed data

2 bytes2 bytes

Model type COMP_CODE_NBIT Number type (NT)

Sign extent flag Start bitFill value

4 bytes

2 bytes2 bytes 4 bytes

Bit length

4 bytes

HDF Specification and Developer’s Guide

June 2017 10-157

10.6.3Compressed Element Description Record: Skipping-Huffman

FIGURE 10l Extended tag description for Skipping-Huffman compression

10.6.4Compressed Element Description Record: GNU ZIP (Deflate)

FIGURE 10m Extended tag description for GNU ZIP (deflate) compression

4 bytes2 bytes

Offset Length (22 bytes)Extended tag Reference #

2 bytes 4 bytes

2 bytes2 bytes

Length ofSPECIAL_COMPCompression

2 bytes 4 bytes

version uncompressed data
Ref # of

compressed data

2 bytes

Model type COMP_CODE_SKPHUFF

2 bytes

4 bytes

Skipping unit size

4 bytes

Number of bytes compressed (not used)

4 bytes2 bytes

Offset Length (16 bytes)Extended tag Reference #

2 bytes 4 bytes

2 bytes2 bytes

Length ofSPECIAL_COMPCompression

2 bytes 4 bytes

version uncompressed data
Ref # of

compressed data

2 bytes

Model type COMP_CODE_DEFLATE Deflate level (0-9)

2 bytes2 bytes

10-158 June 2017

The HDF Group

10.6.5Compressed Element Description Record: SZIP

FIGURE 10n Compression header extended tag description

The following parameters are used in SZIP compression.

Pixels: Number of pixels, or data elements, in the SDS to be compressed and must
be greater than 0. It is computed by dim[0]*dim[1]*...*dim[n], where
n is the number of dimensions.

Pixels per scanline: Number of pixels per scan line. This value must be greater than or
equal to pixels per block, and smaller than or equal to SZ_MAX_PIX-
ELS_PER_SCANLINE. SZ_MAX_PIXELS_PER_SCANLINE is defined as:

SZ_MAX_PIXELS_PER_SCANLINE =

SZ_MAX_BLOCKS_PER_SCANLINE * SZ_MAX_PIX-
ELS_PER_BLOCK,

where:

SZ_MAX_BLOCKS_PER_SCANLINE = 128 and SZ_MAX_PIXELS_PER_-
BLOCK = 32

Options maskSzip encoding scheme and other options. This parameter combines a bitwise
or of any of the following values:

SZ_ALLOW_K13_OPTION_MASK (or 1)

SZ_CHIP_OPTION_MASK (or 2)

SZ_EC_OPTION_MASK (or 4)

SZ_LSB_OPTION_MASK (or 8)

SZ_MSB_OPTION_MASK (or 16)

SZ_NN_OPTION_MASK (or 32)

SZ_RAW_OPTION_MASK (or 128)

4 bytes2 bytes

Offset Length (16 bytes)Extended tag Reference #

2 bytes 4 bytes

2 bytes2 bytes

Length ofSPECIAL_COMPCompression

2 bytes 4 bytes

version uncompressed data
Ref # of

compressed data

2 bytes2 bytes

Model type COMP_CODE_SZIP Pixels Pixels per scanline

Options mask Pixels per blockBits per pixel

4 bytes 4 bytes

4 bytes 4 bytes 4 bytes

HDF Specification and Developer’s Guide

June 2017 10-159

Bits per pixel: The number of bits in the SDS number type, e.g., if the SDS’ number
type is DFNT_FLOAT, the bits per pixel of this SDS will be 32. This param-
eter must be either 8, 16, 32, or 64.

Pixels per block: Number of data elements in an szip block. Must be even and smaller
than or equal to pixels per scanline and smaller than and equal to
SZ_MAX_PIXELS_PER_BLOCK (32.)

The two parameters Options mask and Pixels per block are required when setting com-
pression for SZIP. If any of the other parameters are not provided, they will be computed by HCP-
setup_szip_parms.

The SZIP source code can be found at https://support.hdfgroup.org/doc_resource/SZIP/ for fur-
ther reference.

10-160 June 2017

The HDF Group

June 2017 11-161

CHAPTER 11 -- Portability Issues

11.1 Chapter Overview

The NCSA implementation of HDF is accessible to both C and FORTRAN programs and is
implemented on many different machines and several operating systems. There are important dif-
ferences between C and FORTRAN, and among implementations of each language, especially
FORTRAN. There are also important differences among the machines and operating systems that
HDF supports.

If HDF is to be a portable tool, these differences must be constructively addressed. This chapter
describes many of these differences, discusses the problems and issues associated with them, and
presents the methods employed in the HDF implementation to reduce their impact.

11.2 The HDF Environment

The list of machines and operating systems on which HDF is implemented is steadily growing.
For reasons that this chapter will make clear, the number of NCSA-supported HDF platforms is
growing slowly. Every time a platform is added, additional code must be written to address con-
cerns of memory management, operating system and file system differences, number representa-
tions, and differences in FORTRAN and C implementations on that system.

11.2.1Supported Platforms

As of this writing, NCSA supports the platforms listed in Table 11a.

11-162 June 2017

The HDF Group

TABLE 11a NCSA-supported HDF Platforms

HDF has also been ported to several platforms that NCSA does not currently support. These
include Alliant, Apollo (Domain), HP 3000, Stellar, Amiga, Symbolics, Fujitsu, and IBM 3090
(MVS).

11.2.2Language Standards

Unfortunately, not all compilers are the same. FORTRAN compilers often differ in the ways they
pass parameters, in the identifier naming conventions they employ, and in the number types that
they support. Similarly, though generally not as drastically, C compilers differ in the number
types that they support and in their adherence to the ANSI C standard.

To minimize the difficulties caused by these differences, the HDF source code is written primarily
in the following dialects:

• FORTRAN 77

• ANSI C

• The original C defined by Kernighan and Ritchie1, hereafter referred to as old C

Almost all platforms have C and FORTRAN compilers that adhere to at least one of these stan-
dards.

When time and resources permit, NCSA attempts to support features or variations in other dialects
of C and FORTRAN, particularly on platforms that are important to NCSA users. Much of the
remainder of this chapter addresses these efforts.

11.2.3Guidelines

One cannot over stress the importance of following the guidelines outlined in this chapter. It may
take longer to write code and it may be difficult to adapt your coding style, but the long-term ben-
efits, in terms of portability and maintenance costs, will be well worth the effort.

Hardware Platform Operating System

Convex Concentrix

Cray X-MP, Y-MP, Cray 2 UNICOS

DEC Alpha Ultrix

DECStation Ultrix

HP 9000 HPUX

IBM PC MS DOS, Windows 3.1

IBM RS/6000 AIX

IBM RT UNIX

Macintosh MPW Shell

NeXT NeXTStep

Silicon Graphics UNIX

Sun Sparc UNIX

Vax VMS

1. The version of C described in the first edition of The C Programming Language, by Brian
Kernighan and Dennis Ritchie, published by Prentice-Hall.

HDF Specification and Developer’s Guide

June 2017 11-163

11.3 Organization of Source Files

Three types of files appear in the HDF source code directory:

• Header files

• Source code files

• Configuration files

Header files and source code files are organized by application area. All of the functions that
apply to a particular application area are stored in three source files, and all the definitions and
declarations that apply to that application are stored in a corresponding header file. The makefile
describes the dependencies among the source and header files and provides the commands
required to compile the corresponding libraries and utilities.

11.3.1Header Files

Certain application modules require header files. The header file dfan.h, for example, contains
definitions and declarations that are unique to the annotation interface.

There are also several general header files that are used in compiling the libraries for all applica-
tion areas:

hdf.h and hdfi.h1
hdf.h contains declarations and definitions for the common data structures
used throughout HDF, definitions of the HDF tags, definitions of error num-
bers, and definitions and declarations specific to the low level interface.
Since hdf.h depends on hdfi.h, it includes hdfi.h via #include.

hdfi.h contains information specific to the various NCSA-supported HDF
computing environments, environmental parameters that need to be set to
particular values when compiling the HDF libraries, and machine dependent
definitions of such things as number types and macros for reading and writ-
ing numbers.

When porting HDF to a new system, only hdfi.h and the makefile should
need to be modified, though there may be exceptions.

It is normally a good idea to include hdf.h (and therefore indirectly
hdfi.h) in user programs, though users usually need not be aware of its
contents.

hproto.h This file contains ANSI C prototypes for all HDF C routines. It must be
included in ANSI C programs that call HDF routines.

constants.i This file is for use in FORTRAN programs. It contains important constants,
such as tag values, that are defined in hdf.h. Systems with FORTRAN
preprocessors might be able to include this file via #include statements or
their equivalent.

dffunc.i This file is for use in FORTRAN programs. It contains declarations of all
HDF FORTRAN-callable functions. Systems with FORTRAN preproces-

1. Prior to Version 3.2 of HDF, these files were called df.h and dfi.h. At the time of HDF
Version 3.2, the low level interfaces, the general purpose layer of HDF, was completely rewritten
and all routine names were changed from df* to hdf*.

11-164 June 2017

The HDF Group

sors might be able to include this file via #include statements or their
equivalent.

11.3.2Source Code Files

All HDF operations are performed by routines written in C. Hence, even FORTRAN calls to
HDF result in calls to the corresponding C routines. Because of the problems described below the
relationships between the C routines and the corresponding FORTRAN routines can be confusing.
This section discusses the C and FORTRAN source file organization. It is followed by discus-
sions of problems users will face in the FORTRAN–C interface.

HDF interfaces typically have three or four associated files. For example, the scientific data set
(SDS) interface is associated with the following files: dfsd.h, dfsd.c, dfsdf.c, and
dfsdff.f.

These files fill the following roles:

Header files
The *.h files are header files.

Normal C routines
These routines do the actual HDF work. The others are used to transfer control and
data from a FORTRAN environment to a C environment.

These routines are in the *.c files, as in dfsd.c. Every call to HDF, whether from
C or FORTRAN, ultimately results in a call to one of these routines.

C routines that are directly callable from FORTRAN
These routines provide recognizable function names to the linker. They may also per-
form operations on data they receive from the FORTRAN routines that call them,
such as transferring a FORTRAN string to a local C data area. Examples are provided
below.

These routines are in the *f.c files, such as dfsdf.c. The f means that the rou-
tines can be called from FORTRAN; the .c means that they are C source code.

FORTRAN routines that perform some operation on the parameters that C would be unable
to perform, before and/or after calling the corresponding C routine
These routines are required, for example, when one of the parameters is a string. The
corresponding C routine has no way of knowing the length of the string unless it is
explicitly given the length by the FORTRAN routine.

These routines are in the *ff.f files, such as dfsdff.f. The ff means that the rou-
tines perform some FORTRAN operation that C cannot perform and that they are to
be called from FORTRAN; the .f means that they are FORTRAN source code.

The roles of these different types of source file types will become clearer as we look at some of
the problems that arise in interfacing C and many different implementations of FORTRAN.

11.3.3File Naming Conventions

The naming conventions for HDF library source code files are complicated by several factors.
Because HDF must accommodate a wide variety of platforms, all files that will compile to object
modules must have names that are unique in the first 8 characters, ignoring case. The difficulties
involved in maintaining a FORTRAN-callable interface to a library that is primarily written in C
further complicate the naming of source code files.

