
HDF Reference Manual

SECTION 1 -- Introduction to the HDF APIs
1.1 Overview of the HDF Interfaces

The HDF library structure consists of two interface layers and one application layer built upon a
physical file format. (See Figure 1a) The first layer, or the low-level interface, is generally
reserved for software developers because it provides support for low-level details such as file I/O,
error handling, and memory management. The second layer, containing the single and multi-file
application interfaces, consists of a set of interfaces designed to simplify the process of storing
and accessing data. The single-file interfaces operate on one file at a time, whereas the multi-file
interfaces can operate on several files simultaneously. The highest HDF layer includes various
NCSA and commercial applications and a collection of command-line utilities that operate on
HDF files or the data objects they contain.

FIGURE 1a Three Levels of Interaction with the HDF File

1.2 Low-Level Interface
This is the layer of HDF reserved for software developers and provides routines for error han-
dling, file I/O, memory management, and physical storage. These routines are prefaced with ’H’.
For a more detailed discussion of the low-level interface, consult the HDF Specifications and
Developer’s Guide from the HDF WWW home page at http://www.hdfgroup.org.

The low-level interface provides a collection of routines that are prefaced with either ’H’, ’HE’, or
’HX’. The H routines are for managing HDF files. The HE routines provide error handlings. The
HX routines are for managing HDF external files.

Prior to HDF version 3.2, all low-level routines began with the prefix ’DF’. As of HDF version
3.3, the DF interface was no longer recommended for use. It is only supported to maintain back-
ward compatibility with programs and files created under earlier versions of the HDF library.

HDF File

Data Descriptor Block Data Elements File Header

Low-level Interface (Routines starting with H)

General Applications

Commercial ApplicationsNCSA ApplicationsUtilities

Multi-file APIs
General
Raster

Scientific
 DataAnnotationsVgroups Vdata

Single-file APIs
Scientific

 Data
8-Bit

 Raster Raster
24-Bit

AnnotationsPalette
June 2017 1

The HDF Group Table of Contents Section 1 --: Introduction to the HDF APIs
1.3 Multi-file Application Interfaces

The HDF multi-file interfaces are designed to allow operations on more than one file and more
than one data object at the same time. The multi-file interfaces provided are AN, GR, SD, VS,
VSQ, VF, V, and VH. The AN interface is the multi-file version of the DFAN annotation inter-
face. The GR interface is the multi-file version of the 8- and 24-bit raster image interfaces. The
SD interface is the multi-file version of the scientific data set interface. The VS, VSQ, and VF
interfaces support the vdata model. The V and VH interfaces provide support for the vgroup data
model.

Like the single-file interfaces, the multi-file interfaces are built upon the low-level H routines.
Unlike single-file operations, operations performed via a multi-file interface are not implicitly
preceded by Hopen and followed by Hclose. Instead, each series of operations on a file must be
preceded by an explicit call to open and close the file. Once the file is opened, it remains open
until an explicit call is made to close it. This process allows operations on more than one file at a
time.

1.3.1Scientific Data Sets: SD Interface

The scientific data set interface provides a collection of routines for reading and writing arrays of
data. Multidimensional arrays accompanied by a record of their dimension and number type are
called scientific data sets. Under the multi-file interface, scientific data sets may include pre-
defined or user-defined attribute records. Each attribute record is optional and can be used to note
or describe about the data being stored in scientific data sets.

The SD interface is designed to be as compatible as possible with netCDF, an interface developed
by the Unidata Program Center and used to store and manipulate scientific data sets. Conse-
quently, the SD interface can read files written by the netCDF interface, and the netCDF interface
version 2.3.2 (as implemented in HDF) can read both netCDF files and HDF files that contain sci-
entific data sets.

Further information regarding the netCDF interface routines and their equivalents in the HDF
netCDF interface can be found in the HDF User's Guide, Section 3.14, "netCDF." Additional
information on the netCDF interface can be found in the netCDF User's Guide available at http:/
/www.unidata.ucar.edu/software/netcdf/docs/.

The names of the routines in the multi-file scientific data set interface are prefaced by ’SD’. The
equivalent FORTRAN-77 routine names are prefaced by ’sf’.

1.3.2 Annotations: AN Interface

The purpose of the AN multi-file annotation interface is to permit concurrent operations on a set
of annotations that exist in more than one file. Annotations consist of labels and descriptions.

The C routine names of the multi-file annotation interface are prefaced by the string ’AN’ and the
FORTRAN-77 routine names are prefaced by ’af’.

1.3.3 General Raster Images: GR Interface

The routines in the GR interface provide multi-file operations on general raster image data sets.

The C routine names in the general raster interface have the prefix ’GR’ and the equivalent FOR-
TRAN-77 routine names are prefaced by ’mg’.

1.3.4 Vdata: The VS Interface

The VS interface provides a collection of routines for reading and writing customized tables. Each
table is comprised of a series of records whose values are stored in fixed length fields. In addition
to its records, a vdata may contain four kinds of identifying information: a name, class, data type
and a number of field names.

Routines in the VS interface are prefaced by ’VS’. The equivalent FORTRAN-77 routine names
are prefaced by ’vsf’.
2 June 2017

Section 1 --: Introduction to the HDF APIs Table of Contents HDF Reference Manual
1.3.5 Vdata Query: VSQ Interface

The VSQ interface provides a collection of routines for inquiring about existing vdata. These rou-
tines provide information such as the number of records in a vdata, its field names, number types,
and name. All routines in the VSQ interface are prefaced by ’VSQ’. The equivalent FORTRAN-
77 routine names are prefaced by ’vsq’.

1.3.6 Vdata Fields: VF Interface

The VF interface provides a collection of routines for inquiring about the fields in an existing
vdata. These routines provide information such as the field name, size, order, and number type.

All routines in the VF interface are prefaced by ’VF’. There are no equivalent FORTRAN-77
functions.

1.3.7 Vgroups: V Interface

The vgroup interface provides a collection of routines for grouping and manipulating HDF data
objects in the file. Each vgroup may contain one or more vdatas, vgroups, or other HDF data
objects. In addition to its members, a vgroup may also be given a name and a class.

Every routine name in the vgroup interface are prefaced by ’V’. The equivalent FORTRAN-77
routine names are prefaced by ’vf’.

1.3.8 Vdata/Vgroups: VH Interface

The high-level VH interface provides a collection of routines for creating simple vdatas and
vgroups with a single function call. All routines in this interface are prefaced by ’VH’. The equiv-
alent FORTRAN-77 routine names are prefaced by ’vh’.

1.3.9 Vgroup Inquiry: VQ Interface

The high-level VQ interface provides one routine that returns tag information from a specified
vgroup, and one routine that returns reference number information from a specified vgroup. All C
routine names in this interface are prefaced by ’VQ’. The equivalent Fortran-77 routine names are
prefaced by ’vq’.

1.4 Single-File Application Interfaces
The HDF single-file application interfaces include several independent modules each is designed
to simplify the process of storing and accessing a specific type of data. These interfaces support
the 8-bit raster image(DFR8), 24-bit raster image (DF24), palette (DFP), scientific data (DFSD),
and annotation (DFAN) models. All single-file interfaces are built upon the H routines - unless
otherwise specified, all the low-level details can be ignored. Note that, as of version 4.2.6, these
single-file interfaces were documented as deprecated interfaces, except DFP, the single-file pal-
lete interface.

1.4.1 24-bit Raster Image Sets: DF24 Interface

The HDF 24-bit raster interface provides a collection of routines for managing 24-bit raster image
sets. A 24-bit raster image set is comprised of a 24-bit raster image array and its accompanied
dimension record. Raster image sets may also include a palette.

The names of the routines in the 24-bit raster interface are prefaced by ’DF24’. The equivalent
FORTRAN-77 routine names are prefaced by ’d2’.

1.4.2 8-bit Raster Image Sets: DFR8 Interface

The HDF 8-bit raster interface provides a collection of routines for managing 8-bit raster image
sets. An 8-bit raster image set is comprised of an 8-bit raster image array and its accompanied
dimension record. Raster image sets may also include a palette.
June 2017 3

The HDF Group Table of Contents Section 1 --: Introduction to the HDF APIs
Every function in the 8-bit raster interface begins with the prefix ’DFR8’. The equivalent FOR-
TRAN-77 functions use the prefix ’d8’.

1.4.3 Palettes: DFP Interface

The HDF palette interface provides a collection of routines for managing palette data. This inter-
face is most often used for working with multiple palettes stored in a single file or palettes not
specifically assigned to a raster image.

The names of the routines in the palette interface are prefaced by ’DFP’. The equivalent FOR-
TRAN-77 routine names are prefaced by ’dp’.

1.4.4 Scientific Data Sets: DFSD Interface

There are two HDF interfaces that support multidimensional arrays: the single-file DFSD inter-
face described here, which permits access to only one file at a time, and the newer multi-file SD
interface, which permits simultaneous access to more than one file. The existence of the single-
file scientific data set interface is simply to support backward compatibility for previously created
files and applications. It is recommended that the multi-file scientific data set interface is to be
used where possible.

The single-file scientific data set interface provides a collection of routines for reading and writing
arrays of data. A scientific data set is comprised of a scientific data array and its accompanied
rank, name and number type. Scientific data sets may also include predefined attribute records.

The names of the routines in the single-file scientific data set interface are prefaced by ’DFSD’.
The equivalent FORTRAN-77 routine names are prefaced by ’ds’.

1.4.5 Annotations: DFAN Interface

The single-file annotation interface provides a collection of routines for reading and writing text
strings assigned to HDF data objects or files. Annotations consist of labels and descriptions.

The names of the routines in the single-file annotation interface are prefaced by ’DFAN’. The
equivalent FORTRAN-77 routine names are prefaced by ’da’.

1.5 FORTRAN-77 and C Language Issues
In order to make the FORTRAN-77 and C versions of each routine as similar as possible, some
compromises have been made in the process of simplifying the interface for both programming
languages.

1.5.1 FORTRAN-77-to-C Translation

Nearly all of the HDF library code is written in C. The Fortran HDF API routines translate all
parameter data types to C data types, then call the C routine that performs the main function. For
example, d8aimg is the FORTRAN-77 equivalent for DFR8addimage. Calls to either routine
execute the same C code that adds an 8-bit raster image to an HDF file - see the following figure.
4 June 2017

Section 1 --: Introduction to the HDF APIs Table of Contents HDF Reference Manual
FIGURE 1b Use of a Function Call Converter to Route FORTRAN-77 HDF Calls to the C Library

1.5.2 Case Sensitivity

FORTRAN-77 identifiers generally are not case sensitive, whereas C identifiers are. Although all
of the FORTRAN-77 routines shown in this manual are written in lower case, FORTRAN-77 pro-
grams can generally call them using either upper- or lower-case letters without loss of meaning.

1.5.3 Name Length

Because some FORTRAN-77 compilers only interpret identifier names with seven or fewer char-
acters, the first seven characters of the FORTRAN-77 HDF routine names are unique.

1.5.4 Header Files

The inclusion of header files is not generally permitted by FORTRAN-77 compilers. However, it
is sometimes available as an option. On UNIX systems, for example, the macro processors m4 and
cpp let the compiler include and preprocess header files. If this capability is not available, the user
may have to copy the declarations, definitions, and values needed from the files dffunc.inc and
hdf.inc into the user application. If the capability is available, the files can be included in the
Fortran code. The files reside in the include/ subdirectory of the directory where the HDF
library is installed on the user’s system.

1.5.5 Data Type Specifications

When mixing machines, compilers, and languages, it is difficult to maintain consistent data type
definitions. For instance, on some machines an integer is a 32-bit quantity and on others, a 16-bit
quantity. In addition, the differences between FORTRAN-77 and C lead to difficulties in describ-
ing the data types found in the argument lists of HDF routines. To maintain portability, the HDF
library expects assigned names for all number types used in HDF routines. (See TABLE 1A)

TABLE 1A Number Type Definitions

Definition Name Definition Value Description

DFNT_CHAR8 4
8-bit character type

DFNT_CHAR 4
Same as DFNT_CHAR8

DFNT_UCHAR8 3
8-bit unsigned character type

DFNT_UCHAR 3
Same as DFNT_UCHAR8

DFNT_INT8 20
8-bit integer type

DFNT_UINT8 21
8-bit unsigned integer type

DFNT_INT16 22
16-bit integer type

DFNT_UINT16 23
16-bit unsigned integer type

Your
C

Program

DFR8addimage

Your
FORTRAN-77

Program

d8aimg

FORTRAN-77 to C

HDF Library d8aimg to DFR8addimage
June 2017 5

The HDF Group Table of Contents Section 1 --: Introduction to the HDF APIs
When using a FORTRAN-77 data type that is not supported, the general practice is to use another
data type of the same size. For example, an 8-bit signed integer can be used to store an 8-bit
unsigned integer variable unless the code relies on a sign-specific operation.

1.5.6 String and Array Specifications

In the declarations contained in the headers of FORTRAN-77 functions, the following conven-
tions are followed:

• character*(*) x means that x refers to a string of an indefinite number of characters. It is the
responsibility of the calling program to allocate enough space to hold the data to be stored in
the string.

• real x(*) means that x refers to an array of reals of indefinite size and of indefinite rank. It is
the responsibility of the calling program to allocate an actual array with the correct number
of dimensions and dimension sizes.

• <valid numeric data type > x means that x may have one of the numeric data types listed in
the Description column of (See Table 1A on page 5).

• <valid data type > x means that x may have any of the data types listed in the Description
column of (See Table 1A on page 5).

1.5.7 FORTRAN-77, ANSI C and K&R C

As much as possible, we have conformed the HDF API routines to those implementations of For-
tran and C that are in most common use today, namely FORTRAN-77, ANSI C and K&R C. Due
to the increasing availability of ANSI C, future versions of HDF will no longer support K&R C.

As Fortran-90 is a superset of FORTRAN-77, HDF programs should compile and run correctly
when using a Fortran-90 compiler.

DFNT_INT32 24
32-bit integer type

DFNT_UINT32 25
32-bit unsigned integer type

DFNT_FLOAT32 5
32-bit floating-point type

DFNT_FLOAT64 6
64-bit floating-point type

DFNT_NINT8 (DFNT_NATIVE | DFNT_INT8)
8-bit native integer type

DFNT_NUINT8 (DFNT_NATIVE | DFNT_UINT8)
8-bit native unsigned integer type

DFNT_NINT16 (DFNT_NATIVE | DFNT_INT16)
16-bit native integer type

DFNT_NUINT16 (DFNT_NATIVE | DFNT_UINT16)
16-bit native unsigned integer type

DFNT_NINT32 (DFNT_NATIVE | DFNT_INT32)
32-bit native integer type

DFNT_NUINT32 (DFNT_NATIVE | DFNT_UINT32)
32-bit native unsigned integer type

DFNT_NFLOAT32 (DFNT_NATIVE | DFNT_FLOAT32)
32-bit native floating-point type

DFNT_NFLOAT64 (DFNT_NATIVE | DFNT_FLOAT64)
64-bit native floating-point type
6 June 2017

Section 1 --: Introduction to the HDF APIs Table of Contents HDF Reference Manual
1.6 Error Codes

The error codes defined in the HDF library are listed in the following table.

TABLE 1B HDF Error Codes

Error Code Code Definition

DFE_NONE
No error.

DFE_FNF
File not found.

DFE_DENIED
Access to file denied.

DFE_ALROPEN
File already open.

DFE_TOOMANY
Too many AID's or files open.

DFE_BADNAME
Bad file name on open.

DFE_BADACC
Bad file access mode.

DFE_BADOPEN
Miscellaneous open error.

DFE_NOTOPEN
File can't be closed because it hasn’t been opened.

DFE_CANTCLOSE
fclose error

DFE_READERROR
Read error.

DFE_WRITEERROR
Write error.

DFE_SEEKERROR
Seek error.

DFE_RDONLY
File is read only.

DFE_BADSEEK
Attempt to seek past end of element.

DFE_PUTELEM
Hputelement error.

DFE_GETELEM
Hgetelement error.

DFE_CANTLINK
Cannot initialize link information.

DFE_CANTSYNC
Cannot synchronize memory with file.

DFE_BADGROUP
Error from DFdiread in opening a group.

DFE_GROUPSETUP
Error from DFdisetup in opening a group.

DFE_PUTGROUP
Error on putting a tag/reference number pair into a group.

DFE_GROUPWRITE
Error when writing group contents.

DFE_DFNULL
Data file reference is a null pointer.

DFE_ILLTYPE
Data file contains an illegal type: internal error.

DFE_BADDDLIST
The DD list is non-existent: internal error.

DFE_NOTDFFILE
The current file is not an HDF file and it is not zero length.
June 2017 7

The HDF Group Table of Contents Section 1 --: Introduction to the HDF APIs
DFE_SEEDTWICE
The DD list already seeded: internal error.

DFE_NOSUCHTAG
No such tag in the file: search failed.

DFE_NOFREEDD
There are no free DD's left: internal error.

DFE_BADTAG
Illegal WILDCARD tag.

DFE_BADREF
Illegal WILDCARD reference number.

DFE_NOMATCH
No DDs (or no more DDs) that match the specified tag/reference
number pair.

DFE_NOTINSET
Warning: Set contained unknown tag. Ignored.

DFE_BADOFFSET
Illegal offset specified.

DFE_CORRUPT
File is corrupted.

DFE_NOREF
No more reference numbers are available.

DFE_DUPDD
The new tag/reference number pair has been allocated.

DFE_CANTMOD
Old element doesn’t exist. Cannot modify.

DFE_DIFFFILES
Attempt to merge objects in different files.

DFE_BADAID
An invalid AID was received.

DFE_OPENAID
Active AIDs still exist.

DFE_CANTFLUSH
Cannot flush DD back to file.

DFE_CANTUPDATE
Cannot update the DD block.

DFE_CANTHASH
Cannot add a DD to the hash table.

DFE_CANTDELDD
Cannot delete a DD in the file.

DFE_CANTDELHASH
Cannot delete a DD from the hash table.

DFE_CANTACCESS
Cannot access specified tag/reference number pair.

DFE_CANTENDACCESS
Cannot end access to data element.

DFE_TABLEFULL
Access table is full.

DFE_NOTINTABLE
Cannot find element in table.

DFE_UNSUPPORTED
Feature not currently supported.

DFE_NOSPACE
malloc failed.

DFE_BADCALL
Routine calls were in the wrong order.

DFE_BADPTR
NULL pointer argument was specified.

DFE_BADLEN
Invalid length was specified.

DFE_NOTENOUGH
Not enough space for the data.

Error Code Code Definition
8 June 2017

Section 1 --: Introduction to the HDF APIs Table of Contents HDF Reference Manual
DFE_NOVALS
Values were not available.

DFE_ARGS
Invalid arguments passed to the routine.

DFE_INTERNAL
Serious internal error.

DFE_NORESET
Too late to modify this value.

DFE_GENAPP
Generic application level error.

DFE_UNINIT
Interface was not initialized correctly.

DFE_CANTINIT
Cannot initialize the interface the operation requires.

DFE_CANTSHUTDOWN
Cannot shut down the interface the operation requires.

DFE_BADDIM
Negative number of dimensions, or zero dimensions, was specified.

DFE_BADFP
File contained an illegal floating point number.

DFE_BADDATATYPE
Unknown or unavailable data type was specified.

DFE_BADMCTYPE
Unknown or unavailable machine type was specified.

DFE_BADNUMTYPE
Unknown or unavailable number type was specified.

DFE_BADORDER
Unknown or illegal array order was specified.

DFE_RANGE
Improper range for attempted access.

DFE_BADCONV
Invalid data type conversion was specified.

DFE_BADTYPE
Incompatible types were specified.

DFE_BADSCHEME
Unknown compression scheme was specified.

DFE_BADMODEL
Invalid compression model was specified.

DFE_BADCODER
Invalid compression encoder was specified.

DFE_MODEL
Error in the modeling layer of the compression operation.

DFE_CODER
Error in the encoding layer of the compression operation.

DFE_CINIT
Error in encoding initialization.

DFE_CDECODE
Error in decoding compressed data.

DFE_CENCODE
Error in encoding compressed data.

DFE_CTERM
Error in encoding termination.

DFE_CSEEK
Error seeking in an encoded dataset.

DFE_MINIT
Error in modeling initialization.

DFE_COMPINFO
Invalid compression header.

DFE_CANTCOMP
Cannot compress an object.

Error Code Code Definition
June 2017 9

The HDF Group Table of Contents Section 1 --: Introduction to the HDF APIs
DFE_CANTDECOMP
Cannot decompress an object.

DFE_NOENCODER
Encoder not available.

DFE_NOSZLIB
SZIP library not available.

DFE_COMPVERSION
Version error from zlib
Note: when Z_VERSION_ERROR (-6) returned from zlib.

DFE_READCOMP

Error in reading compressed data.
Note: when one of the following error codes returned from zlib:
Z_ERRNO (-1)
Z_STREAM_ERROR (-2)
Z_DATA_ERROR (-3)
Z_MEM_ERROR (-4)
Z_BUF_ERROR (-5)

DFE_NODIM
A dimension record was not associated with the image.

DFE_BADRIG
Error processing a RIG.

DFE_RINOTFOUND
Cannot find raster image.

DFE_BADATTR
Invalid attribute.

DFE_BADTABLE
The nsdg table has incorrect information.

DFE_BADSDG
Error in processing an SDG.

DFE_BADNDG
Error in processing an NDG.

DFE_VGSIZE
Too many elements in the vgroup.

DFE_VTAB
Element not in vtab[].

DFE_CANTADDELEM
Cannot add the tag/reference number pair to the vgroup.

DFE_BADVGNAME
Cannot set the vgroup name.

DFE_BADVGCLASS
Cannot set the vgroup class.

DFE_BADFIELDS
Invalid fields string passed to vset routine.

DFE_NOVS
Cannot find the vset in the file.

DFE_SYMSIZE
Too many symbols in the users table.

DFE_BADATTACH
Cannot write to a previously attached vdata.

DFE_BADVSNAME
Cannot set the vdata name.

DFE_BADVSCLASS
Cannot set the vdata class.

DFE_VSWRITE
Error writing to the vdata.

DFE_VSREAD
Error reading from the vdata.

DFE_BADVH
Error in the vdata header.

DFE_VSCANTCREATE
Cannot create the vdata.

Error Code Code Definition
10 June 2017

Section 1 --: Introduction to the HDF APIs Table of Contents HDF Reference Manual
DFE_VGCANTCREATE
Cannot create the vgroup.

DFE_CANTATTACH
Cannot attach to a vdata or vset.

DFE_CANTDETACH
Cannot detach a vdata or vset with write access.

DFE_BITREAD
A bit read error occurred.

DFE_BITWRITE
A bit write error occurred.

DFE_BITSEEK
A bit seek error occurred.

DFE_TBBTINS
Failed to insert the element into tree.

DFE_BVNEW
Failed to create a bit vector.

DFE_BVSET
Failed when setting a bit in a bit vector.

DFE_BVGET
Failed when getting a bit in a bit vector.

DFE_BVFIND
Failed when finding a bit in a bit vector.

Error Code Code Definition
June 2017 11

The HDF Group Table of Contents Section 1 --: Introduction to the HDF APIs
12 June 2017

SECTION 2 -- HDF Routine Reference
2.1 Reference Section Overview

This section of the Reference Manual contains a listing of every routine contained in the HDF ver-
sion 4.1r4 library. For each interface, the pages are organized alphabetically according to the C
routine name. Each page addresses one C routine and the related FORTRAN-77 routines, and
takes the following form:

Routine_Name

return_type function_name(type1 parameter1, type2 parameter2, ... , typeN parameterN)

parameter1 IN/OUT: Definition of the first parameter

parameter2 IN/OUT: Definition of the second parameter

.

parameterN IN/OUT Definition of the Nth parameter

Purpose Section containing the functionality of the routine.

Return value Section describing the return value, if any.

Description This optional section describes the proper use of the routine, the specification
of the parameters, and any special circumstances surrounding the use of the
routine. This section also identifies any prerequisite routines and provides
appropriate references.

FORTRAN This section provides a synopsis of the equivalent FORTRAN 77 routine or
routines.
June 2017 13

The HDF Group Table of Contents Section 2 -- HDF Routine Reference
14 June 2017

ANannlen/afannlen Table of Contents HDF Reference Manual
ANannlen/afannlen

int32 ANannlen(int32 ann_id)

ann_id IN: Annotation identifier returned by ANcreate, ANcreatef, or
ANselect

Purpose Returns the length of an annotation.

Return value Returns the length of the annotation or FAIL (or -1) otherwise.

Description ANannlen returns the number of characters contained in the annotation
specified by the parameter ann_id. This function is commonly used to
determine the size of a buffer to store the annotation upon reading.

FORTRAN integer function afannlen(ann_id)

integer ann_id
June 2017 2

The HDF Group Table of Contents ANannlist/afannlist
ANannlist/afannlist

intn ANannlist(int32 an_id, ann_type annot_type, uint16 obj_tag, uint16 obj_ref, int32 *ann_list)

an_id IN: AN interface identifier returned by ANstart

annot_type IN: Type of the annotation

obj_tag IN: Tag of the object

obj_ref IN: Reference number of the object

ann_list OUT: Buffer for the annotation identifiers

Purpose Retrieves the annotation identifiers of an object.

Return value Returns number of annotations identifiers found, if successful, or FAIL (or -1)
otherwise.

Description ANannlist obtains a list of identifiers of the annotations that are of the type
specified by the parameter annot_type and are attached to the object identified
by its tag, obj_tag, and its reference number, obj_ref.

Since this routine is implemented only to obtain the identifiers of data
annotations and not file annotations, the valid values of annot_type are
AN_DATA_LABEL (or 0) and AN_DATA_DESC (or 1). To obtain file annotation
identifiers, an application can use ANfileinfo to determine the number of file
labels and descriptions, and then use ANselect to obtain each file annotation
identifier. In this case, the application must call ANendaccess to close the
annotation identifier when done accessing it.

Sufficient space must be allocated for ann_list to hold the list of annotation
identifiers. This can be done by using ANnumann to obtain the number of
annotation identifiers to be retrieved, and then allocating memory for ann_list
using this number.

FORTRAN integer function afannlist(an_id, annot_type, obj_tag, obj_ref,
ann_list)

integer ann_list(*)

integer an_id, obj_tag, obj_ref, annot_type
3 June 2017

ANatype2tag/afatypetag Table of Contents HDF Reference Manual
ANatype2tag/afatypetag

uint16 ANatype2tag(ann_type *annot_type)

annot_type IN: Type of the annotation

Purpose Returns the annotation tag corresponding to an annotation type.

Return value Returns the annotation tag (ann_tag) if successful, and DFTAG_NULL (or 0)
otherwise.

Description ANatype2tag returns the tag that corresponds to the annotation type specified
by the parameter annot_type.

The following table lists the valid values of annot_type in the left column and
the corresponding values for the returned annotation tag on the right.

Annotation Type Annotation Tag

AN_DATA_LABEL (or 0) DFTAG_DIL (or 104)

AN_DATA_DESC (or 1) DFTAG_DIA (or 105)

AN_FILE_LABEL (or 2) DFTAG_FID (or 100)

AN_FILE_DESC (or 3) DFTAG_FD (or 101)

FORTRAN integer function afatypetag(annot_type)

integer annot_type
June 2017 4

The HDF Group Table of Contents ANcreate/afcreate
ANcreate/afcreate

int32 ANcreate(int32 an_id, uint16 obj_tag, uint16 obj_ref, ann_type annot_type)

an_id IN: AN interface identifier returned by ANstart

obj_tag IN: Tag of the object to be annotated

obj_ref IN: Reference number of the object to be annotated

annot_type IN: Type of the data annotation

Purpose Creates a data annotation for an object.

Return value Returns the data annotation identifier (ann_id) if successful and FAIL (or -1)
otherwise.

Description ANcreate creates a data annotation of type annot_type for the object specified
by its tag, obj_tag, and its reference number, obj_ref. The returned data
annotation identifier can represent either a data label or a data description.

Valid values for annot_type are AN_DATA_LABEL (or 0) or AN_DATA_DESC (or 1.)

Use ANcreatef to create a file annotation.

Currently, the user must write to a newly-created annotation before creating
another annotation of the same type. Creating two consecutive annotations of
the same type causes the second call to ANcreate to return FAIL (or -1).

FORTRAN integer function afcreate(an_id, obj_tag, obj_ref, annot_type)

integer an_id, obj_tag, obj_ref, annot_type
5 June 2017

ANcreatef/affcreate Table of Contents HDF Reference Manual
ANcreatef/affcreate

int32 ANcreatef(int32 an_id, ann_type annot_type)

an_id IN: AN interface identifier returned by ANstart

annot_type IN: Type of the file annotation

Purpose Creates a file annotation.

Return value Returns the file annotation identifier (ann_id) if successful and FAIL (or -1)
otherwise.

Description ANcreatef creates a file annotation of the type specified by the parameter
annot_type. The file annotation identifier returned can either represent a file
label or a file description.

Valid values for annot_type are AN_FILE_LABEL (or 2) and AN_FILE_DESC (or
3).

Use ANcreate to create a data annotation.

Currently, the user must write to a newly-created annotation before creating
another annotation of the same type. Creating two consecutive annotations of
the same type causes the second call to ANcreate to return FAIL (or -1).

FORTRAN integer function affcreate(an_id, annot_type)

integer an_id, annot_type
June 2017 6

The HDF Group Table of Contents ANend/afend
ANend/afend

int32 ANend(int32 an_id)

an_id IN: AN interface identifier returned by ANstart

Purpose Terminates access to an AN interface.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description ANend terminates access to the AN interface identified by an_id, which is
previously initialized by a call to ANstart. Note that there must be one call to
ANend for each call to ANstart.

FORTRAN integer function afend(an_id)

integer an_id
7 June 2017

ANendaccess/afendaccess Table of Contents HDF Reference Manual
ANendaccess/afendaccess

intn ANendaccess(int32 ann_id)

ann_id IN: Annotation identifier returned by ANcreate, ANcreatef or ANselect

Purpose Terminates access to an annotation.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description ANendaccess terminates access to the annotation identified by the parameter
ann_id. Note that there must be one call to ANendaccess for every call to
ANselect, ANcreate or ANcreatef.

FORTRAN integer function afendaccess(ann_id)

integer ann_id
June 2017 8

The HDF Group Table of Contents ANfileinfo/affileinfo
ANfileinfo/affileinfo

intn ANfileinfo(int32 an_id, int32 *n_file_labels, int32 *n_file_descs, int32 *n_data_labels, int32
*n_data_descs)

an_id IN: AN interface identifier returned by ANstart

n_file_labels OUT: Number of file labels

n_file_descs OUT: Number of file descriptions

n_data_labels OUT: Number of data labels

n_data_descs OUT: Number of data descriptions

Purpose Retrieves the number of annotations of each type in a file.

Return value Returns SUCCEED (or 0) if successful or FAIL (or -1) otherwise.

Description ANfileinfo retrieves the total number of the four kinds of annotations and
stores them in the appropriate parameters. The total number of data labels of all
data objects in the file is stored in n_data_labels. The total number of data
descriptions of all data objects in the file is stored in n_data_descs. The total
number of file labels is stored in n_file_labels and the total number of file
descriptions in n_file_descs.

Note that the numbers of data labels and descriptions refer to the total number
of data labels and data descriptions in the file, not for a specific object. Use
ANnumann to determine these numbers for a specific object.

This routine is generally used to find the range of acceptable indices for
ANselect calls.

FORTRAN integer function affileinfo(an_id, n_file_labels, n_file_descs,
n_data_labels, n_data_descs)

integer an_id, n_file_labels, n_file_descs

integer n_data_labels, n_data_descs
9 June 2017

ANgetdatainfo Table of Contents HDF Reference Manual
ANgetdatainfo

intn ANgetdatainfo(int32 ann_id, int32 *offset, int32 *length)

ann_id IN: Annotation identifier returned by ANselect, ANcreate or ANcreatef

offset OUT: Offset of the annotation's data

length OUT: Length of the annotation's data

Purpose Retrieves location and size of an annotation.

Return value Returns SUCCEED (or 0) if successful or FAIL (or -1) otherwise.

Description ANgetdatainfo retrieves the offset and length of the data that belongs to the
annotation specified by ann_id. This function works for file and object
annotations.

FORTRAN currently unavailable
June 2017 10

The HDF Group Table of Contents ANget_tagref/afgettagref
ANget_tagref/afgettagref

int32 ANget_tagref(int32 an_id, int32 index, ann_type annot_type, uint16 *ann_tag, uint16 *ann_ref)

an_id IN: AN interface identifier returned by ANstart

index IN: Index of the annotation

annot_type IN: Type of the annotation

ann_tag OUT: Tag of the annotation

ann_ref OUT: Reference number of the annotation

Purpose Retrieves the tag/reference number pair of an annotation given its index and
type.

Return value Returns SUCCEED (or 0) if successful or FAIL (or -1) otherwise.

Description ANget_tagref retrieves the tag and reference number of the annotation
identified by its index, the parameter index, and by its annotation type, the
parameter annot_type. The tag is stored in the parameter ann_tag and the
reference number is stored in the parameter ann_ref.

The parameter index is a nonnegative integer and is less than the total number
of annotations of type annot_type in the file. Use ANfileinfo to obtain the total
number of annotations of each type in the file.

The following table lists the valid values of the parameter annot_type in the left
column, and the corresponding values of the parameter ann_tag in the right
column.

Annotation Type Annotation Tag

AN_DATA_LABEL (or 0) DFTAG_DIL (or 104)

AN_DATA_DESC (or 1) DFTAG_DIA (or 105)

AN_FILE_LABEL (or 2) DFTAG_FID (or 100)

AN_FILE_DESC (or 3) DFTAG_FD (or 101)

FORTRAN integer function afgettagref(an_id, index, annot_type, ann_tag,
ann_ref)

integer an_id, index, annot_type

integer ann_tag, ann_ref
11 June 2017

ANid2tagref/afidtagref Table of Contents HDF Reference Manual
ANid2tagref/afidtagref

int32 ANid2tagref(int32 ann_id, uint16 *ann_tag, uint16 *ann_ref)

ann_id IN: Annotation identifier returned by ANselect, ANcreate or ANcreatef

ann_tag OUT: Tag of the annotation

ann_ref OUT: Reference number of the annotation

Purpose Retrieves the tag/reference number pair of an annotation given its identifier.

Return value Returns SUCCEED (or 0) if successful or FAIL (or -1) otherwise.

Description ANid2tagref retrieves the tag/reference number pair of the annotation
identified by the parameter ann_id. The tag is stored in the parameter ann_tag
and the reference number is stored in the parameter ann_ref.

Possible values returned in ann_tag are DFTAG_DIL (or 104) for a data label,
DFTAG_DIA (or 105) for a data description, DFTAG_FID (or 100) for a file label
and DFTAG_FD (or 101) for a file description.

FORTRAN integer function afidtagref(ann_id, ann_tag, ann_ref)

integer ann_id, ann_tag, ann_ref
June 2017 12

The HDF Group Table of Contents ANnumann/afnumann
ANnumann/afnumann

intn ANnumann(int32 an_id, ann_type annot_type, uint16 obj_tag, uint16 obj_ref)

an_id IN: AN interface identifier returned by ANstart

annot_type IN: Type of the annotation

obj_tag IN: Tag of the object

obj_ref IN: Reference number of the object

Purpose Returns the number of annotations of a given type attached to an object.

Return value Returns the number of annotations or FAIL (or -1) otherwise.

Description ANnumann returns the total number of annotations that are of type annot_type
and that are attached to the object identified by its tag, obj_tag, and its
reference number, obj_ref.

Since this routine is implemented only to obtain the total number of data
annotations and not file annotations, the valid values of annot_type are
AN_DATA_LABEL (or 0) and AN_DATA_DESC (or 1). To obtain the total number of
file annotations or all data annotations, use ANfileinfo.

FORTRAN integer function afnumann(an_id, annot_type, obj_tag, obj_ref)

integer an_id, obj_tag, obj_ref, annot_type
13 June 2017

ANreadann/afreadann Table of Contents HDF Reference Manual
ANreadann/afreadann

int32 ANreadann(int32 ann_id, char* ann_buf, int32 ann_length)

ann_id IN: Annotation identifier returned by ANcreate, ANcreatef or ANselect

ann_buf OUT: Buffer for the annotation

ann_length IN: Length of the buffer ann_buf

Purpose Reads an annotation.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description ANreadann reads the annotation identified by the parameter ann_id and stores
the annotation in the parameter ann_buf.

The parameter ann_length specifies the size of the buffer ann_buf. If the length
of the file or data label to be read is greater than or equal to ann_length, the
label will be truncated to ann_length - 1 characters. If the length of the file or
data description is greater than ann_length, the description will be truncated to
ann_length characters. The HDF library adds a NULL character to the retrieved
label but not to the retrieved description. The user must add a NULL character to
the retrieved description if the C library string functions are to operate on this
description.

FORTRAN integer function afreadann(ann_id, ann_buf, ann_length)

integer ann_id, ann_length

character*(*) ann_buf
June 2017 14

The HDF Group Table of Contents ANselect/afselect
ANselect/afselect

int32 ANselect(int32 an_id, int32 index, ann_type annot_type)

an_id IN: AN interface identifier returned by ANstart

index IN: Location of the annotation in the file

annot_type IN: Type of the annotation

Purpose Obtains an existing annotation.

Return value Returns the annotation identifier (ann_id) if successful or FAIL (or -1)
otherwise.

Description ANselect obtains the identifier of the annotation specified by its index, index,
and by its annotation type, annot_type.

The parameter index is a nonnegative integer and is less than the total number
of annotations of type annot_type in the file. Use ANfileinfo to obtain the total
number of annotations of each type in the file.

Valid values of annot_type are AN_DATA_LABEL (or 0), AN_DATA_DESC (or 1),
AN_FILE_LABEL (or 2), and AN_FILE_DESC (or 3).

FORTRAN integer function afselect(an_id, index, annot_type)

integer an_id, index

integer annot_type
15 June 2017

ANstart/afstart Table of Contents HDF Reference Manual
ANstart/afstart

int32 ANstart(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Initializes the AN interface.

Return value Returns the AN interface identifier (an_id) if successful and FAIL (or -1)
otherwise.

Description ANstart initializes the AN interface for the file identified by the parameter
file_id. A call to ANstart is required before any AN functions can be invoked.
ANstart is used with the ANend function to define the extent of AN interface
session. A call to ANend is required for each call to ANstart.

FORTRAN integer function afstart(file_id)

integer file_id
June 2017 16

The HDF Group Table of Contents ANtag2atype/aftagatype
ANtag2atype/aftagatype

ann_type ANtag2atype(uint16 ann_tag)

ann_tag IN: Tag of the annotation

Purpose Returns the annotation type corresponding to an annotation tag.

Return value Returns the annotation type if successful or AN_UNDEF (or -1) otherwise.

Description ANtag2atype returns the annotation type that corresponds to the annotation tag
specified by the parameter ann_tag.

The following table lists the valid values of ann_tag in the left column and the
corresponding values of the returned annotation type in the right column.

Annotation Tag Annotation Type

DFTAG_DIL (or 104) AN_DATA_LABEL (or 0)

DFTAG_DIA (or 105) AN_DATA_DESC (or 1)

DFTAG_FID (or 100) AN_FILE_LABEL (or 2)

DFTAG_FD (or 101) AN_FILE_DESC (or 3)

FORTRAN integer function aftagatype(ann_tag)

integer ann_tag
17 June 2017

ANtagref2id/aftagrefid Table of Contents HDF Reference Manual
ANtagref2id/aftagrefid

int32 ANtagref2id(int32 an_id, uint16 ann_tag, uint16 ann_ref)

an_id IN: AN interface identifier returned by ANstart

ann_tag IN: Tag of the annotation

ann_ref IN: Reference number of the annotation

Purpose Returns the identifier of an annotation given its tag/reference number pair.