HDF Specification and Developer’s Guide

June 2017 11-165

11.4 Passing Strings between FORTRAN and C

One of the most important differences between FORTRAN and C compilers is in the way strings
are represented. Different compilers use different data structures for strings, and supply string
length information in different ways.

11.4.1Passing Strings from FORTRAN to C

When strings are passed between FORTRAN and C routines, they may need to be converted from
one representation to the other. C compilers store strings in an array of type char, terminated by
a null byte (\0). The name of a string variable is equivalent to a pointer the first character in the
string. FORTRAN compilers are not consistent in the ways that they store strings.

Two pieces of information must be acquired before FORTRAN can pass a string to C:

• The string’s length

• The string’s address

The string’s length is determined by invoking the standard FORTRAN function len(), which
returns the length of a string. Since C expects a null byte at the end of a string, care must be taken
that this null byte does not overwrite useful information in the FORTRAN string.

Determining the string’s address is more difficult because of the different ways that different
FORTRAN implementations store strings. The macro _fcdtocp (FORTRAN character
descriptor to C pointer) is used to acquire this information. _fcdtocp is one of the elements
that must be customized for each platform. The following paragraphs discuss several existing
customized implementations:

• UNICOS FORTRAN stores strings in a structure called _fcd (FORTRAN character
descriptor). _fcdtocp is a built-in UNICOS function that returns the string’s address.
(Since UNICOS provides this function, HDF omits the corresponding macro definition on
UNICOS systems.

• VMS FORTRAN uses a string descriptor structure that provides the string’s address and
length. When compiled under VMS, _fcdtocp extracts the string's address from that
structure.

• Most other FORTRAN compilers supported by HDF store strings just as C does, in charac-
ter arrays with the array name identifying the array's address. In such situations, nothing
special needs to be done to pass a string from FORTRAN to C, except to add a NULL byte.

An HDF FORTRAN call that involves passing a string results in the following sequence of
actions:

1 A FORTRAN filter routine determines the length and address in memory of the string.
Since this filter is a FORTRAN routine, it can be found in the appropriate *ff.f file.

2 The FORTRAN filter then calls a C routine, to which it passes all parameters from the initial
call the string's length.

3 The C routine converts the FORTRAN string to a C string by copying it to a C array of type
char and appending a null byte. Since this C routine serves as a link between a FORTRAN
filter and the corresponding C interface call, it can be found in the appropriate *f.c file.

4 This C routine then calls the HDF C routine that performs the actual work.

This process is illustrated in Figure 11a, "Sequence of Events when a FORTRAN Call Includes a
String as a Parameter."

...

ret = dsgdim(' ', , ...)

...

User's program

dfsdFf.f

dfsdF.c

dfsd.c

libdf.a (the HDF library)

User's FORTRAN program calls

dsgdims. The parameter

 is a string.

dsgdim()

...

dsigdim(, ,...,len())

...

The FORTRAN function dsgdim

calls the C function dsigdim,

adding an extra parameter--the

length of the filename parameter .

...

DFSDgetdims(, ,...)

...

dsigdim()

DFSDgetdims()
DFSDgetdims performs the

actual HDF function, getting the

rank and dimension of the next

scientific data set in the file.

dsigdim converts the

FORTRAN string stored in
filename to a C string, then
calls DFSDgetdims.

myfilemyfile

filenamefilename rank

fn prank

rank

11-166 June 2017

The HDF Group

FIGURE 11a Sequence of Events when a FORTRAN Call Includes a String as a Parameter

11.4.2Passing Strings from C to FORTRAN

When strings are passed from C to FORTRAN, the reverse procedure is followed. First, a string
pointer is allocated within the FORTRAN routine's data area. (It is assumed that the space pointed
to has already been allocated, and is sufficiently large to hold the string.) The string is then cop-
ied from the C data area to the FORTRAN data area. Finally, the FORTRAN string's data area is
padded with blanks, if necessary.

11.5 Function Return Values between FORTRAN and C

When a FORTRAN routine calls a C function, it always expects a return value from that function.
Unfortunately, C functions do not always return arguments in a FORTRAN-compatible format.

To solve this problem, some FORTRAN compilers offer the option of controlling the form of the
return value from a function. For example, Language Systems FORTRAN for the Macintosh

HDF Specification and Developer’s Guide

June 2017 11-167

requires that all C function declarations be prepended by the word pascal so that the return
value can be recognized by a FORTRAN routine that calls it, as in:

pascal int dsgrang(void *pmax, void *pmin)

Since C always expects return values to be passed by value rather than, say, by reference, it is
important to coerce FORTRAN functions to do the same. This is accomplished by defining a
macro FRETVAL that is prepended to the declaration of every FORTRAN-callable C function.
For example:

FRETVAL(int)
dsgrang(void *pmax, void *pmin)

If Language Systems FORTRAN is to be used, FRETVAL is defined in hdfi.h as follows:

#if defined(MAC) /* with LS FORTRAN */
define FRETVAL(x) pascal x
#endif

11.6 Differences in Routine Names

HDF generally employs standard C conventions in naming routines. But many FORTRAN com-
pilers impose varying restrictions on the length, character set, and form of identifiers, some of
which are considerable more restrictive than the C conventions. Therefore, an extra effort must be
made to accommodate those FORTRAN compilers.

To address this issue, HDF defines a set of preprocessor flags in hdfi.h. Then conditional com-
pilation, with #ifdef statements in the source code, produces routine names that the target sys-
tem’s FORTRAN will understand.

11.6.1Case Sensitivity

C compilers are case sensitive; uppercase and lowercase letters are recognized as different charac-
ters. Many FORTRAN compilers are not case sensitive; they allow users to use uppercase and
lowercase letters while naming routines in the source code, but the names are converted to all
uppercase or all lowercase in the object module symbol tables. Routine name recognition prob-
lems are common when routines compiled by a case sensitive compiler are to be linked with rou-
tines compiled by a non-case sensitive compiler.

For example, the UNICOS FORTRAN compiler allows you to name routines without regard to
case, but produces object module symbol tables with the routine names in all uppercase. UNI-
COS C, on the other hand, performs no such conversion.

Consider the HDF routine Hopen. Hopen is written in C, so the HDF library symbol table con-
tains the name Hopen. Suppose you make the following call in your UNICOS FORTRAN pro-
gram:

file_id = Hopen('myfile', ...)

The FORTRAN compiler will create an object module symbol table with the routine name
HOPEN. When you link it to the HDF library, it will find Hopen but not HOPEN, and will gener-
ate an unsatisfied external reference error.

HDF supports the following non-case sensitive compilers:

• VMS FORTRAN

• UNICOS FORTRAN

• Language Systems FORTRAN.

11-168 June 2017

The HDF Group

All of these compilers convert identifiers to all uppercase when building an object module symbol
table. In the following discussion, they are referred to as all-uppercase compilers.

The HDF Solution

HDF addresses the all-uppercase compiler problem in the platform-specific section of hdfi.h
where the DF_CAPFNAMES flag is defined. With conditional compilation, HDF generates all-
uppercase routine names and symbol table entries.

Once again, consider UNICOS. The UNICOS section of hdfi.h contains the following line:

#define DF_CAPFNAMES

The *f.c files contain corresponding conditional sections that produce all-uppercase routine
names. For example, the function name Fun can be redefined as FUN:

#ifdef DF_CAPFNAMES
define Fun FUN

#endif /* DF_CAPFNAMES */

11.6.2Appended Underscores

Differing compiler conventions create a similar problem in their use of the underscore (_) char-
acter. Many compilers, including most C compilers, prepend an underscore to all external sym-
bols in the object module symbol table. The linker then looks for external symbols in other
symbol tables with the prefixed underscore.

Many FORTRAN compilers also append an underscore to identify external symbols. Since C
compilers do not generally do this, external references in FORTRAN-generated object modules
will not recognize externals with the same names in C-generated modules.

For example, the FORTRAN compiler on the CONVEX system places an underscore both at the
beginning and at the end of routine names, while the C compiler places an underscore only at the
beginning.

Since FUN is a C function, it appears under the name _FUN in the object module containing it.
Now suppose you make the following call in a FORTRAN program:

x = FUN(y)

The FORTRAN compiler will create an object module symbol table with the routine name
FUN. When you link it to the C module, the linker will be unable to link _FUN and _FUN_
and will generate an unsatisfied external reference error.

The HDF Solution

Like the all-uppercase compiler problem, this issue is resolved in the platform-specific sections of
hdfi.h and with conditional sections of code that append an underscore to C routine names on
platforms where the FORTRAN compiler expects it.

This is implemented as follows: The FNAME_POST_UNDERSCORE flag is defined in the platform-
specific section of hdfi.h for every platform whose FORTRAN compiler requires appended
underscores. Similarly, the FNAME_PRE_UNDERSCORE flag is defined on platforms where the
FORTRAN compiler expects prepended underscores. The macro FNAME is then defined to
append and/or prepend underscores as required.

The FNAME macro is then applied to each routine in the module in which it is actually defined
(including in hptroto.h), adding the appropriate underscores.

HDF Specification and Developer’s Guide

June 2017 11-169

Consider the above example in which Fun was renamed FUN. The actual definition appears as
follows:

#ifdef DF_CAPFNAMES
define Fun FNAME(FUN)

#endif /* DF_CAPFNAMES */

11.6.3Short Names vs. Long Names

In the C implementations supported by HDF, identifiers may be any length with at least the first
31 characters being significant. FORTRAN compilers differ in the maximum lengths of identifi-
ers that they allow, but all of those supported by HDF allow identifiers to be at least seven charac-
ters long.

To deal with the discrepancies between identifier lengths allowed by C and those allowed by the
various FORTRAN compilers, a set of equivalent short names has been created for use when pro-
gramming in FORTRAN. For every HDF routine with a name more than seven characters long,
there is an identical routine whose name is seven or fewer characters long.

For example, the routines DFSDgetdims (in dfsd.c) and dsgdims (in dfsdff.f) are func-
tionally identical.

11.7 Differences Between ANSI C and Old C

The current HDF release supports both ANSI C and old C compilers. ANSI C is preferred
because it has many features that help ensure portability; unfortunately, many important platforms
do not support full ANSI C. The HDF code determines whether ANSI C is available from the flag
__STDC__. If ANSI C is available on a platform, then __STDC__ is defined by the compiler.1

The most noticeable difference between ANSI C and old C is in the way functions are declared.
For example, in ANSI C the function DFSDsetdims() is declared with a single line:

int DFSDsetdims(intn rank, int32 dimsizes[])

In old C the same function is declared as follows:

int DFSDsetdims(rank, dimsizes)
intn rank;
int32 dimsizes[];

HDF accommodates these differences by defining the flag PROTOTYPE in hdfi.h. PROTO-
TYPE is used for every function declaration in a manner similar to the following example:

#ifdef PROTOTYPE
int DFSDsetdims(intn rank, int32 dimsizes[])
#else
int DFSDsetdims(rank, dimsizes)
intn rank;
int32 dimsizes[];
#endif /* PROTOTYPE */

Note that prototypes are supported by some C compilers that are not otherwise ANSI-conformant.
In such situations, PROTOTYPE is defined even though __STDC__ is not.