Return value Returns the annotation identifier (ann_id) if successful and FAIL (or -1)
otherwise.

Description ANtagref2id returns the identifier of the annotation specified by its tag,
ann_tag, and its reference number, ann_ref.

Valid values of ann_tag are DFTAG_DIL (or 104) for a data label, DFTAG_DIA (or
105) for a data description, DFTAG_FID (or 100) for a file label, and DFTAG_FD
(or 101) for a file description.

FORTRAN integer function aftagrefid(an_id, ann_tag, ann_ref)

integer an_id, ann_tag, ann_ref
June 2017 18

The HDF Group Table of Contents ANwriteann/afwriteann
ANwriteann/afwriteann

int32 ANwriteann(int32 ann_id, char* ann, int32 ann_length)

ann_id IN: Annotation identifier returned by ANcreate, ANcreatef, or ANselect

ann IN: Text to be written to the annotation

ann_length IN: Length of the annotation text

Purpose Writes an annotation.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description ANwriteann writes the annotation text provided in the parameter ann to the
annotation specified by the parameter ann_id. The parameter ann_length
specifies the number of characters in the annotation text.

If the annotation has already been written with text, ANwriteann will
overwrite the current text.

FORTRAN integer function afwriteann(ann_id, ann, ann_length)

integer ann_id, ann_length

character*(*) ann
19 June 2017

GRattrinfo/mgatinf Table of Contents HDF Reference Manual
GRattrinfo/mgatinf

intn GRattrinfo(int32 [obj]_id, int32 attr_index, char *name, int32 *attr_nt, int32 *count)

[obj]_id IN: Raster image identifier (ri_id), returned by GRcreate or GRselect,
or GR interface identifier (gr_id), returned by GRstart

attr_index IN: Index of the attribute

name OUT: Buffer for the name of the attribute

attr_nt OUT: Number type of the attribute

count OUT: Number of attribute values

Purpose Retrieves information about an attribute.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRattrinfo retrieves the name, data type, and number of values of the
attribute, specified by its index, attr_index, for the data object identified by the
parameter obj_id. The name is stored in the parameter name, the data type is
stored in the parameter attr_nt, and the number of values is stored in the
parameter count. If the value of any of the output parameters is NULL, the
corresponding information will not be retrieved.

The value of the parameter attr_index can be obtained using GRfindattr,
GRnametoindex or GRreftoindex, depending on available information. Valid
values of attr_index range from 0 to the total number of attributes attached to
the object - 1. The total number of attributes attached to the file can be obtained
using the routine GRfileinfo. The total number of attributes attached to an
image can be obtained using the routine GRgetiminfo .

FORTRAN integer function mgatinf([obj]_id, attr_index, name, attr_nt,
count)

integer [obj]_id, attr_nt, attr_index, count

character*(*) name
June 2017 22

The HDF Group Table of Contents GRcreate/mgcreat
GRcreate/mgcreat

int32 GRcreate(int32 gr_id, char *name, int32 ncomp, int32 nt, int32 interlace_mode, int32
dim_sizes[2])

gr_id IN: GR interface identifier returned by GRstart

name IN: Name of the raster image

ncomp IN: Number of pixel components in the image

nt IN: Number type of the image data

interlace_mode IN: Interlace mode of the image data

dim_sizes IN: Size of each dimension of the image

Purpose Creates a new raster image.

Return value Returns a raster image identifier if successful and FAIL (or -1) otherwise.

Description GRcreate creates a raster image with the values provided in the parameters
name, ncomp, nt, interlace_mode and dim_sizes.

The parameter name specifies the name of the image and must not be NULL.
The length of the name should not be longer than MAX_GR_NAME (or 256.)

The parameter ncomp specifies the number of pixel components in the raster
image and must have a value of at least 1.

The parameter nt specifies the type of the raster image data and can be any of
the number types supported by the HDF library and listed in Table 1A in
Section I of this manual.

The parameter interlace_mode specifies the interlacing in which the raster
image is to be written. The valid values of interlace_mode are:
MFGR_INTERLACE_PIXEL (or 0), MFGR_INTERLACE_LINE (or 1) and
MFGR_INTERLACE_COMPONENT (or 2).

The array dimsizes specifies the size of the two dimensions of the image. The
dimensions must be specified and their values must be greater than 0.

Once a raster image has been created, it is not possible to change its name,
type, dimension sizes or number of pixel components. However, it is possible
to create a raster image and close the file before writing any data values to it.
Later, the values can be added to or modified in the raster image, which then
can be obtained using GRselect.

Images created with the GR interface are actually written to disk in pixel
interlace mode; any user-specified interlace mode is stored in the file with the
image and the image is automatically converted to that mode when it is read
with a GR interface function.
23 June 2017

GRcreate/mgcreat Table of Contents HDF Reference Manual
Note Regarding an important difference between the SD and GR interfaces:
The SD and GR interfaces differ in the correspondence between the dimension
order in parameter arrays such as start, stride, edge, and dimsizes and the
dimension order in the data array. See the SDreaddata and GRreadimage
reference manual pages for discussions of the SD and GR approaches,
respectively.

When writing applications or tools to manipulate both images and two-
dimensional SDs, this crucial difference between the interfaces must be taken
into account. While the underlying data is stored in row-major order in both
cases, the API parameters are not expressed in the same way. Consider the
example of an SD data set and GR image that are stored as identically-shaped
arrays of X columns by Y rows and accessed via the SDreaddata and
GRreadimage functions, respectively. Both functions take the parameters
start, stride, and edge.

o For SDreaddata, those parameters are expressed in (y,x) or
[row,column] order. For example, start[0] is the starting point in the
Y dimension and start[1] is the starting point in the X dimension.
The same ordering holds true for all SD data set manipulation
functions.

o For GRreadimage, those parameters are expressed in (x,y) or
[column,row] order. For example, start[0] is the starting point in the
X dimension and start[1] is the starting point in the Y dimension.
The same ordering holds true for all GR functions manipulating image
data.

FORTRAN integer function mgcreat(gr_id, name, ncomp, data_type,
interlace_mode, dim_sizes)

integer gr_id, data_type, interlace_mode, ncomp, dim_sizes(2)

character*(*) name
June 2017 24

The HDF Group Table of Contents GRend/mgend
GRend/mgend

intn GRend(int32 gr_id)

gr_id IN: GR interface identifier returned by GRstart

Purpose Terminates the GR interface session.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRend terminates the GR interface session identified by the parameter gr_id.

GRend, together with GRstart, defines the extent of a GR interface session.
GRend disposes of the internal structures initialized by the corresponding call
to GRstart. There must be a call to GRend for each call to GRstart; failing to
provide one may cause loss of data.

GRstart and GRend do not manage file access; use Hopen and Hclose to
open and close HDF files. Hopen must be called before GRstart and Hclose
must be called after GRend.

FORTRAN integer function mgend(gr_id)

integer gr_id
25 June 2017

GRendaccess/mgendac Table of Contents HDF Reference Manual
GRendaccess/mgendac

intn GRendaccess(int32 ri_id)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

Purpose Terminates access to a raster image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRendaccess terminates access to the raster image identified by the parameter
ri_id and disposes of the raster image identifier. This access is initiated by
either GRselect or GRcreate. There must be a call to GRendaccess for each
call to GRselect or GRcreate; failing to provide this will result in loss of data.
Attempts to access a raster image identifier disposed of by GRendaccess will
result in an error condition.

FORTRAN integer function mgendac(ri_id)

integer ri_id
June 2017 26

The HDF Group Table of Contents GRfileinfo/mgfinfo
GRfileinfo/mgfinfo

intn GRfileinfo(int32 gr_id, int32 *n_images, int32 *n_file_attrs)

gr_id IN: GR interface identifier returned by GRstart

n_images OUT: Number of raster images in the file

n_file_attrs OUT: Number of global attributes in the file

Purpose Retrieves the number of raster images and the number of global attributes in
the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRfileinfo retrieves the number of raster images and the number of global
attributes for the GR interface identified by the parameter gr_id, and stores
them into the parameters n_images and n_file_attrs, respectively.

The term “global attributes” refers to attributes that are assigned to the file
instead of individual raster images. These attributes are created by GRsetattr
with the object identifier parameter set to a GR interface identifier (gr_id)
rather than a raster image identifier (ri_id).

GRfileinfo is useful in finding the range of acceptable indices for GRselect
calls.

FORTRAN integer function mgfinfo(gr_id, n_images, n_file_attrs)

integer gr_id, n_images, n_file_attrs
27 June 2017

GRfindattr/mgfndat Table of Contents HDF Reference Manual
GRfindattr/mgfndat

int32 GRfindattr(int32 [obj]_id, char *attr_name)

[obj]_id IN: Raster image identifier (ri_id), returned by GRcreate or GRselect,
or GR interface identifier (gr_id), returned by GRstart

attr_name IN: Name of the attribute

Purpose Finds the index of a data object’s attribute given an attribute name.

Return value Returns the index of the attribute if successful and FAIL (or -1) otherwise.

Description GRfindattr returns the index of the attribute whose name is specified by the
parameter attr_name for the object identified by the parameter obj_id.

FORTRAN integer function mgfndat([obj]_id, attr_name)

integer [obj]_id

character*(*) attr_name
June 2017 28

The HDF Group Table of Contents GRgetattdatainfo
GRgetattdatainfo

intn GRgetattdatainfo(int32 obj_id, int32 attr_index, int32 *offset, int32 *length)

obj_id IN: Raster image identifier (ri_id), returned by GRselect, or GR
interface identifier (gr_id), returned by GRstart

attr_index IN: Index of the inquired attribute

offset OUT: Buffer to hold offset of the attribute’s data

length OUT: Buffer to hold length of the attribute’s data

Purpose Retrieves location and size of attribute's data.

Return value Returns the number of data blocks retrieved, which should be 1, if successful,
and FAIL (or -1) otherwise.

Description GRgetattdatainfo retrieves the offset and length of the data that belongs to the
attribute attr_index, which is attached to the HDF4 object specified by obj_id.
The value of obj_id can be a GR interface identifier (gr_id), returned by
GRstart or an image identifier (ri_id), returned by GRselect.

FORTRAN Currently unavailable
29 June 2017

GRgetattr/mggnatt/mggcatt Table of Contents HDF Reference Manual
GRgetattr/mggnatt/mggcatt

intn GRgetattr(int32 [obj]_id, int32 attr_index, VOIDP values)

[obj]_id IN: Raster image identifier (ri_id), returned by GRcreate or GRselect,
or GR interface identifier (gr_id), returned by GRstart

attr_index IN: Index of the attribute

values OUT: Buffer for the attribute values

Purpose Reads the values of an attribute for a data object.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRgetattr obtains all values of the attribute that is specified by its index,
attr_index, and is attached to the object identified by the parameter obj_id.
The values are stored in the buffer values.

The value of the parameter attr_index can be obtained by using GRfindattr,
GRnametoindex, or GRreftoindex, depending on available information.
Valid values of attr_index range from 0 to the total number of attributes of the
object - 1. The total number of attributes attached to the file can be obtained
using the routine GRfileinfo. The total number of attributes attached to the
image can be obtained using the routine GRgetiminfo.

GRgetattr only reads all values assigned to the attribute and not a subset.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (mggnatt) and the other for character data (mggcatt).

FORTRAN integer function mggnatt([obj]_id, attr_index, values)

integer [obj]_id, attr_index

<valid numeric data type> values(*)

integer function mggcatt([obj]_id, attr_index, values)

integer [obj]_id, attr_index

character*(*) values
June 2017 30

The HDF Group Table of Contents GRgetchunkinfo/mggichnk
GRgetchunkinfo/mggichnk

intn GRgetchunkinfo(int32 ri_id, HDF_CHUNK_DEF *cdef, int32 *flag)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

C only:

cdef OUT: Pointer to the chunk definition

flag OUT: Pointer to the compression flag

Fortran only:

dim_length OUT: Array of chunk dimensions

flag OUT: Compression flag

Purpose Retrieves chunking information for a raster image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRgetchunkinfo retrieves chunking information about the raster image
identified by the parameter ri_id into the parameters cdef and flags in C, and
into the parameters dim_length and flag in Fortran. Note that only chunk
dimensions are retrieved, compression information is not available.

The value returned in the parameter flag indicates if the raster image is not
chunked, chunked, or chunked and compressed. The following table shows the
possible values of the parameter flag and the corresponding characteristics of
the raster image.

Values of flag in C
Values of flag

in Fortran
Raster Image Characteristics

HDF_NONE -1 Not chunked

HDF_CHUNK 0 Chunked and not compressed

HDF_CHUNK | HDF_COMP 1

Chunked and compressed
with either the run-length
encoding (RLE), Skipping
Huffman or GZIP compres-
sion algorithms

In C, if the raster image is chunked and not compressed, GRgetchunkinfo fills
the array chunk_lengths in the union cdef with the values of the corresponding
chunk dimensions. If the raster image is chunked and compressed,
GRgetchunkinfo fills the array chunk_lengths in the structure comp of the
union cdef with the values of the corresponding chunk dimensions. Refer to the
page on GRsetchunk in this manual for specific information on the union
HDF_CHUNK_DEF. In Fortran, chunk dimensions are retrieved into the array
dim_length. If the chunk length for each dimension is not needed, NULL can be
passed in as the value of the parameter cdef in C.
31 June 2017

GRgetchunkinfo/mggichnk Table of Contents HDF Reference Manual
FORTRAN integer function mggichnk(ri_id, dim_length, flag)

integer ri_id, dim_length, flag
June 2017 32

The HDF Group Table of Contents GRgetcompinfo/mggcompress
GRgetcompinfo/mggcompress

intn GRgetcompinfo(int32 ri_id, comp_coder_t *comp_type, comp_info *c_info)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

comp_type OUT: Type of compression

C only:
c_info OUT: Pointer to compression information structure

Fortran only:
comp_prm OUT: Compression parameters array

Purpose Retrieves raster image data compression type and compression information.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRgetcompinfo retrieves the compression type and compression information
for the specified raster image. GRgetcompinfo replaces GRgetcompress
because this function has flaws, causing failure for some chunked and
chunked/compressed data.

The compression method is returned in the parameter comp_type. Valid values
of comp_type are as follows:

COMP_CODE_NONE (or 0) for no compression
COMP_CODE_RLE (or 1) for RLE run-length encoding
COMP_CODE_SKPHUFF (or 3) for Skipping Huffman compression
COMP_CODE_DEFLATE (or 4) for GZIP compression
COMP_CODE_SZIP (or 5) for SZIP compression
COMP_CODE_JPEG (or 7) for JPEG compression
COMP_CODE_IMCOMP (or 12) for IMCOMP compression

When a compression method requires additional parameters, those values are
returned in the c_info struct in C and the array parameter comp_prm in Fortran.

The c_info struct is of type comp_info, contains algorithm-specific information
for the library compression routines, and is described in the hcomp.h header
file and in the GRsetcompress entry in this reference manual.

The comp_prm parameter is an array of one element:
o With Skipping Huffman compression, comp_prm(1) contains the skip

value, skphuff_skp_size.
o In the case of GZIP compression, comp_prm(1) contains the deflation

value, deflate_value.
o comp_prm is ignored with other compression methods. (There are no

relevant RLE parameters and the quality and force_baseline data are
not available for JPEG images. If GRgetcompinfo is called for either
an RLE or a JPEG image, the function will return only the compression
type; c_info will contain only zeros.)

o Currently, Fortran GR interface doesn’t support Szip compression.
33 June 2017

GRgetcompinfo/mggcompress Table of Contents HDF Reference Manual
FORTRAN integer function mggcompress(ri_id, comp_type, comp_prm)

integer ri_id, comp_type, comp_prm(1)
June 2017 34

The HDF Group Table of Contents GRgetcomptype
GRgetcomptype

intn GRgetcomptype(int32 ri_id, comp_coder_t *comp_type)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

comp_type OUT: Type of compression

Purpose Retrieves the compression type of a raster image's data.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRgetcomptype retrieves the compression type for the specified raster image.

The compression type is returned in the parameter comp_type. Valid values of
comp_type are as follows:

COMP_CODE_NONE (or 0) for no compression
COMP_CODE_RLE (or 1) for RLE run-length encoding
COMP_CODE_SKPHUFF (or 3) for Skipping Huffman compression
COMP_CODE_DEFLATE (or 4) for GZIP compression
COMP_CODE_SZIP (or 5) for SZIP compression
COMP_CODE_JPEG (or 7) for JPEG compression
COMP_CODE_IMCOMP (or 12) for IMCOMP compression

FORTRAN Currently unavailable
35 June 2017

GRgetdatainfo Table of Contents HDF Reference Manual
GRgetdatainfo

intn GRgetdatainfo(int32 ri_id, uintn start_block, uintn info_count, int32 *offsetarray, int32 *lengthar-
ray)

ri_id IN: Raster image identifier returned by GRselect

start_block IN: Value indicating where to start reading offsets

info_count IN: Length of the offset and length lists

offsetarray OUT: Array to hold offsets of the data blocks

lengtharray OUT: Array to hold lengths of the data blocks

Purpose Retrieves location and size of data blocks in a specified raster image, starting at
a specified block.

Return value Returns the number of data blocks retrieved if successful, and FAIL (or -1)
otherwise.

Description GRgetdatainfo retrieves two lists, offsetarray and lengtharray, containing the
offsets and lengths of the blocks of data belonging to the raster image specified
by ri_id.

The parameter info_count provides the number of offset/length values that the
lists can hold. To allocate sufficient memory for offsetarray and lengtharray,
the application can invoke GRgetdatainfo passing in 0 for info_count and
NULL for both arrays to get the value for info_count in the next call to
GRgetdatainfo.

The parameter start_block is an integer value between 0 and number of blocks
- 1. The combination of parameters info_length and start_block provide user
applications with flexibility of where and how much data information to
retrieve.

o When start_block is 0, GRgetdatainfo will start getting data info from
the beginning of the image's data.

o When start_block is greater than the number of blocks in the image,
GRgetdatainfo will return FAIL (or -1).

FORTRAN Currently unavailable
June 2017 36

The HDF Group Table of Contents GRgetiminfo/mggiinf
GRgetiminfo/mggiinf

intn GRgetiminfo(int32 ri_id, char *gr_name, int32 *ncomp, int32 *data_type, int32 *interlace_mode,
int32 dim_sizes[2], int32 *num_attrs)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

gr_name OUT: Buffer for the name of the raster image

ncomp OUT: Number of components in the raster image

nt OUT: Number type of the raster image data

interlace_mode OUT: Interlace mode of the stored raster image data

dim_sizes OUT: Sizes of raster image dimension

num_attrs OUT: Number of attributes attached to the raster image

Purpose Retrieves general information about a raster image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRgetiminfo retrieves the name, number of components, number type,
interlace mode, dimension sizes, and number of attributes of the raster image
identified by the parameter ri_id.

GRgetiminfo stores the name, number of components, number type, interlace
mode and dimension sizes of the image in the parameters gr_name, ncomp, nt,
interlace_mode, and dim_sizes, respectively. It also retrieves the number of
attributes attached to the image into the parameter num_attrs. If the value of
any of the output parameters are set to NULL in C, the corresponding
information will not be retrieved.

The buffer gr_name is assumed to have sufficient space allocated to store the
entire name of the raster image.

The valid values of the parameter nt are listed in Table 1A in Section I of this
manual.

FORTRAN integer function mggiinf(ri_id, gr_name, ncomp, data_type,
interlace_mode, dim_sizes, num_attrs)

integer ri_id, ncomp, data_type, interlace_mode, num_attrs

integer dim_sizes[2]

character*(*) gr_name
37 June 2017

GRgetlutid/mggltid Table of Contents HDF Reference Manual
GRgetlutid/mggltid

int32 GRgetlutid(int32 ri_id, int32 pal_index)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

pal_index IN: Index of the palette

Purpose Gets the identifier of a palette given its index.

Return value Returns the palette identifier if successful and FAIL (or -1) otherwise.

Description GRgetlutid gets the identifier of the palette attached to the raster image
identified by the parameter ri_id. The palette is identified by its index,
pal_index.

Currently, only one palette can be assigned to a raster image, which means that
pal_index should always be set to 0.

FORTRAN integer function mggltid(ri_id, pal_index)

integer ri_id, pal_index
June 2017 38

The HDF Group Table of Contents GRgetlutinfo/mgglinf
GRgetlutinfo/mgglinf

intn GRgetlutinfo(int32 pal_id, int32 *ncomp, int32 *data_type, int32 *interlace_mode, int32
*num_entries)

pal_id IN: Palette identifier returned by GRgetlutid

ncomp OUT: Number of components in the palette

nt OUT: Number type of the palette

interlace_mode OUT: Interlace mode of the stored palette data

num_entries OUT: Number of color lookup table entries in the palette

Purpose Retrieves information about a palette.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRgetlutinfo retrieves the number of pixel components, number type,
interlace mode, and number of color lookup table entries of the palette
identified by the parameter pal_id. These values are stored in the parameters
ncomp, nt, interlace_mode, and num_entries, respectively. In C if the value of
any of the output parameters are set to NULL, the corresponding information
will not be retrieved.

FORTRAN integer function mgglinf(pal_id, ncomp, nt, interlace_mode,
num_entries)

integer pal_id, ncomp, nt, interlace_mode, num_entries
39 June 2017

GRgetnluts/mggnluts Table of Contents HDF Reference Manual
GRgetnluts/mggnluts

intn GRgetnluts(int32 ri_id)

ri_id IN: Data set identifier returned by GRcreate or GRselect

Purpose Retrieves the number of palettes for an image.

Return value Returns number of palettes (1 or 0) if successful and FAIL (or -1) otherwise.

Description GRgetnluts retrieves the number of palettes (or color look-up tables,
commonly abbreviated as LUTs) available for the specified raster image, ri_id.

There can currently be either 0 or 1 palettes assigned to an image. If multiple
palettes are supported in a future release, this function may then return values
greater than 1.

FORTRAN integer function mggnluts(ri_id)

integer ri_id
June 2017 40

The HDF Group Table of Contents GRgetpalinfo
GRgetpalinfo

intn GRgetpalinfo(int32 gr_id, uintn pal_count; hdf_ddinfo_t *palinfo_array)

gr_id IN: GR identifier for the file, returned by GRstart

pal_count IN Length of the palette data descriptor (DD) array

palinfo_array IN/OUT Array containing palettes’ data descriptor (DD) information

Purpose Retrieves data descriptor information for palettes in a file, i.e., tag, reference
number, offset, and length.

Return value Returns the number of palette data descriptors retrieved if successful and FAIL
(or -1) otherwise.

Description GRgetpalinfo retrieves a list of structures containing the data descriptors (DD)
of the palettes in the file, specified by gr_id. Each palette DD contains a
palette tag, reference number, offset, and length together specifying the
palette’s data.

The argument pal_count specifies the size of the list. GRgetpalinfo returns the
number of palette data descriptors (DDs) in the file when called with 0 for the
pal_count and NULL for the palinfo_array. DDs with the tags DFTAG_IP8 and
DFTAG_LUT are counted. If the function is not successful, FAIL will be returned.

When pal_count is a positive number and palinfo_array is not NULL,
GRgetpalinfo will populate palinfo_array with the palette data descriptor tag/
ref pairs and the offsets and lengths of the corresponding palette data elements
in the file. The palinfo_array must be allocated sufficiently to hold all the
descriptor information to be retrieved, as specified by pal_count. The function
will return the number of palette DDs retrieved if successful and FAIL,
otherwise.

After palinfo_array has been populated, an application can use the tag/ref
values of each entry in the array as parameters to Hgetelement to retrieve the
palette data associated with each palette DD in the HDF4 file.

The structure hdf_ddinfo_t is defined as:
typedef struct hdf_ddinfo
{

uint16tag;/* palette tag */
uint16ref; /* palette ref */
int32offset; /* position of the palette data */
int32length; /* length of the palette data */

} hdf_ddinfo_t;

FORTRAN Currently unavailable
41 June 2017

GRidtoref/mgid2rf Table of Contents HDF Reference Manual
GRidtoref/mgid2rf

uint16 GRidtoref(int32 ri_id)

ri_id IN: Raster image identifier returned by GRselect or GRcreate

Purpose Maps a raster image identifier to a reference number.

Return value Returns the reference number of the raster image if successful and 0 otherwise.

Description GRidtoref returns the reference number of the raster image identified by ri_id.

This routine is commonly used for the purpose of annotating the raster image
or including the raster image within a vgroup.

FORTRAN integer function mgid2rf(ri_id)

integer ri_id
June 2017 42

The HDF Group Table of Contents GRluttoref/mglt2rf
GRluttoref/mglt2rf

uint16 GRluttoref(int32 pal_id)

pal_id IN: Palette identifier returned by GRgetlutid

Purpose Maps a palette identifier to a reference number.

Return value Returns the reference number of the palette if successful or 0 otherwise.

Description GRluttoref returns the reference number of the palette identified by pal_id.

This routine is commonly used for the purpose of annotating the palette or
including the palette within a vgroup.

FORTRAN integer function mglt2rf(pal_id)

integer pal_id
43 June 2017

GRnametoindex/mgn2ndx Table of Contents HDF Reference Manual
GRnametoindex/mgn2ndx

int32 GRnametoindex(int32 gr_id, char *ri_name)

gr_id IN: GR interface identifier returned by GRstart

ri_name IN: Name of the raster image

Purpose Maps the name of a raster image to an index.

Return value Returns the index of the raster image if successful and FAIL (or -1) otherwise.

Description GRnametoindex converts the name of a raster image, ri_name, to an index
(index) in the GR file, identified by gr_id.

The value of index can be passed into GRselect to obtain the raster image
identifier (ri_id).

FORTRAN integer function mgn2ndx(gr_id, ri_name)

integer gr_id

character*(*) ri_name
June 2017 44

The HDF Group Table of Contents GRreadchunk/mgrchnk/mgrcchnk
GRreadchunk/mgrchnk/mgrcchnk

intn GRreadchunk(int32 ri_id, int32 *origin, VOIDP datap)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

origin IN: Origin of the chunk to be read

datap IN: Buffer for the chunk to be read

Purpose Reads a data chunk from a chunked raster image (pixel-interlace only)

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRreadchunk reads the entire chunk of data from the chunked raster image
identified by ri_id and stores it in the buffer datap. Chunk to be read is
specified by the parameter origin. This function has less overhead than
GRreadimage and should be used whenever an entire chunk of data is to be
read.

GRreadchunk will return FAIL (or -1) when an attempt is made to use it to
read from a non-chunked raster image.

The parameter origin is a two-dimensional array which specifies the
coordinates of the chunk according to the chunk position in the overall chunk
array. Refer to Chapter 8, "General Raster Images (GR API)" in the HDF
User’s Guide for details.

The buffer datap contains the chunk data organized in pixel interlace mode.

FORTRAN integer mgrchnk(ri_id, origin, datap)

 integer ri_id, origin(2)

 <valid_numeric_datatype> datap(*)

 integer mgrcchnk(ri_id, origin, char_datap)

 integer ri_id, origin(2)

 character*(*) char_datap
45 June 2017

GRreadimage/mgrdimg/mgrcimg Table of Contents HDF Reference Manual
GRreadimage/mgrdimg/mgrcimg

intn GRreadimage(int32 ri_id, int32 start[2], int32 stride[2], int32 edge[2], VOIDP data)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

start IN: Array specifying the starting location from where raster image data
is read

stride IN: Array specifying the interval between the values that will be read
along each dimension

edge IN: Array specifying the number of values to be read along each
dimension

data OUT: Buffer for the image data

Purpose Reads a raster image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRreadimage reads the subsample of the raster image specified by ri_id into
the buffer data. The subsample is defined by the values of the parameters start,
stride, and edge.

The array start specifies the starting location of the subsample to be read. Valid
values of each element in the array start are 0 to (the size of the corresponding
raster image dimension - 1). The first element of the array start specifies an
offset from the beginning of the array data along the fastest-changing
dimension, which is the second dimension in C and the first dimension in
Fortran. The second element of the array start specifies an offset from the
beginning of the array data along the second fastest-changing dimension,
which is the first dimension in C and the second dimension in Fortran. For
example, if the first value of the array start is 2 and the second value is 3, the
starting location of the subsample to be read is at the fourth row and third
column in C, and at the third row and fourth column in Fortran.

The array stride specifies the reading pattern along each dimension. For
example, if one of the elements of the array stride is 1, then every element
along the corresponding dimension of the array data will be read. If one of the
elements of the array stride is 2, then every other element along the
corresponding dimension of the array data will be read, and so on. The
correspondence between elements of the array stride and the dimensions of the
array data is the same as described above for the array start.

Each element of the array edges specifies the number of data elements to be
read along the corresponding dimension. The correspondence between the
elements of the array edges and the dimensions of the array data is the same as
described above for the array start.

Note that, if there were any un-written elements in the image, they would have
been filled with the image’s fill value, which could be provided prior to writing
the image, or the default fill-value, which is 0.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (mgrdimg) and the other for character data (mgrcimg).
June 2017 46

The HDF Group Table of Contents GRreadimage/mgrdimg/mgrcimg
Note Regarding an important difference between the SD and GR interfaces:
The SD and GR interfaces differ in the correspondence between the dimension
order in parameter arrays such as start, stride, edge, and dimsizes and the
dimension order in the data array. See the SDreaddata and GRreadimage
reference manual pages for discussions of the SD and GR approaches,
respectively.

When writing applications or tools to manipulate both images and two-
dimensional SDs, this crucial difference between the interfaces must be taken
into account. While the underlying data is stored in row-major order in both
cases, the API parameters are not expressed in the same way. Consider the
example of an SD data set and GR image that are stored as identically-shaped
arrays of X columns by Y rows and accessed via the SDreaddata and
GRreadimage functions, respectively. Both functions take the parameters
start, stride, and edge.

o For SDreaddata, those parameters are expressed in (y,x) or
[row,column] order. For example, start[0] is the starting point in the
Y dimension and start[1] is the starting point in the X dimension.
The same ordering holds true for all SD data set manipulation
functions.

o For GRreadimage, those parameters are expressed in (x,y) or
[column,row] order. For example, start[0] is the starting point in the
X dimension and start[1] is the starting point in the Y dimension.
The same ordering holds true for all GR functions manipulating image
data.

FORTRAN integer function mgrdimg(ri_id, start, stride, edge, data)

integer ri_id, start(2), stride(2), edge(2)

<valid numeric data type> data(*)

integer function mgrcimg(ri_id, start, stride, edge, data)

integer ri_id, start(2), stride(2), edge(2)

character*(*) data
47 June 2017

GRreadlut/mgrdlut/mgrclut Table of Contents HDF Reference Manual
GRreadlut/mgrdlut/mgrclut

intn GRreadlut(int32 pal_id, VOIDP pal_data)

pal_id IN: Palette identifier returned by GRgetlutid

pal_data OUT: Buffer for the palette data

Purpose Reads a palette.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRreadlut reads the palette specified by pal_id into the buffer pal_data.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (mgrdlut) and the other for character data (mgrclut).

FORTRAN integer function mgrdlut(pal_id, pal_data)

integer pal_id

<valid numeric data type> pal_data(*)

integer function mgrclut(pal_id, pal_data)

integer pal_id

character*(*) pal_data
June 2017 48

The HDF Group Table of Contents GRreftoindex/mgr2idx
GRreftoindex/mgr2idx

int32 GRreftoindex(int32 gr_id, uint16 ri_ref)

gr_id IN: GR interface identifier returned by GRstart

ri_ref IN: Reference number of the raster image

Purpose Maps the reference number of a raster image to an index.

Return value Returns the index of the image if successful and FAIL (or -1) otherwise.

Description GRreftoindex returns the index of the raster image specified by its reference
number ri_ref, in the GR file identified by gr_id.

FORTRAN integer function mgr2idx(gr_id, ri_ref)

integer gr_id, ri_ref
49 June 2017

GRreqimageil/mgrimil Table of Contents HDF Reference Manual
GRreqimageil/mgrimil

intn GRreqimageil(int32 ri_id, intn interlace_mode)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

interlace_mode IN: Interlace mode

Purpose Specifies the interlace mode to be used in the subsequent raster image read
operation(s).

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRreqimageil requests that the subsequent read operations on the image
identified by the parameter ri_id use the interlace mode specified by the
parameter interlace_mode.

The parameter interlace_mode specifies the interlace mode in which the data
will be stored in memory when being read. Valid values of the parameter
interlace_mode are MFGR_INTERLACE_PIXEL (or 0), MFGR_INTERLACE_LINE (or
1), and MFGR_INTERLACE_COMPONENT (or 2).

In the file, the image is always stored in pixel interlace mode, i.e.
MFGR_INTERLACE_PIXEL. The interlace mode of the raster image specified at
creation time is stored in the file along with the raster image. If GRreqimageil
is not called prior to the call to GRreadimage, the raster image will be read
and stored in memory according to the interlace mode specified at creation. If
GRreqimageil is called before GRreadimage, GRreadimage will read the
raster image and store it according to the interlace mode specified in the call to
GRreqimageil.

FORTRAN integer function mgrimil(ri_id, interlace_mode)

integer ri_id, interlace_mode
June 2017 50

The HDF Group Table of Contents GRreqlutil/mgrltil
GRreqlutil/mgrltil

intn GRreqlutil(int32 ri_id, intn interlace_mode)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

interlace_mode IN: Interlace mode

Purpose Specifies the interlace mode to be used in the next palette read operation(s).

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRreqlutil requests that the subsequent read operations on the palette attached
to the image identified by the parameter ri_id, use the interlace mode
interlace_mode.

The parameter interlace_mode specifies the interlace mode in which the data
will be stored in memory when being read. Valid values of the parameter
interlace_mode are MFGR_INTERLACE_PIXEL (or 0), MFGR_INTERLACE_LINE (or
1), and MFGR_INTERLACE_COMPONENT (or 2).

FORTRAN integer function mgrltil(ri_id, interlace_mode)

integer ri_id, interlace_mode
51 June 2017

GRselect/mgselct Table of Contents HDF Reference Manual
GRselect/mgselct

int32 GRselect(int32 gr_id, int32 index)

gr_id IN: GR interface identifier returned by GRstart

index IN: Index of the raster image in the file

Purpose Selects the existing raster image.

Return value Returns the raster image identifier if successful or FAIL (or -1) otherwise.

Description GRselect obtains the identifier of the raster image specified by the its index,
index.

Valid values of the parameter index range from 0 to (the total number of raster
images in the file - 1). The total number of the raster images in the file can be
obtained by using GRfileinfo.

FORTRAN integer function mgselct(gr_id, index)

integer gr_id, index
June 2017 52

The HDF Group Table of Contents GRsetaccesstype/mgsactp
GRsetaccesstype/mgsactp

intn GRsetaccesstype(int32 ri_id, uintn accesstype)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

accesstype IN: Access type

Purpose Sets the access for an RI to be either serial or parallel I/O.

Return value Returns SUCCEED (or 0) if the RI data can be accessed via accesstype and FAIL
(or -1) otherwise.

Description GRsetaccesstype sets the access type to be either serial or parallel I/O for the
raster image specified by ri_id. Access types can be DFACC_SERIAL (or 1),
DFACC_PARALLEL (or 11), or DFACC_DEFAULT (or 0).

FORTRAN integer function mgsactp(ri_id, accesstype)

integer ri_id, accesstype
53 June 2017

GRsetattr/mgsnatt/mgscatt Table of Contents HDF Reference Manual
GRsetattr/mgsnatt/mgscatt

intn GRsetattr(int32 [obj]_id, char *attr_name, int32 data_type, int32 count, VOIDP values)

[obj]_id IN: Raster image identifier (ri_id), returned by GRcreate or GRselect or
GR interface identifier (gr_id), returned by GRstart

attr_name IN: Name of the attribute

attr_nt IN: Number type of the attribute

count IN: Number of values in the attribute

values IN: Buffer for the attribute values

Purpose Assigns an attribute to a raster image or a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRsetattr attaches an attribute to the object specified by obj_id. The attribute
is specified by its name, attr_name, number type, attr_nt, number of attribute
values, count, and the attribute values, values. GRsetattr provides a generic
way for users to define metadata in the GR interface. It implements the label
= value data abstraction.

If an GR interface identifier (gr_id) is specified as the parameter obj_id, a
global attribute is created which applies to all objects in the file. If a raster
image identifier (ri_id) is specified as the parameter obj_id, an attribute is
attached to the specified raster image.

The parameter attr_name can be any ASCII string with maximum length of
H4_MAX_NC_NAME (or 256).

The parameter attr_nt can contain any data type supported by the HDF library.
These data types are listed in Table 1A in Section I of this manual.

Attribute values are passed in the parameter values. The number of attribute
values is defined by the parameter count . If more than one value is stored, all
values must have the same data type. If an attribute with the given name, data
type and number of values exists, it will be overwritten. Currently, the only
predefined attribute is the fill value, identified by the FILL_ATTR definition.

Note that if an image does not have a fill value defined, and is written partially,
a FILL_ATTR attribute will be added. This attribute has a value of 0, which is
the image’s fill value. Thus, any un-written elements in the image will be
filled with the default fill value of 0.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (mgsnatt) and the other for character data (mgscatt).

FORTRAN integer function mgsnatt([obj]_id, attr_name, data_type, count,
values)

integer ri_id, comp_type, comp_prm(*)

integer [obj]_id, data_type, count
June 2017 54

The HDF Group Table of Contents GRsetattr/mgsnatt/mgscatt
character*(*) attr_name

<valid numeric data type> values(*)

integer function mgscatt([obj]_id, attr_name, data_type, count,
values)

integer [obj]_id, data_type

integer count

character*(*) values, attr_name
55 June 2017

GRsetchunk/mgschnk Table of Contents HDF Reference Manual
GRsetchunk/mgschnk

intn GRsetchunk(int32 ri_id, HDF_CHUNK_DEF cdef, int32 flags)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

C only:

cdef IN: Chunk definition

flags IN: Compression flags

Fortran only:

dim_length IN: Chunk dimensions array

comp_type IN: Type of compression

comp_prm IN: Compression parameters array

Purpose Makes a raster image a chunked raster image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRsetchunk makes the raster image specified by the parameter ri_id a
chunked raster image according to the chunking and compression information
provided in the parameters cdef and flags in C, or in the parameters comp_type
and comp_prm in Fortran.

C only:

The parameter cdef is a union of type HDF_CHUNK_DEF, which is defined as
follows:

typedef union hdf_chunk_def_u
{
 int32 chunk_lengths[2]; /* chunk lengths along each dim */

 struct
 {
 int32 chunk_lengths[2];
 int32 comp_type; /* compression type */
 struct comp_info cinfo; /* compression information */
 } comp;

 struct
 {
 int32 chunk_lengths[2];
 intn start_bit;
 intn bit_len;
 intn sign_ext;
 intn fill_one;
 } nbit;
} HDF_CHUNK_DEF
June 2017 56

The HDF Group Table of Contents GRsetchunk/mgschnk
Valid values of the parameter flags are HDF_CHUNK for chunked and
uncompressed data and (HDF_CHUNK | HDF_COMP) for chunked and compressed
data. Data can be compressed using run-length encoding (RLE), Skipping
Huffman, GZIP, or Szip compression algorithms.

If the parameter flags has a value of HDF_CHUNK, the chunk dimensions must be
specified in the field cdef.chunk_lengths[]. If the parameter flags has a value
of (HDF_CHUNK | HDF_COMP), the following must be specified:

1) The chunk dimensions in the field cdef.comp.chunk_lengths[].
2) The compression type in the field cdef.comp.comp_type. Valid values of
compression type values are listed below.