1. __STD__ is generally defined by ANSI-conforming C compilers. Some C compilers are not
entirely ANSI-conforming, yet they conform well enough that the HDF implementation can treat
them as if they were. In such cases, it is permissible to define __STDC__ by adding the option
-D__STDC__ to the cc line in the makefile.

11-170 June 2017

The HDF Group

Another difference between old C and ANSI C is that ANSI C supports function prototypes with
arguments. (Old C also supports function prototypes, but without the argument list.) This feature
helps in detecting errors in the number and types of arguments. This difference is handled by
means of a macro PROTO, which is defined as follows:

#ifdef PROTOTYPE
#define PROTO(x) x
#else
#define PROTO(x) ()
#endif

This macro is applied as in the following example:

extern int32 Hopen
PROTO((char *path, intn access, int16 ndds));

When PROTOTYPE is defined, PROTO causes the argument list to stay as it is. When PROTO-
TYPE is not defined, PROTO causes the argument list to disappear.

11.8 Type Differences

Platforms and compilers also differ in the sizes of numbers that they assign to different data types,
in their representations of different number types, and in the way they organize aggregates of
numbers (especially structures).

11.8.1Size differences

The same number type can be different sizes on different platforms. The type int, for example,
is 16 bits to many IBM PC compilers, 48 bits to some supercomputer compilers, and 32 bits on
most others. This can cause problems that are difficult to diagnose in code like the HDF code,
which depends in many places on numbers being the right size.

HDF handles this problem by fully defining all variable types and function data types via
typedef, including the number of bits occupied. All parameters, members of structures, and
static, automatic, and external variables are so defined .

The HDF data types include the following (types with the prefix u are unsigned).

int8
uint8
int16
uint16
int32
uint32
float32
float64
intn
uintn

For each machine, typedefs are declared that map all of the data types used into the best available
types. For example, int32 is defined as follows for Sun's C compiler:

typedef long int int32;

HDF Specification and Developer’s Guide

June 2017 11-171

Unfortunately, the HDF data types do not always map exactly to one of the native data types. For
example, the Cray UNICOS C compiler does not support a 16-bit data type. In such instances,
HDF uses the best available match and care is taken to minimize potential problems.

The data types intn and uintn are for situations where it can be determined that number type
size is unimportant and that a 16-bit integer is large enough to hold any value the number can
have. In such cases, the native integer type (or unsigned integer type) of the host machine is used.
Experience indicates that substantial performance gains can be achieved by using intn or
uintn in certain circumstances.

11.8.2Number Representation

One of the keys to producing a portable file format is to ensure that numbers that are represented
differently on different machines are converted correctly when moved from machine to machine.
HDF provides conversion routines to convert between native representations and a standard repre-
sentation that is actually used in the HDF file. This ensures that HDF data will always be inter-
preted correctly, regardless of the platform on which it is read or written. Details of this process
will be included in a later edition of this manual.

11.8.3Byte-order and Structure Representations

Even when the basic bit-representation of constants or aggregates like structures is the same
across platforms, the ways that the bits are packed into a word and the order in which the bits are
laid out can differ. For example, DEC and Intel-based machines generally order bytes differently
from most others. And the C compiler on a Cray, with a 64-bit word, packs structures differently
from those on 32-bit word machines.

Differences in byte order among machines are handled in either of two ways. When the data to be
written (or read) includes non-integer data and/or a large array of any type of data, conversion
routines mentioned in the previous section, “Number Representation,” are invoked. When an
individual integer is to be written (or read), an ENCODE or DECODE macro is used.

The following ENCODE and DECODE macros are available for 16-bit and 32-bit integers:

INT16ENCODE
UINT16ENCODE
INT32ENCODE
UINT32ENCODE
INT16DECODE
UINT16DECODE
INT32DECODE
UINT32DECODE

The ENCODE macros write integers to an HDF file in a standard format regardless of the word-
size and byte order of the host machine.

Likewise, the DECODE macros read integers from a standard format in an HDF file and provide
the integers in the required byte order and word size to the host machine.

Since the ENCODE and DECODE macros deal with both byte order and word size, they are also
used in reading and writing record-like structures. For example, an HDF data descriptor consists
of two 16-bit fields followed by two 32-bit fields, as implied by the following C declaration:

struct {
uint16 tag;
uint16 ref;
uint32 offset;

11-172 June 2017

The HDF Group

uint32 length;
}

Even though this structure might occupy 12 bytes on one platform or 32 bytes on another (e.g., a
Cray), it must occupy exactly 12 bytes in an HDF file. Furthermore, some machines represent the
numbers internally in different byte orders than others, but the byte order must always be big-
endian in an HDF file. The ENCODE and DECODE macros ensure that these values are always
represented correctly in HDF files and as presented to any host machine.

11.9 Access to Library Functions

Despite standardization efforts, function libraries often differ in significant ways. At least three
types of functions require special treatment in the HDF implementation:

File I/O
Some platforms use 16-bit values for the element size and the number of elements to
write or read, while others use 32-bit values. This must be considered when working
with either stream or system level I/O functions (i.e., the functions associated with the
fopen() and open() calls).

Memory allocation and release
First, 16-bit machines use a 16-bit value to indicate the number of bytes to allocate or
release at one time. Second, certain operating systems (notably MS Windows and
MAC/OS) don't have malloc() and free() calls. These operating systems use
handles for allocating memory and require different function calls.

Memory and string manipulation
These functions (e.g., memcpy(), memcmp(), strcpy(), and strlen()) require
slightly different function names under different memory models in MS DOS and
under MS Windows than on most other systems.

HDF accommodates these special situations by defining appropriate macros in the machine-spe-
cific sections of hdfi.h.

June 2017 A-1

APPENDIX A -- Tags and Extended Tag Labels

A.1 Overview

The tables in this appendix lists all of the NCSA-supported HDF tags and the labels used to iden-
tify extended tags.z

A.2 Tags

Table AR lists all the NCSA-supported HDF tags with the following information:

Tag The tag itself

Tag number The regular tag number in decimal (top) and hexadecimal (bottom)

Extended tag number
The extended tag number used with linked blocks and external data elements
in decimal and (hexadecimal)

Full name The tag name, a descriptive English phrase

Section The section of Chapter , “Tag Specifications,” in which the tag is discussed

The tags are listed in alphabetical order. Not all tags have extended tag numbers.

TABLE AR NCSA-supported HDF Tags

Tag Number
Extende
d Num-

ber
Full Name Section

DFTAG_AR 312
0x0138

Aspect ratio Raster Image Tags

DFTAG_CAL 731
0x02DB

Calibration information Scientific Data Set Tags

DFTAG_CCN 310
0x0136

Color correction Raster Image Tags

DFTAG_CFM 311
0x0137

Color format Raster Image Tags

DFTAG_CI8 203
0x00CB

Compressed image-8 Obsolete Tags

DFTAG_DIA 105
0x0069

Data identifier annotation Annotation Tags

A-2 June 2017

The HDF Group

Tag Number
Extende
d Num-

ber
Full Name Section

DFTAG_DIL 104
0x0068

Data identifier label Annotation Tags

DFTAG_DRAW 400
0x0190

Draw Composite Image Tags

DFTAG_FD 101
0x0065

File description Annotation Tags

DFTAG_FID 100
0x0064

File identifier Annotation Tags

DFTAG_FV 732
0x02DC

Fill value Scientific Data Set Tags

DFTAG_GREY-
JPEG

14
0x000E

8-bit JPEG compression infor-
mation

Compression Tags

DFTAG_ID 300
0x012C

Image dimension Raster Image Tags

DFTAG_ID8 200
0x00C8

Image dimension-8 Obsolete Tags

DFTAG_II8 204
0x00CC

IMCOMP image-8 Obsolete Tags

DFTAG_IMC 12
0x000C

IMCOMP compressed data Compression Tags

DFTAG_IP8 201
0x00C9

Image palette-8 Obsolete Tags

DFTAG_JPEG 13
0x000D

24-bit JPEG compression
information

Compression Tags

DFTAG_LD 307
0x0133

LUT dimension Raster Image Tags

DFTAG_LUT 301
0x012D

Lookup table Raster Image Tags

DFTAG_MA 309
0x0135

Matte channel Raster Image Tags

DFTAG_MD 308
0x0134

Matte channel dimension Raster Image Tags

DFTAG_MT 107
0x006B

Machine type Utility Tags

DFTAG_NDG 720
0x02D0

Numeric data group Scientific Data Set Tags

DFTAG_NT 106
0x006A

Number type Utility Tags

DFTAG_NULL 1
0x0001

No data Utility Tags

DFTAG_RI 302
0x012E

16686
0x412E

Raster image Raster Image Tags

DFTAG_RI8 202
0x00CA

Raster image-8 Obsolete Tags

HDF Specification and Developer’s Guide

June 2017 A-3

Tag Number
Extende
d Num-

ber
Full Name Section

DFTAG_RIG 306
0x0132

Raster image group Raster Image Tags

DFTAG_RLE 11
0x000B

Run length encoded data Compression Tags

DFTAG_SD 702
0x02BE

17086
0x42BE

Scientific data Scientific Data Set Tags

DFTAG_SDC 708
0x02C4

Scientific data coordinates Scientific Data Set Tags

DFTAG_SDD 701
0x02BD

Scientific data dimension
record

Scientific Data Set Tags

DFTAG_SDF 706
0x02C2

Scientific data format Scientific Data Set Tags

DFTAG_SDG 700
0x02BC

Scientific data group Obsolete Tags

DFTAG_SDL 704
0x02C0

Scientific data labels Scientific Data Set Tags

DFTAG_SDLNK 710
0x02C6

Scientific data set link Scientific Data Set Tags

DFTAG_SDM 707
0x02C3

Scientific data max/min Scientific Data Set Tags

DFTAG_SDS 703
0x02BF

Scientific data scales Scientific Data Set Tags

DFTAG_SDT 709
0x02C5

Scientific data transpose Obsolete Tags

DFTAG_SDU 705
0x02C1

Scientific data units Scientific Data Set Tags

DFTAG_T105 603
0x25B

Tektronix 4105 Vector Image Tags

DFTAG_T14 602
0x25A

Tektronix 4014 Vector Image Tags

DFTAG_TD 103
0x0067

Tag description Annotation Tags

DFTAG_TID 102
0x0066

Tag identifier Annotation Tags

DFTAG_VERSION 30
0x001E

Library version number Utility Tags

DFTAG_VG 1965
0x07AD

Vgroup Vset Tags

DFTAG_VH 1962
0x07AA

Vdata description Vset Tags

DFTAG_VS 1963
0x07AB

18347
0x47AB

Vdata Vset Tags

DFTAG_XYP 500
0x01F4

X-Y position Composite Image Tags

A-4 June 2017

The HDF Group

A.3 Extended Tag Labels

Table AS lists labels used to identify HDF extended tags. The table includes the following infor-
mation:

Extended tag labelThe label, which appears as the first element of the extended tag descrip-
tion record

Physical storage methodThe alternative storage method indicated by the label

TABLE AS Extended Tag Labels

Extended Tag
Label

Physical Storage Method

EXT_EXTERN External file element

EXT_LINKED Linked block element

SPECIAL_COMP Compressed element

SPECIAL_CHUNKED Chunked element

June 2017 B-5

APPENDIX B -- Library Calling Trees

B.1 Overview

This appendix includes the calling trees employed in the HDF library. Note that these calling trees
are not presenting the entire library, as of May, 2008. They were produced as the need to study
certain areas of the library arose. In addition, a few trees might already be outdated. Thus, the call-
ing trees should only be used to get familiar with the library before studying the source code for
details. Updating this appendix is not a high priority task.

B.2 Library Calling Trees: SD API

hdf_create_compat_dim_vdata
int ref# of the vdata
or FAIL

- creates a vdata for the compatible dimension; its class is DIM_VALS

VHstoredata int32 vdata's ref#
creates vdata and
stores dimension's size

allocates dimension size HDmalloc int32 *

prepares value for the compatible dimension

B-6 June 2017

The HDF Group

h
df

_r
ea

d_
di

m
s

H
D

m
al

lo
c

N
C

_d
im

**

in
tn

 S
U

C
C

E
E

D
/F

A
IL

-
re

ad
s

in
 th

e
di

m
en

si
on

s
fr

om
 a

 c
df

 s
tr

uc
tu

re

V
ge

tc
la

ss

H
D

st
rc

m
p

in
t

in
tn

, S
U

C
C

E
E

D
/F

A
IL

V
at

ta
ch

in
t3

2,
 v

g
id

 o
r

FA
IL

V
in

qu
ir

e

de
ta

ch
es

 f
ro

m
 th

e
vg

in
tn

V
de

ta
ch

in
t3

2,
 S

U
C

C
E

E
D

/F
A

IL

V
ge

tn
ex

t
N

C
_d

im
**

V
is

vg
N

C
_d

im
**

ge
t r

ef

of
 n

ex
t e

le
m

en
t

de
te

rm
in

es
 if

 it
's

 a
 v

g

at
ta

ch
es

 to
 th

e
vg

ge
ts

 it
s

cl
as

s

ch
ec

ks
 if

 it
's

 a
 d

im
en

si
on

ge
ts

 in
fo

 o
f

th
is

 v
g

al
lo

ca
te

s
di

m
 li

st

lo
op

 th
ro

ug
h

fo
r

al
l v

gs
 re

pr
es

en
ti

ng
di

m
en

si
on

s

lo
op

 t
hr

ou
gh

 f
or

 a
 v

da
ta

o
f

cl
as

s
D

IM
_V

A
L

S
01

an
d

/o
r

D
IM

_
V

A
L

S
 t

o
ge

t d
im

en
si

on
 s

iz
e

V
Sg

et
cl

as
s

H
D

st
rc

m
p

in
t

in
tn

, S
U

C
C

E
E

D
/F

A
IL

V
Sa

tt
ac

h
in

t3
2,

 v
g

id
 o

r F
A

IL

V
ge

tn
ex

t
N

C
_d

im
**

V
is

vs
N

C
_d

im
**

ge
t r

ef

of
 n

ex
t e

le
m

en
t

de
te

rm
in

es
 if

 it
's

 a
 v

da
ta

at
ta

ch
es

 to
 th

e
vd

at
a

ge
ts

 it
s

cl
as

s

if
 c

la
ss

 is
a

D
IM

_V
A

L
S

ge
ts

 th
e

di
m

en
si

on
si

ze
 fr

om
 th

e
vd

at
a

H
D

st
rc

m
p

in
t

if
 c

la
ss

 is
 a

D
IM

_V
A

L
S0

1
or

di
m

en
si

on
 is

 u
nl

im
it

ed
V

Ss
ee

k
in

tn
se

ek
s

fi
rs

t e
le

m
in

 th
e

vd
at

a

H
D

st
rc

m
p

in
tn

ch
ec

k
if

 d
im

en
si

on
is

 u
nl

im
it

ed

V
Sr

ea
d

in
tn

re
ad

s
va

lu
es

fr
om

 th
e

vd
at

a

V
Sd

et
ac

h
in

t3
2,

 S
U

C
C

E
E

D
/F

A
IL

de
ta

ch
es

 f
ro

m
 th

e
vd

at
a

V
SQ

ue
ry

co
un

t
in

tn

HDF Specification and Developer’s Guide

June 2017 B-7

hdf_read_vars

HDmalloc NC_var**

intn SUCCEED/FAIL - reads in the variables and variable records from a cdf structure

Vgetclass

HDstrcmp int

intn, SUCCEED/FAIL

Vattach int32, vg id or FAIL

Vinquire intn

NC_new_array NC_array *

Vgettagref intn, SUCCEED/FAILfor each element gets its tag and ref#

if this element is a vgroup, do the following process,
otherwise, go to the next element

attaches to the vg

gets its class

checks if it's a variable

allocates var list

loop through for all
vgs representing a
v a r i a b l e - c l a s s
_HDF_VARIABLE

HDmalloc NC_dim**allocates dim list

Vntagrefs int32
gets number of
elements

Note: Vntagrefs should be called before the allocations so
they can use its result too; variable used wrong type: int

if this var has been written w/data and is a record
variable (i.e, a dimension), process the following

sub diagram is on
next page

for each sub-element

gets info of this vg

NC_new_var NC_var *creates new var record

hdf_num_attrs intn

hdf_read_attrs NC_array *reads in attr records

gets # of attr records

NC_var_shape int
returns var->assoc->count
or -1 if error

detaches from the vg

twice for shape and dsizesdeallocate shape info

compute number of records written

HDfree int

Vdetach int32, SUCCEED/FAIL

twice for temporary variable list and dimension listHDfree int

looks for dimensions, data storage, and
number type definition of this variable

deallocate
temp. storage

creates var list

B-8 June 2017

The HDF Group

Vinquire

Vgettagref intn, SUCCEED/FAILfor each sub-element

l o o p t h r o u g h t o
obtain dimensions,
da ta s torage, and
n u m b e r t y p e
definition

gets its tag and ref#

case DFTAG_VG

case DFTAG_VH

case DFTAG_NDG

case DFTAG_SD

case DFTAG_SDRAG

Vgetclass

HDstrcmp int

Vattach int32, vg id or FAILattaches to the
sub vgroup

i f c l a s s i s a
_HDF_DIMENSION or
_HDF_UDIMENSION

twice for _HDF_DIMENSION
and _HDF_UDIMENSION

get sub vgroup info

NC_dimid
g e t d i m en s i o n i d
from its name

Vdetach int32, SUCCEED/FAILdetach from sub vgroup

vdata, do nothing

NDG tag for HDF3.2,
set ndg_ref to sub vgroup id

Data storage,
set data_ref to sub vgroup id

Hlength int32
gets length of the
data element

Ragged array index,
set rag_ref to sub vgroup id

case DFTAG_NT

c h eck s for n a t i ve mod e u s in g severa l
comparisons, one of which is the routine below

Number type

gets its class

Hgetelementget sub vgroup info

ntstring
g e t d i m en s i o n i d
from its name

hdf_unmap_type

DFKgetPNSC int8

nc_typeDFNT_TYPE -> NC_TYPE

declared as int8, but casted to
uint8 when used here

HDF Specification and Developer’s Guide

June 2017 B-9

hdf_read_xdr_cdf

Vfindclass
find top level vg,
class _HDF_CDF

int32, vg ref

intn SUCCEED/FAIL - reads in a cdf structure from the file

hdf_read_dims

hdf_read_varsreads in var records intn, SUCCEED/FAIL

intn, SUCCEED/FAIL

attaches to top level vg Vattach int32, vg id or FAIL

reads in dim records

hdf_num_attrs

detaches from the vg

gets # of attr records intn

Vdetach int32, SUCCEED/FAIL

reads in attr records hdf_read_attrs NC_array *

hdf_write_attr
int ref# of the vdata
or FAIL

- writes a vdata representing an attribute

VHstoredatam int32 vdata's ref#
creates a vdata and
stores the attribute

data for this vdata:
name = (NC_attr *)->name->values, values = (NC_attr *)->data->values
size = (NC_attr *)->data->count, type = (NC_attr *)->HDFtype

hdf_write_dim

hdf_create_dim_vdata int32 ref#

int32 vgroup ref# of this var
or NULL

- writes out the vgroup representing a dimension and its elements

creates vdata to store
dimension's size

hdf_create_compat_dim_vdata int32 ref#
creates compatible
dimension

if data has been written for this dataset, stores the data storage's ref# in refs list also

this vdata has one field, "Values", and one record, the
dimension's size; its name is the dimension's name

stores the ref# in the refs list

Htagnewref uint16

Hnewref uint16

creates a ref for the
number type object
using either routine

returns a ref that is unique
in the file

returns a ref that is unique
in the file for a given tag

sets dimension's class to _HDF_DIMENSION or _HDF_DIMENSION using the dimension's size

VHmakegroup
writes the vgroup for
this dimension

int32, vg ref

sets dimension's name to the defined one or to the fake one Note: any skipped index of the fake name is adjusted here

B-10 June 2017

The HDF Group

hdf_write_var

hdf_get_ref int32 ref#

int32 vgroup ref# of this var
or NULL

- writes out the vgroup representing a variable and its elements

gets ref# of each dim
of the passed in var

hdf_write_attr int32 ref#writes each attribute
of this variable

if data has been written for this dataset, stores the data storage's ref# in refs list also

uses the association list of this var: var->assoc->values[i]; the ref# is then
stored in the refs list (which will contain all ref#s in the file) for later writing

stores the ref# in the refs list

Htagnewref uint16

Hnewref uint16

creates a ref for the
number type object
using either routine

returns a ref that is unique
in the file

returns a ref that is unique
in the file for a given tag

Hputelement int32 # of bytes written or FAILwrites number type

stores the number type's ref# in refs list

DFdisetup int32 group id or FAILsets up to write the NDG

writes metadata

writes SDD record

writes out the NDG

DFdiput intn SUCCEED/FAIL
actually, adds tag/ref to DI list;
twice for SD's and number type's

Hputelement

writes metadata DFdiput

stores the SDD's ref# in refs list

DFdiwrite

stores the NDG's ref# in refs list

VHmakegroup
writes the vgroup for
this variable

int32, vg ref

int32 # of bytes written or FAIL

intn SUCCEED/FAIL
actually, adds tag/ref to DI list;
twice for SD's and number type's

actually, writes DI list to fileintn SUCCEED/FAIL

actually, sets up space for a list of DIs

HDF Specification and Developer’s Guide

June 2017 B-11

hdf_write_xdr_cdf

VHmakegroup
writes out the top
level vgroup CDF

int32, vg ref

intn SUCCEED/FAIL - writes out a cdf structure to the file

hdf_write_dim int32writes dimension out

hdf_conv_scales intn SUCCEED/FAIL
converts scale values
into coord var values

HDmalloc int32 **allocates tag list

HDmalloc int32 **allocates ref list

for each dimension - if there are any dimension, loop through the dim
list (NC*)->dims->values