COMP_CODE_NONE (or 0) for uncompressed data
COMP_CODE_RLE (or 1) for RLE compression
COMP_CODE_SKPHUFF (or 3) for Skipping Huffman compression
COMP_CODE_DEFLATE (or 4) for GZIP compression
COMP_CODE_SZIP (or 5) for Szip compression

For Skipping Huffman and GZIP compression, parameters are passed in
corresponding fields of the structure cinfo.

o Specify skipping size for Skipping Huffman compression in the field
cdef.comp.cinfo.skphuff.skp_size, which must be an integer of
value 1 or greater.

o Specify the deflate level for GZIP compression in the field
cdef.comp.cinfo.deflate_level. Valid deflate level values are
integers between 0 and 9 inclusive.

o Specify the options mask and the number of pixels per block for Szip
compression in the fields c_info.szip.options_mask and
c_info.szip.pixels_per_block, respectively.

Refer to the SDsetcompress entry in this reference manual for details on these
parameters.

Fortran only:

The dim_length array specifies the chunk dimensions.

The parameter comp_type specifies the compression type. Valid compression
types and their values used are defined in the hdf.inc file, and are listed below.

COMP_CODE_NONE (or 0) for uncompressed data
COMP_CODE_RLE (or 1) for RLE compression
COMP_CODE_SKPHUFF (or 3) for Skipping Huffman compression
COMP_CODE_DEFLATE (or 4) for GZIP compression

The parameter comp_prm specifies the compression parameters for the
Skipping Huffman and GZIP compression methods. It contains only one
element which is set to the skipping size for Skipping Huffman compression or
the deflate level for GZIP compression. Currently, Fortran GR interface does
not support Szip compression.

FORTRAN integer function mgschnk(ri_id, dim_length, comp_type, comp_prm)

integer ri_id, dim_length, comp_type, comp_prm
57 June 2017

GRsetchunkcache/mgscchnk Table of Contents HDF Reference Manual
GRsetchunkcache/mgscchnk

intn GRsetchunkcache(int32 ri_id, int32 maxcache, int32 flags)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

maxcache IN: Maximum number of chunks to cache

flags IN: Flags determining the behavior of the routine

Purpose Specifies the maximum number of chunks to cache.

Return value Returns the value of the parameter maxcache if successful and FAIL (or -1)
otherwise.

Description GRsetchunkcache sets the maximum number of chunks to be cached for the
chunked raster image specified by the parameter ri_id. The maximum number
of the chunks is specified by the parameter maxcache.

Currently, the only valid value of the parameter flags is 0.

If GRsetchunkcache is not called, the maximum number of chunks in the
cache is set to the number of chunks along the fastest-changing dimension.
Refer to the discussion of the GRsetchunkcache routine in the HDF User’s
Guide for more specific information on the routine’s behavior.

FORTRAN integer function mgscchnk(ri_id, maxcache, flags)

integer ri_id, maxcache, flags
June 2017 58

The HDF Group Table of Contents GRsetcompress/mgscompress
GRsetcompress/mgscompress

intn GRsetcompress(int32 ri_id, int32 comp_type, comp_info *c_info)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

comp_type IN: Compression method for the image data

C only:
c_info IN: Pointer to the comp_info union

Fortran only:
comp_prm IN: Compression parameters array

Purpose Specifies if the raster image will be stored in a file as a compressed raster
image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRsetcompress specifies if the raster image specified by ri_id will be stored
in the file in compressed format.

The compression method is specified by the parameter comp_type. Valid
values of the parameter comp_type are:

 COMP_CODE_RLE (or 1) for RLE run-length encoding
 COMP_CODE_SKPHUFF (or 3) for Skipping Huffman compression
 COMP_CODE_DEFLATE (or 4) for GZIP compression
 COMP_CODE_SZIP (or 5) for SZIP compression
 COMP_CODE_JPEG (or 7) for JPEG compression

The compression method parameters are specified by the parameter c_info in C
and the parameter comp_prm in Fortran. The parameter c_info has type
comp_info, which is described in the hcomp.h header file. It contains
algorithm-specific information for the library compression routines.

The skipping size for the Skipping Huffman algorithm is specified in the field
c_info.skphuff.skp_size in C and in the parameter comp_prm(1) in Fortran.

The deflate level for the GZIP algorithm is specified in the field
c_info.deflate.level in C and in the parameter comp_prm(1) in Fortran.
59 June 2017

GRsetcompress/mgscompress Table of Contents HDF Reference Manual
The parameter c_info is a pointer to a union structure of type comp_info. This
union structure is defined as follows:

typedef union tag_comp_info
{
 struct
 { /* Not used by GRsetcompress */ } jpeg;

 struct
 { /* Not used by GRsetcompress */ } nbit;

 struct
 { /* struct to contain info about how to compress size of the
 elements when skipping */
 intn skp_size;
 } skphuff;

 struct
 { /* struct to contain info about how to compress or
 decompress gzip encoded dataset how hard to work
 when compressing data*/
 intn level;
 } deflate;

 struct
 {
 int32 options_mask; /* IN */
 int32 pixels_per_block; /* IN */
 int32 pixels_per_scanline; /* OUT: computed */
 int32 bits_per_pixel; /* OUT: size of NT */
 int32 pixels; /* OUT: size of dataset or chunk */
 } szip; /* for szip encoding */
} comp_info;

FORTRAN integer mgscompress(ri_id, comp_type, comp_prm)

integer ri_id, comp_type, comp_prm(*)
June 2017 60

The HDF Group Table of Contents GRsetexternalfile/mgsxfil
GRsetexternalfile/mgsxfil

intn GRsetexternalfile(int32 ri_id, char *filename, int32 offset)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

filename IN: Name of the external file

offset IN: Offset in bytes from the beginning of the external file to where the
data will be written

Purpose Specifies that the raster image will be written to an external file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRsetexternalfile specifies that the raster image identified by the parameter
ri_id will be written to the external file specified by the parameter filename at
the offset specified by the parameter offset.

Data can only be moved once for any given raster image, and it is the user's
responsibility to make sure the external data file is kept with the “original” file.

If the raster image already exists, its data will be moved to the external file .
Space occupied by the data in the primary file will not be released. To release
the space in the primary file use the hdfpack command-line utility. If the
raster image does not exist, its data will be written to the external file during
the subsequent calls to GRwriteimage.

See the reference manual entries for HXsetcreatedir and HXsetdir for more
information on the options available for accessing external files.

FORTRAN integer function mgsxfil(ri_id, filename, offset)

integer ri_id, offset

character*(*) filename
61 June 2017

GRstart/mgstart Table of Contents HDF Reference Manual
GRstart/mgstart

int32 GRstart(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Initializes the GR interface.

Return value Returns the GR interface identifier if successful and FAIL (or -1) otherwise.

Description GRstart initializes the GR interface for the file specified by the parameter
file_id.

This routine is used with the GRend routine to define the extent of the GR
interface session. As with the start routines in the other interfaces, GRstart
initializes the internal interface structures needed for the remaining GR
routines. Use the general purpose routines Hopen and Hclose to manage file
access. The GR routines will not open and close HDF files.

FORTRAN integer function mgstart(file_id)

integer file_id
June 2017 62

The HDF Group Table of Contents GRwritechunk/mgwchnk/mgwcchnk
GRwritechunk/mgwchnk/mgwcchnk

intn GRwritechunk(int32 ri_id, int32 *origin, const VOIDP datap)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

origin IN: Origin of the chunk to be written

datap IN: Buffer for the chunk to be written

Purpose Writes a data chunk to a chunked raster image (pixel-interlace only)

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

GRwritechunk returns FAIL (or -1) when an attempt is made to use it to write
to a non-chunked raster image.

Description GRwritechunk writes the entire chunk of data stored in the buffer datap to the
chunked raster image identified by the parameter ri_id. Writing starts at the
location specified by the parameter origin. This function has less overhead
than GRwriteimage and should be used whenever an entire chunk of data is to
be written.

The parameter origin is a two-dimensional array which specifies the
coordinates of the chunk according to the chunk position in the overall chunk
array. Refer to Chapter 8, "General Raster Images (GR API)" in the HDF
User’s Guide.

The datap buffer contains the chunk’s data organized in a pixel interlace mode.

FORTRAN integer mgwchnk(ri_id, origin, datap)

integer ri_id, origin(2)

<valid_numeric_datatype> datap(*)

integer mgwcchnk(ri_id, origin, char_datap)

integer ri_id, origin(2)

character*(*) char_datap
63 June 2017

GRwriteimage/mgwrimg/mgwcimg Table of Contents HDF Reference Manual
GRwriteimage/mgwrimg/mgwcimg

intn GRwriteimage(int32 ri_id, int32 start[2], int32 stride[2], int32 edge[2], VOIDP data)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

start IN: Array containing the two-dimensional coordinate of the initial
location for the write

stride IN: Array containing the number of data locations the current location is
to be moved forward before each write

edge IN: Array containing the number of data elements that will be written
along each dimension

data IN: Buffer containing the image data

Purpose Writes a raster image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRwriteimage writes the subsample of the raster image data stored in the
buffer data to the raster image specified by the parameter ri_id. The subsample
is defined by the values of the parameters start, stride and edge.

The array start specifies the starting location of the subsample to be written.
Valid values of each element in the array start are 0 to (the size of the
corresponding raster image dimension - 1). The first element of the array start
specifies an offset from the beginning of the array data along the fastest-
changing dimension, which is the second dimension in C and the first
dimension in Fortran. The second element of the array start specifies an offset
from the beginning of the array data along the second fastest-changing
dimension, which is the first dimension in C and the second dimension in
Fortran. For example, if the first value of the array start is 2 and the second
value is 3, the starting location of the subsample to be written is at the fourth
row and third column in C, and at the third row and fourth column in Fortran.

The array stride specifies the writing pattern along each dimension. For
example, if one of the elements of the array stride is 1, then every element
along the corresponding dimension of the array data will be written. If one of
the elements of the stride array is 2, then every other element along the
corresponding dimension of the array data will be written, and so on. The
correspondence between elements of the array stride and the dimensions of
the array data is the same as described above for the array start.

Each element of the array edges specifies the number of data elements to be
written along the corresponding dimension. The correspondence between the
elements of the array edges and the dimensions of the array data is the same as
described above for the array start.

Any un-written elements in the image will be filled with the image’s fill value.
If the fill-value is previously set, it will be used, otherwise, the default fill-
value, which is 0, will be used.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (mgwrimg) and the other for character data (mgwcimg).
June 2017 64

The HDF Group Table of Contents GRwriteimage/mgwrimg/mgwcimg
Note Regarding an important difference between the SD and GR interfaces:
The SD and GR interfaces differ in the correspondence between the dimension
order in parameter arrays such as start, stride, edge, and dimsizes and the
dimension order in the data array. See the SDreaddata and GRreadimage
reference manual pages for discussions of the SD and GR approaches,
respectively.

When writing applications or tools to manipulate both images and two-
dimensional SDs, this crucial difference between the interfaces must be taken
into account. While the underlying data is stored in row-major order in both
cases, the API parameters are not expressed in the same way. Consider the
example of an SD data set and GR image that are stored as identically-shaped
arrays of X columns by Y rows and accessed via the SDreaddata and
GRreadimage functions, respectively. Both functions take the parameters
start, stride, and edge.

o For SDreaddata, those parameters are expressed in (y,x) or
[row,column] order. For example, start[0] is the starting point in the
Y dimension and start[1] is the starting point in the X dimension.
The same ordering holds true for all SD data set manipulation
functions.

o For GRreadimage, those parameters are expressed in (x,y) or
[column,row] order. For example, start[0] is the starting point in the
X dimension and start[1] is the starting point in the Y dimension.
The same ordering holds true for all GR functions manipulating image
data.

FORTRAN integer function mgwrimg(ri_id, start, stride, edge, data)

integer ri_id, start(2), stride(2), edge(2)

<valid numeric data type> data(*)

integer function mgwcimg(ri_id, start, stride, edge, data)

integer ri_id, start(2), stride(2), edge(2)

character*(*) data
65 June 2017

GRwritelut/mgwrlut/mgwclut Table of Contents HDF Reference Manual
GRwritelut/mgwrlut/mgwclut

intn GRwritetlut(int32 pal_id, int32 ncomp, int32 data_type, int32 interlace_mode, int32 num_entries,
VOIDP pal_data)

pal_id IN: Palette identifier returned by GRgetlutid

ncomp IN: Number of components in the palette

data_type IN: Data type of the palette data

interlace_mode IN: Interlace mode of the stored palette data

num_entries IN: Number of entries in the palette

pal_data IN: Buffer for the palette data to be written

Purpose Writes a palette.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRwritelut writes a palette with the number of pixel components specified by
the parameter ncomp, the data type of the palette data specified by the
parameter data_type, the interlace mode specified by the parameter
interlace_mode, and the number of entries in the palette specified by the
parameter num_entries. The palette data itself is stored in the pal_data buffer.
Currently only “old-style” palettes are supported, i.e ncomp = 3,
num_entries = 256, data_type = uint8.

The parameter ncomp specifies the number of pixel components in the palette
and must have a value of at least 1.

The parameter data_type specifies the type of the palette data and can be any
of the data types supported by the HDF library. The data types supported by
HDF are listed in Table 1A in Section I of this manual.

The parameter interlace_mode specifies the interlacing in which the palette is
to be written. The valid values of interlace_mode are: MFGR_INTERLACE_PIXEL
(or 0), MFGR_INTERLACE_LINE (or 1) and MFGR_INTERLACE_COMPONENT (or 2.)

The buffer pal_data is assumed to have sufficient space allocated to store all of
the palette data.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (mgwrlut) and the other for character data (mgwclut).

FORTRAN integer function mgwrlut(pal_id, ncomp, data_type, interlace_mode,
num_entries, pal_data)

integer pal_id, ncomp, data_type, interlace_mode, num_entries

<valid numeric data type> pal_data(*)
June 2017 66

The HDF Group Table of Contents GRwritelut/mgwrlut/mgwclut
integer function mgwclut(pal_id, ncomp, data_type, interlace_mode,
num_entries, pal_data)

integer pal_id, ncomp, data_type, interlace_mode, num_entries

character*(*) pal_data
67 June 2017

GR2bmapped Table of Contents HDF Reference Manual
GR2bmapped

int32 GR2bmapped(int32 ri_id, intn *tobe_mapped, intn *name_generated)

ri_id IN: Raster image identifier returned by GRselect

tobe_mapped OUT: TRUE if the image should be mapped

name_generated OUT: TRUE if the image’s name was generated by the library

Purpose Checks whether a raster image is to be mapped

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GR2bmapped determines whether the given raster image satisfies the
following conditions:

o being an 8-bit raster image
o having one component
o being non-special or RLE compressed only, i.e., no other
 compressions, no chunking,...

The function will set tobe_mapped to TRUE if the image satisfies the above
conditions, and FALSE, otherwise.

In addition, GR2bmapped will set the flag name_generated to indicate
whether the image has name that was generated by the library instead of given
by application. Old images (or images created with pre-GR API) do not have a
name and the library would generate a name for it while reading in the file.
The tool HDF4 File Content Writer needs to make this distinction.

FORTRAN Currently unavailable
June 2017 68

The HDF Group Table of Contents GR2bmapped
69 June 2017

Hclose/hclose Table of Contents HDF Reference Manual
Hclose/hclose

intn Hclose(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Closes the access path to the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The file identifier file_id is validated before the file is closed. If the identifier is
valid, the function closes the access path to the file.

If there are still access identifiers attached to the file, the error DFE_OPENAID is
placed on the error stack, FAIL (or -1) is returned, and the file remains open.
This is a common error when developing new interfaces. Refer to the
Reference Manual page on Hendaccess for a discussion of this problem.

FORTRAN integer function hclose(file_id)

integer file_id
June 2017 72

The HDF Group Table of Contents Hgetfileversion/hgfilver
Hgetfileversion/hgfilver

intn Hgetfileversion(int32 file_id, uint32 *major_v, uint32 *minor_v, uint32 *release, char string[])

file_id IN: File identifier returned by Hopen

major_v OUT: Major version number

minor_v OUT: Minor version number

release OUT: Release number

string OUT: Version number text string

Purpose Retrieves version information for an HDF file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description It is still an open question as to what exactly the version number of a file
should mean, so we recommend that code not depend on this buffer. The string
argument is limited to a length of LIBVSTR_LEN (or 80) characters as defined in
hfile.h.

FORTRAN integer function hgfilver(file_id, major_v, minor_v, release,
string)

integer file_id, major_v, minor_v, release

character*(*) string
73 June 2017

Hgetlibversion/hglibver Table of Contents HDF Reference Manual
Hgetlibversion/hglibver

intn Hgetlibversion(uint32 *major_v, uint32 *minor_v, uint32 *release, char string[])

major_v OUT: Major version number

minor_v OUT: Minor version number

release OUT: Release number

string OUT: Version number text string

Purpose Retrieves the version information of the current HDF library.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The version information is compiled into the HDF library, so it is not necessary
to have any open files for this function to execute. The string buffer is limited
to a length of LIBVSTR_LEN (or 80) characters as defined in hfile.h.

FORTRAN integer function hglibver(major_v, minor_v, release, string)

integer major_v, minor_v, release

character*(*) string
June 2017 74

The HDF Group Table of Contents Hgetntinfo
Hgetntinfo

intn Hgetntinfo(const int32 n_type, hdf_ntinfo_t *nt_info)

n_type IN: HDF4 number type

nt_info OUT: Number type's information

Purpose Retrieves some information of the given number type.

Return value Returns SUCCEED (0) if successful, and FAIL (-1) otherwise.

Description Hgetntinfo retrieves the name and byte order of the given number type,
n_type. These values are in character arrays and are encapsulated in the
structure hdf_ntinfo_t, which is defined in hdf.h as:
typedef struct hdf_ntinfo_t
{
 char type_name[9]; /* nt name, e.g. "int8" or "float32" */
 char byte_order[13]; /* nt byte order, e.g. "littleEndian" or

"bigEndian" */
}
hdf_ntinfo_t;

Hgetntinfo returns FAIL (-1) when n_type does not match one of the types
listed in the tables in Section 2.5.2, "HDF Definitions" of the HDF User's
Guide.

FORTRAN Currently unavailable
75 June 2017

Hishdf/hishdff Table of Contents HDF Reference Manual
Hishdf/hishdff

intn Hishdf(char *filename)

filename IN: Complete path and filename of the file to be checked.

Purpose Determines if a file is an HDF file.

Return value Returns TRUE (or 1) if the file is an HDF file and FALSE (or 0) otherwise.

Description The first four bytes of a file identify it as an HDF file. It is possible that Hishdf
will identify a file as an HDF file but Hopen will be unable to open the file; for
example, if the data descriptor list is corrupted.

FORTRAN integer function hishdff(filename)

character*(*) filename
June 2017 76

The HDF Group Table of Contents Hopen/hopen
Hopen/hopen

int32 Hopen(char *filename, intn access, int16 n_dds)

filename IN: Complete path and filename for the file to be opened

access IN: Access code definition (preceded by DFACC_)

n_dds IN: Number of data descriptors in a block if a new file is to be created

Purpose Provides an access path to an HDF file by reading all the data descriptor blocks
into memory.

Return value Returns the file identifier if successful and FAIL (or -1) otherwise.

Description If given a new file name, Hopen will create a new file using the specified
access type and number of data descriptors. If given an existing file name,
Hopen will open the file using the specified access type and ignore the n_dds
argument.

The number of data descriptors in a block, n_dds, is a non-negative integer
with a default value of DEF_NDDS (or 16) and a minimum value of MIN_NDDS (or
4). If the specified value of n_dds is less than MIN_NDDS, then it will be set to
MIN_NDDS.

HDF provides several access code definitions:

DFACC_CREATE - Create a new file. If file exists, replace its contents.
DFACC_READ - Open for read only. If file does not exist, return an error.
DFACC_WRITE - Open for read/write. If file does not exist, create it.

If a file is opened and an attempt is made to reopen the file using
DFACC_CREATE, HDF will issue the error code DFE_ALROPEN. If the file is
opened with read-only access and an attempt is made to reopen the file for
write access using DFACC_WRITE, HDF will attempt to reopen the file with read
and write permissions.

Upon successful exit, the specified file is opened with the relevant
permissions, the data descriptors are set up in memory, and the associated
file_id is returned. For new files, the appropriate file headers are also set up.

Note that it has been reported that opening/closing file in loops is very slow;
thus, it is not recommended to perform such operations too many times,
particularly, when data is being added to the file between opening/closing.

FORTRAN integer function hopen(filename, access, n_dds)

character*(*) filename

integer access, n_dds
77 June 2017

HCget_config_info Table of Contents HDF Reference Manual
HCget_config_info

intn HCget_config_info(comp_coder_t coder_type, uint32 *compression_config_info)

coder_type IN: Type of compression

compression_config_info OUT: Flags indicating status of compression method

Purpose Retrieves information about the configuration of a compression method.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description HCget_config_info retrieves the configuration status of the compression type
specified by coder_type, returning that status information as flags in
compression_config_info.

Valid values of coder_type are as follows:

 COMP_CODE_NONE - for no compression
 COMP_CODE_RLE - for RLE run-length encoding
 COMP_CODE_NBIT - for NBIT compression
 COMP_CODE_SKPHUFF - for Skipping Huffman compression
 COMP_CODE_DEFLATE - for GZIP compression
 COMP_CODE_SZIP - for Szip compression
 COMP_CODE_JPEG - for JPEG compression

The compression method, coder_type, used for a data set can be obtained as
the returned value of the comp_type parameter in an SDgetcompinfo call.

The configuration flags returned in compression_config_info include the
following:

 0 - Compression method is not enabled.
 COMP_DECODER_ENABLED - Decoding is enabled.
 COMP_ENCODER_ENABLED - Encoding is enabled.

If the returned value is COMP_DECODER_ENABLED|COMP_ENCODER_ENABLED, the
compression method is enabled for both encoding and decoding.

In the general case, any available compression type can be configured in any
mode:

 COMP_DECODER_ENABLED
 COMP_ENCODER_ENABLED
 COMP_DECODER_ENABLED |COMP_ENCODER_ENABLED

As of this writing (HDF4 Release 2.1, February 2005), only the Szip
compression library is actually used with the HDF libraries in more than one
configuration (see immediately below.) As a third-party product, it is
distributed in both decode-only and encode/decode configurations. All other
compression methods are currently distributed or used in an encode/decode
configuration if they are available at all, and HCget_config_info returns either
0 or COMP_DECODER_ENABLED|COMP_ENCODER_ENABLED when they are used.
June 2017 78

The HDF Group Table of Contents HCget_config_info
Due to licensing requirements, the Szip library is available in both decode-only
and encode/decode configurations. Therefore, the full range of values can be
returned for Szip compression.

o If the Szip version available on a system is decode-only,
HCget_config_info will return COMP_DECODER_ENABLED in
compression_config_info.

o If the available Szip library is configured as encode/decode,
compression_config_info will contain the value
COMP_DECODER_ENABLED|COMP_ENCODER_ENABLED upon return.

Note Regarding Szip compression in HDF4:
Szip compression is available only through the SD interface and is documented
in the SDsetcompress and SDgetcompinfo reference manual entries. Aside
from the configuration discovery capability documented in
HCget_config_info, Szip compression is not accessible through the HC
interface.

See also Regarding Szip usage and licensing:
See http://www.hdfgroup.org/doc_resource/SZIP/ for information
regarding the use of Szip in HDF products and Szip licensing.

Regarding compression in HDF4:
See the SDsetcompress and SDgetcompinfo entries in this reference manual
for a more general description of dataset compression information.

FORTRAN currently unavailable
79 June 2017

HDdont_atexit/hddontatexit Table of Contents HDF Reference Manual
HDdont_atexit/hddontatexit

intn HDdont_atexit(void)

Purpose Indicates to the library that an atexit() routine is _not_ to be installed.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine indicates to the library that an atexit() cleanup routine should not
be installed. The purpose for this is in situations where the library is
dynamically linked into an application and is unlinked from the application
before exit() gets called. In those situations, a routine installed with atexit()
would jump to a routine which was no longer in memory, causing errors.

In order to be effective, this routine must be called before any other HDF
function calls, and must be called each time the library is loaded/linked into the
application (the first time and after it has been unloaded).

If this routine is used, certain memory buffers will not be deallocated,
although in theory a user could call HPend on their own.

FORTRAN integer hddontatexit()
June 2017 80

The HDF Group Table of Contents HXsetcreatedir/hxiscdir
HXsetcreatedir/hxiscdir

intn HXsetcreatedir(char *dir)

dir IN: Target directory of the external file to be written

Purpose Initializes the directory environment variable, identifying the location of the
external file to be written.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The contents of dir is copied into the private memory of the HDF library. If dir
is NULL, the directory variable is unset. If HXsetcreatedir encounters an error
condition, the directory variable is not changed. When a new external element
is created (via the routines HXcreate or SDsetexternal), the HDF library
accesses the external file just like the open call by default. Refer to the
Reference Manual page on HXcreate for a description of when a new or an old
file should be opened.

Users may override the default action by calling HXsetcreatedir or by
defining the environment variable $HDFEXTCREATEDIR. The HDF library will
access the external file in the directory according to the environment variable
setting. The precedence is HXsetcreatedir, then $HDXEXTDIR, in the manner of
open.

Note that the above override does not apply to absolute pathnames - i.e.,
filenames starting with a forward slash. HDF will access the absolute
pathname without change. Also note that HXsetcreatedir and
$HDFEXTCREATEDIR are not symmetrical to HXsetdir and $HDFEXTDIR. The
former pair permits only single directory values and is used to compose the
filename for access. The later pair permits multiple directory values which are
used for searching an existing file.

The dir_len parameter in the FORTRAN-77 routine specifies the length of the
dir character string.

FORTRAN integer function hxiscdir(dir, dir_len)

character*(*) dir

integer dir_len
81 June 2017

HXsetdir/hxisdir Table of Contents HDF Reference Manual
HXsetdir/hxisdir

intn HXsetdir(char *dir)

dir IN: Target directory of the external file to be located

Purpose Initializes the directory environment variable, identifying the location of the
external file to be located.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description HXsetdir sets the directory variable for locating an external file according to
dir which may contain multiple directories separated by vertical bars (e.g.,
“dir1|dir2”). The content of dir is copied into the private memory of the HDF
library. If dir is NULL, the directory variable is unset.

If HXsetdir encounters any error, the directory variable is not changed. By
default, the HDF library locates the external file just like the open call. It also
searches for the external file in the directories specified by the user
environment variable $HDFEXTDIR, if defined, and the directory variable set by
HXsetdir. The searching precedence is directory variable, if set, then
$HDXEXTDIR, then in the manner of open.

The searching differs if the external filename is an absolute pathname - i.e.,
starting with a forward slash. HDF will try open first. If open fails and if
$HDFEXTDIR is defined or the directory variable is set via HXsetdir, HDF will
remove all directory components of the absolute pathname (e.g., “/usr/groupA/
projectB/Data001” becomes “Data001”) and search for that filename with the
strategy described in the previous paragraph.

The dir_len parameter in the FORTRAN-77 routine specifies the length of the
dir character string.

FORTRAN integer function hxisdir(dir, dir_len)

character*(*) dir

integer dir_len
June 2017 82

The HDF Group Table of Contents HXsetdir/hxisdir
83 June 2017

SDattrinfo/sfgainfo Table of Contents HDF Reference Manual
SDattrinfo/sfgainfo

intn SDattrinfo(int32 obj_id, int32 attr_index, char *attr_name, int32 *ntype, int32 *count)

obj_id IN: Identifier of the object to which the attribute is attached to

attr_index IN: Index of the attribute

attr_name OUT: Name of the attribute

ntype OUT: Number type of the attribute values

count OUT: Total number of values in the attribute

Purpose Retrieves information about an attribute.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDattrinfo retrieves the name, number type, and number of values of the
attribute specified by its index, attr_index, and stores them in the parameters
attr_name, ntype, and count, respectively. This routine should be used before
reading the values of an attribute with SDreadattr.

The parameter obj_id can be either an SD interface identifier (sd_id), returned
by SDstart, a data set identifier (sds_id), returned by SDselect, or a dimension
identifier (dim_id), returned by SDgetdimid.

Valid values of the parameter attr_index range from 0 to the number of
attributes attached to the object - 1.

Valid values of the parameter ntype can be found in Table 1A of Section I in
this manual.

FORTRAN integer function sfgainfo(obj_id, attr_index, attr_name, ntype,
count)

character*(*) attr_name

integer obj_id, attr_index, ntype, count
June 2017 88

The HDF Group Table of Contents SDcheckempty/sfchempty
SDcheckempty/sfchempty

int32 SDcheckempty(int32 sds_id, intn *emptySDS)

sds_id IN: SDS identifier

emptySDS OUT: Boolean value indicating whether the SDS is empty

Purpose Determines whether an SDS is empty.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDcheckempty sets the parameter emptySDS to TRUE if the dataset identified
by sds_id has not been written with data, and to FALSE, otherwise.

The Fortran routine, sfchempty, returns 1 in emptySDS if the dataset is empty
and 0 otherwise.

FORTRAN integer function sfchempty(sds_id, emptySDS)

integer sds_id, emptySDS
89 June 2017

SDcreate/sfcreate Table of Contents HDF Reference Manual
SDcreate/sfcreate

int32 SDcreate(int32 sd_id, char *name, int32 ntype, int32 rank, int32 dimsizes[])

sd_id IN: SD interface identifier returned by SDstart

name IN: Name of the data set

ntype IN: Number type for the values in the data set

rank IN: Number of the data set dimensions

dimsizes IN: Array containing the size of each dimension

Purpose Creates a new data set.

Return value Returns the data set identifier (sds_id) if successful and FAIL (or -1) otherwise.

Description SDcreate creates a data set with the name, number type, number of
dimensions, dimension sizes specified by the parameters name, ntype, rank,
and dimsizes.

Once a data set has been created, it is not possible to change its name, data
type, or rank. However, it is possible to create a data set and close the file
before writing any data values to it. The values can be added or modified at a
future time. To add data or modify an existing data set, use SDselect to get the
data set identifier instead of SDcreate.

If the parameter name is NULL in C or an empty string in Fortran, the default
name “DataSet” will be generated. The length of the name specified by the
name parameter is no longer limited to 64 characters starting in HDF 4.2r2.
Note that when an older version of the library reads a data set, which was
created by a library of version 4.2r2 or later and has the name that is longer
than 64 characters, the retrieved name will contain some garbage after 64
characters.

The calling program must ensure that the length of the dimsizes array is the
value of the rank parameter, which is between 0 and MAX_VAR_DIMS (or 32).
Note that, in order for HDF4 and NetCDF models to work together, HDF
allows SDS to have rank 0. However, there is no intention for data to be
written to this type of SDS, but only to store attribute as part of the data
description. Consequently, setting compression and setting chunk are
disallowed.

To create a data set with an unlimited dimension, assign the value of
SD_UNLIMITED (or 0) to dimsizes[0] in C and to dimsizes(rank) in Fortran.

The ntype parameter can contain any data type supported by the HDF library.
These data types are listed in Table 1A, Number Type Definitions of this
manual.

See the notes regarding the potential performance impact of unlimited
dimension data sets in Section 14.4.3, "Unlimited Dimension Data Sets (SDSs
and Vdatas) and Performance" the HDF User’s Guide.
June 2017 90

The HDF Group Table of Contents SDcreate/sfcreate
Note Regarding an important difference between the SD and GR interfaces:
The SD and GR interfaces differ in the correspondence between the dimension
order in parameter arrays such as start, stride, edge, and dimsizes and the
dimension order in the data array. See the SDreaddata and GRreadimage
reference manual pages for discussions of the SD and GR approaches,
respectively.

When writing applications or tools to manipulate both images and two-
dimensional SDs, this crucial difference between the interfaces must be taken
into account. While the underlying data is stored in row-major order in both
cases, the API parameters are not expressed in the same way. Consider the
example of an SD data set and GR image that are stored as identically-shaped
arrays of X columns by Y rows and accessed via the SDreaddata and
GRreadimage functions, respectively. Both functions take the parameters
start, stride, and edge.

o For SDreaddata, those parameters are expressed in (y,x) or
[row,column] order. For example, start[0] is the starting point in the
Y dimension and start[1] is the starting point in the X dimension.
The same ordering holds true for all SD data set manipulation
functions.

o For GRreadimage, those parameters are expressed in (x,y) or
[column,row] order. For example, start[0] is the starting point in the
X dimension and start[1] is the starting point in the Y dimension.
The same ordering holds true for all GR functions manipulating image
data.

FORTRAN integer function sfcreate(sd_id, name, ntype, rank, dimsizes)

character*(*) name

integer sd_id, ntype, rank, dimsizes(*)
91 June 2017

SDdiminfo/sfgdinfo Table of Contents HDF Reference Manual
SDdiminfo/sfgdinfo

intn SDdiminfo(int32 dim_id, char *name, int32 *size, int32 *ntype, int32 *num_attrs)

dim_id IN: Dimension identifier returned by SDgetdimid

name OUT: Name of the dimension

size OUT: Size of the dimension

ntype OUT: Number type of the dimension scale

num_attrs OUT: Number of attributes assigned to the dimension

Purpose Retrieves information about a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDdiminfo retrieves the name, size, number type, and number of values of the
dimension specified by the parameter dim_id, and stores them in the
parameters name, size, ntype, and num_attrs, respectively.

If the output value of the parameter size is set to 0, then the dimension
specified by the dim_id parameter is unlimited. To get the number of records of
an unlimited dimension, use SDgetinfo.

If scale information has been stored for this dimension via SDsetdimscale, the
ntype parameter will contain the number type. Valid number types can be
found in Table 1A, Number Type Definitions, in this manual. If no scale
information has been stored for this dimension, the value returned in the ntype
parameter will be 0.

If the user has not named the dimension via SDsetdimname, a default
dimension name of “fakeDim[x]” will be generated by the library, where [x]
denotes the dimension index. If the name is not desired, the parameter name
can be set to NULL in C and an empty string in Fortran.

FORTRAN integer function sfgdinfo(dim_id, name, size, ntype, num_attrs)

character*(*) name

integer dim_id, size, ntype, num_attrs
June 2017 92

The HDF Group Table of Contents SDend/sfend
SDend/sfend

intn SDend(int32 sd_id)

sd_id IN: SD interface identifier returned by SDstart

Purpose Terminates access to an SD interface.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDend closes the file and frees memory allocated by the library when SD
interface activities are completed. If the calling program exits without invoking
this routine, recent changes made to the in-core file data are likely not to be
flushed to the file. Note that each SDstart must have a matching SDend.

FORTRAN integer function sfend(sd_id)

integer sd_id
93 June 2017

SDendaccess/sfendacc Table of Contents HDF Reference Manual
SDendaccess/sfendacc

intn SDendaccess(int32 sds_id)

sds_id IN: Data set identifier returned by SDcreate or SDselect

Purpose Terminates access to a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDendaccess frees the memory taken up by the HDF library’s data structures
devoted to the data set identified by the parameter sds_id.

 Failing to call this routine after all operations on the specified data set are
complete may result in loss of data. This routine must be called once for each
call to SDcreate or SDselect.

FORTRAN integer function sfendacc(sds_id)

integer sds_id
June 2017 94

The HDF Group Table of Contents SDfileinfo/sffinfo
SDfileinfo/sffinfo

intn SDfileinfo(int32 sd_id, int32 *num_datasets, int32 *num_global_attrs)

sd_id IN: SD interface identifier returned by SDstart

num_datasets OUT: Number of data sets in the file

num_global_attrs OUT: Number of global attributes in the file

Purpose Retrieves the number of data sets and the number of global attributes in a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDfileinfo returns the number of data sets in the parameter num_datasets and
the number of global attributes in the parameter num_global_attrs. The term
“global attributes” refers to attributes that are assigned to the file. The global
attributes are created by SDsetattr using an SD interface identifier (sd_id)
rather than a data set identifier (sds_id).

The value returned by the parameter num_datasets includes the number of
coordinate variable data sets. To determine if the data set is a coordinate
variable, use SDiscoordvar.

FORTRAN integer function sffinfo(sd_id, num_datasets, num_global_attrs)

integer sd_id, num_datasets, num_global_attrs
95 June 2017

SDfindattr/sffattr Table of Contents HDF Reference Manual
SDfindattr/sffattr

int32 SDfindattr(int32 obj_id, char *attr_name)

obj_id IN: Identifier of the object to which the attribute is attached

attr_name IN: Name of the attribute

Purpose Finds the index of an attribute given its name.

Return value Returns the index if successful and FAIL (or -1) otherwise.

Description SDfindattr retrieves the index of the object’s attribute with the name specified
by the parameter attr_name.

The attribute is attached to the object specified by the parameter obj_id. The
parameter obj_id can be either an SD interface identifier (sd_id), returned by
SDstart, a data set identifier (sds_id), returned by SDselect, or a dimension
identifier (dim_id), returned by SDgetdimid.

Wildcard characters are not allowed in the parameter attr_name. SDfindattr
searches for the name specified in the parameter attr_name in a case-sensitive
manner.

FORTRAN integer function sffattr(obj_id, attr_name)

integer obj_id

character*(*) attr_name
June 2017 96

The HDF Group Table of Contents SDgetanndatainfo
SDgetanndatainfo

intn SDgetanndatainfo(int32 sds_id, ann_type annot_type, uintn info_count, int32 *offsetarray, int32
*lengtharray)

sds_id IN: Data set identifier returned by SDselect

annot_type IN: Type of annotations to retrieve data information

info_count IN: Number of elements in offsetarray and lengtharray

offsetarray OUT: Buffer to hold offsets of the annotations’ data

lengtharray OUT: Buffer to hold lengths of the annotations’ data

Purpose Retrieves location and size of annotations’ data.

Return value Returns the number of annotation data information retrieved, if successful, and
FAIL (or -1) otherwise.

Description SDgetanndatainfo retrieves the location and size specifying the data of
annotations that are of the specific type, annot_type, and are assigned to the
SDS sds_id. There may be more than one annotation, but each annotation has
only one block of data.

The type annot_type can be one of the following values: AN_DATA_LABEL (0),
AN_DATA_DESC (1), AN_FILE_LABEL (2), AN_FILE_DESC (3.)

The parameter info_count provides the number of offset/length values that the
lists can hold. To allocate sufficient memory for offsetarray and lengtharray,
the application can invoke SDgetanndatainfo passing in 0 for info_count and
NULL for both arrays to get the value for info_count in the next call to
SDgetanndatainfo.

Note If the caller provides buffers that are smaller than the number of annotations
then SDgetanndatainfo only fills the buffers up to its size, starting from the
first annotation. That means, the rest of the annotations are not retrievable.
Thus, obtaining info_count to sufficiently allocate the buffers is recommended.

FORTRAN Currently unavailable
97 June 2017

SDgetattdatainfo Table of Contents HDF Reference Manual
SDgetattdatainfo

intn SDgetattdatainfo(int32 obj_id, int32 attr_index, int32 *offset, int32 *length)

obj_id IN: Identifier of the object the attribute is attached to

attr_index IN: Index of the inquired attribute

offset OUT: Buffer to hold offset of the attribute’s data

length OUT: Buffer to hold length of the attribute’s data

Purpose Retrieves location and size of attribute's data.

Return value Returns
- the number of data blocks retrieved, which should be 1 if successful, or
- DFE_NOVGREP if the attribute is the old style (created by DFSD API,) or
- FAIL (or -1) if failure occurs.

Description SDgetattdatainfo retrieves the offset and length of the data that belongs to the
attribute attr_index, which is attached to the HDF4 object specified by obj_id.
The value of obj_id can be an SD interface identifier (sd_id), returned by
SDstart, a data set identifier (sds_id), returned by SDselect, or a dimension
identifier (dim_id), returned by SDgetdimid.