NC_compare_string int32, vg id or FAILcheck for duplication

use tsizeptr and thashptr to suplement the comparison of dim records

if this dimension is not duplicated

hdf_write_var int32

for each variable - if there are any variable, loop through the var list
(NC*)->vars->values

writes variable out

hdf_write_attr int32

for each attribute
- if there are any file attributes, loop through the
attribute list (NC*)->attrs->values

writes attribute out

B-12 June 2017

The HDF Group

NC_new_array

NC_new_dim

DFKNTsize

SDIhandle_from_id
gets file handle
using dim id

NC *

NC_array *creates var list

adds the new var to vars list NC_incr_array Void *

hdf_unmap_type nc_typeDFNT_TYPE -> NC_TYPE

NC_new_var NC_var *creates new var record

NC_var_shape int

Htagnewref uint16

Hnewref uint16

creates new NDG ref
using either routine

returns a ref that is unique
in the file

returns a ref that is unique
in the file for a given tag

returns var->assoc->count
or -1 if error

NC_dim *creates new dim record

determines size from
given number type

int size or
FAIL

SDcreate int32 SDS id or FAIL - creates a new dataset

xdr_cdf

SDend

SDIhandle_from_id

xdr_numrecs

ncclosecloses the file

else, if numrecs info needs
update, updates data

if meta-data needs update,
updates data

gets file handle
using dim id

NC *

int

bool_t

bool_t

intn SUCCEED/FAIL - closes an HDF file

SDfileinfo

retrieves (NC *)->vars->count and
 (NC *)->attrs->count

SDIhandle_from_id
gets file handle
using file id

NC *

gets info about an opened file, info includes number
of datasets and number attributes in the file

intn SUCCEED/FAIL

HDF Specification and Developer’s Guide

June 2017 B-13

SDgetinfo

SDIhandle_from_idgets file handle using sds id NC *

gets information about a datasetintn SUCCEED/FAIL

gets var record SDIget_var NC_var *

copies dataset's name HDmemcpy
from (NC_var*)->name-
>values

hdf_map_typegets number type or just (NC_var*)-
>HDFtype

if there are any attributes, gets number of attributes from (NC_var*)->attrs-
>count

gets size of ith dimension from (NC_var*)-
>shape[i]
if the first dimension is unlimited, gets its size from (NC_var*)->numrecs or (NC*)-
>numrecs

gets file handle using sds id

NC_findattr NC_attr **finds an attr named

if found

SDgetrange

SDIhandle_from_id NC *

gets max and min values of dataintn SUCCEED/FAIL

gets var record SDIget_var NC_var *

computes and gets
min/max values

HDmemcpy
twice for min and
max

otherwise,

NC_findattr NC_attr **
finds an attr
given its name

twice for attributes named
valid_min and valid_max

for attribute named _HDF_ValidRange

checks if attributes' type is
different from that of var, if
not

NC_copy_arrayvals
twice for min and
max

B-14 June 2017

The HDF Group

SDnametoindex

SDIhandle_from_id
gets file handle using
the file id

NC *

int32 dataset index or FAIL - maps a dataset name to its index

for each variable - if there are any variable, loop through the var list (NC*)->vars->values

HDstrncmp int
searches for a var that has the
name as the passed in name

the loop counter will be the found dataset
index

SDreaddata

SDIhandle_from_id

gets dim record

gets file handle using
the id as a dataset id

NC *

intn SUCCEED/FAIL - reads a hyperslab of data

SDIget_dim NC_dim *

gets var record SDIget_var NC_var *

SDIhandle_from_id
gets file handle using
the id as a dimension id

NC *

if the id is not that of a dataset, try
dimension

SDIgetcoordvar intn
if dimension is found, gets
index of the coord var

otherwise, calculates index
of the var using sdsid

if type size conversion is needed due to platform
differences,

just to get (NC_var*)->assoc-
>count

NCvario int, 0 or -1

NCgenio int, 0 or -1

reads the hyperslab
using either routine

reads with strides

reads without
strides

SDsetattr

SDIputattr

SDIapfromid

adds attr to object,
returns S/F

gets attr list of a file, SDS,
or dimension, return S/F

intn

intn

HDF Specification and Developer’s Guide

June 2017 B-15

SDIputattr

SDIget_var

SDsetdatastrs

SDIhandle_from_id

sets attribute,
returns S/F

gets var record
using sds id

gets file handle
using sds id

NC *

intn

NC_var *

repeated 4 times for label, unit, format, and
coordinate system

NC_free_string

SDIget_dim

SDsetdimname

SDIhandle_from_id

NC_free_dim

NC_new_string

frees old name
returns S/F

creates a new name
for this dimension

frees old dimension

gets dim record

gets file handle
using dim id

NC *

NC_string*

NC_dim *

SDIfreevarAID

SDIget_dim

SDsetdimscale

SDIhandle_from_id

SDIgetcoordvar

NC_vario

frees handle->var->aid
returns S/F

stores data to this
var, returns S/F

gets var index

gets dim record

gets file handle
using dim id

NC *

int32

int32

intn

NC_dim *

SDIputattr

SDIget_dim

SDsetdimstrs

SDIhandle_from_id

SDIgetcoordvar

NC_hlookupvar

sets attribute,
returns S/F

gets var record
using var index

gets var index

gets dim record

gets file handle
using dim id

NC *

intn

NC_var *

intn

NC_dim *

repeated 3 times for label, unit, and format

B-16 June 2017

The HDF Group

SDsetfillvalue

SDIputattr

SDIget_var

SDIhandle_from_id

sets fill value attribute,
returns S/F

gets var record
using sds id

gets file handle
using sds id

NC *

intn

NC_var *

SDselect

creates sds id using the file id and sds index

SDIhandle_from_id
gets file handle
using file id

NC *

gets a dataset id, i.e., initiates access to a datasetint32 sds id or FAIL

SDstart

SDIstart

uses either routine
depending on the
access mode

initializes the interface NC *

nccreate intncreates an HDF file

ncopen intn
opens an exi s ten t
HDF file

NC_check_id
validates and returns
cdf handle

NC *

int32 file ID of FAIL - opens an HDF file

SDIapfromid

SDIhandle_from_id

gets dim record

gets file handle
using sds id

NC *
repeated 3 times for the SDS, the file, and the
dimension depending on the previous result

intn SUCCEED/FAIL - gets the attribute list of an object given its id

SDIget_dim

SDIgetcoordvar

NC_hlookupvar
gets var record
using var index

NC_var *

intn

NC_dim *

gets var record SDIget_var NC_var *

gets index of the
coordinate var

HDF Specification and Developer’s Guide

June 2017 B-17

Htagnewref

NC_new_var

SDIgetcoordvar

creates new var record

uint16

NC_var *

NC_typelen

hdf_unmap_type

size_t

nc_type

NC_var_shape

HDstrncmp

int

intn?looks for var of
a given name

compares given name with
names from handle->vars

DFNT_TYPE -> NC_TYPE

determines size of a data type

returns var->assoc->count
or -1 if error

hdf_unmap_type nc_typeDFNT_TYPE -> NC_TYPE

Hnewref uint16

creates new NDG ref
using either routine

returns a ref that is unique
in the file

returns a ref that is unique
in the file for a given tag

returns var->assoc->count or -1 if error NC_var_shape int

adds the new var to vars list NC_incr_array Void *

int32 var index - gets the index of a coordinate variable

SDIget_dim

gets dim list

NC_dim* - gets the dimension record

gets dim record using
calculated dim index

ap = (NC_array **) handle->dims->values,
where handle is NC *

(NC_dim *) *ap

SDIget_var

gets var list

NC_var* - gets the variable record

gets var record using
calculated var index

ap = (NC_array **) handle->vars->values,
where handle is NC *

(NC_var *) *ap

SDIhandle_from_id

NC_check_id
validates and returns
cdf handle

NC *

NC* handle - gets the file handle of an object given its id and type

B-18 June 2017

The HDF Group

June 2017 C-19

APPENDIX C -- Function Specifications

C.1 Overview

This appendix presents the detailed specifications of selected individual routines of the HDF low
level interface. Several low level routines are documented in the HDF Reference Manual and all
are documented in the distributed source code.

The terms IN: and OUT: indicate whether parameters are input or output parameters; in some
cases, a parameter may be both. In the following specifications, these terms should be interpreted
as follows:

IN: Value as input parameter

OUT: Value as output parameter

C.2 Opening and Closing Files

Hopen

int32 Hopen(char *path, int access, int16 ndds)

path IN: Complete path and name of the file to be opened

access IN: DFACC_READ, DFACC_CREATE, or DFACC_WRITE

ndds IN: Number of DDs in a block if this file needs to be created

Purpose Provides an access path to an HDF file and reads all of the DD blocks in the
file into primary memory.

Return value Returns file ID if successful and FAIL (-1) otherwise.

Description Opens an HDF file.

The following events occur on successful exit:

•File_rec members are filled in. (File_rec is an internal HDF structure
containing information about the opened file.)

•The requested file is opened with the relevant permission.

•Information about DDs is set up in memory.

•The file headers and initial information are set up for new files.

C-20 June 2017

The HDF Group

Access privilege codes
HDF provides several constants for use as access privilege codes as listed
below. Note that these constants are not bit-flags and should not be ORed
together to combine access modes. Doing so may cause odd behavior and, in
some cases, loss of data:

Recommended tags:

DFACC_READOpen for read only. If file does not exist, error.

DFACC_WRITEOpen for read/write. If file does not exist, create it.

DFACC_CREATEForce creation. If file exists, delete it, then open a new file
for read/write (in the spirit of the UNIX system command
clobber).

Obsolete tags:

DFACC_ALLSame as DFACC_WRITE (obsolete but still supported).

DFACC_RDWRSame as DFACC_WRITE (obsolete but still supported).

Hclose

intn Hclose(int32 id)

id IN: The identifier of the file to be closed

Purpose Closes the access path to the file.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description id is first validated. If valid, the function closes the access path to the file.

If there are still access elements attached to the file, the error DFE_OPENAID
is pushed onto the error stack and the file is not closed. This is a fairly com-
mon error when developing new interfaces. See the discussion of Hendac-
cess below for debugging hints.

HDF Specification and Developer’s Guide

June 2017 C-21

C.3 Locating Elements for Access and Getting Information

Hstartread

int32 Hstartread(int32 file_id, uint16 tag, uint16 ref)

file_id IN: ID of file to attach access element to

tag IN: Tag to search for

ref IN: Reference number to search for

Purpose Locates an existing data element with matching tag/ref and returns an access
ID for reading it.

Return value Returns access element ID if successful and FAIL (-1) otherwise.

Description Searches the DDs for a particular tag/ref combination. If the search is suc-
cessful, an access element is created, attached to the file, and positioned at
the start of that data element; otherwise an error is returned. Searching on
wildcards begins from the beginning of the DD list. Wildcards can be used
for the tag or reference number (DFTAG_WILDCARD and DFREF_WILDCARD)
and they match any values.

Hnextread

intn Hnextread(int32 access_id, uint16 tag, uint16 ref, int origin)

access_id IN: ID of a READ access element

tag IN: Tag to search for

ref IN: Reference number to search for

origin IN: Position at which to start searching

Purpose Locates and positions a read access ID on next occurrence of tag/ref.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Searches for the next DD that fits the tag/ref. Wildcards apply. If origin is
DF_START, searches from start of DD list; if origin is DF_CURRENT,
searches from current position. Searching from the end of the file via
DF_END is not yet implemented.

If the search is successful, then the access element is positioned at the start of
that tag/ref; otherwise, the access ID is not modified.

C-22 June 2017

The HDF Group

Hstartwrite

int32 Hstartwrite(int32 file_id, uint16 tag, uint16 ref, int32 length)

file_id IN: ID of file to write to

tag IN: Tag to write to

ref IN: Reference number to write to

length IN: Length of the data element

Purpose Creates or replaces data element with matching tag/ref.

Return value Returns access element ID if successful and FAIL (-1) otherwise.

Description Sets up an access element to write a data element. The DD list of the file is
searched first; if the tag/ref is found, the data element can be modified. If an
object with the corresponding tag/ref is not found, a new one is created.

Hstartaccess

int32 Hstartaccess(int32 file_id, int16 tag, int16 ref, int32 flags)

file_id IN:ID of file to read/write to

tag IN:Tag to read/write to

ref IN:Reference number to read/write to

flags IN:Access flags for the data element

Purpose Sets up an access element for either reading or writing.

Return value Returns an access element identifier if successful and FAIL (-1) otherwise.

Description Starts up an access element for either read or write access. The data descrip-
tor list for the file is searched first. If the tag/ref is found, it is not replaced;
the seek position is presumed to be at zero (0). If the tag/ref is not found, it is
created.

Only a finite number of access elements can be active at a given time, so it is
important to call Hendaccess whenever you are done using an element.

HDF Specification and Developer’s Guide

June 2017 C-23

Hendaccess

int32 Hendaccess(int access_id)

access_id IN: ID of access element to dispose of

Purpose Disposes of access element for tag/ref.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Disposes of an access element. Only a finite number of access elements can
be active at a given time, so it is important to call Hendaccess whenever
you are done using an element.

When developing new interfaces, a common mistake is to fail to call Hend-
access for all of the elements accessed. When this happens, Hclose will
return FAIL and the dump of the error stack (see HEprint below) will tell
how many access elements are still active.

This can be difficult problem to debug, as the low levels of the HDF library
have no idea who or what opened an access element and forgot to release it.
A tedious but effective means of debugging this problem is to annotate with
comments the locations where the attached count of a file record is changed.
This occurs in the files hfile.c, hblocks.c, and hextelt.c.

Hinquire

intn Hinquire(int32 access_id, int32 *pfile_id, uint16 *ptag, uint16 *pref,
int32 *plength, int32 *poffset, int32 *pposn, int *paccess,
int16 *pspecial)

access_id IN:Access element ID

pfile_id OUT:File ID

ptag OUT:Tag of the element pointed to

pref OUT:Reference number of the element pointed to

plength OUT:Length of the element pointed to

poffset OUT:Offset of element in the file

pposn OUT:Position pointed to within the data element

paccess OUT:Access type of this access element

pspecial OUT:Special code

Purpose Returns access information for a data element.

Return value Returns SUCCEED (0) if the access element points to some data element
and FAIL (-1) otherwise.

C-24 June 2017

The HDF Group

Description Inquires for the statistics of the data element pointed to by the access ele-
ment. If a piece of information is not needed, a NULL can be sent in for that
value. Convenience macros for calls to Hinquire (HQuerypositon,
HQuerylength, etc.) are defined in hdf.h.

Hishdf

int32 Hishdf(char *path)

path IN: Complete path and name of file

Purpose Determines whether a file is an HDF file.

Return value Returns TRUE (non-zero) if file is an HDF file and FALSE (0) otherwise.

Description The decision as to whether a file is an HDF file is based solely on the magic
number stored in the first four bytes of an HDF file. Hishdf may some-
times identify a file as an HDF file that Hopen is unable to open (e.g., an
HDF file with a corrupted DD list).

Hnumber

int Hnumber(int32 file_id, uint16 tag)

file_id IN: File ID

tag IN: Tag to be counted

Purpose Counts the number of occurrences of a tag in a file.

Return value The number of occurrences of a tag in a file.

Note: Hishdf only determines whether a file is an HDF file. It does not verify that the file is
readable.

HDF Specification and Developer’s Guide

June 2017 C-25

Hgetlibversion

Hgetlibversion(uint32 *majorv, uint32 *minorv, uint32 *release, char
string[])

majorv OUT:Major version number

minorv OUT:Minor version number

release OUT:Release number

string OUT:Informational text string

Purpose Gets version information for current HDF library.

Return value Returns SUCCEED (0).

Description Returns the version of the HDF library. The version information is compiled
into the HDF library, so it is not necessary to have any open files for this
function to execute.

Hgetfileversion

Hgetfileversion(uint32 file_id, uint32 *majorv, uint32 *minorv, 
uint32 *release, char *string)

file_id IN: File ID

majorv OUT:Major version number

minorv OUT:Minor version number

release OUT:Release number

string OUT:Informational text string

Purpose Gets version information for an HDF file.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Returns the HDF version information stored in the given file.

C-26 June 2017

The HDF Group

C.4 Reading and Writing Entire Data Elements

Hputelement

int Hputelement(int32 file_id, uint16 tag, uint16 ref, uint8 *data, 
int32 length)

file_id IN: File ID

tag IN: Tag of data element to put

ref IN: Reference number of data element to put

data IN: Pointer to buffer

length IN: Length of data

Purpose Adds or replaces an element in a file.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Writes a new data element or replaces an existing data element in a HDF file.
Uses Hwrite and its associated routines.

Hgetelement

int Hgetelement(int32 file_id, uint16 tag, uint16 ref, uint8 *data)

file_id IN: ID of the file to read from

tag IN: Tag of data element to read

ref IN: Reference number of data element to read

data OUT:Buffer to read into

Purpose Obtains the data referred to by the passed tag/ref.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Reads a data element from an HDF file and puts it into the buffer pointed to
by data. The space allocated for the buffer is assumed to be large enough.

Note: Hgetelement assumes that the buffer is large enough to hold the data being read. It is
the user’s responsibility to prevent data loss by ensuring that this is the case.

HDF Specification and Developer’s Guide

June 2017 C-27

C.5 Reading and Writing Part of a Data Element

Hread

int32 Hread(int32 access_id, int32 length, uint8 *data)

access_id IN: Read access element ID

length IN: Length of segment to read in

data OUT:Pointer to data array to read to

Purpose Reads a portion of a data element.

Return value Returns length of segment actually read if successful and FAIL (-1) other-
wise.

Description Reads in the next segment in the data element pointed to by the access ele-
ment. Hread starts at the last position left by an Hread or Hseek call
and reads any data that remains in the element up to length bytes. If the
data element is too short (less than length bytes long), Hread reads to the
end of the data element.

Hwrite

int32 Hwrite(int32 access_id, int32 length, uint8 *data)

access_id IN: Write access element ID

length IN: Length of segment to write

data IN: Pointer to data to write

Purpose Writes next data segment to data element.

Return value Returns length of segment successfully written and FAIL (-1) otherwise.

Description Writes the data to the data element where the last Hwrite or Hseek
stopped.

Hwrite starts at the last position left by an Hwrite or Hseek call, writes
up to a specified number of bytes, and leaves the write pointer at the end of
the data written. If the space reserved is less than the length to write, then
only as much as can fit is written.

It is the user’s responsibility to ensure that no two access elements are writ-
ing to the same data element. Note that a user can interlace writes to multiple
data elements in the same file.

C-28 June 2017

The HDF Group

Hseek

intn Hseek(int32 access_id, int32 offset, int origin)

access_id IN: Access element ID

offset IN: Offset to seek to

origin IN: Position to seek from:

DF_START (0)offset from beginning of data element
DF_CURRENT (1)offset from current position
DF_END (2)offset from end of data element

Purpose Sets the access pointer to an offset within a data element. The next time
Hread or Hwrite is called, the read or write occurs from the new position.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Sets the position of an access element in a data element so that the next
Hread or Hwrite will start from that position. origin determines the
position from which offset should be counted.

This routine fails if the access element is not associated with a data element
or if the position sought is outside of the data element.

Seeking from the end of a data element is not currently supported.

HDF Specification and Developer’s Guide

June 2017 C-29

C.6 Manipulating Data Descriptors

Hdupdd

int Hdupdd(int32 file_id, uint16 tag, uint16 ref, uint16 old_tag, 
uint16 old_ref)

file_id IN: File ID

tag IN: Tag of new data descriptor

ref IN: Reference number of new data descriptor

old_tag IN: Tag of data descriptor to duplicate

old_ref IN: Reference number of data descriptor to duplicate

Purpose Generates new references to data that is already referenced from somewhere
else.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Duplicates a data descriptor so that the new tag/ref points to the same data
element pointed to by the old tag/ref.

Hdeldd

int Hdeldd(int32 file_id, uint16 tag, uint16 ref)

file_id IN: File ID

tag IN: Tag of data descriptor to delete

ref IN: Reference number of data descriptor to delete

Purpose Deletes a tag/ref from the list of DDs.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Deletes the data descriptor of tag/ref from the DD list of the file. This routine
is unsafe and may leave a file in a condition that is not usable by some rou-
tines. Use with care.

C-30 June 2017

The HDF Group

Hnewref

uint16 Hnewref(int32 file_id)

file_id IN: File ID

Purpose Returns the next available reference number.

Return value Returns the reference number if successful and 0 otherwise.

Description Returns a reference number that can be used with any tag to produce a
unique tag/ref. Successive calls to Hnewref will generate a strictly increas-
ing sequence until the highest possible reference number has been returned;
then Hnewref will return unused reference numbers starting from 1.

HDF Specification and Developer’s Guide

June 2017 C-31

C.7 Managing Special Data Elements

HLcreate

int32 HLcreate(int32 file_id, uint16 tag, uint16 ref, int32 block_length, 
int32 number_blocks)

file_id IN: File ID

tag IN: Tag of new data element (or object)

ref IN: Reference number of new data element (or object)

block_length
IN: Length of blocks to be used

number_blocks
IN: Number of blocks to use per linked block record

Purpose: Creates a new linked block special data element.

Return value Returns access ID for special data element if successful and FAIL (-1) other-
wise.

Description Appending to existing HDF elements was a problem prior to HDF Version
3.2 because HDF objects had to be stored contiguously. When appending,
the HDF library forced the user to delete the existing element and rewrite it
at the end of the file. HDF Version 3.2 introduced the concept of linked
blocks, which allow unlimited appending to existing elements without copy-
ing over existing data.

This routine can be used to create an object with the given tag/ref as a linked
block element or to promote an existing element to be stored in linked
blocks.

Initially, a table is set up to accommodate number_blocks linked blocks
for the specified data object. Each block has block_length bytes. If an
existing object is being promoted, block_length does not have to be the
same size as the original element.

HLcreate returns an active access ID with write permission to the linked
block element.

C-32 June 2017

The HDF Group

HLsetblockinfo

intn HLsetblockinfo(int32 access_id, uint32 block_size, uint32 num_blocks)

access_id IN: Access record identifier

block_size IN: Block size in bytes

num_blocks IN: Number of linked blocks

Purpose Sets block size and number of blocks for a linked block element.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Sets the block size and the number of linked blocks for a linked block data
element. Unless reset by this function, block_size and num_blocks will
have the default values defined in HDF_APPENDABLE_BLOCK_LEN and
HDF_APPENDABLE_BLOCK_NUM, respectively.