There are attributes created by SDsetattr and those created by the DFSD API
functions. SDgetattdatainfo can only retrieve data information of attributes
that were created by SDsetattr. If the inquired attribute was created by the
DFSD API functions, SDgetattdatainfo will return to the caller with error
code DFE_NOVGREP so the caller can call SDgetoldattdatainfo to get the
attribute’s data information.

FORTRAN Currently unavailable
June 2017 98

The HDF Group Table of Contents SDgetcal/sfgcal
SDgetcal/sfgcal

intn SDgetcal(int32 sds_id, float64 *cal, float64 *cal_err, float64 *offset, float64 *offset_err, int32
*ntype)

sds_id IN: Data set identifier returned by SDcreate or SDselect

cal OUT: Calibration factor

cal_err OUT: Calibration error

offset OUT: Uncalibrated offset

offset_err OUT: Uncalibrated offset error

ntype OUT: Number type of uncalibrated data

Purpose Retrieves the calibration information associated with a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetcal reads the calibration record attached to the data set identified by the
parameter sds_id. A calibration record is comprised of four 64-bit floating
point values followed by a 32-bit integer. The information is listed in the
following table:

cal calibration factor

cal_err calibration error

offset uncalibrated offset

offset_err uncalibrated offset error

ntype number type of the uncalibrated data

The relationship between a calibrated value cal_value and the original value
orig_value is defined as orig_value = cal * (cal_value - offset).

The variable offset_err contains a potential error of offset, and cal_err
contains a potential error of cal. Currently the calibration record is provided
for information only. The SD interface performs no operations on the data
based on the calibration tag.

FORTRAN integer function sfgcal(sds_id, cal, cal_err, offset, offset_err,
ntype)

integer sds_id, ntype

real*8 cal, cal_err, offset, offset_err
99 June 2017

SDgetchunkinfo/sfgichnk Table of Contents HDF Reference Manual
SDgetchunkinfo/sfgichnk

intn SDgetchunkinfo(int32 sds_id, HDF_CHUNK_DEF *cdef, int32 *flag)

sds_id IN: Data set identifier returned by SDcreate or SDselect

C only:

cdef OUT: Pointer to the chunk definition

flag OUT: Compression flag

Fortran only:

dim_length OUT: Array of chunk dimensions

flag OUT: Compression flag

Purpose Retrieves chunking information for a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetchunkinfo retrieves chunking information about the data set identified
by the parameter sds_id into the parameters cdef and flag in C, and to the
parameters dim_length and flag in Fortran.

Currently, only information about chunk dimensions is retrieved into the
corresponding cdef structure element for each type of compression in C, and in
the dim_length array in Fortran. No information on compression parameters is
available in the comp structure of the HDF_CHUNK_DEF union. Refer to the page
on SDsetchunk in this manual for specific information on the HDF_CHUNK_DEF
union.

The value returned in the flag parameter indicates the data set type (i.e., if the
data set is not chunked, chunked, and chunked and compressed).

If the chunk length for each dimension is not needed, NULL can be passed in as
the value of the cdef parameter in C.

The following table shows the type of the data set, possible values of the flag
parameter, and the corresponding cdef structure element filled with the chunk’s
dimensions.

Type of Data Set
Values of flag

in C

Values of
flag in

Fortran

cdef Structure Ele-
ment Filled with the
Chunk’s Dimensions

Not chunked HDF_NONE -1 None

Chunked HDF_CHUNK 0 cdef.chunk_lengths
[]
June 2017 100

The HDF Group Table of Contents SDgetchunkinfo/sfgichnk
Chunked and com-
pressed with
either the run-
length encoding
(RLE), Skipping
Huffman, GZIP,
or Szip compres-
sion algorithms

HDF_CHUNK |
HDF_COMP 1 cdef.comp.chunk_le

ngths[]

Chunked and com-
pressed with
NBIT compression

HDF_CHUNK |
HDF_NBIT 2 cdef.nbit.chunk_le

ngths[]

FORTRAN integer function sfgichnk(sds_id, dim_length, flag)

integer sds_id, dim_length(*), flag

Type of Data Set
Values of flag

in C

Values of
flag in

Fortran

cdef Structure Ele-
ment Filled with the
Chunk’s Dimensions
101 June 2017

SDgetcompinfo/sfgcompress Table of Contents HDF Reference Manual
SDgetcompinfo/sfgcompress

intn SDgetcompinfo(int32 sds_id, comp_coder_t *comp_type, comp_info *c_info)

sds_id IN: Data set identifier returned by SDcreate or SDselect

comp_type OUT: Type of compression

c_info OUT: Pointer to compression information structure

Purpose Retrieves data set compression type and compression information.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetcompinfo retrieves the compression type and compression information
for a data set, when the data is either compressed, chunked or chunked and
compressed. SDgetcompinfo replaces SDgetcompress because this function
has flaws, causing failure for some chunked and chunked/compressed data.

The compression method is returned in the parameter comp_type. Valid values
of comp_type are as follows:

COMP_CODE_NONE --for no compression
COMP_CODE_RLE --for RLE run-length encoding
COMP_CODE_NBIT --for NBIT compression
COMP_CODE_SKPHUFF -for Skipping Huffman compression
COMP_CODE_DEFLATE --for-GZIP compression
COMP_CODE_SZIP --for Szip compression

Additional compression method parameters are returned in the c_info struct in
C and the array parameter comp_prm in Fortran. Note that c_info and
comp_prm come into place only with compression modes that require
additional parameters (i.e., other than comp_type); they are ignored in other
cases.

The c_info struct is of type comp_info, contains algorithm-specific information
for the library compression routines, and is described in the SDsetcompress
entry in this reference manual and in the hcomp.h header file.

The comp_prm parameter is an array returning one or more parameters, as
required by the compression method in use. Each compression parameter is
returned as an element of the array, as follows:

o With Skipping Huffman compression, comp_prm is a 1-element array
and comp_prm(1) contains the skip value, skphuff_skp_size.

o In the case of GZIP compression, comp_prm is also a 1-element array
and comp_prm(1) contains the deflation value, deflate_value.

o In the case of NBIT compression, comp_prm is a 4-element array with
sign_ext in comp_prm(1), fill_one in comp_prm(2), start_bit in
comp_prm(3), and bit_len in comp_prm(4). The fields sign_ext,
fill_one, start_bit, and bit_len are discussed in the
SDsetnbitdataset/sfsnbit entry of this reference manual.

o In the case of Szip compression, comp_prm is a 5-element array with
option_mask in comp_prm(1), pixels_per_block in comp_prm(2),
pixels_per_scanline in comp_prm(3), bits_per_pixel in
comp_prm(4), and pixels in comp_prm (5).
June 2017 102

The HDF Group Table of Contents SDgetcompinfo/sfgcompress
In the general case, any available compression type can be configured in any
mode:

COMP_DECODER_ENABLED Decode data only
COMP_ENCODER_ENABLED Encode data only
COMP_DECODER_ENABLED |COMP_ENCODER_ENABLED

Decode and encode data
As of this writing (HDF4 Release 2.1, February 2005), only the Szip
compression library is actually used with the HDF libraries in more than one
configuration (see immediately below). As a third-party product, it is
distributed in both decode-only and encode/decode configurations. All other
compression methods are currently distributed or used in an encode/decode
configuration if they are available at all. See also HCget_config_info.

SDgetcompinfo will succeed for an Szip-compressed dataset whether the
available Szip library is configured either for encoding/decoding or for
decoding-only.

If the Szip configuration is decode-only, i.e., an HCget_config_info call on
the dataset will return only COMP_DECODER_ENABLED in
compression_config_info. Note that in such a case the file must be opened in
read-only mode, i.e. with SDstart(filename, DFACC_RDONLY).

If the Szip configuration is encode/decode, i.e., an HCget_config_info call on
the dataset will return COMP_ENCODER_ENABLED|COMP_DECODER_ENABLED in
compression_config_info. In this case, the file and dataset can be opened in
read/write mode.

Note Regarding uncompressed data or an empty data set:
SDgetcompinfo will succeed and the parameter comp_type will have the value
COMP_CODE_NONE if either of the following conditions exists:

o The data set is not compressed.
o No data has been written to the SDS.

Note Regarding Szip usage and licensing:
See http://www.hdfgroup.org/doc_resource/SZIP/ for information
regarding the use of Szip in HDF products and Szip licensing.

FORTRAN integer function sfgcompress(sds_id, comp_type, comp_prm)

integer sds_id, comp_type, comp_prm(*)
103 June 2017

SDgetdatainfo Table of Contents HDF Reference Manual
SDgetdatainfo

intn SDgetdatainfo(int32 sds_id, int32 *chk_coord, uintn start_block, uintn info_count, int32 *offsetar-
ray, int32 *lengtharray)

sds_id IN: SDS identifier returned by SDselect

chk_coord IN: Chunk coord array or NULL for non-chunk SDS

start_block IN: Value indicating where to start reading offsets

info_count IN: Length of the offset and length lists

offsetarray OUT: Array to hold offsets of the data blocks

lengtharray OUT: Array to hold lengths of the data blocks

Purpose Retrieves location and size of data blocks in a specified data set, starting at a
specified block.

Return value Returns the number of data blocks retrieved if successful, and FAIL (or -1)
otherwise.

Description SDgetdatainfo retrieves two lists, offsetarray and lengtharray, containing the
offsets and lengths of the blocks of data belonging to the data set specified by
sds_id.

The parameter info_count provides the number of offset/length values that the
lists can hold. The application can first invoke SDgetdatainfo passing in 0 for
info_count and NULL for both arrays to get the value for info_count and to
provide proper memory allocation for offsetarray and lengtharray in the next
call to SDgetdatainfo.

The parameter start_block indicates where to start reading the offsets from in
the file. The combination of parameters info_length and start_block provide
user applications with flexibility of where and how much data information to
retrieve. The value for start_block must be non-negative and smaller than or
equal to the number of blocks in the data set.

o When start_block is 0, SDgetdatainfo will start getting data info from
the beginning of the data set's data.

o When start_block is greater than the number of blocks in the data set,
SDgetdatainfo will return FAIL (or -1).

FORTRAN Currently unavailable
June 2017 104

The HDF Group Table of Contents SDgetdatastrs/sfgdtstr
SDgetdatastrs/sfgdtstr

intn SDgetdatastrs(int32 sds_id, char *label, char *unit, char *format, char *coordsys, intn length)

sds_id IN: Data set identifier returned by SDcreate or SDselect

label OUT: Label (predefined attribute)

unit OUT: Unit (predefined attribute)

format OUT: Format (predefined attribute)

coordsys OUT: Coordinate system (predefined attribute)

length IN: Maximum length of the above predefined attributes

Purpose Retrieves the predefined attributes of a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetdatastrs retrieves the predefined attributes for the data set specified by
the parameter sds_id. The predefined attributes are label, unit, format, and
coordinate system. They are then stored in the parameters label, unit, format,
and coordsys, respectively. Refer to Section 3.10, "Predefined Attributes" of
the HDF User’s Guide for more information on predefined attributes.

If a particular data string is not stored, the first character of the corresponding
SDgetdatastrs parameter is '\0' in C. In FORTRAN, the parameter contains an
empty string. Each string buffer must include the space to hold the null
termination character. In C, if a user does not want a string back, NULL can be
passed in for that string. Data strings are set by the SDsetdatastrs routine.

FORTRAN integer function sfgdtstr(sds_id, label, unit, format, coordsys,
length)

integer sds_id, length

character*(*) label, unit, format, coordsys
105 June 2017

SDgetdimid/sfdimid Table of Contents HDF Reference Manual
SDgetdimid/sfdimid

int32 SDgetdimid(int32 sds_id, intn dim_index)

sds_id IN: Data set identifier returned by SDcreate or SDselect

dim_index IN: Index of the dimension

Purpose Returns the identifier of a dimension given its index.

Return value Returns the dimension identifier (dim_id) if successful and FAIL (or -1)
otherwise.

Description SDgetdimid returns the identifier of the dimension specified by its index, the
parameter dim_index.

The dimension index is a nonnegative integer and is less than the total number
of data set dimensions returned by SDgetinfo.

FORTRAN integer function sfdimid(sds_id, dim_index)

integer sds_id, dim_index
June 2017 106

The HDF Group Table of Contents SDgetdimscale/sfgdscale
SDgetdimscale/sfgdscale

intn SDgetdimscale(int32 dim_id, VOIDP scale_buf)

dim_id IN: Dimension identifier returned by SDgetdimid

scale_buf OUT: Buffer for the scale values

Purpose Retrieves the scale values for a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetdimscale retrieves the scale values of the dimension identified by the
parameter dim_id and stores the values in the buffer scale_buf.

Prior to calling SDgetdimscale, the application should use SDdiminfo to
determine whether a scale had been set for the dimension, i.e., that the dimension
scale’s number type is a valid HDF type, as listed in Table 1A, Number Type
Definitions, not 0. If there is no scale, the buffer returned by SDgetdimscale is
meaningless. SDdiminfo also provides the number of scale values for space
allocation before passing the buffer into SDgetdimscale.

It is not possible to read a subset of the scale values. SDgetdimscale returns all
of the scale values stored with the given dimension.

FORTRAN integer function sfgdscale(dim_id, scale_buf)

integer dim_id

<valid numeric data type> scale_buf(*)
107 June 2017

SDgetdimstrs/sfgdmstr Table of Contents HDF Reference Manual
SDgetdimstrs/sfgdmstr

intn SDgetdimstrs(int32 dim_id, char *label, char *unit, char *format, intn length)

dim_id IN: Dimension identifier returned by SDgetdimid

label OUT: Label (predefined attribute)

unit OUT: Unit (predefined attribute)

format OUT: Format (predefined attribute)

length IN: Maximum length of the above predefined attributes

Purpose Retrieves the predefined attributes of a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetdimstrs retrieves the predefined attributes associated with the dimension
identified by the parameter dim_id. The predefined attributes are label, unit,
and format. These predefined attributes are stored in the parameters label,
unit, and format, respectively. Refer to Table 3.10, Predefined Attributes, in
the HDF User’s Guide for more information on predefined attributes.

If a particular data string was not stored, the first character of the
corresponding SDgetdimstrs parameter is '\0'. Each string buffer must include
space for the null termination character. If a user does not want a string
returned, the corresponding parameter can be set to NULL in C and an empty
string in Fortran. The predefined attributes are set by SDsetdimstrs.

FORTRAN integer function sfgdmstr(dim_id, label, unit, format, length)

integer dim_id, length

character*(*) label, unit, format
June 2017 108

The HDF Group Table of Contents SDgetexternalinfo
SDgetexternalinfo

intn SDgetexternalinfo(int32 sds_id, uintn buf_size, char *filename, int32 *offset, int32 *length)

sds_id IN: Data set identifier returned by SDcreate or SDselect

buf_size IN: Size of buffer for external file name

filename OUT: Buffer for external file name

offset OUT: Offset, in bytes, of the location in the external file where the data
was written

length OUT: Length, in bytes, of the external data

Purpose Retrieves information about external file and external data of the data set.

Return value Returns length of the external file name if successful, 0 if there is no external
data, or or FAIL (or -1) if an error occurs.

Description If the data set has external element, SDgetexternalinfo will retrieve the name
of the external file, the offset where the data is being stored in the external file,
and the length of the external data. If the data set does not have external
element, SDgetexternalinfo will return 0.

To sufficiently allocate buffer for the file name, an application can call
SDgetexternalinfo passing in 0 for buf_size. If the length returned is greater
than 0, the application will use it to allocate the buffer before calling
SDgetexternalinfo again to get the actual file name.

Note It is the user's responsibility to see that the external files are kept with the main
file prior to accessing the data set with external element. SDgetexternalinfo
does not check and the accessing functions will fail if the external file is
missing from the directory where the main file is located.

FORTRAN Currently unavailable
109 June 2017

SDgetfilename Table of Contents HDF Reference Manual
SDgetfilename

intn SDgetfilename(int32 file_id, char *filename)

file_id IN: A file identifier

filename OUT: Name of the file

Purpose Given a file identifier, retrieves the name of the file.

Return value Returns the length of the file name, without '\0', on success, and FAIL,
otherwise.

FORTRAN integer function sfgetfname(file_id, filename)

integer file_id

character*(*) filename
June 2017 110

The HDF Group Table of Contents SDgetfillvalue/sfgfill/sfgcfill
SDgetfillvalue/sfgfill/sfgcfill

intn SDgetfillvalue(int32 sds_id, VOIDP fill_value)

sds_id IN: Data set identifier returned by SDcreate or SDselect

fill_value OUT: Buffer for the returned fill value

Purpose Reads the fill value of a data set, if the value has been set.

Return value Returns SUCCEED (or 0) if a fill value is retrieved and FAIL (or -1) otherwise,
including when the fill value is not set.

Description SDgetfillvalue reads the fill value which has been set for the data set specified
by the parameter sds_id. It is assumed that the type of the fill value is the same
as that of the data set.

The following are the default fill values for different types:
FILL_BYTE (char)-127 /* Largest Negative value */
FILL_CHAR (char)0
FILL_SHORT (short)-32767
FILL_LONG (long)-2147483647
FILL_FLOAT 9.9692099683868690e+36 /* near 15 * 2^119 */
FILL_DOUBLE 9.9692099683868690e+36

Note that there are two FORTRAN-77 versions of this routine: sfgfill and
sfgcfill. The sfgfill routine reads numeric fill value data and sfgcfill reads
character fill value data.

FORTRAN integer function sfgfill(sds_id, fill_value)

integer sds_id

<valid numeric data type> fill_value

integer function sfgcfill(sds_id, fill_value)

integer sds_id

character*(*) fill_value
111 June 2017

SDgetinfo/sfginfo Table of Contents HDF Reference Manual
SDgetinfo/sfginfo

intn SDgetinfo(int32 sds_id, char *sds_name, int32 *rank, int32 dimsizes[], int32 *ntype, int32
*num_attrs)

sds_id IN: Data set identifier returned by SDcreate and SDselect

sds_name OUT: Name of the data set

rank OUT: Number of dimensions in the data set

dimsizes OUT: Array containing the size of each dimension in the data set

ntype OUT: Number type for the data stored in the data set

num_attrs OUT: Number of attributes for the data set

Purpose Retrieves the name, rank, dimension sizes, number type and number of
attributes for a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetinfo retrieves the name, number of dimensions, sizes of dimensions,
number type, and number of attributes of the data set identified by sds_id, and
stores them in the parameters sds_name, rank, dimsizes, ntype, and num_attrs,
respectively.

The buffer sds_name must be sufficiently allocated. The application may call
SDgetnamelen to determine the needed space. If the name of the data set is
not desired, then the parameter sds_name can be set to NULL in C and an empty
string in Fortran.

The maximum value for rank is MAX_VAR_DIMS (or 32.)

If the data set is created with an unlimited dimension, then in the C interface,
the first element of the dimsizes array (corresponding to the slowest-changing
dimension) contains the number of records in the unlimited dimension; in the
FORTRAN-77 interface, the last element of the dimsizes array (corresponding
to the slowest-changing dimension) contains this information. Use SDisrecord
to determine if the data set has an unlimited dimension.

FORTRAN integer function sfginfo(sds_id, sds_name, rank, dimsizes, ntype,
num_attrs)

character*(*) sds_name

integer sds_id, rank, dimsizes(*)

integer ntype, num_attrs
June 2017 112

The HDF Group Table of Contents SDgetnamelen
SDgetnamelen

intn SDgetnamelen(int32 obj_id, uint16 name_len)

obj_id IN: Identifier of the object

name_len OUT: Length of the object’s name

Purpose Retrieves the length of the name of a file, a dataset, or a dimension.

Return value Returns the length of the object’s name on success, and FAIL (or -1),
otherwise.

Description Given an identifier of a file, a dataset, or a dimension, SDgetnamelen retrieves
the length of its name into name_len. The length does not include the
character '\0'.

FORTRAN integer function sfgetnamelen(obj_id, length)

integer obj_id, length
113 June 2017

SDgetnumvars_byname Table of Contents HDF Reference Manual
SDgetnumvars_byname

intn SDgetnumvars_byname(int32 sd_id, char *sds_name, unsigned *n_vars)

sd_id IN: SD interface identifier returned by SDstart

sds_name IN: Name of the data set

n_vars OUT: Number of variables named sds_name

Purpose Get the number of data sets having the same name.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetnumvars_byname retrieves the number of variables with the name
specified by the parameter sds_name. The variables may include both data sets
or coordinate variables. The routine does not accept wildcards in the specified
data set name. It also searches on that name in a case-sensitive manner.

FORTRAN integer function sfgnvars_byname(sd_id, sds_name, n_vars)

integer sd_id, n_vars

character*(*) sds_name
June 2017 114

The HDF Group Table of Contents SDgetoldattdatainfo
SDgetoldattdatainfo

intn SDgetoldattdatainfo(int32 dim_id, int32 sds_id, char *attr_name, int32 *offset, int32 *length)

dim_id IN: Dimension identifier returned by SDgetdimid

sds_id IN: SDS identifier returned by SDselect

attr_name IN: Name of the inquired attribute

offset OUT: Buffer to hold offset of the attribute’s data

length OUT: Buffer to hold length of the attribute’s data

Purpose Retrieves location and size of old predefined attribute's data.

Return value Returns number of data blocks retrieved, which should be 1 if successful and
FAIL (or -1) otherwise.

Description SDgetoldattdatainfo retrieves the offset and length of the data that belongs to
the attribute attr_name, which is attached to the SDS sds_id or the dimension
dim_id.

The function only works on attributes that were created by the DFSD API
while its counter part SDgetattdatainfo only works on attributes created with
SDsetattr. An application might call SDgetattdatainfo initially. When a
DFSD-created attribute is encountered, SDgetattdatainfo will fail with the
error code DFE_NOVGREP, which indicates there is no vgroup representation for
an SDS (i.e., DFSD API) and the SDS' attributes are stored differently than
when they are created with SDsetattr. The application must call
SDgetoldattdatainfo to get the data information of those attributes, if such
error code is detected.

SDgetoldattdatainfo takes both SDS identifier and dimension identifier if the
inquired attribute belongs to a dimension. When the inquired attribute belongs
to an SDS, the dimension identifier will not be needed, and should be 0.

The attribute is a predefined attribute listed in the following table and is passed
in for attr_name. Note that, dimensions can only have the first three attributes
in the table.

HDF4 Predefined Attributes

Predefined Name Actual Text Applicable To

_HDF_LongName "long_name" Dimension & SDS

_HDF_Units "units" Dimension & SDS

_HDF_Format "format" Dimension & SDS

_HDF_CoordSys "coordsys" Only SDS

_HDF_ScaleFactorErr "scale_factor_err" Only SDS

_HDF_AddOffset "add_offset" Only SDS

_HDF_ValidRange "valid_range" Only SDS

_HDF_ScaleFactor "scale_factor" Only SDS
115 June 2017

SDgetoldattdatainfo Table of Contents HDF Reference Manual
_HDF_AddOffsetErr "add_offset_err" Only SDS

_HDF_CalibratedNt "calibrated_nt" Only SDS

_HDF_ValidMax "valid_max" Only SDS

_HDF_ValidMin "valid_min" Only SDS

_FillValue "_FillValue" Only SDS

FORTRAN Currently unavailable

HDF4 Predefined Attributes

Predefined Name Actual Text Applicable To
June 2017 116

The HDF Group Table of Contents SDgetrange/sfgrange
SDgetrange/sfgrange

intn SDgetrange(int32 sds_id, VOIDP max, VOIDP min)

sds_id IN: Data set identifier returned by SDcreate or SDselect

max OUT: Maximum value of the range

min OUT: Minimum value of the range

Purpose Retrieves the maximum and minimum values of the range.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetrange retrieves the maximum value of the range into the parameter max
and the minimum value into the parameter min. The maximum and minimum
values must be previously set via a call to SDsetrange.

It is assumed that the number type for the maximum and minimum range
values are the same as that of the data.

FORTRAN integer function sfgrange(sds_id, max, min)

integer sds_id

<valid numeric data type> max, min
117 June 2017

SDget_maxopenfiles Table of Contents HDF Reference Manual
SDget_maxopenfiles

intn SDget_maxopenfiles(intn *curr_max, intn *sys_limit)

cu IN: Data set identifier returned by SDcreate or SDselect

curr_max OUT: Current number of open files

sys_limit OUT: Maximum number of open files

Purpose Retrieves current and maximum number of open files.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDget_maxopenfiles retrieves the current number of open files allowed in
HDF, curr_max, and the maxinum number of open files allowed on the system,
sys_limit. If either of the values is not desired, then NULL can be passed in.

FORTRAN integer function sfgmaxopenf(cur_max, sys_limit)

integer cur_max, sys_limit
June 2017 118

The HDF Group Table of Contents SDget_numopenfiles
SDget_numopenfiles

intn SDget_numopenfiles()

Purpose Returns the number of files currently being opened.

Return value Returns the number of files currently being opened.

FORTRAN integer function sfgnumopenf(cur_num)

integer cur_num
119 June 2017

SDidtoref/sfid2ref Table of Contents HDF Reference Manual
SDidtoref/sfid2ref

int32 SDidtoref(int32 sds_id)

sds_id IN: Data set identifier returned by SDcreate or SDselect

Purpose Returns the reference number assigned to a data set.

Return value Returns the data set reference number if successful and FAIL (or -1) otherwise.

Description SDidtoref returns the reference number of the data set specified by the
parameter sds_id. The reference number is assigned by the HDF library when
the data set is created. The specified reference number can be used to add the
data set to a vgroup as well as a means of using the HDF annotations interface
to annotate the data set.

FORTRAN integer function sfid2ref(sds_id)

integer sds_id
June 2017 120

The HDF Group Table of Contents SDidtype
SDidtype

hdf_idtype_t SDidtype(int32 obj_id)

obj_id IN: Identifier of the object

Purpose Given an identifier, return the type of object the identifier represents.

Return value Returns a value of type hdf_idtype_t.

Description SDidtype returns a value of type hdf_idtype_t, which can be one of the
following:

o NOT_SDAPI_ID (or -1)not an SD API identifier
o SD_ID (or 0)SD identifier
o SDS_ID (or 1)SDS identifier
o DIM_ID (or 2)Dimension identifier

SDidtype returns NOT_SDAPI_ID for either
 + when obj_id is not a valid HDF identifier, or
 + when obj_id is a valid HDF identifier, but not one of the identifier types in
 the SD interface, which are SD identifier, SDS identifier, and
 dimension identifier.

FORTRAN integer function sfidtype(obj_id, obj_type)

integer obj_id, obj_type
121 June 2017

SDiscoordvar/sfiscvar Table of Contents HDF Reference Manual
SDiscoordvar/sfiscvar

intn SDiscoordvar(int32 sds_id)

sds_id IN: Data set identifier returned by SDcreate or SDselect

Purpose Determines if a data set is a coordinate variable.

Return value Returns TRUE (or 1) if the data set is a coordinate variable, and FALSE (or 0)
otherwise.

Description SDiscoordvar determines if the data set specified by the parameter sds_id is a
coordinate variable.

Coordinate variables are created to store metadata associated with dimensions.
To ensure compatibility with netCDF, coordinate variables are implemented as
data sets.

FORTRAN integer function sfiscvar(sds_id)

integer sds_id
June 2017 122

The HDF Group Table of Contents SDisdimval_bwcomp/sfisdmvc
SDisdimval_bwcomp/sfisdmvc

intn SDisdimval_bwcomp(int32 dim_id)

dim_id IN: Dimension identifier returned by SDgetdimid

Purpose Determines whether a dimension has the old and new representations or the
new representation only.

Refer to Chapter 3, "Scientific Data Sets (SD API)" of the HDF User’s Guide,
for information on old and new dimension representations.

Return value Returns SD_DIMVAL_BW_COMP (or 1) if backward compatible,
SD_DIMVAL_BW_INCOMP (or 0) if incompatible, FAIL (or -1) if error.

Description SDisdimval_bwcomp will flag the dimension specified by the parameter
dim_id as backward-compatible if a vdata with a class name of DIM_VALS (or
“DimVal0.0”) does not exist in the vgroup for that dimension. If the vdata does
exist, the specified dimension will be identified by SDisdimval_bcomp as
backward-incompatible.

The compatibility mode can be changed by calls to SDsetdimval_comp at any
time between the calls to SDstart and SDend.

FORTRAN integer function sfisdmvc(dim_id)

integer dim_id
123 June 2017

SDisrecord/sfisrcrd Table of Contents HDF Reference Manual
SDisrecord/sfisrcrd

int32 SDisrecord(int32 sds_id)

sds_id IN: Data set identifier returned by SDcreate or SDselect

Purpose Determines whether a data set is appendable.

Return value Returns TRUE (or 1) if the data set is appendable, and FALSE (or 0) otherwise.

Description SDisrecord will determine if the data set specified by the parameter sds_id is
appendable, which means that the slowest-changing dimension was declared
unlimited when the data set was created.

FORTRAN integer sfisrcrd(sd_id)

integer sd_id
June 2017 124

The HDF Group Table of Contents SDnametoindex/sfn2index
SDnametoindex/sfn2index

int32 SDnametoindex(int32 sd_id, char *sds_name)

sd_id IN: SD interface identifier returned by SDstart

sds_name IN: Name of the data set

Purpose Determines the index of a data set given its name.

Return value Returns the index of the data set (sds_index) if the data set is found and FAIL
(or -1) otherwise.

Description SDnametoindex returns the index of the data set with the name specified by
the parameter sds_name. The routine does not accept wildcards in the specified
data set name. It also searches on that name in a case-sensitive manner. If
there are more than one data set with the same name, the routine will return the
index of the first one.

Note that if there are more than one data set with the same name in the file,
writing to a data set returned by this function without verifying that it is the
desired data set could cause data corruption.

SDgetnumvars_byname can be used to get the number of data sets (or
variables, which includes both data sets and coordinate variables) with the
same name. SDnametoindices can be used to get a list of structures
containing the indices and the types of all the variables of that same name.

FORTRAN integer function sfn2index(sd_id, sds_name)

integer sd_id

character*(*) sds_name
125 June 2017

SDnametoindices Table of Contents HDF Reference Manual
SDnametoindices

intn SDnametoindices(int32 sd_id, char *sds_name, varlist_t * var_list)

sd_id IN: SD interface identifier returned by SDstart

sds_name IN: Name of the data set

var_list OUT: List of all variables of same name

Purpose Retrieves indices of all variables with the same name.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDnametoindices retrieves a list of structures varlist_t, containing the
indices and the types of all variables of the same name sds_name.

The structure varlist_t is defined as:

typedef struct varlist
{
 int32 var_index; /* index of a variable */
 vartype_t var_type; /* type of a variable
} varlist_t;

The type of a variable vartype_t is defined as:

 IS_SDSVAR (or 0) : variable is an actual SDS
 IS_CRDVAR (or 1) : variable is a coordinate variable
 UNKNOWN (or 2) : variable is created before HDF4.2r2, unknown type

The routine does not accept wildcards in the specified data set name. It also
searches on that name in a case-sensitive manner.

FORTRAN integer function sfn2indices(sd_id, sds_name, var_list, type_list,
n_vars)

integer sd_id

character*(*) sds_name

integer var_list(*), type_list(*)

integer n_vars
June 2017 126

The HDF Group Table of Contents SDreadattr/sfrnatt/sfrcatt
SDreadattr/sfrnatt/sfrcatt

intn SDreadattr(int32 obj_id, int32 attr_index, VOIDP attr_buf)

obj_id IN: Identifier of the object the attribute is attached to

attr_index IN: Index of the attribute to be read

attr_buf OUT: Buffer for the attribute values

Purpose Reads the values of an attribute.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDreadattr reads the values of the attribute specified by the parameter
attr_index and stores the values in the buffer attr_buf. It is assumed that the
user has called SDattrinfo to retrieve the number of attribute values and
allocate sufficient space for the buffer. Note that the routine does not read a
subset of attribute values.

The value of obj_id can be either an SD interface identifier (sd_id), returned by
SDstart, a data set identifier (sds_id), returned by SDselect, or a dimension
identifier (dim_id), returned by SDgetdimid.

The value of attr_index is a positive integer and is less than the total number of
attributes. The index value can be obtained using the routines SDnametoindex
and SDreftoindex. The total number of attributes for the object can be
obtained using the routines SDgetinfo, SDattrinfo, SDdiminfo and
SDfileinfo.

Note that this routine returns an array of characters, not a standard null-
terminated string. If an application is running in an environment where a null-
terminated string is expected, the application must add the null character
before saving the string or using it further.

Note that this routine has two FORTRAN-77 versions: sfrnatt and sfrcatt.
The sfrnatt routine reads numeric attribute data and sfrcatt reads character
attribute data.

FORTRAN integer function sfrnatt(obj_id, attr_index, attr_buffer)

integer obj_id, attr_index

<valid numeric data> attr_buffer(*)

integer function sfrcatt(obj_id, attr_index, attr_buffer)

integer obj_id, attr_index

character*(*) attr_buffer
127 June 2017

SDreadchunk/sfrchnk/sfrcchnk Table of Contents HDF Reference Manual
SDreadchunk/sfrchnk/sfrcchnk

intn SDreadchunk(int32 sds_id, int32 *origin, VOIDP datap)

sds_id IN: Data set identifier returned by SDcreate or SDselect

origin IN: Origin of the chunk to be read

datap OUT: Buffer for the chunk to be read

Purpose Reads a data chunk from a chunked data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDreadchunk reads the entire chunk of data from the chunked data set
identified by the parameter sds_id, and stores the data in the buffer datap.
Reading starts at the location specified by the parameter origin. SDreadchunk
is used when an entire chunk of data is to be read. SDreaddata is used when
the read operation is to be done regardless of the chunking scheme used in the
data set.

The parameter origin specifies the coordinates of the chunk according to the
chunk position in the chunked array. Refer to the Chapter 3, "Scientific Data
Sets (SD API)" of the HDF User’s Guide, for a description of the organization
of chunks in a data set.

SDreadchunk will return FAIL (or -1) when an attempt is made to read from a
non-chunked data set.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (sfrchnk) and one for character data (sfrcchnk).

FORTRAN integer sfrchnk(sds_id, origin, datap)

integer sds_id, origin(*)

<valid numeric data type> datap(*)

integer sfrcchnk(sds_id, origin, datap)

integer sds_id, origin(*)

character*(*) datap(*)
June 2017 128

The HDF Group Table of Contents SDreaddata/sfrdata/sfrcdata
SDreaddata/sfrdata/sfrcdata

intn SDreaddata(int32 sds_id, int32 start[], int32 stride[], int32 edge[], VOIDP buffer)

sds_id IN: Data set identifier returned by SDcreate or SDselect

start IN: Array specifying the starting location from where data is read

stride IN: Array specifying the interval between the values that will be read
along each dimension

edge IN: Array specifying the number of values to be read along each
dimension

buffer OUT: Buffer to store the data read

Purpose Reads a subsample of data from a data set or coordinate variable.

Return value Returns SUCCEED (or 0) if successful or if the data set or coordinate variable
contains no data and FAIL (or -1) otherwise.

Description SDreaddata reads the specified subsample of data from the data set or
coordinate variable identified by the parameter sds_id. The read data is stored
in the buffer buffer. The subsample is defined by the parameters start, stride
and edge.

The array start specifies the starting position from where the subsample will be
read. Valid values of each element in the array start are from 0 to the size of
the corresponding dimension of the data set - 1. The dimension sizes are
returned by SDgetinfo.

The array edge specifies the number of values to read along each data set
dimension.

The array stride specifies the reading pattern along each dimension. For
example, if one of the elements of the array stride is 1, then every element
along the corresponding dimension of the data set will be read. If one of the
elements of the array stride is 2, then every other element along the
corresponding dimension of the data set will be read, and so on. Specifying
stride value of NULL in the C interface or setting all values of the array stride
to 1 in either interface specifies the contiguous reading of data. If all values in
the array stride are set to 0 or any value causes striding beyond the end of the
associate dimension, SDreaddata returns FAIL (or -1). No matter what stride
value is provided, data is always placed contiguously in the buffer.

When reading data from a “chunked” data set using SDreaddata,
consideration should be given to the issues presented in the section on
chunking in Chapter 3, "Scientific Data Sets (SD API)" and Chapter 14, "HDF
Performance Issues" in the HDF User’s Guide.

Note that there are two FORTRAN-77 versions of this routine; sfrdata and
sfrcdata. The sfrdata routine reads numeric scientific data and sfrcdata reads
character scientific data.
129 June 2017

SDreaddata/sfrdata/sfrcdata Table of Contents HDF Reference Manual
Note Regarding an important difference between the SD and GR interfaces:
The SD and GR interfaces differ in the correspondence between the dimension
order in parameter arrays such as start, stride, edge, and dimsizes and the
dimension order in the buffer array. See the SDreaddata and GRreadimage
reference manual pages for discussions of the SD and GR approaches,
respectively.

When writing applications or tools to manipulate both images and two-
dimensional SDs, this crucial difference between the interfaces must be taken
into account. While the underlying data is stored in row-major order in both
cases, the API parameters are not expressed in the same way. Consider the
example of an SD data set and GR image that are stored as identically-shaped
arrays of X columns by Y rows and accessed via the SDreaddata and
GRreadimage functions, respectively. Both functions take the parameters
start, stride, and edge.

o For SDreaddata, those parameters are expressed in (y,x) or
[row,column] order. For example, start[0] is the starting point in the
Y dimension and start[1] is the starting point in the X dimension.
The same ordering holds true for all SD data set manipulation
functions.

o For GRreadimage, those parameters are expressed in (x,y) or
[column,row] order. For example, start[0] is the starting point in the
X dimension and start[1] is the starting point in the Y dimension.
The same ordering holds true for all GR functions manipulating image
data.

It is sometimes necessary to determine whether and how a dataset is
compressed and whether the software necessary to read that data is available.
The compression method used on the dataset can be determined with
SDgetcompinfo/sfgcompress and the availability and configuration of the
compression software with HCget_config_info. Further information is
available in the respective entries in this reference manual.

Note Regarding Szip-compressed data:
SDreaddata can succeed for an Szip-compressed dataset whether the available
Szip library is configured either for encoding/decoding or for decoding-only.

If the available Szip configuration is decode-only, HCget_config_info will
return only COMP_DECODER_ENABLED in compression_config_info; the returned
flags will not include COMP_ENCODER_ENABLED. In such a case, the file must
have been opened in read-only mode, i.e. with SDstart(filename,
DFACC_RDONLY).

If the Szip available configuration is encode/decode, HCget_config_info will
return COMP_ENCODER_ENABLED|COMP_DECODER_ENABLED. In such a case, the
file and dataset can be opened in read/write mode.

See the HCget_config_info and SDgetcompinfo/sfgcompress entries in this
reference manual for further information.

Note Regarding Szip usage and licensing:
See http://www.hdfgroup.org/doc_resource/SZIP/ for information
regarding the use of Szip in HDF products and Szip licensing.

FORTRAN integer function sfrdata(sds_id, start, stride, edge, buffer)

integer sds_id, start(*), stride(*), edge(*)

<valid numeric data type> buffer(*)
June 2017 130

The HDF Group Table of Contents SDreaddata/sfrdata/sfrcdata
integer function sfrcdata(sds_id, start, stride, edge, buffer)

integer sds_id, start(*), stride(*), edge(*)

character*(*) buffer
131 June 2017

SDreftoindex/sfref2index Table of Contents HDF Reference Manual
SDreftoindex/sfref2index

int32 SDreftoindex(int32 sd_id, int32 sds_ref)

sd_id IN: SD interface identifier returned by SDstart

sds_ref IN: Reference number of the data set

Purpose Returns the index of a data set given the reference number.