Passing in the value -1 for either parameter indicates that the respective
field is not to be changed.

An error will occur if the value of either parameter is set to 0 or any nega-
tive value other than -1.

This routine is used by VSsetblocksize and VSsetnumblocks.

HLgetblockinfo

intn HLgetblockinfo(int32 access_id, uint32 *block_size, uint32 *num_-
blocks)

access_id IN: Access record identifier

block_size OUT:Block size in bytes

num_blocks OUT:Number of linked blocks

Purpose Retrieves block size and number of blocks for a linked block element.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Retrieves the block size and the number of linked blocks for a linked block
data element.

If no response is desired for either value, block_size or num_blocks may
be set to NULL.

This routine is used by VSgetblockinfo.

HDF Specification and Developer’s Guide

June 2017 C-33

HXcreate

int32 HXcreate(int32 file_id, uint16 tag, uint16 ref, char *extern_-
file_name)

file_id IN: file record ID

tag IN: Tag of the special data element to create or promote

ref IN: Reference number of the special data element to create/promote

extern_file_name
IN:name of the external file to use for the data element

Purpose Creates a new external file special data element.

Return value Returns access ID for special data element if successful and FAIL (-1) oth-
erwise.

Description Creates a new element in an external file or promotes an existing element to
be stored in an external file. If an existing element is to be promoted, it is
deleted (using Hdeldd) from the original file and copied into the new exter-
nal file.

Distributing a single object over multiple external files is not currently sup-
ported. In addition, one cannot place multiple objects in the same external
file.

This routine returns an active access ID with write permission to the external
element.

C-34 June 2017

The HDF Group

C.8 Data Set Chunking

HMCcreate

int32 HMCcreate(int32 file_id, uint16 tag, uint16 ref, 
uint8 nlevels, int32 fill_val_len, void *fill_val, 
HCHUNK_DEF *chk_array)

Purpose

Creates a chunked element.

Description

HMCcreate promotes an HDF element to a chunked element.

The HDF element specified by HMCcreate becomes a chunked element allowing data to be
easily appended to the element. Chunk records are stored in a Vdata.

All of the pieces of the chunked element are the same size from the stand point of the ele-
ment. If compression is used then each chunk is compressed and the compression layer takes
care of it as the chunk layer sees each chunks as a seperate HDF object (DFTAG_CHUNK).
The proper compression special header needs to be passed to the compression layer.

The Vdata (chunk table) is made appendable with a linked-block table size of 128.

This routine also creates the chunk cache for the chunked element. The cache is initialized
with the physical size of each chunk, the number of chunks in the object, i.e. the object size
divided by the chunk size, and the maximum number of chunks to cache in memory. Chunks
in the cache are dealt with by their number, i.e. by translating the origin of the chunk to a
unique number. The default maximum number of chunks in the cache is set to the number of
chunks along the last dimension.

NOTE: The cache itself could be used to cache any object into a number of fixed size chunks
so long as the read/write(page-in/page-out) routines know how to deal with getting the cor-
rect chunk based on a number.These routines can be found in mcache.c.

Parameters

file_id IN: File to put chunked element in

tag IN: Tag of element

ref IN: Reference numberof element

nlevels IN: Number of levels of chunks

fill_val_len IN: Fill value length in bytes

fill_val IN: Fill value

chk_array IN: Structure describing chunk distribution

Return Values

If the chunked element already exists, HMCcreate returns FAIL. Otherwise a new element
is created and HMCcreate returns the AID of the newly-created chunked element.

HMCwriteChunk

HDF Specification and Developer’s Guide

June 2017 C-35

int32 HMCwriteChunk(int32 access_id, int32 *origin, const void *datap)

Purpose

Writes out exactly one chunk.

Description

HMCwriteChunk writes out exactly one chunk of data to a chunked element.

This function is used to complete whole chunks to the file based on the chunk origin, the
position of the chunk in the overall chunk array.

Parameters

access_id IN: Access AID of the specified chunk.

origin IN: Origin of the chunk to be written.

datap IN: Buffer for the data to be written.

Return Values

Returns the number of bytes written if successful; otherwise returns FAIL.

HMCreadChunk

int32 HMCreadChunk(int32 access_id, int32 *origin, void *datap)

Purpose

Reads exactly one chunk.

Description

HMCreadChunk reads exactly one chunk from a chunked element.

This function is used to read complete chunks from the file based on the chunk origin, the
postion of the chunk in the overall chunk array.

Parameters

access_id IN: Access AID for the specified chunk.

origin IN: Origin of chunk to be read.

datap IN: Buffer for the data to be read.

Return Values

Returns the number of bytes read if successful; otherwise FAIL.

HMCsetMaxcache

int32 HMCsetMaxcache(int32 access_id, int32 maxcache, int32 flags)

Purpose

Sets themaximum number of chunks to cache.

Description

HMCsetMaxcache sets the maximum number of chunks to cache.

C-36 June 2017

The HDF Group

The values set here affects the current object's caching behaviour.

If the chunk cache is full and maxcache is greater then the current maxcache value, then the
chunk cache is reset to the new maxcache value, else the chunk cache remains at the current
maxcache value.

If the chunk cache is not full, then the chunk cache is set to the new maxcache value only if
the new maxcache value is greater than the current number of chunks in the cache.

Use flags arguement of HMC_PAGEALL if the whole object is to be cached in memory; other-
wise pass in zero.

NOTES: This function calls the routine mcache_set_maxcache(). The value of maxcache
must be greater than 1.

Parameters

access_id IN: Access AID for the specified chunked element.

maxcache IN: Maximum number of chunks to cache.

flags IN: Valid flags are 0 (zero) and HMC_PAGEALL.

Returns

Returns the new value of maxcache if successful; otherwise returns FAIL.

HMCPstwrite

int32 HMCPstwrite(accrec_t *access_rec)

Purpose

Opens an access record of a chunked elemnent for writing.

Description

HMCPstwrite calls HMCIstaccess() to fill in the access record for writing.

Parameter

access_rec IN: Access record to fill in.

Return Values

Returns the AID of the access record if successful; otherwise returns FAIL.

HMCPseek

int32 HMCPseek(accrec_t *access_rec, int32 offset, int origin)

Purpose

Sets the seek position in the chunked element.

Description

HMCPseek sets the seek position in the specified chunked element.

Parameters

access_rec IN: Access record for the specified chunk.

HDF Specification and Developer’s Guide

June 2017 C-37

offset IN: Seek offset.

origin IN: Location from which the offset should be calculated.

Return Values

Returns a positive value if successful; otherwise returns FAIL.

HMCPchunkread

int32 HMCPchunkread(void *cookie, int32 chunk_num, void *datap)

Purpose

Reads a chunk.

Description

Given the chunk number, HMCPchunkread reads in a complete chunk from a chunked ele-
ment.

This is used as the page-in-chunk routine for the cache.

Only the cache should call this routine.

Parameters

cookie IN: Access record for the desired chunk.

chunk_num IN: Chunk to be read.

datap OUT: Buffer for data to be read.

Return Values

Returns the number of bytes read if successful; otherwise returns FAIL.

HMCPread

int32 HMCPread(accrec_t *access_rec, int32 length, void *datap)

Purpose

Reads data from a chunked element.

Description

HMCPread reads in data from a chunked element.

Data is obtained from the cache, which takes care of reading in the proper chunks to satisfy
the request.

Parameters

access_rec IN: Access record for the desired chunk.

length IN: Number of bytes to read.

datap OUT: Buffer for data to be read.

Return Values

Returns the number of bytes read if successful; otherwise returns FAIL.

C-38 June 2017

The HDF Group

HMCPchunkwrite

int32 HMCPchunkwrite(void *cookie, int32 chunk_num, const void *datap)

Purpose

Writes out exactly one chunk.

Description

Given the chunk number, HMCPchunkwrite writes a complete chunk to a chunked ele-
ment.

This is used as the page-out-chunk routine for the cache.

Only the cache should call this routine.

Parameters

cookie IN: Access record for the chunk to be written.

chunk_num IN: Chunk number.

datap IN: Buffer for the data to be written.

Return Values

Returns the number of bytes written if successful; otherwise returns FAIL.

HMCPwrite

int32 HMCPwrite(accrec_t *access_rec, int32 length, const void *datap)

Purpose

Writes data to a chunked element.

Description

HMCPwrite writes data to a chunked element.

Data is obtained from the cache, which takes care of obtaining the proper chunks to write to
satisfy the request.

The chunks are marked as dirty before being returned to the cache.

Parameters

access_rec IN: Access record for the chunked element.

length IN: Number of bytes to be written.

datap IN: Buffer for the data to be written.

Return Values

Returns the number of bytes written if successful; otherwise returns FAIL.

HMCPcloseAID

int32 HMCPcloseAID(accrec_t *access_rec)

HDF Specification and Developer’s Guide

June 2017 C-39

Purpose

Closes file but keeps AID active.

Description

HMCPcloseAID closes the file currently pointed to by this AID but does not free the AID.

This will flush the chunk cache and free up the special information struct.

This function is called by Hnextread(), which reuses an AID to point to the next object, as
requested. If the current object was a chunked object, the chunked information needs to be
closed before all reference to it is lost.

NOTE: Direct use of Hnextread() is not recommened since it relies on previous state infor-
mation.

Parameter

access_rec IN: Access record of file to close.

Return Values

Returns a positive value if successful; otherwise returns FAIL.

HMCPendaccess

intn HMCPendaccess(accrec_t *access_rec)

Purpose

Closes a chunk element AID.

Description

HMCPendaccess closes the specied AID, freeing up all of the space used to store informa-
tion about a chunked element and updating the proper records, access_rec, file_rec,
etc. All relevant information is flushed.

Parameter

access_rec IN: Access record to close.

Return Values

Returns a positive value if successful; otherwise returns FAIL.

HMCPinfo

int32 HMCPinfo(accrec_t *access_rec, sp_info_block_t *info_chunk)

Purpose

Returns information about a chunked element.

Description

HMCPinfo returns information about the given chunked element.

info_chunk is assumed to be non-NULL.

C-40 June 2017

The HDF Group

Parameters

access_rec IN: access record of access elemement

info_chunk OUT: Information about the special element.

Return Values

Returns a positive value if successful; otherwise returns FAIL.

HMCPinquire

int32 HMCPinquire(accrec_t *access_rec, int32 *pfile_id, uint16 *ptag,
uint16 *pref, int32 *plength, int32 *poffset, 
int32 *pposn, int16 *paccess, int16 *pspecial)

Purpose

Inquires for chunked elements.

Description

HMCPinquire returns interesting information about a chunked element.

NULL can be passed for any OUT parameter if the value is not needed.

Parameters

access_rec IN: Access record of the chunked element for which information is sought.

pfile_id OUT: File identifier.

ptag OUT: Tag of information record.

pref OUT: Reference number of information record.

plength OUT: Length of element.

poffset OUT: Offset of element -- meaningless.

pposn OUT: Current position in element.

paccess OUT: Access mode.

pspecial OUT: Special code.

Return Values

Returns a positive value if successful; otherwise returns FAIL.

HDF Specification and Developer’s Guide

June 2017 C-41

C.9 Development Routines

HDgettagname

char *HDgettagname(uint16 tag)

tag IN: Tag to look up

Purpose Gets a meaningful description of a tag.

Return value Returns a pointer to a string describing this tag or NULL if the tag is
unknown.

Description To reduce the amount of duplicated code, this routine can be used to map a
tag to a character string containing the name of the tag.

The string returned by this routine is guaranteed to be 30 characters or less.

HDgetspace

void *HDgetspace(uint32 qty)

qty IN: Number of bytes to allocate

Purpose Allocates space.

Return value If successful, returns a pointer to space that was allocated; otherwise returns
NULL .

Description Uses an appropriate allocation routine on the local machine to get space.

HDfreespace

void *HDfreespace(void *ptr)

ptr IN: Pointer to previously-allocated space that is to be freed

Purpose Frees space.

Return value Returns NULL.

Description Uses an appropriate routine on the local machine to free space. This routine
is platform dependent.

C-42 June 2017

The HDF Group

HDstrncpy

char *HDstrncpy(register char *dest, register char *source, int32 length)

dest OUT:Pointer to area to copy string to

source IN: Pointer to area to copy string from

length IN: Maximum number of bytes to copy

Purpose Copies a string with maximum length length.

Return value Returns address of dest.

Description Creates a string in dest that is at most length characters long. The num-
ber of characters must include the NULL terminator for historical reasons.
Hence, if you are working with the string Foo, you must call this copy
function with the value 4 (three characters plus the NULL terminator) in
length.

HDF Specification and Developer’s Guide

June 2017 C-43

C.10 Error Reporting

HEprint

void HEprint(FILE *stream, int32 level)

stream IN: Stream to print error messages on

level IN: Level of the error stack to print

Purpose Prints information on the error stack.

Return value Has no return value.

Description Prints information on reported errors. If level is zero, all of the errors cur-
rently on the error stack are printed. Output from this function is sent to the
file pointed to by stream.

The following information is printed:

•An ASCII description of the error

•The reporting routine

•The reporting routine’s source file name

•The line at which the error was reported

If the programmer has supplied extra information by means of HEreport,
this information is printed as well.

HEclear

void HEclear(void)

Purpose Clears all information on reported errors off of the error stack.

Return value Has no return value.

Description Clears all of the information off of the error stack.

C-44 June 2017

The HDF Group

HERROR

void HERROR(int16 number)

number IN: Error number

Purpose Reports an error.

Return value Has no return value.

Description Reports an error. Any function calling HERROR must have a variable FUNC
which points to a string containing the name of the function.

HERROR is implemented as a macro.

HEreport

void HEreport(char *format,)

format IN: printf-style format and arguments

Purpose Provides extra information to the error reporting routines.

Return value Has no return value.

Description Provides further annotation to an error report. Only one such annotation is
remembered for each error report. The arguments to this routine follow the
style of printf.

Consider the following example from hfile.c:

char *FUNC = "Hclose";
....
if (file_rec->attach > 0) {

file_rec->refcount++;
HERROR(DFE_OPENAID);
HEreport("There are still %d active aids attached", file_rec->attach);
return FAIL;

}

C.11 Other

Hsync

HDF Specification and Developer’s Guide

June 2017 C-45

int Hsync(int32 file_id)

file_id IN: ID of the file to synchronize

Purpose Synchronizes on-disk HDF file with image in memory.

Return value Returns SUCCEED.

Description Hsync is not included in the current HDF library release because the on-
disk representation of an HDF file is always the same as its in-memory rep-
resentation. Hsync will be provided when future releases implement buffer-
ing schemes.

C-46 June 2017

The HDF Group

	Chapter 1 -- Introduction
	1.1 Overview
	1.2 Why HDF?
	1.3 What is HDF?
	1.4 Some History
	1.5 About This Document
	1.6 Document Contents
	1.7 Conventions Used in This Document

	Chapter 2 -- Basic Structure of HDF Files
	2.1 Chapter Overview
	2.2 File Header
	2.3 Data Objects
	2.4 Physical Organization of HDF Files
	2.5 Sample HDF File

	Chapter 3 -- Software Overview
	3.1 Chapter Overview
	3.2 HDF Software Layers
	3.3 Software Organization
	3.3.1 Versions and Release Numbers
	3.3.2 ANSI C and Portability
	3.3.3 Modules and Interfaces
	3.3.4 Header Files
	3.3.5 The HDF Test Suite
	3.3.6 Sample HDF Programs

	3.4 Some HDF Conventions

	Chapter 4 -- Low-level Interface
	4.1 Chapter Overview
	4.2 Introduction
	4.3 New Low-level Routines with Version 3.2 and Higher
	4.4 Overview of the Low-level Interface

	Chapter 5 -- Sets and Groups
	5.1 Chapter Overview
	5.2 Data Sets
	5.2.1 Types of Sets
	5.2.2 Calling Interfaces for Sets

	5.3 Groups
	5.3.1 General Features of Groups

	5.4 Raster Image Sets (RIS)
	5.4.1 Raster Image Groups (RIG)
	5.4.2 RIS Tags
	5.4.3 Raster Image Compression

	5.5 Scientific Data Sets
	5.5.1 Backward and Forward Compatibility
	5.5.2 Internal Structures
	5.5.3 SDG Structures
	5.5.4 NDG Structures
	5.5.5 SDG-like NDG Structures
	5.5.6 Compatibility with Future NDG Structures

	5.6 Vsets, Vdatas, and Vgroups
	5.7 The Raster-8 Set (Obsolete)
	5.7.1 Raster-8 Sets
	5.7.2 Compatibility Between Raster-8 and Raster Image Sets

	5.8 Deleted information from "Vsets, Vdatas, and Vgroups:"

	Chapter 6 -- Annotations
	6.1 Chapter Overview
	6.2 General Description
	6.3 File Annotations
	6.4 Object Annotations

	Chapter 7 -- Scientific Data Sets:The SD Model
	7.1 Chapter Overview
	7.2 UML Notation and Object Symbols in HDF Data Model Descriptions
	7.3 Introduction to the SD Model
	7.4 The SD User’s Model
	7.5 The SD Developer’s Model
	7.6 Mapping between SD Developer's Model and HDF File Structures
	7.6.1 SD Collection
	7.6.2 Attribute
	7.6.3 Variable
	7.6.4 Dimension
	7.6.5 Overall Correspondence of SDS Elements and the HDF File Structure
	7.6.6 Accessing SD Objects via non-SD Interfaces

	7.7 SDS Memory Structures and Storage Layout
	7.8 Library Implementation Details with Example File and SDS
	7.8.1 Creating or opening an HDF file
	7.8.2 Creating an empty SDS
	7.8.3 Writing data to an SDS
	7.8.4 Adding global and local attributes
	7.8.5 Setting a data string
	7.8.6 Setting a dimension name
	7.8.7 Setting a dimension scale
	7.8.8 Setting a dimension string
	7.8.9 Terminating access to the SD collection and file

	Chapter 8 -- General Raster Images: The GR Model
	8.1 Chapter Overview
	8.2 Images in an HDF File
	8.2.1 GR data sets
	8.2.2 RIG images (RIS8 and RIS24)
	8.2.3 RI8 images

	8.3 The GR Data Model
	8.3.1 A Casual View
	8.3.2 The Formal GR Data Model

	8.4 Mapping between GR Data Model and HDF File Structures
	8.5 Modifying an RIG or RI8 Image via the GR Interface
	8.6 Backwards Compatibility when Creating New Images via the GR Interface
	8.7 Main Data Structures and their Relationships
	8.7.1 File Information Structure (gr_info_t)
	8.7.2 Raster Image Information Structure (ri_info_t)
	8.7.3 Attribute Information Structure (at_info_t)
	8.7.4 Dimension Information Structure (dim_info_t)

	8.8 Relationships among Main Data Structures
	8.9 The Evolution of an HDF File in the GR Interface
	8.9.1 Creating or Opening an HDF File
	8.9.2 Creating and Writing to a Raster Image
	8.9.3 Adding Attributes
	8.9.4 Adding Palettes
	8.9.5 Opening an Existing File

	Chapter 9 -- Tag Specifications
	9.1 Chapter Overview
	9.2 The HDF Tag Space
	9.3 Tag Specifications
	9.3.1 Utility Tags
	9.3.2 Annotation Tags
	9.3.3 Compression Tags
	9.3.4 Raster Image Tags
	9.3.5 Composite Image Tags
	9.3.6 Vector Image Tags
	9.3.7 Scientific Data Set Tags
	9.3.8 Vset Tags
	9.3.9 Obsolete Tags

	Chapter 10 -- Extended Tags and Special Elements
	10.1 Chapter Overview
	10.2 Extended Tags and Alternate Physical Storage Methods
	10.2.1 Extended Tag Implementation

	10.3 Linked Block Elements
	10.4 External Elements
	10.5 Chunked Data Storage
	10.5.1 Chunked Element Description Record
	10.5.2 Chunk Table

	10.6 Data Compression
	10.6.1 Compression Header: The Common Elements of Compressed Element Description Records
	10.6.2 Compressed Element Description Record: NBIT Run-length Encoding
	10.6.3 Compressed Element Description Record: Skipping-Huffman
	10.6.4 Compressed Element Description Record: GNU ZIP (Deflate)
	10.6.5 Compressed Element Description Record: SZIP

	Chapter 11 -- Portability Issues
	11.1 Chapter Overview
	11.2 The HDF Environment
	11.2.1 Supported Platforms
	11.2.2 Language Standards
	11.2.3 Guidelines

	11.3 Organization of Source Files
	11.3.1 Header Files
	11.3.2 Source Code Files
	11.3.3 File Naming Conventions

	11.4 Passing Strings between FORTRAN and C
	11.4.1 Passing Strings from FORTRAN to C
	11.4.2 Passing Strings from C to FORTRAN

	11.5 Function Return Values between FORTRAN and C
	11.6 Differences in Routine Names
	11.6.1 Case Sensitivity
	11.6.2 Appended Underscores
	11.6.3 Short Names vs. Long Names

	11.7 Differences Between ANSI C and Old C
	11.8 Type Differences
	11.8.1 Size differences
	11.8.2 Number Representation
	11.8.3 Byte-order and Structure Representations

	11.9 Access to Library Functions

	Appendix A -- Tags and Extended Tag Labels
	A.1 Overview
	A.2 Tags
	A.3 Extended Tag Labels

	Appendix B -- Library Calling Trees
	B.1 Overview
	B.2 Library Calling Trees: SD API

	Appendix C -- Function Specifications
	C.1 Overview
	C.2 Opening and Closing Files
	C.3 Locating Elements for Access and Getting Information
	C.4 Reading and Writing Entire Data Elements
	C.5 Reading and Writing Part of a Data Element
	C.6 Manipulating Data Descriptors
	C.7 Managing Special Data Elements
	C.8 Data Set Chunking
	C.9 Development Routines
	C.10 Error Reporting
	C.11 Other