Return value Returns the index of the data set (sds_index) if the data set is found and FAIL
(or -1) otherwise.

Description SDreftoindex returns the index of a data set identified by its reference number,
sds_ref.

The value of sds_index returned by SDreftoindex can be passed to SDselect to
obtain a data set identifier (sds_id).

FORTRAN integer function sfref2index(sd_id, sds_ref)

integer sd_id, sds_ref
June 2017 132

The HDF Group Table of Contents SDreset_maxopenfiles
SDreset_maxopenfiles

intn SDreset_maxopenfiles(intn req_max)

req_max IN: Requested maximum number of opened files allowed

Purpose Resets the maximum number of files can be opened at the same time.

Return value Returns the current maximum number of opened files allowed if successful
and FAIL (or -1) otherwise.

Description Prior to release 4.2r2, the maximum number of files that can be opened at the
same time was limited to 32. In HDF 4.2r2 and later versions, if this limit is
reached, the library will increase it to the system limit minus 3 to account for
stdin, stdout, and stderr.

This function can be called anytime to change the maximum number of open
files allowed in HDF to req_max. If req_max is 0, SDreset_maxopenfiles will
simply return the current maximum number of open files allowed. If req_max
exceeds system limit, SDreset_maxopenfiles will reset the maximum number
of open files to the system limit, and return that value.

Furthermore, if the system maximum limit is reached, the library will push the
error code DFE_TOOMANY onto the error stack. User applications can detect this
after an SDstart fails.

FORTRAN integer function sfrmaxopenf(req_max)

integer req_max
133 June 2017

SDselect/sfselect Table of Contents HDF Reference Manual
SDselect/sfselect

int32 SDselect(int32 sd_id, int32 sds_index)

sd_id IN: SD interface identifier returned by SDstart

sds_index IN: Index of the data set

Purpose Obtains the data set identifier (sds_id) of a data set.

Return value Returns the data set identifier (sds_id) if successful and FAIL (or -1)
otherwise.

Description SDselect obtains the data set identifier (sds_id) of the data set specified by its
index, sds_index.

The integration with netCDF has required that a dimension (or coordinate
variable) is stored as a data set in the file. Therefore, the value of sds_index
may correspond to the coordinate variable instead of the actual data set. Users
should use the routine SDiscoordvar to determine whether the given data set is
a coordinate variable.

The value of sds_index is greater than or equal to 0 and less than the number of
data sets in the file. The total number of data sets in a file may be obtained
from a call to SDfileinfo. The SDnametoindex routine can be used to find the
index of a data set if its name is known. However, when multiple data sets
have the same name, SDnametoindices can be used to obtains all the indices.

FORTRAN integer function sfselect(sd_id, sds_index)

integer sd_id, sds_index
June 2017 134

The HDF Group Table of Contents SDsetaccesstype/sdfsacct
SDsetaccesstype/sdfsacct

intn SDsetaccesstype(int32 sds_id, uintn access_type)

sds_id IN: Data set identifier returned by SDcreate or SDselect

accesstype IN: Access type

Purpose Sets the I/O access type of an SDS.

Return value Returns SUCCEED (or 0) if the SDS data can be accessed via access_type and
FAIL (or -1) otherwise.

Description SDsetaccesstype sets the type of I/O (serial, paralle,...) for accessing the data
of the data set identified by sds_id. Access types can be DFACC_SERIAL (or 1),
DFACC_PARALLEL (or 11), and DFACC_DEFAULT (or 0).

FORTRAN integer function sdfsacct(sds_id, access_type)

integer sds_id, access_type
135 June 2017

SDsetattr/sfsnatt/sfscatt Table of Contents HDF Reference Manual
SDsetattr/sfsnatt/sfscatt

intn SDsetattr(int32 obj_id, char *attr_name, int32 ntype, int32 count, VOIDP values)

obj_id IN: Identifier of the object the attribute is to be attached to

attr_name IN: Name of the attribute

ntype IN: Number type of the values in the attribute

count IN: Total number of values to be stored in the attribute

values IN: Data values to be stored in the attribute

Purpose Attaches an attribute to an object.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetattr attaches the attribute to the object specified by the obj_id parameter.
The attribute is defined by its name, attr_name, number type, ntype, number of
attribute values, count, and the attribute values, values. SDsetattr provides a
generic way for users to define metadata. It implements the label = value data
abstraction.

The value of obj_id can be an SD interface identifier (sd_id), returned by
SDstart, a data set identifier (sds_id), returned by SDcreate or SDselect, or a
dimension identifier (dim_id), returned by SDgetdimid.

If the parameter obj_id is
- an SD interface identifier (sd_id,) a global attribute will be created which

applies to all objects in the file
- a data set identifier (sds_id,) an attribute will be attached to the specified

data set
- a dimension identifier (dim_id,) an attribute will be attached to the

specified dimension.

The attr_name argument can be any ASCII string with maximum length of
H4_MAX_NC_NAME (or 256).

The ntype parameter can contain any number type supported by the HDF
library. These number types are listed in Table 1A in Section I of this manual.

Attribute values are passed in the parameter values. The number of attribute
values is defined by the count parameter. If more than one value is stored, all
values must have the same number type. If an attribute with the given name,
number type and number of values exists, it will be overwritten.

Note Starting in version 4.2.6, SDsetattr will fail immediately when count is 0. In
previous releases, SDsetattr did not fail immediately but SDend would fail
eventually, which might corrupt the file.

As suggested by a user whose application needed to create an attribute
containing character string with zero length, a C application can pass in a
single character string containing the '\0' character for values and 1 for count.

Note that there are two FORTRAN-77 versions of this routine; sfsnatt and
sfscatt. The sfsnatt routine writes numeric attribute data and sfscatt writes
character attribute data.
June 2017 136

The HDF Group Table of Contents SDsetattr/sfsnatt/sfscatt
FORTRAN integer function sfsnatt(obj_id, attr_name, ntype, count, values)

integer obj_id, ntype, count

character*(*) attr_name

<valid numeric data type> values(*)

integer function sfscatt(obj_id, attr_name, ntype, count, values)

integer obj_id, ntype, count

character*(*) attr_name, values
137 June 2017

SDsetblocksize/sfsblsz Table of Contents HDF Reference Manual
SDsetblocksize/sfsblsz

intn SDsetblocksize(int32 sd_id, int32 block_size)

sd_id IN: SD interface identifier returned by SDstart

block_size IN: Size of the block in bytes

Purpose Sets the block size used for storing data sets with unlimited dimensions.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetblocksize sets the block size defined in the parameter block_size for all
data sets in the file. SDsetblocksize is used when creating new data sets only;
it has no effect on pre-existing data sets.

SDsetblocksize must be used after calls to SDcreate or SDselect and before
the call to SDwritedata.

The block_size parameter should be set to a multiple of the desired buffer size.

FORTRAN integer sfsblsz(sd_id, block_size)

integer sd_id, block_size
June 2017 138

The HDF Group Table of Contents SDsetcal/sfscal
SDsetcal/sfscal

intn SDsetcal(int32 sds_id, float64 cal, float64 cal_err, float64 offset, float64 offset_err, int32 ntype)

sds_id IN: Data set identifier returned by SDcreate or SDselect

cal IN: Calibration factor

cal_err IN: Calibration error

offset IN: Uncalibrated offset

offset_err IN: Uncalibrated offset error

ntype IN: Number type of uncalibrated data

Purpose Sets the calibration information.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetcal stores the calibration record associated with a data set. A calibration
record contains the following information:

cal Calibration factor

cal_err Calibration error

offset Uncalibrated offset

offset_err Uncalibrated offset error

ntype Number type of uncalibrated data

The relationship between a value cal_value stored in a data set and the
original value is defined as: orig_value = cal * (cal_value - offset).

The variable offset_err contains a potential error of offset, and cal_err
contains a potential error of cal. Currently the calibration record is provided
for information only. The SD interface performs no operations on the data
based on the calibration tag.

The calibration information is automatically cleared after a call to SDreaddata
or SDwritedata. Therefore, SDsetcal must be called once for each data set that
is to be read or written.

FORTRAN integer function sfscal(sds_id, cal, cal_err, offset, offset_err,
ntype)

integer sds_id, ntype

real*8 cal, cal_err, offset, offset_err
139 June 2017

SDsetchunk/sfschnk Table of Contents HDF Reference Manual
SDsetchunk/sfschnk

intn SDsetchunk(int32 sds_id, HDF_CHUNK_DEF cdef, int32 flag)

sds_id IN: Data set identifier returned by SDcreate or SDselect

C only:

cdef IN: Pointer to the chunk definition

flag IN: Compression flag

Fortran only:

dim_length IN: Chunk dimensions array

comp_type IN: Type of compression

comp_prm IN: Compression parameters array

Purpose Sets the chunk size and the compression method, if any, of a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetchunk makes the data set specified by the parameter sds_id a chunked
data set according to the chunking and compression information provided in
the parameters cdef and flag in C, and in the parameters comp_type and
comp_prm in Fortran.

C only:

The parameter flag specifies the type of the data set, i.e., if the data set is
chunked or chunked and compressed with either RLE, Skipping Huffman,
GZIP, Szip, or NBIT compression methods. Valid values of flag are as
follows:

o HDF_CHUNK for a chunked data set with no compression
o HDF_CHUNK | HDF_COMP for a chunked data set compressed with RLE,

Skipping Huffman, GZIP, or Szip compression methods
o HDF_CHUNK | HDF_NBIT for a chunked and NBIT-compressed data set

Chunking and compression information are passed in the parameter cdef. The
parameter cdef has a type of HDF_CHUNK_DEF, defined in the HDF library as
follows:
June 2017 140

The HDF Group Table of Contents SDsetchunk/sfschnk
typedef union hdf_chunk_def_u
{
 int32 chunk_lengths[2]; /* chunk lengths along each dim */

 struct
 {
 int32 chunk_lengths[2];
 int32 comp_type; /* compression type */
 struct comp_info cinfo; /* compression information */
 } comp;

 struct
 {
 int32 chunk_lengths[2];
 intn start_bit;
 intn bit_len;
 intn sign_ext;
 intn fill_one;
 } nbit;
} HDF_CHUNK_DEF

There are three pieces of chunking and compression information which should
be specified: chunking dimensions, compression type, and, if needed,
compression parameters.

If the data set is chunked, i.e., flag value is HDF_CHUNK, then chunk_lengths[]
elements of cdef union (cdef.chunk_lengths[]) have to be initialized to the
chunk dimensions.

If the data set is chunked and compressed using RLE, Skipping Huffman, Szip,
or GZIP methods (i.e., flag value is set up to HDF_CHUNK | HDF_COMP), then the
elements chunk_lengths[] of the structure comp in the union cdef
(cdef.comp.chunk_lengths[]) have to be initialized to the chunk dimensions.

If the data set is chunked and NBIT compression is applied (i.e., flag values is
set up to HDF_CHUNK | HDF_NBIT), then the elements chunk_lengths[] of the
structure nbit in the union cdef (cdef.nbit.chunk_lengths[]) have to be
initialized to the chunk dimensions.

Compression types are passed in the field comp_type of the structure cinfo ,
which is an element of the structure comp in the union cdef
(cdef.comp.cinfo.comp_type). Refer to the SDsetcompress page in this
manual for the definition of structure comp_info. Valid compression methods
are:

COMP_CODE_NONE for no compression
COMP_CODE_RLE for RLE run-length encoding
COMP_CODE_SKPHUFF for Skipping Huffman compression
COMP_CODE_DEFLATE for GZIP compression
COMP_CODE_SZIP for Szip compression
141 June 2017

SDsetchunk/sfschnk Table of Contents HDF Reference Manual
For Skipping Huffman and GZIP compression, parameters are passed in
corresponding fields of the structure cinfo.

o Specify skipping size for Skipping Huffman compression in the field
cdef.comp.cinfo.skphuff.skp_size, which must be an integer of
value 1 or greater.

o Specify the deflate level for GZIP compression in the field
cdef.comp.cinfo.deflate_level. Valid deflate level values are
integers between 0 and 9 inclusive.

o Specify the options mask and the number of pixels per block for Szip
compression in the fields c_info.szip.options_mask and
c_info.szip.pixels_per_block, respectively.

Refer to the SDsetcompress entry in this reference manual for details on these
parameters.

NBIT compression parameters are specified in the fields start_bit, bit_len,
sign_ext, and fill_one in the structure nbit of the union cdef.

Fortran only:

The dim_length array specifies the chunk dimensions.

The comp_type parameter specifies the compression type. Valid compression
types and their values are defined in the hdf.inc file, and are listed below:

COMP_CODE_NONE (or 0) for no compression
COMP_CODE_RLE (or 1) for RLE compression algorithm
COMP_CODE_NBIT (or 2) for NBIT compression algorithm
COMP_CODE_SKPHUFF (or 3) for Skipping Huffman compression
COMP_CODE_DEFLATE (or 4) for GZIP compression algorithm
COMP_CODE_SZIP (or 5) for Szip compression algorithm

The comp_prm(1) parameter specifies the skipping size for the Skipping
Huffman compression method and the deflate level for the GZIP compression
method. The skipping size value must be 1 or greater; the deflate level must be
an integer value between 0 and 9 inclusive.

For NBIT compression, the four elements of the array comp_prm correspond
to the four NBIT compression parameters listed in the structure nbit. The
value of comp_prm(1) should be set to the value of start_bit, the value of
comp_prm(2) should be set to the value of bit_len, the value of comp_prm(3)
should be set to the value of sign_ext, and the value of comp_prm(4) should
be set to the value of fill_one. See the HDF_CHUNK_DEF union description and
the description of SDsetnbitdataset function for NBIT compression
parameters definitions.

For Szip compression, the first two elements of the array comp_prm
correspond to the first two Szip compression parameters listed in the structure
szip. The value of comp_prm(1) should be set to the value of option_mask
and the value of comp_prm(2) should be set to the value of pixels_per_block.

FORTRAN integer sfschnk(sds_id, dim_length, comp_type, comp_prm)

integer sds_id, dim_length, comp_type, comp_prm(*)
June 2017 142

The HDF Group Table of Contents SDsetchunkcache/sfscchnk
SDsetchunkcache/sfscchnk

intn SDsetchunkcache(int32 sds_id, int32 maxcache, int32 flag)

sds_id IN: Data set identifier returned by SDcreate or SDselect

maxcache IN: Maximum number of chunks in the cache

flag IN: Flag determining the behavior of the routine

Purpose Sets the size of the chunk cache.

Return value Returns the maximum number of chunks that can be cached (the value of the
parameter maxcache) if successful and FAIL (or -1) otherwise.

Description SDsetchunkcache sets the size of the chunk cache to the value of the
parameter maxcache.

Currently the only allowed value of the parameter flag is 0, which designates
default operation.

By default, when a generic data set is promoted to be a chunked data set, the
parameter maxcache is set to the number of chunks along the fastest changing
dimension and a cache for the chunks is created.

If the chunk cache is full and the value of the parameter maxcache is greater
then the current maxcache value, then the chunk cache is reset to the new value
of maxcache. Otherwise the chunk cache remains at the current value of
maxcache. If the chunk cache is not full, then the chunk cache is set to the new
value of maxcache only if the new maxcache value is greater than the current
number of chunks in the cache.

Do not set the value of maxcache to be less than the number of chunks along
the fastest-changing dimension of the biggest slab to be written or read via
SDreaddata or SDwritedata. Doing this will cause internal thrashing. See the
section on chunking in Chapter 14, "HDF Performance Issues" in the HDF
User’s Guide, for more information on this.

FORTRAN integer sfscchnk(sds_id, maxcache, flag)

integer sds_id, maxcache, flag
143 June 2017

SDsetcompress/sfscompress Table of Contents HDF Reference Manual
SDsetcompress/sfscompress

intn SDsetcompress(int32 sds_id, int32 comp_type, comp_info *c_info)

sds_id IN: Data set identifier returned by SDcreate or SDselect

comp_type IN: Compression method

C only:

c_info IN: Pointer to the comp_info union

Fortran only:

comp_prm IN: Compression parameters array

Purpose Compresses the data set with the specified compression method.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetcompress compresses the data set identified by the parameter sds_id
according to the compression method specified by the parameter comp_type and
the compression information specified by the parameter c_info in C and
comp_prm in Fortran. SDsetcompress sets up the special element for the
compressed data written during the next call to SDwritedata.

SDsetcompress is a simplified interface to the HCcreate routine and should be
used instead of HCcreate, unless the user is familiar with working with the
lower-level routines.

The parameter comp_type is the compression type definition and is set to one of
the following:

COMP_CODE_RLE (or 1) --for run-length encoding (RLE)
COMP_CODE_SKPHUFF (or 3) --for Skipping Huffman
COMP_CODE_DEFLATE (or 4) --for GZIP compression
COMP_CODE_SZIP (or 5) --for Szip compression

The parameter c_info is a pointer to a union structure of type comp_info. This
union structure is defined as follows:
June 2017 144

The HDF Group Table of Contents SDsetcompress/sfscompress
typedef union tag_comp_info
{
 struct
 {/* Not used by SDsetcompress */} jpeg;

 struct
 {/* Not used by SDsetcompress */} nbit;

 struct
 { /* struct to contain info about how to compress size of the
 elements when skipping */
 intn skp_size;
 } skphuff;

 struct
 { /* struct to contain info about how to compress or
 decompress gzip encoded dataset how hard to work
 when compressing data */
 intn level;
 } deflate;

 struct
 {
 int32 options_mask; /* IN */
 int32 pixels_per_block; /* IN */
 int32 pixels_per_scanline; /* OUT: computed */
 int32 bits_per_pixel; /* OUT: size of NT */
 int32 pixels; /* OUT: size of dataset or chunk */
 } szip; /* for szip encoding */

} comp_info;
The skipping size for the Skipping Huffman algorithm must be 1 or greater and
is specified in the field c_info.skphuff.skp_size in C and in the parameter
comp_prm(1) in Fortran.

The deflate level for the GZIP algorithm is specified in the
c_info.deflate.level field in C and in the parameter comp_prm(1) in Fortran.
Valid values are integers between 0 and 9 inclusive.

The Szip options mask and the number of pixels per block in a chunked and
Szip-compressed dataset are specified in c_info.szip.options_mask and
c_info.szip.pixels_per_block, respectively.

The options mask can contain either of the following values:
SZ_EC_OPTION_MASK - Specifies entropy coding method
SZ_NN_OPTION_MASK - Specifies nearest neighbor coding method

The following guidelines may be helpful in selecting the encoding method:
o The entropy coding method, the EC option specified by

SZ_EC_OPTION_MASK, is best suited for data that has been processed. The
EC method works best for small numbers.

o The nearest neighbor coding method, the NN option specified by
SZ_NN_OPTION_MASK, preprocesses the data then applies the EC method as
above.

Other factors may affect results, but the above criteria provide a good starting
point for optimizing data compression.

The Szip values of the number of pixels per scanline, the number of bits in a
pixel, and the number of pixels in an image, are computed by the HDF4 library
and provided to the user in c_info.szip.pixels_per_scanline,
c_info.szip.bits_per_pixel, and c_info.szip.pixels, respectively.
145 June 2017

SDsetcompress/sfscompress Table of Contents HDF Reference Manual
SDsetcompress will succeed in setting Szip compression for a dataset only if the
Szip library is available and configured for encoding, i.e., HCget_config_info
must return the flag COMP_DECODER_ENABLED|COMP_ENCODER_ENABLED in
compression_config_info.

Compression is not supported for unlimited dimension SDSs. SDsetcompress
will fail on an SDS with unlimited dimension. If the application proceeds after
such call, subsequent SDwritedata will write uncompressed data to the SDS.

Note Regarding Szip usage and licensing:
See http://www.hdfgroup.org/doc_resource/SZIP/ for information
regarding the use of Szip in HDF products and Szip licensing.

FORTRAN integer sfscompress(sds_id, comp_type, comp_prm)

integer sds_id, comp_type, comp_prm(*)
June 2017 146

The HDF Group Table of Contents SDsetdatastrs/sfsdtstr
SDsetdatastrs/sfsdtstr

intn SDsetdatastrs(int32 sds_id, char *label, char *unit, char *format, char *coordsys)

sds_id IN: Data set identifier returned by SDcreate or SDselect

label IN: Label (predefined attribute)

unit IN: Unit (predefined attribute)

format IN: Format (predefined attribute)

coordsys IN: Coordinate system (predefined attribute)

Purpose Sets the predefined attributes for a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetdatastrs sets the predefined attributes of the data set, identified by
sds_id, to the values specified in the parameters label, unit, format and
coordsys. The predefined attributes are label, unit, format, and coordinate
system. If the user does not want a string returned, the corresponding
parameter can be set to NULL in C and an empty string in Fortran.

For more information about predefined attributes, refer to Section 3.10,
"Predefined Attributes" of the HDF User’s Guide.

FORTRAN integer function sfsdtstr(sds_id, label, unit, format, coordsys)

integer sds_id

character*(*) label, unit, format, coordsys
147 June 2017

SDsetdimname/sfsdmname Table of Contents HDF Reference Manual
SDsetdimname/sfsdmname

intn SDsetdimname(int32 dim_id, char *dim_name)

dim_id IN: Dimension identifier returned by SDgetdimid

dim_name IN: Name of the dimension

Purpose Assigns a name to a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetdimname sets the name of the dimension identified by the parameter
dim_id to the value specified in the parameter dim_name. Dimensions that are
not explicitly named by the user will have the default name of “fakeDim[x]”
specified by the HDF library, where [x] denotes the dimension index.

If another dimension exists with the same name it is assumed that they refer to
the same dimension object and changes to one will be reflected in the other. If
the dimension with the same name has a different size, an error condition will
result.

The length of the parameter dim_name can be at most 64 characters.

Naming dimensions is optional but encouraged.

Note Regarding naming a dimension the same as an SDS’ name:
Prior to HDF4.2r2, when a dimension was named the same as that of a one-
dimensional SDS, data corruption will occur after certain operations, such as
setting attribute or setting dimension scale. The corrupted data was
unrecoverable. However, this problem has been fixed for future data.

FORTRAN integer function sfsdmname(dim_id, dim_name)

integer dim_id

character*(*) dim_name
June 2017 148

The HDF Group Table of Contents SDsetdimscale/sfsdscale
SDsetdimscale/sfsdscale

intn SDsetdimscale(int32 dim_id, int32 count, int32 ntype, VOIDP data)

dim_id IN: Dimension identifier returned by SDgetdimid

count IN: Total number of values along the dimension

ntype IN: Number type of the values along the dimension

data IN: Value of each increment along the dimension

Purpose Stores the values of a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetdimscale stores scale information for the dimension identified by the
parameter dim_id. Note that it is possible to store dimension scale values
without naming the dimension.

For fixed-size arrays, the value of count must be equal to the the dimension
size or the routine will fail.

Note that, due to the existence of the parameter ntype, the dimension scales
need not have the same type as the data set.

Note that if SDsetdimscale is called and SDsetdimname is subsequently
called for the same dimension, SDsetdimscale must be called again to
reassociate the scale with the new name.

FORTRAN integer function sfsdscale(dim_id, count, ntype, data)

integer dim_id, count, ntype

<valid data type> data(*)
149 June 2017

SDsetdimstrs/sfsdmstr Table of Contents HDF Reference Manual
SDsetdimstrs/sfsdmstr

intn SDsetdimstrs(int32 dim_id, char *label, char *unit, char *format)

dim_id IN: Dimension identifier returned by SDgetdimid

label IN: Label (predefined attribute)

unit IN: Unit (predefined attribute)

format IN: Format (predefined attribute)

Purpose Sets the predefined attribute of a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetdimstrs sets the predefined attribute (label, unit, and format) for a
dimension and its scale to the values specified in the parameters label, unit and
format. If a parameter is set to NULL in C and an empty string in Fortran, then
the attribute corresponding to that parameter will not be written. For more
information about predefined attributes, refer to Section 3.10, "Predefined
Attributes" of the HDF User’s Guide.

FORTRAN integer function sfsdmstr(dim_id, label, unit, format)

integer dim_id

character*(*) label, unit, format
June 2017 150

The HDF Group Table of Contents SDsetdimval_comp/sfsdmvc
SDsetdimval_comp/sfsdmvc

intn SDsetdimval_comp(int32 dim_id, intn comp_mode)

dim_id IN: Dimension identifier returned by SDgetdimid

comp_mode IN: Compatibility mode to be set

Purpose Determines whether a dimension will have the old and new representations or
the new representation only.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetdimval_comp sets the compatibility mode specified by the comp_mode
parameter for the dimension identified by the dim_id parameter. The two
possible compatibility modes are: “backward-compatible” mode, which
implies that the old and new dimension representations are written to the file,
and “backward-incompatible” mode, which implies that only the new
dimension representation is written to the file.

Unlimited dimensions are always backward-compatible, therefore
SDsetdimval_comp takes no action on unlimited dimensions.

As of HDF version 4.1r1, the default mode is backward-incompatible.
Subsequent calls to SDsetdimval_comp will override the settings established
in previous calls to the routine.

The comp_mode parameter can be set to SD_DIMVAL_BW_COMP (or 1), which
specifies backward-compatible mode, or SD_DIMVAL_BW_INCOMP (or 0), which
specifies backward-incompatible mode.

FORTRAN integer function sfsdmvc(dim_id, comp_mode)

integer dim_id, comp_mode
151 June 2017

SDsetexternalfile/sfsextf Table of Contents HDF Reference Manual
SDsetexternalfile/sfsextf

intn SDsetexternalfile(int32 sds_id, char *filename, int32 offset)

sds_id IN: Data set identifier returned by SDcreate or SDselect

filename IN: Name of the external file

offset IN: Number of bytes from the beginning of the external file to where the
data will be written

Purpose Stores data in an external file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetexternalfile allows users to move the actual data values (i.e., not
metadata) of a data set, sds_id, into the external data file named by the
parameter filename, and started at the offset specified by the parameter offset.
The metadata remains in the original file. Note that this routine works only
with HDF post-version 3.2 files.

Data can only be moved once for any given data set, and it is the user's
responsibility to make sure the external data file is kept with the “original” file.

If the data set already exists, its data will be moved to the external file. Space
occupied by the data in the primary file will not be released. To release the
space in the primary file use the hdfpack command-line utility. If the data set
does not exist, its data will be written to the external file during the consequent
calls to SDwritedata.

See the reference manual entries for HXsetcreatedir and HXsetdir for more
information on the options available for accessing external files.

FORTRAN integer function sfsextf(sds_id, file_name, offset)

integer sds_id, offset

character*(*) file_name
June 2017 152

The HDF Group Table of Contents SDsetfillmode/sfsflmd
SDsetfillmode/sfsflmd

intn SDsetfillmode(int32 sd_id, intn fill_mode)

sd_id IN: SD interface identifier returned by SDstart

fill_mode IN: Fill mode

Purpose Sets the current fill mode of a file.

Return value Returns the fill mode value before it was reset if successful and FAIL (or -1)
otherwise.

Description SDsetfillmode applies the fill mode specified by the parameter fill_mode to all
data sets contained in the file identified by the parameter sd_id.

Possible values of fill_mode are SD_FILL (or 0) and SD_NOFILL (or 256).
SD_FILL is the default mode, and indicates that fill values will be written when
the data set is created. SD_NOFILL indicates that fill values will not be written.

When a data set without unlimited dimensions is created, by default the first
SDwritedata call will fill the entire data set with the default or user-defined
fill value (set by SDsetfillvalue). In data sets with an unlimited dimension , if a
new write operation takes place along the unlimited dimension beyond the last
location of the previous write operation, the array locations between these
written areas will be initialized to the user-defined fill value, or the default fill
value if a user-defined fill value has not been specified.

If it is certain that all data set values will be written before any read operation
takes place, there is no need to write the fill values. Simply call SDsetfillmode
with fill_mode value set to SD_NOFILL, which will eliminate all fill value write
operations to the data set. For large data sets, this can improve the speed by
almost 50%.

FORTRAN integer function sfsflmd(sd_id, fill_mode)

integer sd_id, fill_mode
153 June 2017

SDsetfillvalue/sfsfill/sfscfill Table of Contents HDF Reference Manual
SDsetfillvalue/sfsfill/sfscfill

intn SDsetfillvalue(int32 sds_id, VOIDP fill_value)

sds_id IN: Data set identifier returned by SDcreate or SDselect

fill_value IN: Fill value

Purpose Sets the fill value for a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetfillvalue sets the fill value specified by the fill_value parameter for the
data set identified by the sds_id parameter.

The fill value is assumed to have the same number type as the data set.

The following are the default fill values for different number types:
FILL_BYTE (char)-127 /* Largest Negative value */
FILL_CHAR (char)0
FILL_SHORT (short)-32767
FILL_LONG (long)-2147483647
FILL_FLOAT 9.9692099683868690e+36 /* near 15 * 2^119 */
FILL_DOUBLE 9.9692099683868690e+36

It is recommended to call SDsetfillvalue before writing data.

FORTRAN integer function sfsfill(sds_id, fill_value)

integer sds_id

<valid numeric data type> fill_value

integer function sfscfill(sds_id, fill_value)

integer sds_id

character*(*) fill_value
June 2017 154

The HDF Group Table of Contents SDsetnbitdataset/sfsnbit
SDsetnbitdataset/sfsnbit

intn SDsetnbitdataset(int32 sds_id, intn start_bit, intn bit_len, intn sign_ext, intn fill_one)

sds_id IN: Data set identifier returned by SDcreate or SDselect

start_bit IN: Leftmost bit of the field to be written

bit_len IN: Length of the bit field to be written

sign_ext IN: Sign extend specifier

fill_one IN: Background bit specifier

Purpose Specifies a non-standard bit length for the data set values.

Return value Returns a positive value if successful and FAIL (or -1) otherwise.

Description SDsetnbitdataset allows the HDF user to specify that the data set identified by
the parameter sds_id contains data of a non-standard length defined by the
parameters start_bit and bit_len. Additional information about the non-
standard bit length decoding are specified in the parameters sign_ext and
fill_one.

Any length between 1 and 32 bits can be specified. After SDsetnbitdataset has
been called for the data set array, any read or write operations will involve a
conversion between the new data length of the data set array and the data
length of the read or write buffer.

Bit lengths of all number types are counted from the right of the bit field
starting with 0. In a bit field containing the values 01111011, bits 2 and 7 are
set to 0 and all the other bits are set to 1.

The start_bit parameter specifies the leftmost position of the variable-length
bit field to be written. For example, in the bit field described in the preceding
paragraph a start_bit parameter set to 4 would correspond to the fourth bit
value of 1 from the right.

The bit_len parameter specifies the number of bits of the variable-length bit
field to be written. This number includes the starting bit and the count proceeds
toward the right end of the bit field - toward the lower-bit numbers. For
example, starting at bit 5 and writing 4 bits of the bit field described in the
preceding paragraph would result in the bit field 1110 being written to the data
set. This would correspond to a start_bit value of 5 and a bit_len value of 4.

The sign_ext parameter specifies whether to use the leftmost bit of the
variable-length bit field to sign-extend to the leftmost bit of the data set data.
For example, if 9-bit signed integer data is extracted from bits 17-25 and the bit
in position 25 is 1, then when the data is read back from disk, bits 26-31 will be
set to 1. Otherwise bit 25 will be 0 and bits 26-31 will be set to 0. The sign_ext
parameter can be set to TRUE (or 1) or FALSE (or 0) - specify TRUE to sign-
extend.

The fill_one specifies whether to fill the “background” bits with the value 1 or
0. This parameter can also be set to TRUE or FALSE.
155 June 2017

SDsetnbitdataset/sfsnbit Table of Contents HDF Reference Manual
The “background” bits of a variable-length data set are the bits that fall outside
of the variable-length bit field stored on disk. For example, if five bits of an
unsigned 16-bit integer data set located in bits 5 to 9 are written to disk with
the fill_one parameter set to TRUE (or 1), then when the data is reread into
memory bits 0 to 4 and 10 to 15 would be set to 1. If the same 5-bit data was
written with a fill_one value of FALSE (or 0), then bits 0 to 4 and 10 to 15 would
be set to 0.

This bit operation is performed before the sign-extend bit-filling. For example,
using the sign_ext example above, bits 0 to 16 and 26 to 31 will first be set to
the “background” bit value, and then bits 26 to 31 will be set to 1 or 0 based on
the value of the 25th bit.

FORTRAN integer function sfsnbit(sds_id, start_bit, bit_len, sign_ext,
fill_one)

integer sds_id, start_bit, bit_len, sign_ext, fill_one
June 2017 156

The HDF Group Table of Contents SDsetrange/sfsrange
SDsetrange/sfsrange

intn SDsetrange(int32 sds_id, VOIDP max, VOIDP min)

sds_id IN: Data set identifier returned by SDcreate or SDselect

max IN: Maximum value of the range

min IN: Minimum value of the range

Purpose Sets the maximum and minimum range values for a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetrange sets the maximum and minimum range values of the data set
identified by the parameter sds_id with the values of the parameters max and
min. The term “range” is used here to describe the range of numeric values
stored in a data set.

It is assumed that the number type for the maximum and minimum range
values are the same as the type of the data.

This routine does not compute the maximum and minimum range values, it
only stores the values as given. As a result, the maximum and minimum range
values may not always reflect the actual maximum and minimum range values
in the data set data.

FORTRAN integer function sfsrange(sds_id, max, min)

integer sds_id

<valid numeric data type> max, min
157 June 2017

SDstart/sfstart Table of Contents HDF Reference Manual
SDstart/sfstart

int32 SDstart(char *filename, int32 access_mode)

filename IN: Name of the HDF file

access_mode IN: The file access mode in effect during the current session

Purpose Opens an HDF file and initializes an SD interface.

Return value Returns an SD interface identifier if successful and FAIL (or -1) otherwise.

Description SDstart opens the file with the name specified by the parameter filename, with
the access mode specified by the parameter access_mode, and returns an SD
interface identifier (sd_id). This routine must be called for each file before any
other SD calls can be made on that file.

The type of identifier returned by SDstart is currently not the same as the
identifier returned by Hopen. As a result, the SD interface identifiers (sd_id)
returned by this routine are not understood by other HDF interfaces.

To mix SD API calls and other HDF API calls, use SDstart and Hopen on the
same file. SDstart must precede all SD calls, and Hopen must precede all
other HDF function calls. To terminate access to the file, use SDend to dispose
of the SD interface identifier, sd_id, and Hclose to dispose of the file identifier,
file_id.

The file identified by the parameter filename can be any one of the following:
an XDR-based netCDF file, “old-style” DFSD file or a “new-style” SD file.

The value of the parameter access_mode can be one of the following:

DFACC_READ - Open existing file for read-only access. If the file does not exist,
specifying this mode will cause SDstart to return FAIL (or -1).
DFACC_WRITE - Open existing file for read and write access. If the file does not
exist, specifying this mode will cause SDstart to return FAIL (or -1).
DFACC_CREATE - Create a new file with read and write access. If the file has
already existed, its contents will be replaced.

Note Starting from HDF 4.2r2, the maximum number of open files is no longer
limited to 32. It can be up to what the system allowed.

Note It has been reported that opening/closing file in loops is very slow; thus, it is
not recommended to perform such operations too many times, particularly,
when data is being added to the file between opening/closing.

FORTRAN integer function sfstart(filename, access_mode)

character*(*) filename

integer access_mode
June 2017 158

The HDF Group Table of Contents SDwritechunk/sfwchnk/sfwcchnk
SDwritechunk/sfwchnk/sfwcchnk

intn SDwritechunk(int32 sds_id, int32 *origin, VOIDP datap)

sds_id IN: Data set identifier returned by SDcreate or SDselect

origin IN: Origin of the chunk to be written

datap IN: Buffer for the chunk data to be written

Purpose Writes a data chunk to a chunked data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDwritechunk writes the entire chunk of data stored in the buffer datap to the
chunked data set identified by the parameter sds_id. Writing starts at the
location specified by the parameter origin. SDwritechunk is used when an
entire chunk of data is to be written. SDwritedata is used when the write
operation is to be done regardless of the chunking scheme used in the data set.

SDwritechunk will return FAIL (or -1) when an attempt is made to use it to
write to a non-chunked data set.

The parameter origin specifies the coordinates of the chunk according to the
chunk position in the overall chunk array. Refer to Chapter 3, "Scientific Data
Sets (SD API)" in the HDF User’s Guide, for a description of the organization
of chunks in a data set.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (sfwchnk) and one for character data (sfwcchnk).

Note Regarding Szip-compressed data:
SDwritechunk can succeed only when the available Szip library is configured
for encoding/decoding, i.e., when HCget_config_info returns
COMP_ENCODER_ENABLED|COMP_DECODER_ENABLED in compression_config_info.

See the SDgetcompinfo/sfgcompress and HCget_config_info entries in this
reference manual for further discussion of compression methods and
configuration.

Note Regarding Szip usage and licensing:
See http://www.hdfgroup.org/doc_resource/SZIP/ for information
regarding the use of Szip in HDF products and Szip licensing.

FORTRAN integer sfwchnk(sds_id, origin, datap)

integer sds_id, origin

<valid numeric data type> datap(*)

integer sfwcchnk(sds_id, origin, datap)
159 June 2017

SDwritechunk/sfwchnk/sfwcchnk Table of Contents HDF Reference Manual
integer sds_id, origin

character*(*) datap(*)
June 2017 160

The HDF Group Table of Contents SDwritedata/sfwdata/sfwcdata
SDwritedata/sfwdata/sfwcdata

intn SDwritedata(int32 sds_id, int32 start[], int32 stride[], int32 edge[], VOIDP buffer)

sds_id IN: Data set identifier returned by SDcreate or SDselect

start IN: Array specifying the starting location of the data to be written

stride IN: Array specifying the number of values to skip along each dimension

edge IN: Array specifying the number of values to be written along each
dimension

buffer IN: Buffer for the values to be written

Purpose Writes a subsample of data to a data set or to a coordinate variable.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDwritedata writes the specified subsample of data to the data set or
coordinate variable identified by the parameter sds_id. The data is written
from the buffer buffer. The subsample is defined by the parameters start,
stride and edge.

The array start specifies the starting position from where the subsample will be
written. Valid values of each element in the array start are from 0 to the size of
the corresponding dimension of the data set - 1. The dimension sizes are
returned by SDgetinfo.

The array edge specifies the number of values to write along each data set
dimension.

The array stride specifies the writing pattern along each dimension. For
example, if one of the elements of the array stride is 1, then every element
along the corresponding dimension of the data set will be written. If one of the
elements of the array stride is 2, then every other element along the
corresponding dimension of the data set will be written, and so on. Specifying
stride value of NULL in the C interface or setting all values of the array stride
to 1 in either interface specifies the contiguous writing of data. If all values in
the array stride are set to 0, SDwritedata returns FAIL (or -1).

When writing data to a chunked data set using SDwritedata, consideration
should be given to the issues presented in the section on chunking in Chapter 3,
"Scientific Data Sets (SD API)" and Chapter 14, "HDF Performance Issues" in
the HDF User’s Guide.

Note that there are two FORTRAN-77 versions of this routine; sfwdata and
sfwcdata. The sfwdata routine writes numeric data and sfwcdata writes
character scientific data.

Note Regarding an important difference between the SD and GR interfaces:
The SD and GR interfaces differ in the correspondence between the dimension
order in parameter arrays such as start, stride, edge, and dimsizes and the
dimension order in the data array. See the SDreaddata and GRreadimage
reference manual pages for discussions of the SD and GR approaches,
respectively.
161 June 2017

SDwritedata/sfwdata/sfwcdata Table of Contents HDF Reference Manual
When writing applications or tools to manipulate both images and two-
dimensional SDs, this crucial difference between the interfaces must be taken
into account. While the underlying data is stored in row-major order in both
cases, the API parameters are not expressed in the same way. Consider the
example of an SD data set and GR image that are stored as identically-shaped
arrays of X columns by Y rows and accessed via the SDreaddata and
GRreadimage functions, respectively. Both functions take the parameters
start, stride, and edge.

o For SDreaddata, those parameters are expressed in (y,x) or
[row,column] order. For example, start[0] is the starting point in the
Y dimension and start[1] is the starting point in the X dimension.
The same ordering holds true for all SD data set manipulation
functions.

o For GRreadimage, those parameters are expressed in (x,y) or
[column,row] order. For example, start[0] is the starting point in the
X dimension and start[1] is the starting point in the Y dimension.
The same ordering holds true for all GR functions manipulating image
data.

Note Regarding compressed data sets:
If a data set is compressed, it may be necessary to determine whether the
compression method is available on the current system and configured so that
data can be encoded before being written. The compression method can be
determined through the use of SDgetcompinfo and the configuration of that
method on the current system through HCget_config_info.

Partial writing is not allowed on compressed data set. To partially modify
data, an application can read the data set, modify the specific values in the
buffer, then re-write the entire data set.

Note Regarding Szip-compressed data:
SDwritedata can succeed only when the available Szip library is configured
for encoding/decoding, i.e., when HCget_config_info returns
COMP_ENCODER_ENABLED|COMP_DECODER_ENABLED in compression_config_info.

Note Regarding Szip usage and licensing:
See http://www.hdfgroup.org/doc_resource/SZIP/ for information
regarding the use of Szip in HDF products and Szip licensing.

FORTRAN integer function sfwdata(sds_id, start, stride, edge, buffer)

integer sds_id

integer start(*), stride(*), edge(*)

<valid numeric data type> buffer(*)

integer function sfwcdata(sds_id, start, stride, edge, buffer)

integer sds_id

integer start(*), stride(*), edge(*)

character*(*) buffer(*)
June 2017 162

The HDF Group Table of Contents SDwritedata/sfwdata/sfwcdata
163 June 2017

Vaddtagref/vfadtr Table of Contents HDF Reference Manual
Vaddtagref/vfadtr

int32 Vaddtagref(int32 vgroup_id, int32 tag, int32 ref)

vgroup_id IN: Vgroup identifier returned by Vattach

tag IN: Tag of the object

ref IN: Reference number of the object

Purpose Inserts an object into a vgroup.

Return value Returns the number of objects in the vgroup if successful and FAIL (or -1)
otherwise.

Description Vaddtagref inserts the object identified by the parameters tag and ref into the
vgroup identified by the parameter vgroup_id.

If an object to be inserted is a data set, duplication of the tag/reference number
pair will be allowed. Otherwise, the tag/reference number pair must be unique
among the elements within the vgroup or the routine will return FAIL (or -1).

Note that Vaddtagref does not verify that the tag and reference number exist.

FORTRAN integer function vfadtr(vgroup_id, tag, ref)

integer vgroup_id, tag, ref
June 2017 166

The HDF Group Table of Contents Vattach/vfatch
Vattach/vfatch

int32 Vattach(int32 file_id, int32 vgroup_ref, char *access)

file_id IN: File identifier returned by Hopen

vgroup_ref IN: Reference number for the vgroup

access IN: Type of access

Purpose Initiates access to a new or existing vgroup.

Return value Returns the vgroup identifier (vgroup_id) if successful and FAIL (or -1)
otherwise.

Description Vattach opens a vgroup with access type specified by the parameter access in
the file identified by the parameter file_id. The vgroup is identified by the
reference number, vgroup_ref.

Vattach returns the vgroup identifier, vgroup_id, for the accessed vgroup. The
vgroup_id is used for all subsequent operations on this vgroup. Once
operations are complete, the vgroup identifier must be disposed of via a call to
Vdetach. Multiple attaches may be made to the same vgroup simultaneously,
and several vgroup identifiers can be created for the same vgroup. Each
vgroup identifier must be disposed of independently.

The parameter file_id is the file identifier of an opened file. The parameter
vgroup_ref specifies which vgroup in the file to attach to. If vgroup_ref is set
to -1, a new vgroup will be created. If vgroup_ref is set to a positive number,
the vgroup with that as a reference number is attached.

Possible values for the parameter access are “r” for read access and “w” for
write access.

FORTRAN integer function vfatch(file_id, vgroup_ref, access)

integer file_id, vgroup_ref

character*1 access
167 June 2017

Vattrinfo/vfainfo Table of Contents HDF Reference Manual
Vattrinfo/vfainfo

intn Vattrinfo(int32 vgroup_id, intn attr_index, char *attr_name, int32 *data_type, int32 *count, int32
*size)

vgroup_id IN: Vgroup identifier returned by Vattach

attr_index IN: Index of the attribute

attr_name OUT: Name of the attribute

data_type OUT: Data type of the attribute

count OUT: Number of values in the attribute

size OUT: Size, in bytes, of the attribute values.

Purpose Retrieves the name, data type, number of values, and value size of an attribute
assigned to a vgroup.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vattrinfo retrieves the name, datatype, number of values, and value size of an
attribute identified by its index, attr_index, in the vgroup, vgroup_id. Name,
data type, number of values and size are retrieved into the parameters
attr_name, data_type, count, and size, respectively.

If the attribute’s name, data type, number of values, or value size are not
needed, the corresponding output parameters can be set to NULL.

The valid value attr_index range from 0 to the total number of attributes
attached to a vgroup - 1. The number of vgroup attributes can be obtained
using Vnattrs.

Note If working with files created by HDF Version 4.0 Release 2 and before (circa
July 1996,) users might consider using Vattrinfo2 instead.

FORTRAN integer function vfainfo(vgroup_id, attr_index, attr_name,
data_type, count, size)

integer vgroup_id, attr_index, data_type, count, size

character*(*) attr_name
June 2017 168

The HDF Group Table of Contents Vattrinfo2
Vattrinfo2

intn Vattrinfo2(int32 vgroup_id, intn attr_index, char *attr_name, int32 *data_type, int32 *count, int32
*size, int32 *nfields, uint16 *refnum)

vgroup_id IN: Vgroup identifier returned by Vattach

attr_index IN: Index of the attribute

attr_name OUT: Name of the attribute

data_type OUT: Data type of the attribute

count OUT: Number of values in the attribute

size OUT: Size, in bytes, of the attribute values

nfields OUT: Number of fields in the attribute vdata

refnum OUT: Reference number of the attribute vdata

Purpose Retrieves information of an attribute assigned to a vgroup (either new or old
style attribute.)

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vattrinfo2 is an updated version of Vattrinfo. Beside retrieving the name,
datatype, number of values, and value size of an attribute identified by its
index, attr_index, in the vgroup, vgroup_id as Vattrinfo, Vattrinfo2 also
provides the reference number of and the number of fields in the vdata that
represents the attribute.

There are two types of attributes for vgroups; those created by Vsetattr (new
style) and those created by non-Vsetattr approaches (old style.) Please refer to
the Appendix A, Attributes in HDF, for details.

Vattrinfo2 can access both types of attributes, while Vattrinfo can only
access the new-style attributes.

Applications that anticipate to access files that were created by HDF Version
4.0 Release 2 and before (circa July 1996,) should use Vattrinfo2 together
with Vnattrs2 and Vgetattr2 in order to access the old-style attributes, if they
exist and are desired. Note that, when a vgroup has both types of attributes, the
old-style attributes will precede the new ones, regardless of which order they
were created.

If the attribute’s name, data type, number of values, or value size are not
needed, the corresponding output parameters can be set to NULL.
169 June 2017

Vattrinfo2 Table of Contents HDF Reference Manual
The valid value attr_index range from 0 to the total number of attributes
attached to a vgroup - 1. The number of vgroup attributes can be obtained
using Vnattrs2.

The two last parameters, nfields and refnum, were added to this function to
support the HDF4 File Content Project. The parameter nfields is the number of
fields in the vdata. The H4 Mapwriter uses this value to ensure that the vdata
represents an attribute, that is, when the vdata has only 1 field. The parameter
refnum is to give the Mapwriter the reference number of this attribute vdata. In
general, they are irrelevant to other applications, which should simply pass in
NULL for these parameters.

FORTRAN Currently unavailable
June 2017 170

The HDF Group Table of Contents Vdelete/vdelete
Vdelete/vdelete

int32 Vdelete(int32 file_id, int32 vgroup_ref)

file_id IN: File identifier returned by Hopen

vgroup_ref IN: Vgroup reference number returned by Vattach

Purpose Remove a vgroup from a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) if not successful.

Description Vdelete removes the vgroup identified by the parameter vgroup_ref from the
file identified by the parameter file_id.

This routine will remove the vgroup from the internal data structures and from
the file.

FORTRAN integer function vdelete(file_id, vgroup_ref)

integer file_id, vgroup_ref
171 June 2017

Vdeletetagref/vfdtr Table of Contents HDF Reference Manual
Vdeletetagref/vfdtr

int32 Vdeletetagref(int32 vgroup_id, int32 tag, int32 ref)

vgroup_id IN: Vgroup identifier returned by Vattach

tag IN: Tag of the object

ref IN: Reference number of the object

Purpose Deletes an object from a vgroup.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) if not successful or the
given tag/reference number pair is not found in the vgroup.

Description Vdeletetagref deletes the object specified by the parameters tag and ref from
the vgroup identified by the parameter vgroup_id. Vinqtagref should be used
to check if the tag/reference number pair exists before calling this routine.

If duplicate tag/reference number pairs are found in the vgroup, Vdeletetagref
deletes the first occurrence. Vinqtagref should be used to determine if
duplicate tag/reference number pairs exist in the vgroup.

FORTRAN integer function vfdtr(vgroup_id, tag, ref)

integer vgroup_id, tag, ref
June 2017 172

The HDF Group Table of Contents Vdetach/vfdtch
Vdetach/vfdtch

int32 Vdetach(int32 vgroup_id)

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Terminates access to a vgroup.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vdetach detaches the currently-attached vgroup identified by vgroup_id and
terminates access to that vgroup.

All space associated with the vgroup, vgroup_id, will be freed. Each attached
vgroup must be detached by calling this routine before the file is closed.
Vdetach also updates the vgroup information in the HDF file if any changes
occur. The identifier vgroup_id should not be used after the vgroup is
detached.

FORTRAN integer function vfdtch(vgroup_id)

integer vgroup_id
173 June 2017

Vend/vfend Table of Contents HDF Reference Manual
Vend/vfend

intn Vend(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Terminates access to a vgroup and/or vdata interface.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vend terminates access to the vgroup and/or vdata interfaces initiated by
Vstart and all internal data structures allocated by Vstart.

Vend must be called after all vdata and vgroup operations on the file file_id are
completed. Further attempts to use vdata or vgroup routines after calling Vend
will result in a FAIL (or -1) being returned.

FORTRAN integer function vfend(file_id)

integer file_id
June 2017 174

The HDF Group Table of Contents Vfind/vfind
Vfind/vfind

int32 Vfind(int32 file_id, char *vgroup_name)

file_id IN: File identifier returned by Hopen

vgroup_name IN: Name of the vgroup

Purpose Returns the reference number of a vgroup given its name.

Return value Returns the reference number of the vgroup if successful and 0 otherwise.

Description Vfind searches the file identified by the parameter file_id for a vgroup with the
name specified by the parameter vgroup_name, and returns the corresponding
reference number.

If more than one vgroup has the same name, Vfind will return the reference
number of the first one.

FORTRAN integer function vfind(file_id, vgroup_name)

integer file_id

character*(*) vgroup_name
175 June 2017

Vfindattr/vffdatt Table of Contents HDF Reference Manual
Vfindattr/vffdatt

intn Vfindattr(int32 vgroup_id, char *attr_name)

vgroup_id IN: Vgroup identifier returned by Vattach

attr_name IN: Name of the attribute

Purpose Returns the index of a vgroup attribute given its name.

Return value Returns the index of an attribute if successful and FAIL (or -1) otherwise.

Description Vfindattr searches the vgroup identified by the parameter vgroup_id for the
attribute with the name specified by the parameter attr_name, and returns the
index of that attribute.

If more than one attribute has the same name, Vfindattr will return the index
of the first one.

FORTRAN integer function vffdatt(vgroup_id, attr_name)

integer vgroup_id

character*(*) attr_name
June 2017 176

The HDF Group Table of Contents Vfindclass/vfndcls
Vfindclass/vfndcls

int32 Vfindclass(int32 file_id, char *vgroup_class)

file_id IN: File identifier returned by Hopen

vgroup_class IN: Class name of the vgroup

Purpose Returns the reference number of a vgroup specified by its class name.

Return value Returns the reference number of the vgroup if successful and 0 otherwise.

Description Vfindclass searches the file identified by the parameter file_id for the vgroup
with the class name specified by the parameter vgroup_class, and returns the
reference number of that vgroup.

If more than one vgroup has the same class name, Vfindclass will return the
reference number of the first one.

FORTRAN integer function vfndcls(file_id, vgroup_class)

integer file_id

character*(*) vgroup_class
177 June 2017

Vflocate/vffloc Table of Contents HDF Reference Manual
Vflocate/vffloc

int32 Vflocate(int32 vgroup_id, char *field_name)

vgroup_id IN: Vgroup identifier returned by Vattach

field_name_list IN: List of field names

Purpose Locates a vdata in a vgroup given a list of field names.

Return value Returns the reference number of the vdata if successful and FAIL (or -1)
otherwise.

Description Vflocate searches the vgroup identified by the parameter vgroup_id for a vdata
that contains all of the fields listed in the parameter field_name_list. If that
vdata is found, Vflocate will return its reference number.

FORTRAN integer function vffloc(vgroup_id, field_name)

integer vgroup_id

character*(*) field_name
June 2017 178

The HDF Group Table of Contents Vgetattdatainfo
Vgetattdatainfo

intn Vgetattdatainfo(int32 vg_id, intn attr_index, int32 *offset, int32 *length)

vgroup_id IN: Vgroup identifier returned by Vattach

attr_index IN: Index of the inquired attribute

offset OUT: Buffer to hold offset of the attribute’s data

length OUT: Buffer to hold length of the attribute’s data

Purpose Retrieves location and size of attribute's data.

Return value Returns the number of data blocks retrieved, which should be 1, if successful,
and FAIL (or -1) otherwise.

Description Vgetattdatainfo retrieves the offset and length of the data that belongs to the
attribute attr_index, which is attached to the vgroup vg_id. The buffers offset
and length must not be NULL.

There are two types of attributes for vgroups; those created by Vsetattr (new
style) and those created by non-Vsetattr approaches (old style.) Please refer to
the section about Vnattrs and Vnattrs2 in the HDF User’s Guide for details.
Vgetattdatainfo can access either type of attributes. Note that, when a vgroup
has both types of attributes, the old-style attributes will preceed the new ones,
regardless of when they were created. Applications should use Vnattrs2
instead of Vnattrs in order to include both types.

attr_index must be non-negative and smaller than the value returned by
Vnattrs or Vnattrs2, depending on which was called.

FORTRAN Currently unavailable
179 June 2017

Vgetattr/vfgnatt/vfgcatt Table of Contents HDF Reference Manual
Vgetattr/vfgnatt/vfgcatt

intn Vgetattr(int32 vgroup_id, intn attr_index, VOIDP attr_values)

vgroup_id IN: Vgroup identifier returned by Vattach

attr_index IN: Index of the attribute

attr_values OUT: Buffer for the attribute values

Purpose Retrieves the values of a vgroup attribute.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vgetattr retrieves the values of the attribute identified by its index, attr_index,
into the buffer attr_values for the vgroup identified by the parameter
vgroup_id.

The valid values of the parameter attr_index range from 0 to the total number
of vgroup attributes - 1. The total number of attributes can be obtained using
Vnattrs. To determine the amount of memory sufficient to hold the attribute
values, the user can obtain the number of attribute values and the attribute
value size using Vattrinfo.

Note If working with files created by HDF Version 4.0 Release 2 and before (circa
July 1996,) users might consider using Vgetattr2 instead.

FORTRAN integer function vfgnatt(vgroup_id, attr_index, attr_values)

integer vgroup_id, attr_index

<valid numeric data type> attr_values

integer function vfgcatt(vgroup_id, attr_index, attr_values)

integer vgroup_id, attr_index

character*(*) attr_values
June 2017 180

The HDF Group Table of Contents Vgetattr2
Vgetattr2

intn Vgetattr2(int32 vgroup_id, intn attr_index, VOIDP attr_values)

vgroup_id IN: Vgroup identifier returned by Vattach

attr_index IN: Index of the attribute

attr_values OUT: Buffer for the attribute values

Purpose Retrieves the values of a vgroup attribute (either new or old style.)

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vgetattr2 is an updated version of Vgetattr. As Vgetattr, Vgetattr2
retrieves the values of the attribute identified by its index, attr_index, into the
buffer attr_values for the vgroup identified by the parameter vgroup_id.

There are two types of attributes for vgroups; those created by Vsetattr (new
style) and those created by non-Vsetattr approaches (old style.) Please refer to
the section about Vnattrs and Vnattrs2 in the HDF User’s Guide for details.

Vgetattr2 can access both types of attributes, while Vgetattr can only access
the new-style attributes.

Applications that anticipate to access files that were created by HDF Version
4.0 Release 2 and before (circa July 1996,) should use Vgetattr2 together with
Vnattrs2 and Vattrinfo2 in order to access the old-style attributes if they exist
and are desired. Note that, when a vgroup has both types of attributes, the old-
style attributes will precede the new ones, regardless of which order they were
created.

The valid values of the parameter attr_index range from 0 to the total number
of vgroup attributes - 1. The total number of attributes can be obtained using
Vnattrs2. To determine the amount of memory sufficient to hold the attribute
values, the user can obtain the number of attribute values and the attribute
value size using Vattrinfo2.

FORTRAN Currently unavailable
181 June 2017

Vgetclass/vfgcls Table of Contents HDF Reference Manual
Vgetclass/vfgcls

int32 Vgetclass(int32 vgroup_id, char *vgroup_class)

vgroup_id IN: Vgroup identifier returned by Vattach

vgroup_class OUT: Class name of the vgroup

Purpose Retrieves the class name of a vgroup.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vgetclass retrieves the class name of the vgroup identified by the parameter
vgroup_id in the buffer vgroup_class.

Starting from release 4.2r5, the maximum length of vgroup’s class name is no
longer limited to VGNAMELENMAX (or 64). When an application attempts to read
a vgroup’s class name that is longer than 64 characters with an insufficient
buffer, the result will be unpredictable. Applications can use
Vgetclassnamelen to get the length of the vgroup’s class name prior to calling
Vgetclass.

FORTRAN integer function vfgcls(vgroup_id, vgroup_class)

integer vgroup_id

character*(*) vgroup_class
June 2017 182

The HDF Group Table of Contents Vgetclassnamelen
Vgetclassnamelen

int32 Vgetclassnamelen(int32 vgroup_id, uint16 *classname_len)

vgroup_id IN: Vgroup identifier returned by Vattach

classname_len OUT: Length of the vgroup’s class name

Purpose Retrieves the length of a vgroup’s class name.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vgetclassnamelen retrieves the length of a vgroup’s class name into
classname_len. The vgroup is identified by the parameter vgroup_id.

FORTRAN Currently unavailable
183 June 2017

Vgetid/vfgid Table of Contents HDF Reference Manual
Vgetid/vfgid

int32 Vgetid(int32 file_id, int32 vgroup_ref)

file_id IN: File identifier returned by Hopen

vgroup_ref IN: Reference number of the current vgroup

Purpose Returns the reference number of the next vgroup.

Return value Returns the reference number of the next vgroup if successful and FAIL (or -1)
otherwise.

Description Vgetid sequentially searches the file identified by the parameter file_id and
returns the reference number of the vgroup following the vgroup that has the
reference number specified by the parameter vgroup_ref.

The search is initiated by calling this routine with a vgroup_ref value of -1.
This will return the reference number of the first vgroup in the file. Searching
past the last vgroup in the file will cause Vgetid to return FAIL (or -1).

FORTRAN integer function vfgid(file_id, vgroup_ref)

integer file_id, vgroup_ref
June 2017 184

The HDF Group Table of Contents Vgetname/vfgnam
Vgetname/vfgnam

int32 Vgetname(int32 vgroup_id, char *vgroup_name)

vgroup_id IN: Vgroup identifier returned by Vattach

vgroup_name OUT: Name of the vgroup

Purpose Retrieves the name of a vgroup.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vgetname retrieves the name of the vgroup identified by the parameter
vgroup_id into the buffer vgroup_name.

Starting from release 4.2r5, the maximum length of vgroup’s name is no longer
limited to VGNAMELENMAX (or 64). When an application attempts to read a
vgroup’s name that is longer than 64 characters with an insufficient buffer, the
result will be unpredictable. Applications can use Vgetnamelen to get the
length of the vgroup’s name prior to calling Vgetname.

FORTRAN integer function vfgnam(vgroup_id, vgroup_name)

integer vgroup_id

character*(*) vgroup_name
185 June 2017

Vgetnamelen Table of Contents HDF Reference Manual
Vgetnamelen

int32 Vgetnamelen(int32 vgroup_id, uint16 *name_len)

vgroup_id IN: Vgroup identifier returned by Vattach

name_len OUT: Length of the vgroup’s name

Purpose Retrieves the length of a vgroup’s name.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vgetnamelen retrieves the length of a vgroup’s name into name_len. The
vgroup is identified by the parameter vgroup_id into the buffer.

FORTRAN Currently unavailable
June 2017 186

The HDF Group Table of Contents Vgetnext/vfgnxt
Vgetnext/vfgnxt

int32 Vgetnext(int32 vgroup_id, int32 v_ref)

vgroup_id IN: Vgroup identifier returned by Vattach

v_ref IN: Reference number of the vgroup or vdata

Purpose Gets the reference number of the next member (vgroup or vdata only) of a
vgroup.

Return value Returns the reference number of the vgroup or vdata if successful and FAIL (or
-1) otherwise.

Description Vgetnext searches in the vgroup identified by the parameter vgroup_id for the
object following the object specified by its reference number v_ref. Either of
the two objects can be a vgroup or a vdata. If v_ref is set to -1, the routine will
return the reference number of the first vgroup or vdata in the vgroup.

Note that this routine only gets a vgroup or a vdata in a vgroup. Vgettagrefs
gets any object in a vgroup.

FORTRAN integer function vfgnxt(vgroup_id, v_ref)

integer vgroup_id, v_ref
187 June 2017

Vgettagref/vfgttr Table of Contents HDF Reference Manual
Vgettagref/vfgttr

intn Vgettagref(int32 vgroup_id, int32 index, int32 *tag, int32 *ref)

vgroup_id IN: Vgroup identifier returned by Vattach

index IN: Index of the object in the vgroup

tag OUT: Tag of the object

ref OUT: Reference number of the object

Purpose Retrieves the tag/reference number pair of an object given its index within a
vgroup.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vgettagref retrieves the tag/reference number pair of the object specified by
its index, index, within the vgroup identified by the parameter vgroup_id. Note
that this routine is different from Vgettagrefs, which retrieves the tag/
reference number pairs of a number of objects.

The valid values of index range from 0 to the total number of objects in the
vgroup - 1. The total number of objects in the vgroup can be obtained using
Vinquire.

The tag is stored in the buffer tag and the reference number is stored in the
buffer ref.

FORTRAN integer function vfgttr(vgroup_id, index, tag, ref)

integer vgroup_id, index

integer tag, ref
June 2017 188

The HDF Group Table of Contents Vgettagrefs/vfgttrs
Vgettagrefs/vfgttrs

int32 Vgettagrefs(int32 vgroup_id, int32 tag_array[], int32 ref_array[], int32 num_of_pairs)

vgroup_id IN: Vgroup identifier returned by Vattach

tag_array OUT: Array of tags

ref_array OUT: Array of reference numbers

num_of_pairs IN: Number of tag/reference number pairs

Purpose Retrieves the tag/reference number pairs of the HDF objects belonging to a
vgroup.

Return value Returns the number of tag/reference number pairs obtained from a vgroup if
successful and FAIL (or -1) otherwise.

Description Vgettagrefs retrieves at most num_of_pairs number of tag/reference number
pairs belonging to the vgroup, vgroup_id, and stores them in the buffers
tag_array and ref_array.

The input parameter num_of_pairs specifies the maximum number of tag/
reference number pairs to be returned. The size of the arrays, tag_array and
ref_array, must be at least num_of_pairs.

FORTRAN integer function vfgttrs(vgroup_id, tag_array, ref_array,
num_of_pairs)

integer vgroup_id, num_of_pairs

integer tag_array(*), ref_array(*)
189 June 2017

Vgetversion/vfgver Table of Contents HDF Reference Manual
Vgetversion/vfgver

int32 Vgetversion(int32 vgroup_id)

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Gets the version of a vgroup.

Return value Returns the vgroup version number if successful, and FAIL (or -1) otherwise.

Description Vgetversion returns the version number of the vgroup identified by the
parameter vgroup_id. There are three valid version numbers:
VSET_OLD_VERSION (or 2), VSET_VERSION (or 3), and VSET_NEW_VERSION (or
4).

VSET_OLD_VERSION is returned when the vgroup is of a version that
corresponds to an HDF library version before version 3.2.

VSET_VERSION is returned when the vgroup is of a version that corresponds to
an HDF library version between versions 3.2 and 4.0 release 2.

VSET_NEW_VERSION is returned when the vgroup is of the version that
corresponds to an HDF library version of version 4.1 release 1 or higher.

FORTRAN integer function vfgver(vgroup_id)

integer vgroup_id
June 2017 190

The HDF Group Table of Contents Vgetvgroups/vfgvgroups
Vgetvgroups/vfgvgroups

intn Vgetvgroups(int32 id, uintn start_vg, uintn vg_count, uint16 *refarray)

id IN: File identifier returned by Hopen or vgroup identifier returned by
Vattach

start_vg IN: Vgroup index to start retrieving at

vg_count IN: Number of vgroups to be retrieved

refarray OUT: Array to hold reference numbers of retrieved vgroups

Purpose Retrieves reference numbers of vgroups in a file or in a vgroup.

Return value Returns the actual number of vgroups retrieved if successful, and FAIL (-1)
otherwise.

Description Vgetvgroups retrieves a list containing the reference numbers of vgroups
found in a file or immediately under a vgroup. The file or the vgroup is
specified by id.

The retrieved vgroups will be the ones that were previously created by user
applications, not including those that were created by the library internally.
They are referred to as user-created vgroups, for brevity.

The retrieval starts at the vgroup number start_vg going forward in the order
which the vgroups were created. For example, if there are 100 vgroups that
can be retrieved, specifying start_vg as 90 and vg_count as 10 will retrieve the
last ten vgroups. The value for start_vg must be non-negative and smaller than
or equal to the number of user-created vgroups, which can be obtained by
invoking Vgetvgroups passing in NULL for the array refarray. This number of
user-created vgroups will also allow applications to sufficiently allocate space
for refarray.

When start_vg is 0, the retrieval will start at the beginning of the file or the
first sub-vgroup of the specified vgroup.

When start_vg is smaller than the number of user-created vgroups in the
file or the specified vgroup, Vgetvgroups will start retrieving vgroups
from the vgroup number start_vg.

When start_vg is greater than the number of user-created vgroups in the
file or the vgroup, Vgetvgroups will return FAIL.

The parameter vg_count specifies the number of items that the list refarray can
hold. When id is a vgroup identifier, only the immediate sub-vgroups will be
retrieved; that is, the sub-vgroups will not be traversed.

FORTRAN integer function vfgvgroups(id, start_vg, vg_count, refarray)

integer id, start_vg, vg_count

integer refarray(*)
191 June 2017

Vgisinternal Table of Contents HDF Reference Manual
Vgisinternal

intn Vgisinternal(int32 vgroup_id)

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Determine if a vgroup was created by the library internally.

Return value Returns TRUE (1) if the inquired vgroup is one that was internally created by the
library, FALSE (0) otherwise, and FAIL (-1) if failure occurs.

Description Vgisinternal checks the class name of the given vgroup against the list
HDF_INTERNAL_VGS to determine whether the vgroup was previously created by
the library instead of by a user application.

The names in HDF_INTERNAL_VGS are:
_HDF_VARIABLE ("Var0.0")
_HDF_DIMENSION ("Dim0.0")
_HDF_UDIMENSION ("UDim0.0")
_HDF_CDF ("CDF0.0")
GR_NAME ("RIG0.0")
RI_NAME ("RI0.0")

Note There is one special case where an internal vgroup having a null class name
and a name as GR_NAME. This should be extremely rare, yet it is a possibility.

FORTRAN Currently unavailable
June 2017 192

The HDF Group Table of Contents Vinqtagref/vfinqtr
Vinqtagref/vfinqtr

intn Vinqtagref(int32 vgroup_id, int32 tag, int32 ref)

vgroup_id IN: Vgroup identifier returned by Vattach

tag IN: Tag of the object

ref IN: Reference number of the object

Purpose Checks whether an object belongs to a vgroup.

Return value Returns TRUE (or 1) if the object belongs to the vgroup, and FALSE (or 0)
otherwise.

Description Vinqtagref checks if the object identified by its tag, tag, and its reference
number, ref, belongs to the vgroup identified by the parameter vgroup_id.

FORTRAN integer function vfinqtr(vgroup_id, tag, ref)

integer vgroup_id, tag, ref
193 June 2017

Vinquire/vfinq Table of Contents HDF Reference Manual
Vinquire/vfinq

intn Vinquire(int32 vgroup_id, int32 *n_entries, char *vgroup_name)

vgroup_id IN: Vgroup identifier returned by Vattach

n_entries OUT: Number of entries in a vgroup

vgroup_name OUT: Name of a vgroup

Purpose Retrieves the number of entries in a vgroup and its name.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vinquire retrieves the name of and the number of entries in the vgroup
identified by the parameter vgroup_id into the buffer vgroup_name and the
parameter n_entries, respectively.

The maximum length of the vgroup name is defined by VGNAMELENMAX (or 64).

FORTRAN integer function vfinq(vgroup_id, n_entries, vgroup_name)

integer vgroup_id, n_entries

character*(*) vgroup_name
June 2017 194

The HDF Group Table of Contents Vinsert/vfinsrt
Vinsert/vfinsrt

int32 Vinsert(int32 vgroup_id, int32 v_id)

vgroup_id IN: Vgroup identifier returned by Vattach

v_id IN: Identifier of the vdata or vgroup

Purpose Inserts a vdata or vgroup into a vgroup.

Return value Returns the position (index) of the inserted element within the vgroup if
successful and FAIL (or -1) otherwise.

Description Vinsert inserts the vdata or vgroup identified by the parameter v_id into the
vgroup identified by the parameter vgroup_id.

Essentially, Vinsert only inserts a vgroup or vdata. To insert any objects into a
vgroup, use Vaddtagref.

The returned value, index, is either 0 or a positive value, which indicates the
position of the inserted element in the vgroup.

FORTRAN integer function vfinsrt(vgroup_id, v_id)

integer vgroup_id, v_id
195 June 2017

Visvg/vfisvg Table of Contents HDF Reference Manual
Visvg/vfisvg

intn Visvg(int32 vgroup_id, int32 obj_ref)

vgroup_id IN: Vgroup identifier returned by Vattach

obj_ref IN: Reference number of the object

Purpose Determines whether an element of a vgroup is a vgroup and a member of
another vgroup.

Return value Returns TRUE (or 1) if the object is a vgroup and FALSE (or 0) otherwise.

Description Visvg determines if the object specified by the reference number, obj_ref, is a
vgroup within the vgroup identified by the parameter vgroup_id.

FORTRAN integer function vfisvg(vgroup_id, obj_ref)

integer vgroup_id, obj_ref
June 2017 196

The HDF Group Table of Contents Visvs/vfisvs
Visvs/vfisvs

intn Visvs(int32 vgroup_id, int32 obj_ref)

vgroup_id IN: Vgroup identifier returned by Vattach

obj_ref IN: Reference number of the object

Purpose Determines whether a data object is a vdata within a vgroup.

Return value Returns TRUE (or 1) if the object is a vdata and FALSE (or 0) otherwise.

Description Visvs determines if the object specified by the reference number, obj_ref, is a
vdata within the vgroup identified by the parameter vgroup_id.

FORTRAN integer function vfisvs(vgroup_id, obj_ref)

integer vgroup_id, obj_ref
197 June 2017

Vlone/vflone Table of Contents HDF Reference Manual
Vlone/vflone

int32 Vlone(int32 file_id, int32 ref_array[], int32 max_refs)

file_id IN: File identifier returned by Hopen

ref_array OUT: Array of reference numbers

max_refs IN: Maximum number of lone vgroups to be retrieved

Purpose Retrieves the reference numbers of lone vgroups, i.e., vgroups that are at the
top of the grouping hierarchy, in a file.

Return value Returns the total number of lone vgroups if successful and FAIL (or -1)
otherwise.

Description Vlone retrieves the reference numbers of lone vgroups in the file identified by
the parameter file_id. Although Vlone returns the total number of lone
vgroups in the file, only at most max_refs reference numbers are retrieved and
stored in the buffer ref_array. The array must have at least max_refs elements.

An array size of 65,000 integers for ref_array is more than adequate if the user
chooses to declare the array statically. However, the preferred method is to
dynamically allocate memory instead; first call Vlone with a value of 0 for
max_refs, and then use the returned value to allocate memory for ref_array
before calling Vlone again.

FORTRAN integer function vflone(file_id, ref_array, max_refs)

integer file_id, ref_array(*), max_refs
June 2017 198

The HDF Group Table of Contents Vnattrs/vfnatts
Vnattrs/vfnatts

intn Vnattrs(int32 vgroup_id)

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Returns the number of attributes assigned to a vgroup.

Return value Returns the total number of attributes assigned to the specified vgroups if
successful and FAIL (or -1) otherwise.

Description Vnattrs gets the number of attributes assigned to the vgroup identified by the
parameter vgroup_id.

Note If working with files created by HDF Version 4.0 Release 2 and before (circa
July 1996,) users may consider using Vnattrs2 instead.

This is because there are two types of attributes for vgroups; those created by
Vsetattr (new style) and those created by non-Vsetattr approaches (old style.)
The number of attributes returned by Vnattrs will not include the old style
attributes. Please refer to the section about Vnattrs and Vnattrs2 in the HDF
User’s Guide for details about the old style attributes.

FORTRAN integer function vfnatts(vgroup_id)

integer vgroup_id
199 June 2017

Vnattrs2 Table of Contents HDF Reference Manual
Vnattrs2

intn Vnattrs2(int32 vgroup_id)

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Returns the number of new- and old-style attributes assigned to a vgroup.

Return value Returns the total number of attributes assigned to the specified vgroups if
successful and FAIL (or -1) otherwise.

Description Vnattrs2 is an updated version of Vnattrs.

There are two types of attributes for vgroups; those created by Vsetattr (new
style) and those created by non-Vsetattr approaches (old style.) Please refer to
the section about Vnattrs and Vnattrs2 in the HDF User’s Guide for details.

Vnattrs2 gets the number of both types of attributes assigned to the vgroup
identified by the parameter vgroup_id.

Applications that anticipate to access files that were created by HDF Version
4.0 Release 2 and before (circa July 1996,) should use Vnattrs2 instead of
Vnattrs in order to include the old-style attributes if they exist and are desired.

FORTRAN Currently unavailable
June 2017 200

The HDF Group Table of Contents Vnrefs/vnrefs
Vnrefs/vnrefs

int32 Vnrefs(int32 vgroup_id, int32 tag_type)

vgroup_id IN: Vgroup identifier returned by Vattach

tag_type IN: Type of the tag

Purpose Returns the number of tags of a given tag type in a vgroup.

Return value Returns 0 or the total number of tags if successful and FAIL (or -1) otherwise.

Description Vnrefs returns 0 or the number of tags having the type specified by the
parameter tag_type in the vgroup identified by the parameter vgroup_id.

See Appendix A, Reserved HDF Tags, in the HDF User’s Guide, for a
discussion of tag types.

FORTRAN integer function vnrefs(vgroup_id, tag_type)

integer vgroup_id, tag_type
201 June 2017

Vntagrefs/vfntr Table of Contents HDF Reference Manual
Vntagrefs/vfntr

int32 Vntagrefs(int32 vgroup_id)

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Returns the number of objects in a vgroup.

Return value Returns 0 or a positive number representing the number of HDF objects linked
to the vgroup if successful or FAIL (or -1) otherwise.

Description Vntagrefs returns the number of objects in a vgroup identified by the
parameter vgroup_id.

Vntagrefs is used together with Vgettagrefs, or with Vgettagref to look at the
data objects linked to a given vgroup.

FORTRAN integer function vfntr(vgroup_id)

integer vgroup_id
June 2017 202

The HDF Group Table of Contents Vsetattr/vfsnatt/vfscatt
Vsetattr/vfsnatt/vfscatt

intn Vsetattr(int32 vgroup_id, char *attr_name, int32 data_type, int32 count, VOIDP values)

vgroup_id IN: Vgroup identifier returned by Vattach

attr_name IN: Name of the attribute

data_type IN: Data type of the attribute

count IN: Number of values the attribute contains

values IN: Buffer containing the attribute values

Purpose Attaches an attribute to a vgroup.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vsetattr attaches an attribute to the vgroup identified by the parameter
vgroup_id. The attribute name is specified by the parameter attr_name and the
attribute data type is specified by the parameter data_type. The values of the
attribute are specified by the parameter values, and the number of values in the
attribute is specified by the parameter count. Refer to Table 1A in Section I of
this manual for a listing of all valid data types.

If the attribute already exists, the new values will replace the current ones,
provided the data type and the number of attribute values have not been
changed. If either the data type or the order have been changed, Vsetattr will
return FAIL (or -1).

FORTRAN integer vfsnatt(vgroup_id, attr_name, data_type, count, values)

integer vgroup_id, data_type, count

<valid numeric data type> values(*)

character*(*) attr_name

integer vfscatt(vgroup_id, attr_name, data_type, count, values)

integer vgroup_id, data_type, count

character*(*) attr_name, values(*)
203 June 2017

Vsetclass/vfscls Table of Contents HDF Reference Manual
Vsetclass/vfscls

int32 Vsetclass(int32 vgroup_id, char *vgroup_class)

vgroup_id IN: Vgroup identifier returned by Vattach

vgroup_class IN: Class name of a vgroup

Purpose Sets the class name of a vgroup.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vsetclass sets the class name specified by the parameter vgroup_class to the
vgroup identified by the parameter vgroup_id.

A vgroup initially has a class name of NULL. The class name may be set more
than once. Class names, like vgroup names, can be of any character strings.
They exist solely as meaningful labels for user applications and the library
does not check for uniqueness.

Starting from release 4.2r5, the maximum length of vgroup’s class name is no
longer limited to VGNAMELENMAX (or 64).

FORTRAN integer function vfscls(vgroup_id, vgroup_class)

integer vgroup_id

character*(*) vgroup_class
June 2017 204

The HDF Group Table of Contents Vsetname/vfsnam
Vsetname/vfsnam

int32 Vsetname(int32 vgroup_id, char *vgroup_name)

vgroup_id IN: Vgroup identifier returned by Vattach

vgroup_name IN: Name of a vgroup

Purpose Sets the name of a vgroup.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vsetname sets the name specified by the parameter vgroup_name for the
vgroup identified by the parameter vgroup_id.

A vgroup initially has a name of NULL, and may be renamed more than once
during the scope of the vgroup identifier (vgroup_id). Note that the routine
does not check for uniqueness of vgroup names.

Vgroup names are optional, but recommended. They serve as meaningful
labels for user applications. If used, they should be unique.

Starting from release 4.2r4, the maximum length of vgroup’s name is no longer
limited to VGNAMELENMAX (or 64.)

FORTRAN integer function vfsnam(vgroup_id, vgroup_name)

integer vgroup_id

character*(*) vgroup_name
205 June 2017

Vstart/vfstart Table of Contents HDF Reference Manual
Vstart/vfstart

intn Vstart(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Initializes the vdata and/or vgroup interface.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vstart initializes the vdata and/or vgroup interfaces for the file identified by
the parameter file_id.

Vstart must be called before any vdata or vgroup operation is attempted on an
HDF file. Vstart must be called once for each file involved in the operation.

FORTRAN integer function vfstart(file_id)

integer file_id
June 2017 206

The HDF Group Table of Contents VHmakegroup/vhfmkgp
VHmakegroup/vhfmkgp

int32 VHmakegroup(int32 file_id, int32 tag_array[], int32 ref_array[], int32 n_objects, char
*vgroup_name, char *vgroup_class)

file_id IN: File identifier returned by Hopen

tag_array IN: Array of tags

ref_array IN: Array of reference numbers

n_objects IN: Number of data objects to be stored

vgroup_name IN: Name of the vgroup

vgroup_class IN: Class of the vgroup

Purpose Creates a vgroup.

Return value Returns the reference number of the newly-created vgroup if successful, FAIL
(or -1) otherwise.

Description VHmakegroup creates a vgroup with the name specified by the parameter
vgroup_name and the class name specified by the parameter vgroup_class in
the file identified by the parameter file_id. The routine inserts n_objects
objects into the vgroup. The tag and reference numbers of the objects to be
inserted are specified in the arrays tag_array and ref_array.

Creating empty vgroups with VHmakegroup is allowed. VHmakegroup does
not check if the tag/reference number pair is valid, or if the corresponding data
object exists. However, all of the tag/reference number pairs must be unique.

Vstart must precede any calls to VHmakegroup. It is not necessary, however,
to call Vattach or Vdetach in conjunction with VHmakegroup.

The elements in the arrays tag_array and ref_array are the matching tag/
reference number pairs of the objects to be inserted, that means tag_array[0]
and ref_array[0] refer to one data object, and tag_array[1] and ref_array[1] to
another, etc.

FORTRAN integer function vhfmkgp(file_id, tag_array, ref_array, n_objects,
vgroup_name, vgroup_class)

integer file_id, n_objects

character*(*) vgroup_name, vgroup_class

integer tag_array(*), ref_array(*)
207 June 2017

VQueryref/vqref Table of Contents HDF Reference Manual
VQueryref/vqref

int32 VQueryref(int32 vgroup_id)

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Returns the reference number of a vgroup.

Return value Returns the reference number if successful, and FAIL (or -1) otherwise.

Description VQueryref returns the reference number of the vgroup identified by the
parameter vgroup_id.

FORTRAN integer function vqref(vgroup_id)

integer vgroup_id
June 2017 208

The HDF Group Table of Contents VQuerytag/vqtag
VQuerytag/vqtag

int32 VQuerytag(int32 vgroup_id)

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Returns the tag of a vgroup.

Return value Returns the tag if successful, and FAIL (or -1) otherwise.

Description VQuerytag returns the tag of the vgroup identified by the parameter
vgroup_id.

FORTRAN integer function vqtag(vgroup_id)

integer vgroup_id
209 June 2017

VFfieldesize/vffesiz Table of Contents HDF Reference Manual
VFfieldesize/vffesiz

int32 VFfieldesize(int32 vdata_id, int32 field_index)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Vdata field index

Purpose Returns the size, as stored on disk, of a vdata field.

Return value Returns the vdata field size if successful and FAIL (or -1) otherwise.

Description VFfieldesize returns the size, as stored on disk, of a vdata field identified by
the parameter field_index in the vdata identified by the parameter vdata_id.

The value of the parameter field_index ranges from 0 to the total number of
fields in the vdata - 1. The number of vdata fields is returned by VFnfields
function.

FORTRAN integer function vffesiz(vdata_id, field_index)

integer vdata_id, field_index
June 2017 212

The HDF Group Table of Contents VFfieldisize/vffisiz
VFfieldisize/vffisiz

int32 VFfieldisize(int32 vdata_id, int32 field_index)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Vdata field index

Purpose Returns the size, as stored in memory, of a vdata field.

Return value Returns the vdata field size if successful and FAIL (or -1) otherwise.

Description VFfieldisize returns the size, as stored in memory, of a vdata field identified
by the parameter field_index in the vdata identified by the parameter vdata_id.

The value of the parameter field_index ranges from 0 to the total number of
fields in the vdata - 1. The number of vdata fields is returned by VFnfields
function.

FORTRAN integer function vffisiz(vdata_id, field_index)

integer vdata_id, field_index
213 June 2017

VFfieldname/vffname Table of Contents HDF Reference Manual
VFfieldname/vffname

char *VFfieldname(int32 vdata_id, int32 field_index)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Vdata field index

Purpose Returns the name of a vdata field.

Return value Returns a pointer to the vdata field name if successful and NULL otherwise. The
FORTRAN-77 version of this routine, vffname, returns SUCCEED (or 0) or FAIL
(or -1).

Description VFfieldname returns the name of the vdata field identified by the parameter
field_index in the vdata identified by the parameter vdata_id.

The value of the parameter field_index ranges from 0 to the total number of
fields in the vdata - 1. The number of vdata fields is returned by VFnfields
function.

The FORTRAN-77 version of this routine, vffname, returns the field name in
the parameter fname.

FORTRAN integer function vffname(vdata_id, field_index, fname)

integer vdata_id, field_index

character*(*) fname
June 2017 214

The HDF Group Table of Contents VFfieldorder/vffordr
VFfieldorder/vffordr

int32 VFfieldorder(int32 vdata_id, int32 field_index)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Vdata field index

Purpose Returns the order of a vdata field.

Return value Returns the order of the field if successful and FAIL (or -1) otherwise.

Description VFfieldorder returns the order of the vdata field identified by its index,
field_index, in the vdata identified by the parameter vdata_id.

The value of the parameter field_index ranges from 0 to the total number of
fields in the vdata - 1. The number of vdata fields is returned by VFnfields
function.

FORTRAN integer function vffordr(vdata_id, field_index)

integer vdata_id, field_index
215 June 2017

VFfieldtype/vfftype Table of Contents HDF Reference Manual
VFfieldtype/vfftype

int32 VFfieldtype(int32 vdata_id, int32 field_index)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Vdata field index

Purpose Returns the data type of a vdata field.

Return value Returns the data type if successful and FAIL (or -1) otherwise.

Description VFfieldtype returns the data type of the vdata field identified by its index,
field_index, in the vdata identified by the parameter vdata_id.

The value of the parameter field_index ranges from 0 to the total number of
fields in the vdata - 1. The number of vdata fields is returned by VFnfields
function.

FORTRAN integer function vfftype(vdata_id, field_index)

integer vdata_id, field_index
June 2017 216

The HDF Group Table of Contents VFnfields/vfnflds
VFnfields/vfnflds

int32 VFnfields(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Returns the total number of fields in a vdata.

Return value Returns the total number of fields if successful and FAIL (or -1) otherwise.

Description VFnfields returns the total number of fields in the vdata identified by the
parameter vdata_id.

FORTRAN integer function vfnflds(vdata_id)

integer vdata_id
217 June 2017

VSQuerycount/vsqfnelt Table of Contents HDF Reference Manual
VSQuerycount/vsqfnelt

intn VSQuerycount(int32 vdata_id, int32 *n_records)

vdata_id IN: Vdata access identifier returned by VSattach

n_records OUT: Number of records in the vdata

Purpose Retrieves the number of records in a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSQuerycount retrieves the number of records in the vdata identified by
vdata_id in the parameter n_records.

FORTRAN integer function vsqfnelt(vdata_id, n_records)

integer vdata_id, n_records
June 2017 276

The HDF Group Table of Contents VSQueryfields/vsqfflds
VSQueryfields/vsqfflds

intn VSQueryfields(int32 vdata_id, char *field_name_list)

vdata_id IN: Vdata access identifier returned by VSattach

field_name_list OUT: List of field names

Purpose Retrieves the names of the fields in a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSQueryfields retrieves the names of the fields in the vdata identified by the
parameter vdata_id into the parameter field_name_list.

The parameter field_name_list is a comma-separated list of the fields in the
vdata. (i.e., “PX,PY,PZ” in C and ’PX,PY,PZ’ in Fortran).

FORTRAN integer function vsqfflds(vdata_id, field_name_list)

integer vdata_id

character*(*) field_name_list
277 June 2017

VSQueryinterlace/vsqfintr Table of Contents HDF Reference Manual
VSQueryinterlace/vsqfintr

intn VSQueryinterlace(int32 vdata_id, int32 *interlace_mode)

vdata_id IN: Vdata identifier returned by VSattach

interlace_mode OUT: Interlace mode

Purpose Retrieves the interlace mode of the vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSQueryinterlace retrieves the interlace mode of the vdata identified by the
parameter vdata_id into the parameter interlace_mode.

Valid values for interlace_mode are FULL_INTERLACE (or 0) and NO_INTERLACE
(or 1).

FORTRAN integer function vsqfintr(vdata_id, interlace_mode)

integer vdata_id, interlace_mode
June 2017 278

The HDF Group Table of Contents VSQueryname/vsqfname
VSQueryname/vsqfname

intn VSQueryname(int32 vdata_id, char *vdata_name)

vdata_id IN: Vdata identifier returned by VSattach

vdata_name OUT: Name of the vdata

Purpose Retrieves the name of a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSQueryname retrieves the name of the vdata identified by the parameter
vdata_id into the buffer vdata_name.

The buffer vdata_name should be set to at least VSNAMELENMAX bytes.
VSNAMELENMAX is defined by the HDF library.

FORTRAN integer function vsqfname(vdata_id, vdata_name)

integer vdata_id

character*(*) vdata_name
279 June 2017

VSQueryref/vsqref Table of Contents HDF Reference Manual
VSQueryref/vsqref

int32 VSQueryref(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Returns the reference number of a vdata.

Return value Returns the reference number of the vdata if successful and FAIL (or -1)
otherwise.

Description VSQueryref returns the reference number of the vdata identified by the
parameter vdata_id.

FORTRAN integer function vsqref(vdata_id)

integer vdata_id
June 2017 280

The HDF Group Table of Contents VSQuerytag/vsqtag
VSQuerytag/vsqtag

int32 VSQuerytag(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Returns the tag of the specified vdata.

Return value Returns the tag of the vdata if successful and FAIL (or -1) otherwise.

Description Returns the tag of the vdata identified by the parameter vdata_id.

FORTRAN integer function vsqtag(vdata_id)

integer vdata_id
281 June 2017

VSQueryvsize/vsqfvsiz Table of Contents HDF Reference Manual
VSQueryvsize/vsqfvsiz

intn VSQueryvsize(int32 vdata_id, int32 *vdata_size)

vdata_id IN: Vdata identifier returned by VSattach

vdata_size OUT: Size of the vdata record

Purpose Retrieves the size of a record in a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSQueryvsize retrieves the size, in bytes, of a record in the vdata identified by
the parameter vdata_id into the parameter vdata_size. The returned size value
is machine dependent.

FORTRAN integer function vsqfvsiz(vdata_id, vdata_size)

integer vdata_id, vdata_size
June 2017 282

The HDF Group Table of Contents VSQueryvsize/vsqfvsiz
283 June 2017

VHstoredata/vhfsd/vhfscd Table of Contents HDF Reference Manual
VHstoredata/vhfsd/vhfscd

int32 VHstoredata(int32 file_id, char *fieldname, uint8 buf[], int32 n_records, int32 data_type, char
*vdata_name, char *vdata_class)

file_id IN: File identifier returned by Hopen

fieldname IN: Field name for the new vdata

buf IN: Buffer containing the records to be stored

n_records IN: Number of records to be stored

data_type IN: Type of data to be stored

vdata_name IN: Name of the vdata to be created

vdata_class IN Class of the vdata to be created

Purpose Creates and writes to a single-field vdata.

Return value Returns reference number of the newly-created vdata if successful, and FAIL
(or -1) otherwise.

Description VHstoredata creates a single-field vdata in the file, file_id, and stores data
from the buffer buf in it. Vdata name, class name and data type are specified by
the parameters vdata_name, vdata_class, and data_type, respectively. Number
of records in a vdata is specified by the parameter n_records. Field name is
specified by the parameter fieldname.

Vstart must precede VHstoredata. It is not necessary, however, to call
VSattach or VSdetach in conjunction with VHstoredata.

This routine provides a high-level method for creating single-order, single-
field vdatas.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (vhfsd) and the other for character data (vhfsdc).

FORTRAN integer function vhfsd(file_id, fieldname, buf, n_records,
data_type, vdata_name, vdata_class)

integer file_id, n_records, data_type

character*(*) vdata_name, vdata_class, fieldname

<valid numeric data type> buf(*)

integer function vhfscd(file_id, fieldname, buf, n_records,
data_type, vdata_name, vdata_class)

integer file_id, n_records, data_type
June 2017 222

The HDF Group Table of Contents VHstoredata/vhfsd/vhfscd
character*(*) vdata_name, vdata_class, fieldname

character*(*) buf
223 June 2017

VHstoredatam/vhfsdm/vhfscdm Table of Contents HDF Reference Manual
VHstoredatam/vhfsdm/vhfscdm

int32 VHstoredatam(int32 file_id, char *fieldname, uint8 buf[], int32 n_records, int32 data_type, char
*vdata_name, char *vdata_class, int32 order)

file_id IN: File identifier returned by Hopen

fieldname IN: Field name

buf IN: Buffer containing the records to be stored

n_records IN: Number of records to be stored

data_type IN: Type of data to be stored

vdata_name IN: Name of the vdata to be created

vdata_class IN: Class of the vdata to be created

order IN: Field order

Purpose Creates and writes to a multi-order, single-field vdata.

Return value Returns the reference number of the newly created vdata if successful, and
FAIL (or -1) otherwise.

Description VHstoredatam creates a vdata with the name specified by the parameter
vdata_name and a class name specified by the parameter vdata_class in the file
identified by the parameter file_id. The data type of the vdata is specified by
the parameter data_type. The vdata contains one field with the name specified
by the parameter fieldname. The order of the field, order, indicates the number
of vdata values stored per field. The vdata contains the number of records
specified by the parameter n_records. The buf parameter should contain
n_records records that will be stored in the vdata.

Vstart must precede VHstoredatam. It is not necessary, however, to call
VSattach or VSdetach in conjunction with VHstoredatam.

This routine provides a high-level method for creating multi-order, single-field
vdatas.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (vhfsdm) and the other for character data (vhfscdm).

FORTRAN integer function vhfsdm(file_id, fieldname, buf, n_records,

integer file_id, n_records, data_type, order

character*(*) vdata_name, vdata_class, fieldname

<valid numeric data type> buf(*)

integer function vhfscdm(file_id, fieldname, buf, n_records,
data_type, vdata_name, vdata_class, order)
June 2017 224

The HDF Group Table of Contents VHstoredatam/vhfsdm/vhfscdm
integer file_id, n_records, data_type, order

character*(*) vdata_name, vdata_class, fieldname

character*(*) buf
225 June 2017

VSappendable/vsapp (Obsolete) Table of Contents HDF Reference Manual
VSappendable/vsapp (Obsolete)

int32 VSappendable(int32 vdata_id, int32 block_size)

vdata_id IN: Vdata identifier returned by VSattach

block_size IN: Standard block size of appended data

Purpose Makes it possible to append to a vdata.

Return value Retrieves SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The HDF library makes all vdatas appendable upon creation. Therefore, this
routine has been made obsolete.

FORTRAN integer function vsapp(vdata_id, block_size)

integer vdata_id, block_size
June 2017 226

The HDF Group Table of Contents VSattach/vsfatch
VSattach/vsfatch

int32 VSattach(int32 file_id, int32 vdata_ref, char *access)

file_id IN: File identifier returned by Hopen

vdata_ref IN: Reference number of the vdata

access IN: Access mode

Purpose Attaches to an existing vdata or creates a new vdata.

Return value Returns a vdata identifier if successful and FAIL (or -1) otherwise.

Description VSattach attaches to the vdata identified by the reference number, vdata_ref,
in the file identified by the parameter file_id. Access to the vdata is specified
by the parameter access. VSattach returns an identifier to the vdata, through
which all further operations on that vdata are carried out.

An existing vdata may be multiply-attached for reads. Only one attach with
write access to a vdata is allowed.

The default interlace mode for a new vdata is FULL_INTERLACE (or 0). This may
be changed using VSsetinterlace.

The value of the parameter vdata_ref may be -1. This is used to create a new
vdata.

Valid values for access are “r” for read access and “w” for write access.

If access is “r”, then vdata_ref must be the valid reference number of an
existing vdata returned from any of the vdata and vgroup search routines (e.g.,
Vgetnext or VSgetid). It is an error to attach to a vdata with a vdata_ref of -1
with “r” access.

If access is “w”, then vdata_ref must be the valid reference number of an
existing vdata or -1. An existing vdata is generally attached with “w” access to
replace part of its data, or to append new data to it.

FORTRAN integer function vsfatch(file_id, vdata_ref, access)

integer file_id, vdata_ref

character*1 access
227 June 2017

VSattrinfo/vsfainf Table of Contents HDF Reference Manual
VSattrinfo/vsfainf

intn VSattrinfo(int32 vdata_id, int32 field_index, intn attr_index, char *attr_name, int32 *data_type,
int32 *count, int32 *size)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Index of the field

attr_index IN: Index of the attribute

attr_name OUT: Name of the attribute

data_type OUT: Data type of the attribute

count OUT: Attribute value count

size OUT: Size of the attribute

Purpose Retrieves attribute information of a vdata or a vdata field.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSattrinfo gets information on the attribute attached to the vdata, vdata_id, or
to the vdata field. Vdata field is specified by its index, field_index. Attribute is
specified by its index, attr_index. The attribute name is returned into the
parameter attr_name, the data type is returned into the parameter data_type,
the number of values of the attribute is returned into the parameter count, and
the size of the attribute is returned into the parameter size.

The parameter field_index in VSattrinfo is the same as the parameter
field_index in VSsetattr. It can be set to either an integer field index for the
vdata field attribute, or _HDF_VDATA (or -1) to specify the vdata attribute.

In C the values of the parameters attr_name, data_type, count and size can be
set to NULL if the information returned by these parameters is not needed.

FORTRAN integer function vsfainf(vdata_id, field_index, attr_index,
attr_name, data_type, count, size)

integer vdata_id, field_index, attr_index

character*(*) attr_name

integer data_type, count, size
June 2017 228

The HDF Group Table of Contents VSdelete/vsfdlte
VSdelete/vsfdlte

int32 VSdelete(int32 file_id, int32 vdata_ref)

file_id IN: File identifier returned by Hopen

vdata_ref IN: Vdata reference number returned by VSattach

Purpose Remove a vdata from a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) if not successful.

Description VSdelete removes the vdata identified by the parameter vdata_ref from the file
identified by the parameter file_id.

FORTRAN integer function vsfdlte(file_id, vdata_ref)

integer file_id, vdata_ref
229 June 2017

VSdetach/vsfdtch Table of Contents HDF Reference Manual
VSdetach/vsfdtch

int32 VSdetach(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Detaches from the current vdata, terminating further access to that vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSdetach detaches from the vdata identified by the parameter vdata_id and
updates the vdata information in the file if there are any changes. All memory
used for that vdata is freed.

The vdata_id identifier should not be used after that vdata is detached.

FORTRAN integer function vsfdtch(vdata_id)

integer vdata_id
June 2017 230

The HDF Group Table of Contents VSelts/vsfelts
VSelts/vsfelts

int32 VSelts(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Determines the number of records in a vdata.

Return value Returns the number of records in the vdata if successful and FAIL (or -1)
otherwise.

Description VSelts returns the number of records in the vdata identified by vdata_id.

FORTRAN integer function vsfelts(vdata_id)

integer vdata_id
231 June 2017

VSfdefine/vsffdef Table of Contents HDF Reference Manual
VSfdefine/vsffdef

intn VSfdefine(int32 vdata_id, char *fieldname, int32 data_type, int32 order)

vdata_id IN: Vdata identifier returned by VSattach

fieldname IN: Name of the field to be defined

data_type IN: Data type of the field values

order IN: Order of the new field

Purpose Defines a new field for in a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSfdefine defines a field with the name specified by the parameter fieldname,
of the data type specified by the parameter data_type, of the order specified by
the parameter order, and within the vdata identified by the parameter vdata_id.

VSfdefine is only used to define fields in a new vdata; it does not set the
format of a vdata. Note that defining a field using VSfdefine does not prepare
the storage format of the vdata. Once the fields have been defined, the routine
VSsetfields must be used to set the format. VSfdefine may only be used with a
new empty vdata. Once there is data in a vdata, definitions of vdata fields may
not be modified or deleted.

There are certain field names the HDF library recognizes as predefined. A list
of these predefined field types can be found in the HDF User’s Guide.

A field is defined by its name (fieldname), its type (data_type) and its order
(order). A fieldname is any sequence of characters. By convention, fieldnames
are usually a mnemonic, e.g. “PRESSURE”. The type of a field specifies
whether a field is float, integer, etc. Thus, data_type may be one of the data
types listed in Table 1A in Section I of this manual.

The order of a field is the number of components in that field. A field
containing the value of a simple variable, such a time or pressure, would have
an order of 1. Compound variables have an order greater than 1. For example, a
field containing the values associated with a variable for velocity in three
dimensions would have an order of 3.

FORTRAN integer function vsffdef(vdata_id, fieldname, data_type, order)

integer vdata_id, data_type, order

character*(*) fieldname
June 2017 232

The HDF Group Table of Contents VSfexist/vsfex
VSfexist/vsfex

intn VSfexist(int32 vdata_id, char *field_name_list)

vdata_id IN: Vdata identifier returned by VSattach

field_name_list IN: List of field names

Purpose Checks to see if certain fields exist in the current vdata.

Return value Returns a value of 1 if all field(s) exist and FAIL (or -1) otherwise.

Description VSfexist checks if all fields with the names specified in the parameter
field_name_list exist in the vdata identified by the parameter vdata_id.

The parameter field_name_list is a string of comma-separated fieldnames (e.g.,
“PX,PY,PZ” in C and ’PX,PY,PZ’ in Fortran).

FORTRAN integer function vsfex(vdata_id, field_name_list)

integer vdata_id

character*(*) field_name_list
233 June 2017

VSfind/vsffnd Table of Contents HDF Reference Manual
VSfind/vsffnd

int32 VSfind(int32 file_id, char *vdata_name)

file_id IN: File identifier returned by Hopen

vdata_name IN: Name of the vdata

Purpose Returns the reference number of a vdata, given its name.

Return value Returns the vdata reference number if successful and 0 if the vdata is not found
or an error occurs.

Description VSfind returns the reference number of the vdata with the name specified by
the parameter vdata_name in the file specified by the parameter file_id. If there
is more than one vdata with the same name, VSfind will only find the
reference number of the first vdata in the file with that name.

FORTRAN integer function vsffnd(file_id, vdata_name)

integer file_id

character*(*) vdata_name
June 2017 234

The HDF Group Table of Contents VSfindattr/vsffdat
VSfindattr/vsffdat

intn VSfindattr(int32 vdata_id, int32 field_index, char *attr_name)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Field index

attr_name IN: Attribute name

Purpose Returns the index of an attribute of a vdata or vdata field.

Return value Returns the index of the attribute if successful and FAIL (or -1) otherwise.

Description VSfindattr returns the index of the attribute with the name specified by the
parameter attr_name in the vdata identified by the parameter vdata_id.

To return the index of the attribute attached to the vdata , set the value of the
parameter field_index to _HDF_VDATA (or -1). To return the index of the
attribute of a field in the vdata , set the value of the parameter field_index to the
field index. Valid values of field_index range from 0 to the total number of the
vdata fields - 1. The number of the vdata fields is returned by VFnfields.

FORTRAN integer function vsffdat(vdata_id, field_index, attr_name)

integer vdata_id, field_index

character*(*) attr_name
235 June 2017

VSfindclass/vffcls Table of Contents HDF Reference Manual
VSfindclass/vffcls

int32 VSfindclass(int32 file_id, char *vdata_class)

file_id IN: File identifier returned by Hopen

vdata_class IN: Class of the vdata

Purpose Returns the reference number of the first vdata with a given vdata class name

Return value Returns the reference number of the vdata if successful and 0 if the vdata is not
found or an error occurs.

Description VSfindclass returns the reference number of the vdata with the class name
specified by the parameter vdata_class in the file identified by the parameter
file_id.

FORTRAN integer function vffcls(vdata_id, vdata_class)

integer vdata_id

character*(*) vdata_class
June 2017 236

The HDF Group Table of Contents VSfindex/vsffidx
VSfindex/vsffidx

intn VSfindex(int32 vdata_id, char *fieldname, int32 *field_index)

vdata_id IN: Vdata identifier returned by VSattach

fieldname IN: Name of the field

field_index OUT: Index of the field

Purpose Retrieves the index of a field within a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSfindex retrieves the index, field_index, of the field with a name specified by
the parameter fieldname, within the vdata identified by the parameter vdata_id.

FORTRAN integer function vsffidx(vdata_id, fieldname, field_index)

integer vdata_id, field_index

character*(*) fieldname
237 June 2017

VSfnattrs/vsffnas Table of Contents HDF Reference Manual
VSfnattrs/vsffnas

int32 VSfnattrs (int32 vdata_id, int32 field_index)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Index of the field

Purpose Returns the number of attributes attached to a vdata or the number of attributes
attached to a vdata field.

Return value Returns the number of attributes assigned to this vdata or its fields when
successful, and FAIL (or -1) otherwise.

Description VSfnattrs returns the number of attributes attached to a vdata specified by the
parameter vdata_id, or the number of attributes attached to a vdata field,
specified by the field index, field_index.

To return the number of attributes attached to the vdata , set the value of
field_index to _HDF_VDATA (or -1). To return the number of attributes of a field
in the vdata , set the value of field_index to the field index. Field index is a
nonnegative integer less than the total number of the vdata fields. The number
of vdata fields is returned by VFnfields.

VSfnattrs is different from the VSnattrs routine, which returns the number of
attributes of the specified vdata and the fields contained in it.

FORTRAN integer function vsffnas(vdata_id, field_index)

integer vdata_id, field_index
June 2017 238

The HDF Group Table of Contents VSfpack/vsfcpak/vsfnpak
VSfpack/vsfcpak/vsfnpak

intn VSfpack(int32 vdata_id, intn action, char *fields_in_buf, VOIDP buf, intn buf_size, intn n_records,
char *field_name_list, VOIDP bufptrs[])

vdata_id IN: Vdata identifier returned by VSattach

action IN: Action to be performed

fields_in_buf IN: Names of the fields in buf

buf IN/OUT: Buffer containing the values of the packed fields to write to or read
from the vdata

buf_size IN: Buffer size in bytes

n_records IN: Number of records to pack or unpack

field_name_list IN: Names of the fields to be packed or unpacked

bufptrs IN/OUT: Array of pointers to the field buffers

Purpose Packs field data into a buffer or unpacks buffered field data into vdata field(s)
for fully interlaced fields.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSfpack packs or unpacks the field(s) listed in the parameter field_name_list
to or from the buffer buf according to the specified action in the parameter
action.

Valid values for action are _HDF_VSPACK (or 0) which packs field values from
bufptrs (the field buffers) to buf, or _HDF_VSUNPACK (or 1) which unpacks vdata
field values from buf into bufptrs.

When VSfpack is called to pack field values into buf, fields_in_buf must list
all fields of the vdata. When VSfpack is called to unpack field values,
fields_in_buf may be a subset of the vdata fields. To specify all vdata fields in
fields_in_buf, NULL can be used in C and a blank character (“ “) in Fortran.

The name(s) of the field(s) to be packed or unpacked are specified by the
field_name_list. In C, the names in the parameter field_name_list can be a
subset of or all field names listed in fields_in_buf. To specify all vdata fields,
NULL can be used in C.

The FORTRAN-77 versions of this routine can pack or unpack only one field
at a time. Therefore, field_name_list will contain the name of the field that will
be packed or unpacked.

The calling program must allocate sufficient space for buf to hold all of the
packed fields. The size of the buf buffer should be at least n_records * (the
total size of all fields specified in fields_in_buf).

Note that there are two FORTRAN-77 versions of this routine: vsfnpak to
pack or unpack a numeric field and vsfcpak to pack or unpack a character
field.

Refer to the HDF User's Guide for an example on how to use this routine.
239 June 2017

VSfpack/vsfcpak/vsfnpak Table of Contents HDF Reference Manual
FORTRAN integer function vsfnpak(vdata_id, action, fields_in_buf, buf,
buf_size, n_records, field_name_list, bufptrs)

integer vdata_id, action, buf(*), buf_size, n_records

character*(*) fields_in_buf, field_name_list

<valid numeric data type> bufptrs(*)

integer function vsfcpak(vdata_id, action, fields_in_buf, buf,
buf_size, n_records, field_name_list, bufptrs)

integer vdata_id, action, buf(*), buf_size, n_records

character*(*) fields_in_buf, field_name_list, bufptrs(*)
June 2017 240

The HDF Group Table of Contents VSgetattdatainfo
VSgetattdatainfo

intn VSgetattdatainfo(int32 vdata_id, int32 field_index, char* attr_index, int32* offset, int32* length)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Index of the field

attr_index IN: Index of the attribute

offset OUT: Offset of the attribute’s data

length OUT: Length of the attribute’s data

Purpose Retrieves location and size of the data of an attribute.

Return value Returns the number of data blocks retrieved, which should be 1, if successful
and FAIL (or -1) otherwise.

Description VSgetattdatainfo retrieves the offset and length of the data that belongs to the
attribute specified its index, attr_index. The specified attribute is either
attached to the vdata, specified by vdata_id, or to the vdata field, depending on
the value of the parameter field_index. To specify an attribute of a vdata, the
application will set field_index to _HDF_VDATA (or -1). To specify an attribute
of a vdata field, the application will set field_index to the index of the vdata
field. A valid field index is a nonnegative integer less than the total number of
the vdata fields. The number of vdata fields can be obtained using VFnfields.

The parameter attr_index specifies the position of the attribute in the list of all
attributes belonging to the vdata or the vdata field. VSfnattrs routine can be
used to obtain the number of attributes of a vdata or of a field contained in the
vdata.

FORTRAN Currently unavailable
241 June 2017

VSgetattr/vsfgnat/vsfgcat Table of Contents HDF Reference Manual
VSgetattr/vsfgnat/vsfgcat

intn VSgetattr(int32 vdata_id, intn field_index, int32 attr_index, VOIDP values)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Index of the field

attr_index IN: Index of the attribute

values OUT: Buffer for the attribute values

Purpose Retrieves the attribute values of a vdata or vdata field.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSgetattr retrieves the attribute values of the vdata identified by the parameter
vdata_id or the vdata field specified by the field index, field_index, into the
buffer values.

If field_index is set to _HDF_VDATA (or -1), the value of the attribute attached
to the vdata is returned. If field_index is set to the field index, attribute attached
to a vdata field is returned. Field index is a nonnegative integer less than the
total number of the vdata fields. The number of vdata fields is returned by
VFnfields

Attribute to be retrieved is specified by its index, attr_index. Index is a
nonnegative integer less than the total number of the vdata or vdata field
attributes. Use VSfnattrs to find the number of the vdata or vdata field
attributes.

FORTRAN integer function vsfgnat(vdata_id, field_index, attr_index,
values)

integer vdata_id, field_index, attr_index

<valid numeric data type> values(*)

integer function vsfgcat(vdata_id, field_index, attr_index,
values)

integer vdata_id, field_index, attr_index

character*(*) values
June 2017 242

The HDF Group Table of Contents VSgetblockinfo/vsfgetblinfo
VSgetblockinfo/vsfgetblinfo

intn VSgetblockinfo(int32 vdata_id, int32 *block_size, int32 *num_blocks)

vdata_id IN: Vdata identifier

block_size OUT: Block size in bytes

num_blocks OUT: Number of linked blocks

Purpose Retrieves the block size and the number of blocks for a linked-block vdata
element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSgetblockinfo retrieves the block size and the number of linked blocks for a
linked-block vdata element.

If no response is desired for either returned value, block_size and num_blocks
may be set to NULL.

FORTRAN integer function vsfgetblinfo(vdata_id, block_size, num_blocks)

integer vdata_id, num_blocks, block_size
243 June 2017

VSgetclass/vsfgcls Table of Contents HDF Reference Manual
VSgetclass/vsfgcls

int32 VSgetclass(int32 vdata_id, char *vdata_class)

vdata_id IN: Vdata identifier returned by VSattach

vdata_class OUT: Vdata class name

Purpose Retrieves the vdata class name, if any.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSgetclass retrieves the class name of the vdata identified by the parameter
vdata_id and places it in the buffer vdata_class.

Space for the buffer vdata_class must be allocated by the calling program
before VSgetclass is called. The maximum length of the class name is defined
by the macro VSNAMELENMAX (or 64).

FORTRAN integer function vsfgcls(vdata_id, vdata_class)

integer vdata_id

character*(*) vdata_class
June 2017 244

The HDF Group Table of Contents VSgetdatainfo
VSgetdatainfo

intn VSgetdatainfo(int32 vdata_id, uintn start_block, uintn info_count, int32 *offsetarray, int32
*lengtharray)

vdata_id IN: Vdata identifier returned by VSattach

start_block IN: Value indicating where to start reading offsets

info_count IN: Number of elements each offset or length list can hold

offsetarray OUT: Array to hold offsets of the data blocks

lengtharray OUT: Array to hold lengths of the data blocks

Purpose Retrieves location and size of data blocks in a specified vdata, after a specified
data block.

Return value Returns the actual number of blocks in the vdata's data or the number of blocks
retrieved if successful and FAIL (or -1) otherwise.

Description VSgetdatainfo retrieves two lists containing the offsets and lengths of the
blocks of data belonging to the vdata specified by vdata_id.

The parameter info_count provides the number of offset/length values that the
lists offsetarray and lengtharray can hold. The application can first invoke
VSgetdatainfo passing in 0 for info_count and NULL for both arrays to get the
value for info_count and to provide proper memory allocation for offsetarray
and lengtharray in the next call to VSgetdatainfo.

The parameter start_block indicates the block number where to start reading
the offsets from the file. The combination of parameters info_count and
start_block provide applications with flexibility of where and how much data
information to retrieve. The value for start_block must be non-negative and
smaller than or equal to the number of blocks in the vdata's data.

When start_block is 0, VSgetdatainfo will start getting data info from the
beginning of the vdata's data.

When start_block is greater than the number of blocks in the vdata,
VSgetdatainfo will return FAIL (or -1).

FORTRAN currently unavailable
245 June 2017

VSgetexternalinfo Table of Contents HDF Reference Manual
VSgetexternalinfo

intn VSgetexternalinfo(int32 vdata_id, uintn buf_size, char *filename, int32 *offset, int32 *length)

vdata_id IN: Vdata identifier returned by VSattach

buf_size IN: Size of buffer for external file name

filename OUT: Buffer for external file name

offset OUT: Offset, in bytes, of the location in the external file where the data
was written

length OUT: Length, in bytes, of the external data

Purpose Retrieves information about external file and external data of the vdata.

Return value Returns length of the external file name if successful, 0 if there is no external
data, or FAIL (or -1) if an error occurs.

Description If the vdata has external element, VSgetexternalinfo will retrieve the name of
the external file, the offset where the data is being stored in the external file,
and the length of the external data. If the vdata does not have external element,
VSgetexternalinfo will return 0.

To sufficiently allocate buffer for the file name, an application can call
VSgetexternalinfo passing in 0 for buf_size. If the length returned is greater
than 0, the application will use it to allocate the buffer before calling
VSgetexternalinfo again to get the actual file name.

Note It is the user's responsibility to see that the external files are kept with the main
file prior to accessing the vdata with external element. VSgetexternalinfo
does not check and the accessing functions will fail if the external file is
missing from the directory where the main file is located.

FORTRAN Currently unavailable
June 2017 246

The HDF Group Table of Contents VSgetfields/vsfgfld
VSgetfields/vsfgfld

int32 VSgetfields(int32 vdata_id, char *field_name_list)

vdata_id IN: Vdata identifier returned by VSattach

field_name_list OUT: Field name list

Purpose Retrieves the field names of all of the fields in a vdata.

Return value Returns the number of fields in the vdata if successful and FAIL (or -1)
otherwise.

Description VSgetfields retrieves the names of the fields in the vdata identified by the
parameter vdata_id into the buffer field_name_list.

The parameter field_name_list is a character string containing a comma-
separated list of names (e.g., “PX,PY,PZ” in C or ‘PX,PY,PZ’ in Fortran).

The caller must allocate adequate memory for the buffer field_name_list
before calling VSgetfields. The combined width of the fields in a vdata is less
than MAX_FIELD_SIZE (or 65535.)

If the vdata does not have any fields, a null string is returned in the parameter
field_name_list.

FORTRAN integer function vsfgfld(vdata_id, field_name_list)

integer vdata_id

character*(*) field_name_list
247 June 2017

VSgetid/vsfgid Table of Contents HDF Reference Manual
VSgetid/vsfgid

int32 VSgetid(int32 file_id, int32 vdata_ref)

file_id IN: File identifier returned by Hopen

vdata_ref IN: Vdata reference number

Purpose Sequentially searches through a file for vdatas.

Return value Returns the reference number for the next vdata if successful and FAIL (or -1)
otherwise.

Description VSgetid sequentially searches through a file identified by the parameter file_id
and returns the reference number of the next vdata after the vdata that has
reference number vdata_ref. This routine is generally used to sequentially
search the file for vdatas. Searching past the last vdata in a file will result in an
error condition.

To initiate a search, this routine must be called with the value of vdata_ref
equal to -1. Doing so returns the reference number of the first vdata in the file.

FORTRAN integer function vsfgid(file_id, vdata_ref)

integer file_id, vdata_ref
June 2017 248

The HDF Group Table of Contents VSgetinterlace/vsfgint
VSgetinterlace/vsfgint

int32 VSgetinterlace(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Returns the interlace mode of a vdata.

Return value Returns FULL_INTERLACE (or 0) or NO_INTERLACE (or 1) if successful and FAIL
(or -1) otherwise.

Description VSgetinterlace returns the interlace mode of the vdata identified by the
parameter vdata_id.

FORTRAN integer function vsfgint(vdata_id)

integer vdata_id
249 June 2017

VSgetname/vsfgnam Table of Contents HDF Reference Manual
VSgetname/vsfgnam

int32 VSgetname(int32 vdata_id, char *vdata_name)

vdata_id IN: Vdata identifier returned by VSattach

vdata_name OUT: Vdata name

Purpose Retrieves the name of a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSgetname retrieves the name of the vdata identified by the parameter
vdata_id into the buffer vdata_name.

The user must allocate the memory space for the buffer vdata_name before
calling VSgetname. If the vdata does not have a name, a null string is returned
in the parameter vdata_name. The maximum length of a vdata name is defined
by VSNAMELENMAX (or 64)

FORTRAN integer function vsfgnam(vdata_id, vdata_name)

integer vdata_id

character*(*) vdata_name
June 2017 250

The HDF Group Table of Contents VSgetvdatas/vsfgvdatas
VSgetvdatas/vsfgvdatas

intn VSgetvdatas(int32 id, const uintn start_vd, const uintn n_vds, uint16 *refarray)

id IN: File identifier returned by Hopen or vgroup identifier returned by
Vattach

start_vd IN: Vdata number to start retrieving at

vd_count IN: Number of vdatas to be retrieved

refarray OUT: Array to hold reference numbers of retrieved vdatas

Purpose Retrieves reference numbers of vdatas in a file or in a vgroup.

Return value Returns the actual number of user-created vdatas retrieved if successful, and
FAIL (-1) otherwise.

Description VSgetvdatas retrieves a list containing the reference numbers of vdatas found
in a file or a vgroup. The file or the vgroup is specified by id.

The retrieved vdatas will be the ones that were previously created by user
applications, not including those that were created by the library internally.
They are referred to as user-created vdatas, for brevity.

The parameter vd_count provides the number of items that the list refarray can
hold. The retrieval starts at the vdata number start_vd going forward in the
order which the vdatas were created. For example, if there are 100 vdatas that
can be retrieved, specifying start_vd as 90 and vd_count as 10 will retrieve the
last ten vdatas. The value for start_vd must be non-negative and smaller than
or equal to the number of user-created vdatas in the specified file or vgroup.

When start_vd is 0, VSgetvdatas will start retrieving at the beginning of
the file or the first vdata of the specified vgroup.

When start_vd is between 0 and the number of user-created vdatas in the
file or the vgroup, VSgetvdatas will start retrieving vdatas from the
vdata number start_vd.

When start_vd is greater than the number of user-created vdatas in the file
or the vgroup, VSgetvdatas will return FAIL.

To allocate sufficient memory for refarray, the application can first invoke
VSgetvdatas passing in NULL for refarray to get the value for vd_count then
call VSgetvdatas again with proper memory allocation for refarray.

When id is a vgroup identifier, only the immediate vdatas will be retrieved;
that is, the sub-vgroups will not be searched.

FORTRAN integer function vsfgvdatas(id, start_vd, vd_count, refarray)

integer id, start_vd, vd_count

integer refarray(*)
251 June 2017

VSgetversion/vsgver Table of Contents HDF Reference Manual
VSgetversion/vsgver

int32 VSgetversion(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Returns the version number of a vdata.

Return value Returns the version number if successful and FAIL (or -1) otherwise.

Description VSgetversion returns the version number of the vdata identified by the
parameter vdata_id. There are three valid version numbers: VSET_OLD_VERSION
(or 2), VSET_VERSION (or 3), and VSET_NEW_VERSION (or 4).

VSET_OLD_VERSION is returned when the vdata is of a version that corresponds
to an HDF library version before version 3.2.

VSET_VERSION is returned when the vdata is of a version that corresponds to an
HDF library version between versions 3.2 and 4.0 release 2.

VSET_NEW_VERSION is returned when the vdata is of the version that
corresponds to an HDF library version of version 4.1 release 1 or higher.

FORTRAN integer vsgver(vdata_id)

integer vdata_id
June 2017 252

The HDF Group Table of Contents VSinquire/vsfinq
VSinquire/vsfinq

intn VSinquire(int32 vdata_id, int32 *n_records, int32 *interlace_mode, char *field_name_list, int32
*vdata_size, char *vdata_name)

vdata_id IN: Vdata identifier returned by VSattach

n_records OUT: Number of records

interlace_mode OUT: Interlace mode of the data

field_name_list OUT: List of field names

vdata_size OUT: Size of a record

vdata_name OUT: Name of the vdata

Purpose Retrieves general information about a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) if it is unable to return
any of the requested information.

Description VSinquire retrieves the number of records, the interlace mode of the data, the
name of the fields, the size, and the name of the vdata, vdata_id, and stores
them in the parameters n_records, interlace_mode, field_name_list,
vdata_size, and vdata_name, respectively. In C, if any of the output parameters
are NULL, the corresponding information will not be retrieved. Refer to the
Reference Manual pages on VSelts, VSgetfields, VSgetinterlace, VSsizeof
and VSgetname for other routines that can be used to retrieve specific
information.

Possible returned values for interlace_mode are FULL_INTERLACE (or 0) and
NO_INTERLACE (or 1.) The returned value of vdata_size is the number of bytes
in a record and is machine-dependent.

The parameter field_name_list is a character string that contains the names of
all the vdata fields, separated by commas. (e.g., “PX,PY,PZ” in C and
’PX,PY,PZ’ in Fortran).

The user must allocate the memory space for the buffer vdata_name before
calling VSinquire. If the vdata does not have a name, a null string is returned
in the parameter vdata_name . The maximum length of a vdata name is
defined by VSNAMELENMAX (or 64)

Note VSinquire will return FAIL if it is called before VSdefine and VSsetfield on
the same vdata.

FORTRAN integer function vsfinq(vdata_id, n_records, interlace,
field_name_list, vdata_size, vdata_name)

integer vdata_id, n_records, interlace, vdata_size

character*(*) field_name_list, vdata_name
253 June 2017

VSisattr/vsfisat Table of Contents HDF Reference Manual
VSisattr/vsfisat

intn VSisattr(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Determines whether a vdata is an attribute.

Return value Returns TRUE (or 1) if the vdata is an attribute, and FALSE (or 0) otherwise.

Description VSisattr determines whether the vdata identified by the parameter vdata_id is
an attribute.

As attributes are stored by the HDF library as vdatas, a means of testing
whether or not a particular vdata is an attribute is needed, and is provided by
this routine.

FORTRAN integer function vsfisat(vdata_id)

integer vdata_id
June 2017 254

The HDF Group Table of Contents VSisinternal
VSisinternal

intn VSisinternal(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Determine if a vdata was created by the library internally.

Return value Returns TRUE (1) if the inquired vdata is one that was internally created by the
library, FALSE (0) otherwise, and FAIL (-1) if failure occurs.

Description VSisinternal checks the class name of the given vdata against the list
HDF_INTERNAL_VDS to determine whether the vdata was previously created by
the library instead of by a user application.

The names in HDF_INTERNAL_VDS are:
DIM_VALS ("DimVal0.0")
DIM_VALS01 ("DimVal0.1")
_HDF_ATTRIBUTE ("Attr0.0")
HDF_SDSVAR ("SDSVar")
HDF_CRDVAR ("CoordVar")
_HDF_CHK_TBL_CLASS ("_HDF_CHK_TBL_")
RIGATTRCLASS("RIATTR0.0C")

FORTRAN Currently unavailable
255 June 2017

VSlone/vsflone Table of Contents HDF Reference Manual
VSlone/vsflone

int32 VSlone(int32 file_id, int32 ref_array[], int32 maxsize)

file_id IN: File identifier returned by Hopen

ref_array OUT: Array of reference numbers

max_refs IN: Maximum number of lone vdatas to be retrieved

Purpose Retrieves the reference numbers of all lone vdatas, i.e., vdatas that are not
grouped with other objects, in a file.

Return value Returns the total number of lone vdatas if successful and FAIL (or -1)
otherwise.

Description VSlone retrieves the reference numbers of lone vdatas in the file identified by
the parameter file_id. Although VSlone returns the number of lone vdatas in
the file, only at most max_refs reference numbers are retrieved and stored in
the buffer ref_array. The array must have at least max_refs elements.

An array size of 65,000 integers for ref_array is more than adequate if the user
chooses to declare the array statically. However, the preferred method is to
dynamically allocate memory instead; first call VSlone with a value of 0 for
max_refs to return the total number of lone vdatas, then use the returned value
to allocate memory for ref_array before calling VSlone again.

FORTRAN integer function vsflone(file_id, ref_array, max_refs)

integer file_id, ref_array(*), max_refs
June 2017 256

The HDF Group Table of Contents VSnattrs/vsfnats
VSnattrs/vsfnats

intn VSnattrs(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Returns the total number of attributes of a vdata and of its fields.

Return value Returns the total number of attributes if successful and FAIL (or -1) otherwise.

Description VSnattrs returns the total number of attributes of the vdata, vdata_id, and of
its fields.

VSnattrs is different from the VSfnattrs routine, which returns the number of
attributes of a specified vdata or of a field contained in a specified vdata.

FORTRAN integer function vsfnats(vdata_id)

integer vdata_id
257 June 2017

VSofclass Table of Contents HDF Reference Manual
VSofclass

intn VSofclass(int32 id, const char *vsclass, const uintn start_vd, const uintn n_vds, uint16 *refarray)

id IN: File identifier, returned by Hopen, or vgroup identifier, returned by
Vattach

vsclass IN: Name of class for vdatas to be queried

start_vd IN: Vdata number to start retrieving at

n_vds IN: Number of vdatas to retrieve

refarray OUT: Array to hold vdata reference numbers

Purpose Retrieves reference numbers of vdatas of the specified class.

Return value Returns 0 if none is found, FAIL(-1) if error occurs, or the number of reference
numbers returned in the refarray, if successful.

Description VSofclass retrieves n_vds vdatas by their reference numbers via the caller-
supplied array refarray. The vdatas to be retrieved have class name as vsclass.

The parameter n_vds provides the number of values that the refarray list can
hold and can be any positive number smaller than MAX_REF (65535). If n_vds is
larger than the actual number of vdatas that has the specified class, then only
the actual number of vdatas will be retrieved.

The parameter start_vd specifies the vdata number where the retrieval will
start.

When start_vd is 0, VSofclass will start retrieving at the beginning.
When start_vd is between 0 and the number of vdatas that meet the search

criteria, VSofclass will start retrieving from the vdata number start_vd.
When start_vd is greater than the number of vdatas that meet the search

criteria, VSofclass will return FAIL.

When refarray argument is NULL, VSofclass will return the actual number of
vdatas that meet the search criteria. This will allow application to determine
the size of the array for dynamic allocation before invoking VSofclass again.

FORTRAN Currently unavailable
June 2017 258

The HDF Group Table of Contents VSread/vsfrd/vsfrdc/vsfread
VSread/vsfrd/vsfrdc/vsfread

int32 VSread(int32 vdata_id, uint8 *databuf, int32 n_records, int32 interlace_mode)

vdata_id IN: Vdata identifier returned by VSattach

databuf OUT: Buffer to store the retrieved data

n_records IN: Number of records to be retrieved

interlace_mode IN: Interlace mode of the data to be stored in the buffer

Purpose Retrieves data from a vdata.

Return value Returns the total number of records read if successful and FAIL (or -1)
otherwise.

Description VSread reads n_records records from the vdata identified by the parameter
vdata_id and stores the data in the buffer databuf using the interlace mode
specified by the parameter interlace_mode.

The user can specify the fields and the order in which they are to be read by
calling VSsetfields prior to reading. VSread stores the requested fields in
databuf in the specified order.

Valid values for interlace_mode are FULL_INTERLACE (or 1) and NO_INTERLACE
(or 0). Selecting FULL_INTERLACE causes databuf to be filled by record and is
recommended for speed and efficiency. Specifying NO_INTERLACE causes
databuf to be filled by field, i.e., all values of a field in n_records records are
filled before moving to the next field. Note that the default interlace mode of
the buffer is FULL_INTERLACE.

As the data is stored contiguously in the vdata, VSfpack should be used to
unpack the fields after reading. Refer to the discussion of VSfpack in the HDF
User’s Guide for more information.

Note that there are three FORTRAN-77 versions of this routine: vsfrd is for
buffered numeric data, vsfrdc is for buffered character data and vsfread is for
generic packed data.

See the notes regarding the potential performance impact of appendable data
sets in the HDF User’s Guide Section 14.4.3, "Unlimited Dimension Data Sets
(SDSs and Vdatas) and Performance."

FORTRAN On Windows systems, this function is available only for an integer data buffer.

integer function vsfrd(vdata_id, databuf, n_records,
interlace_mode)

integer vdata_id, n_records, interlace_mode

<valid numeric data type> databuf(*)
259 June 2017

VSread/vsfrd/vsfrdc/vsfread Table of Contents HDF Reference Manual
integer function vsfrdc(vdata_id, databuf, n_records,
interlace_mode)

integer vdata_id, n_records, interlace_mode

character*(*) databuf

integer function vsfread(vdata_id, databuf, n_records,
interlace_mode)

integer vdata_id, n_records, interlace_mode

integer databuf(*)
June 2017 260

The HDF Group Table of Contents VSseek/vsfseek
VSseek/vsfseek

int32 VSseek(int32 vdata_id, int32 record_pos)

vdata_id IN: Vdata identifier returned by VSattach

record_pos IN: Position of the record

Purpose Provides a mechanism for random-access I/O within a vdata.

Return value Returns the record position (zero or a positive integer) if successful and FAIL
(or -1) otherwise.

Description VSseek moves the access pointer within the vdata identified by the parameter
vdata_id to the position of the record specified by the parameter record_pos.
The next call to VSread or VSwrite will read from or write to the record
where the access pointer has been moved to.

The value of record_pos is zero-based. For example, to seek to the third record
in the vdata, set record_pos to 2. The first record position is specified by
specifying a record_pos value of 0. Each seek is constrained to a record
boundary within the vdata.

See the notes regarding the potential performance impact of appendable data
sets in the HDF User’s Guide Section 14.4.3, "Unlimited Dimension Data Sets
(SDSs and Vdatas) and Performance."

FORTRAN integer function vsfseek(vdata_id, record_pos)

integer vdata_id, record_pos
261 June 2017

VSsetattr/vsfsnat/vsfscat Table of Contents HDF Reference Manual
VSsetattr/vsfsnat/vsfscat

intn VSsetattr(int32 vdata_id, int32 field_index, char *attr_name, int32 data_type, int32 count, VOIDP
values)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Index of the field

attr_name IN: Name of the attribute

data_type IN: Data type of the attribute

count IN: Number of attribute values

values IN: Buffer containing the attribute values

Purpose Sets an attribute of a vdata or a vdata field.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSsetattr defines an attribute that has the name specified by the parameter
attr_name, the data type specified by the parameter data_type, and the number
of values specified by the parameter count, and that contains the values
specified in the parameter values. The attribute is set for either the vdata or a
vdata field depending on the value of the parameter field_index.

If the field already has an attribute with the same name, the current values will
be replaced with the new values if the new data type and order are the same as
the current ones. Any changes in the field data type or order will result in a
value of FAIL (or -1) to be returned.

If field_index value is set to _HDF_VDATA (or -1), the attribute will be set for the
vdata. If field_index is set to the field index, attribute will be set for the vdata
field. Field index is a nonnegative integer less than the total number of the
vdata fields. The number of vdata fields can be obtained using VFnfields.

The value of the parameter data_type can be any one of the data types listed in
Table 1A in Section I of this manual.

FORTRAN integer function vsfsnat(vdata_id, field_index, attr_name,
data_type, count, values)

integer vdata_id, field_index, data_type, count, values(*)

character*(*) attr_name

integer function vsfscat(vdata_id, field_index, attr_name,
data_type, count, values)

integer vdata_id, field_index, data_type, count

character*(*) attr_name, values(*)
June 2017 262

The HDF Group Table of Contents VSsetblocksize/vsfsetblsz
VSsetblocksize/vsfsetblsz

intn VSsetblocksize(int32 vdata_id, int32 block_size)

vdata_id IN: Vdata identifier

block_size IN: Size of each block in bytes

Purpose Sets linked-block Vdata element block size.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSsetblocksize sets the block size for linked-block elements that will be used
to store Vdatas.

The default block size is HDF_APPENDABLE_BLOCK_LEN, which is set to 4096 in
the library as it is distributed. VSsetblocksize modifies that default value and
must be called before the first write to the Vdata. Once the linked-block
element is created, the block size cannot be changed.

The following note may be of interest to users who must pay very close
attention to performance issues: VSsetblocksize sets the block size only for
blocks following the first block. The first block can be arbitrarily large; the
library continues to write to it until it encounters an obstacle, at which point the
linked block mechanism is invoked. For example, a Vdata A that is the last
item in a file can continue to grow, simply extending the file. If a new Vdata B
is then written, that new object is (normally) placed at the end of the file,
blocking off extension of the prior Vdata, A. At this point, new writes to A
will write data to linked blocks per the block_size and num_blocks settings.

FORTRAN integer function vsfsetblsz(vdata_id, block_size)

integer vdata_id, block_size
263 June 2017

VSsetclass/vsfscls Table of Contents HDF Reference Manual
VSsetclass/vsfscls

int32 VSsetclass(int32 vdata_id, char *vdata_class)

vdata_id IN: Vdata identifier returned by VSattach

vdata_class IN: Name of the vdata class

Purpose Sets the class name of a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSsetclass sets the class name of the vdata identified by the parameter
vdata_id to the value of the parameter vdata_class.

At creation, the class name of a vdata is NULL. The class name may be reset
more than once. Class names, like vdata names, can be any character string.
They exist solely as meaningful labels to user applications and are not used by
the HDF library in any way. Consequently, the library does not check for
uniqueness among vdatas. In addition, class names will be truncated to
VSNAMELENMAX (or 64) characters.

FORTRAN integer function vsfscls(vdata_id, vdata_class)

integer vdata_id

character*(*) vdata_class
June 2017 264

The HDF Group Table of Contents VSsetexternalfile/vsfsextf
VSsetexternalfile/vsfsextf

intn VSsetexternalfile(int32 vdata_id, char *filename, int32 offset)

vdata_id IN: Vdata identifier returned by VSattach

filename IN: Name of the external file

offset IN: Offset, in bytes, of the location in the external file the new data is to
be written

Purpose Stores vdata information in an external file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSsetexternalfile writes data in the vdata identified by the parameter vdata_id
in the file named filename, at the byte offset specified by the parameter offset.

Only the data will be stored externally. Attributes and all metadata will remain
in the primary HDF file.

IMPORTANT: The user must ensure that the external files are relocated along
with the primary file.

Refer to the Reference Manual page on SDsetexternalfile for more
information on using the external file feature.

FORTRAN integer function vsfsextf(vdata_id, filename, offset)

integer vdata_id, offset

character*(*) filename
265 June 2017

VSsetfields/vsfsfld Table of Contents HDF Reference Manual
VSsetfields/vsfsfld

intn VSsetfields(int32 vdata_id, char *field_name_list)

vdata_id IN: Vdata identifier returned by VSattach

field_name_list IN: List of the field names to be accessed

Purpose Specifies the fields to be accessed.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSsetfields specifies that the fields, whose names are listed in the parameter
field_name_list, of the vdata identified by the parameter vdata_id will be
accessed by the next call to VSread or VSwrite. VSsetfields must be called
before any call to VSread or VSwrite.

For reading from a vdata, a call to VSsetfields sets up the fields that are to be
retrieved from the records in the vdata. If the vdata is empty, VSsetfields will
return FAIL (or -1).

For writing to a vdata, VSsetfields can only be called once, to set up the fields
in a vdata. Once the vdata fields are set, they may not be changed. Thus, to
update some fields of a record after the first write, the user must read all the
fields to a buffer, update the buffer, then write the entire record back to the
vdata.

The parameter field_name_list is a character string that contains a comma-
separated list of fieldnames (i.e., “PX,PY,PZ” in C and ’PX,PY,PZ’ in
Fortran). The combined width of the fields in a vdata must be less than
MAX_FIELD_SIZE (or 65535) bytes. If an attempt to create a larger record is
made, VSsetfields will return FAIL (or -1).

If the vdata is attached with an “r” access mode, the parameter field_name_list
must contain only the fields that already exist in the vdata. If the vdata is
attached with a “w” access mode, field_name_list can contain the names of any
fields that have been defined by VSfdefine or any predefined fields.

FORTRAN integer function vsfsfld(vdata_id, field_name_list)

integer vdata_id

character*(*) field_name_list
June 2017 266

The HDF Group Table of Contents VSsetinterlace/vsfsint
VSsetinterlace/vsfsint

intn VSsetinterlace(int32 vdata_id, int32 interlace_mode)

vdata_id IN: Vdata identifier returned by VSattach

interlace_mode IN: Interlace mode of the data to be stored in the vdata

Purpose Sets the interlace mode of a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSsetinterlace sets the interlace mode of the vdata, vdata_id, to that specified
by the parameter interlace_mode. This routine can only be used when creating
new vdatas with write access.

The value of interlace_mode may be either FULL_INTERLACE (or 0) or
NO_INTERLACE (or 1). If this routine is not called, the default interlace mode of
the vdata is FULL_INTERLACE. The FULL_INTERLACE option is more efficient
than NO_INTERLACE although both require the same amount of disk space.

Specifying FULL_INTERLACE accesses the vdata by record; in other words, all
values of all fields in a record are accessed before moving to the next record.
Specifying NO_INTERLACE accesses the vdata by field; in other words, all field
values are accessed before moving to the next field. Thus, for writing data, all
record data must be available before the write operation is invoked.

Note that the interlace mode of the data to be written is specified by a
parameter of the VSwrite routine.

FORTRAN integer function vsfsint(vdata_id, interlace_mode)

integer vdata_id, interlace_mode
267 June 2017

VSsetname/vsfsnam Table of Contents HDF Reference Manual
VSsetname/vsfsnam

int32 VSsetname(int32 vdata_id, char *vdata_name)

vdata_id IN: Vdata identifier returned by VSattach

vdata_name IN: Name of the vdata

Purpose Assigns a name to a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSsetname sets the name of the vdata identified by the parameter vdata_id to
the value of the parameter vdata_name.

At creation, the name of the vdata is NULL. The name may be reset more than
once. Vdata names, like class names, can be any character string. They exist
solely as a meaningful label for user applications and are not used by the HDF
library in any way. Consequently, the library does not check for uniqueness of
the name. In addition, vdata names will be truncated to VSNAMELENMAX (or 64)
characters.

FORTRAN integer function vsfsnam(vdata_id, vdata_name)

integer vdata_id

character*(*) vdata_name
June 2017 268

The HDF Group Table of Contents VSsetnumblocks/vsfsetnmbl
VSsetnumblocks/vsfsetnmbl

intn VSsetnumblocks(int32 vdata_id, int32 num_blocks)

vdata_id IN: Vdata identifier

num_blocks IN: Number of blocks to be used for the linked-block element

Purpose Sets the number of blocks for a linked-block Vdata element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSsetnumblocks sets the number of blocks in linked-block elements that will
be used to store Vdatas.

The default number of blocks is HDF_APPENDABLE_BLOCK_NUM, which is set to
16 in the library as it is distributed. VSsetnumblocks modifies that default
value and must be called before the first write to the Vdata. Once the linked-
block element is created, the number of blocks cannot be changed.

FORTRAN integer function vsfsetnmbl(vdata_id, num_blocks)

integer vdata_id, num_blocks
269 June 2017

VSsizeof/vsfsiz Table of Contents HDF Reference Manual
VSsizeof/vsfsiz

int32 VSsizeof(int32 vdata_id, char *field_name_list)

vdata_id IN: Vdata identifier returned by VSattach

field_name_list IN: Name(s) of the fields to check

Purpose Computes the size, in bytes, of the given field(s) for the local machine.

Return value Returns the fields size if successful and FAIL (or -1) otherwise.

Description VSsizeof computes the size, in bytes, of the fields specified in the parameter
field_name_list in the vdata identified by the parameter vdata_id.

The parameter field_name_list specifies a single field or several comma-
separated fields. The field or fields should already exist in the vdata. If more
than one field is specified, VSsizeof will return the total sizes of all of the
fields.

FORTRAN integer function vsfsiz(vdata_id, field_name_list)

integer vdata_id

character*(*) field_name_list
June 2017 270

The HDF Group Table of Contents VSwrite/vsfwrt/vsfwrtc/vsfwrit
VSwrite/vsfwrt/vsfwrtc/vsfwrit

int32 VSwrite(int32 vdata_id, uint8 *databuf, int32 n_records, int32 interlace_mode)

vdata_id IN: Vdata identifier returned by VSattach

databuf IN: Buffer of records to be written to the vdata

n_records IN: Number of records to be written

interlace_mode IN: Interlace mode of the buffer in memory

Purpose Writes data to a vdata.

Return value Returns the total number of records written if successful and FAIL (or -1)
otherwise.

Description VSwrite writes the data stored in the buffer databuf into the vdata identified by
the parameter vdata_id. The parameter n_records specifies the number of
records to be written. The parameter interlace_mode defines the interlace
mode of the vdata fields stored in the buffer databuf.

Valid values for interlace_mode are FULL_INTERLACE (or 0) and NO_INTERLACE
(or 1). Selecting FULL_INTERLACE fills databuf by record and is recommended
for speed and efficiency. Specifying NO_INTERLACE causes databuf to be filled
by field, i.e., all values of a field in all records must be written before moving
to the next field. Thus, all data must be available before writing. If the data is to
be written to the vdata with an interlace mode different from that of the buffer,
VSsetinterlace must be called prior to VSwrite. Note that the default interlace
mode of a vdata is FULL_INTERLACE.

It is assumed that the data in databuf is organized as specified by the parameter
interlace_mode. The number and order of the fields organized in the buffer
must correspond with the number and order of the fields specified in the call to
VSsetfields, which finalizes the vdata fields definition. Since VSwrite writes
the data in databuf contiguously to the vdata, VSfpack must be used to remove
any “padding”, or non-data spaces, used for vdata field alignment. This
process is called packing. Refer to the discussion of VSfpack in the HDF
User’s Guide for more information.

Before writing data to a newly-created vdata, VSdefine and VSsetfields must
be called to define the fields to be written.

Note that there are three FORTRAN-77 versions of this routine: vsfwrt is for
buffered numeric data, vsfwrtc is for buffered character data and vsfwrit is for
generic packed data.

FORTRAN On Windows systems, this function is available only for an integer data buffer.

integer function vsfwrt(vdata_id, databuf, n_records,
interlace_mode)

integer vdata_id, n_records, interlace_mode

<valid numeric data type> databuf(*)
271 June 2017

VSwrite/vsfwrt/vsfwrtc/vsfwrit Table of Contents HDF Reference Manual
integer function vsfwrtc(vdata_id, databuf, n_records,
interlace_mode)

integer vdata_id, n_records, interlace_mode

character*(*) databuf

integer function vsfwrit(vdata_id, databuf, n_records,
interlace_mode)

integer vdata_id, n_records, interlace_mode

character*(*) databuf
June 2017 272

The HDF Group Table of Contents VSwrite/vsfwrt/vsfwrtc/vsfwrit
273 June 2017

DF24addimage/d2aimg Table of Contents HDF Reference Manual
DF24addimage/d2aimg

intn DF24addimage(char *filename, VOIDP image, int32 width, int32 height)

filename IN: Name of the file

image IN: Pointer to the image array

width IN: Number of columns in the image

height IN Number of rows in the image

Purpose Writes a 24-bit image to the specified file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DF24addimage appends a 24-bit raster image set to the file. Array image is
assumed to be width x height x 3 bytes. In FORTRAN-77, the dimensions of
the array image must be the same as the dimensions of the image data.

The order in which dimensions are declared is different between C and
FORTRAN-77. Ordering varies because FORTRAN-77 arrays are stored in
column-major order, while C arrays are stored in row-major order. (Row-
major order implies that the last coordinate varies fastest).

When DF24addimage writes an image to a file, it assumes row-major order.
The FORTRAN-77 declaration that causes an image to be stored in this way
must have the width as its first dimension and the height as its second
dimension. In other words, the image must be built “on its side”.

FORTRAN integer function d2aimg(filename, image, width, height)

character*(*) filename

<valid numeric data type> image

integer width, height
June 2017 286

The HDF Group Table of Contents DF24getdims/d2gdims
DF24getdims/d2gdims

intn DF24getdims (char *filename, int32 *width, int32 *height, intn *interlace_mode)

filename IN: Name of the file

width OUT: Width of the image

height OUT: Height of the image

interlace_mode OUT: File interlace mode of the image

Purpose Retrieves dimensions and interlace storage scheme of next image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DF24getdims retrieves the dimensions and interlace of the image. If the file is
being opened for the first time, DF24getdims returns information about the
first image in the file. If an image has already been read, DF24getdims finds
the next image. In this way, images are read in the same order in which they
were written to the file.

If the dimensions and interlace of the image are known beforehand, there is no
need to call DF24getdims. Simply allocate arrays with the proper dimensions
for the image and invoke DF24getimage to read the images. If, however, you
do not know the values of width and height, you must call DF24getdims to get
them and then use them to determine the amount of memory to allocate for the
image buffer.

Successive calls to DF24getdims and DF24getimage retrieve all of the images
in the file in the sequence in which they were written.

The interlace mode codes are: 0 for pixel interlacing, 1 for scan-line interlacing
and 2 for scan-plane interlacing.

FORTRAN integer function d2gdims(filename, width, height, interlace_mode)

character*(*) filename

integer width, height, interlace_mode
287 June 2017

DF24getimage/d2gimg Table of Contents HDF Reference Manual
DF24getimage/d2gimg

intn DF24getimage(char *filename, VOIDP image, int32 width, int32 height)

filename IN: Name of the HDF file

image OUT: Pointer to image buffer

width IN: Number of columns in the image

height IN: Number of rows in the image

Purpose Retrieves an image from the next 24-bit raster image set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DF24getimage retrieves the image and stores it in an array. If DF24getdims
has not been called, DF24getimage finds the next image in the same way that
DF24getdims does.

The amount of space allocated for the image should be width x height x 3
bytes.

To specify that the next call to DF24getimage should read the raster image
using an interlace other than the interlace used to store the image in the file,
first call DF24reqil.

FORTRAN integer function d2gimg(filename, image, width, height)

character*(*) filename, image

integer width, height
June 2017 288

The HDF Group Table of Contents DF24lastref/d2lref
DF24lastref/d2lref

uint16 DF24lastref()

Purpose Retrieves the last reference number written to or read from a 24-bit raster
image set.

Return value Returns the non-zero reference number if successful and FAIL (or -1)
otherwise.

Description This routine is primarily used for attaching annotations to 24-bit images and
adding 24-bit images to vgroups. DF24lastref returns the reference number of
the last 24-bit raster image read or written.

FORTRAN integer function d2lref()
289 June 2017

DF24nimages/d2nimg Table of Contents HDF Reference Manual
DF24nimages/d2nimg

intn DF24nimages(char *filename)

filename IN: Name of the file

Purpose Counts the number of 24-bit raster images contained in an HDF file.

Return value Returns the number of 24-bit images in the file if successful and FAIL (or -1)
otherwise.

Description DF24nimages counts the number of 24-bit images stored in the file.

FORTRAN integer function d2nimg(filename)

character*(*) filename
June 2017 290

The HDF Group Table of Contents DF24putimage/d2pimg
DF24putimage/d2pimg

intn DF24putimage(char *filename, VOIDP image, int32 width, int32 height)

filename IN: Name of the file

image IN: Pointer to the image array

width IN: Number of columns in the image

height IN: Number of rows in the image

Purpose Writes a 24-bit image as the first image in the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The array image is assumed to be width x height x 3 bytes. DF24putimage
overwrites any information that exists in the HDF file. To append a new image
to a file instead of overwriting an existing file, use DF24addimage.

FORTRAN integer function d2pimg(filename, image, width, height)

character*(*) filename

<valid numeric data type> image

integer width, height
291 June 2017

DF24readref/d2rref Table of Contents HDF Reference Manual
DF24readref/d2rref

intn DF24readref(char *filename, uint16 ref)

filename IN: Name of the file

ref IN: Reference number for the next call to DF24getimage

Purpose Specifies the reference number of the next image to be read when
DF24getimage is next called.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DF24readref is commonly used in conjunction with DFANlablist, which
returns a list of labels for a given tag together with their reference numbers. It
provides a means of non-sequentially accessing 24-bit raster images in a file.

There is no guarantee that reference numbers appear in sequence in an HDF
file. Therefore, it is not safe to assume that a reference number is the index of
an image.

FORTRAN integer function d2rref(filename, ref)

character*(*) filename

integer ref
June 2017 292

The HDF Group Table of Contents DF24reqil/d2reqil
DF24reqil/d2reqil

intn DF24reqil (intn il)

il IN Memory interlace of the next image read

Purpose Specifies the interlace mode for the next call to DF24getimage will use.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Regardless of what interlace scheme is used to store the image, DF24reqil
causes the image to be loaded into memory and be interlaced according to the
specification of il.

Because a call to DF24reqil may require a substantial reordering of the data,
slower I/O performance could result than would be achieved if no change in
interlace were requested.

The interlace mode codes are: 0 for pixel interlacing,1 for scan-line interlacing
and 2 for scan-plane interlacing.

FORTRAN integer function d2reqil(il)

integer il
293 June 2017

DF24restart/d2first Table of Contents HDF Reference Manual
DF24restart/d2first

intn DF24restart()

Purpose Specifies that the next 24-bit image read from the file will be the first one
rather than the 24-bit image following the one most recently read.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

FORTRAN integer function d2first()
June 2017 294

The HDF Group Table of Contents DF24setcompress/d2scomp
DF24setcompress/d2scomp

intn DF24setcompress(int32 type, comp_info *cinfo)

type IN: Type of compression

cinfo IN: Pointer to compression information structure

Purpose Set the type of compression to use when writing the next 24-bit raster image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routines provides a method for compressing the next raster image written.
The type can be one of the following values: COMP_NONE, COMP_JPEG,
COMP_RLE, COMP_IMCOMP, COMP_NONE is the default for storing images if this
routine is not called, therefore images are not compressed by default.
COMP_JPEG compresses images with a JPEG algorithm, which is a lossy
method. COMP_RLE uses lossless run-length encoding to store the image.
COMP_IMCOMP uses a lossy compression algorithm called IMCOMP, and is
included for backward compatibility only.

The comp_info union contains algorithm-specific information for the library
routines that perform the compression and is defined in the hcomp.h header
file as follows:

typedef union tag_comp_info
{

struct
{

intn quality;
intn force_baseline;

} jpeg;

struct
{

int32 nt;
intn sign_ext;
intn fill_one;
intn start_bit;
intn bit_len;

} nbit;

struct
{

intn skp_size;
} skphuff;

struct
{

intn level;
} deflate;

}
comp_info
295 June 2017

DF24setcompress/d2scomp Table of Contents HDF Reference Manual
This union is defined to provide future expansion, but is currently only used by
the COMP_JPEG compression type. A pointer to a valid comp_info union is
required for all compression types other than COMP_JPEG, but the values in the
union are not used. The comp_info union is declared in the header file hdf.h
and is shown here for informative purposes only, it should not be re-declared in
a user program.

For COMP_JPEG compression, the quality member of the jpeg structure must be
set to the quality of the stored image. This number can vary from 100, the best
quality, to 0, terrible quality. All images stored with COMP_JPEG compression
are stored in a lossy manner, even images stored with a quality of 100. The
ratio of size to perceived image quality varies from image to image, some
experimentation may be required to determine an acceptable quality factor for
a given application. The force_baseline parameter determines whether
the quantization tables used during compression are forced to the range 0-255.
The force_baseline parameter should normally be set to 1 (forcing
baseline results), unless special applications require non-baseline images to be
used.

If the compression type is JPEG, d2scomp defines the default JPEG
compression parameters to be used. If these parameters must be changed later,
the d2sjpeg routine must be used. (See the Reference Manual entry for
d2sjpeg)

FORTRAN integer function d2scomp(type)

integer type
June 2017 296

The HDF Group Table of Contents d2scomp
d2scomp

integer d2scomp(integer quality, integer baseline)

quality IN: JPEG quality specification

baseline IN: JPEG baseline specification

Purpose Fortran-specific routine that sets the parameters needed for the JPEG
algorithm.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description d8sjpeg changes the JPEG compression parameter settings set in the d8scomp
routine.
297 June 2017

d2sjpeg Table of Contents HDF Reference Manual
d2sjpeg

integer d2sjpeg(integer quality, integer baseline)

quality IN: JPEG quality specification

baseline IN: JPEG baseline specification

Purpose Fortran-specific routine that sets the parameters needed for the JPEG
algorithm.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description d2sjpeg changes the JPEG compression parameter settings set in the d2scomp
routine.
June 2017 298

The HDF Group Table of Contents DF24setdims/d2sdims
DF24setdims/d2sdims

intn DF24setdims(int32 width, int32 height)

width IN: Number of columns in the image

height IN: Number or rows in the image

Purpose Set the dimensions of the next image to be written to a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

FORTRAN integer function d2sdims(width, height)

integer width, height
299 June 2017

DF24setil/d2setil Table of Contents HDF Reference Manual
DF24setil/d2setil

intn DF24setil(intn il)

il IN: Interlace mode

Purpose Specifies the interlace mode to be used on subsequent writes.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DF24setil sets the interlace mode to be used when writing out the raster image
set for a 24-bit image by determining the interlace mode of the image data in
memory. If DF24setil is not called, the interlace mode is assumed to be 0.

The interlace mode codes are: 0 for pixel interlacing, 1 for scan-line
interlacing and 2 for scan-plane interlacing.

FORTRAN integer function d2setil(il)

integer il
June 2017 300

The HDF Group Table of Contents DF24setil/d2setil
301 June 2017

DFR8addimage/d8aimg Table of Contents HDF Reference Manual
DFR8addimage/d8aimg

intn DFR8addimage(char *filename, VOIDP image, int32 width, int32 height, uint16 compress)

filename IN: Name of the file

image IN: Array containing the image data

width IN: Number of columns in the image

height IN: Number of rows in the image

compress IN: Type of compression to use, if any

Purpose Appends the RIS8 for the image to the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFR8addimage is functionally equivalent to DFR8putimage, except that
DFR8putimage cannot append image data; it only overwrites.

FORTRAN integer function d8aimg(filename, image, width, height, compress)

character*(*) filename, image

integer width, height

integer compress
June 2017 304

The HDF Group Table of Contents DFR8getdims/d8gdims
DFR8getdims/d8gdims

intn DFR8getdims(char *filename, int32 *width, int32 *height, intn *ispalette)

filename IN: Name of the HDF file

width OUT: Number of columns in the next image in the file

height OUT: Number of rows in the next image in the file

ispalette OUT: Indicator of the existence of a palette

Purpose Opens the file, finds the next image, retrieves the dimensions of the image, and
determines whether there is a palette associated with the image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFR8getdims retrieves the dimensions of the image and indicates whether a
palette is associated and stored with the image. If the file is being opened for
the first time, DFR8getdims returns information about the first image in the
file. If an image has already been read, DFR8getdims finds the next image.
Thus, images are read in the same order in which they were written to the file.

Normally, DFR8getdims is called before DFR8getimage so that if necessary,
space allocations for the image and palette can be checked, and the dimensions
can be verified. If this information is already known, DFR8getdims need not
be called.

Valid values of ispalette are: 1 if there is a palette, or 0 if not.

FORTRAN integer function d8gdims(filename, width, height, ispalette)

character*(*) filename

integer width, height

integer ispalette
305 June 2017

DFR8getimage/d8gimg Table of Contents HDF Reference Manual
DFR8getimage/d8gimg

intn DFR8getimage(char *filename, uint8 *image, int32 width, int32 height, uint8 *palette)

filename IN: Name of the file

image OUT: Buffer for the returned image

width IN: Width of the image data buffer

height IN: Height of the image data buffer

palette OUT: Palette data

Purpose To retrieve the image and its palette, if it is present, and store them in the
specified arrays.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description In C, if palette is NULL, no palette is loaded, even if one is stored with the
image. In FORTRAN-77, an array must be allocated to store the palette, even
if no palette is expected to be stored. If the image in the file is compressed,
DFR8getimage automatically decompresses it. If DFR8getdims has not been
called, DFR8getimage finds the next image in the same way that
DFR8getdims does.

The width and height parameters specify the number of columns and rows,
respectively, in the array which you've allocated in memory to store the image.
The image may be smaller than the allocated space.

The order in which you declare dimensions is different between C and
FORTRAN-77. Ordering varies because FORTRAN-77 arrays are stored in
column-major order, while C arrays are stored in row-major order. (Row-
major order implies that the horizontal coordinate varies fastest). When
d8gimg reads an image from a file, it assumes row-major order. The
FORTRAN-77 declaration that causes an image to be stored in this way must
have the width as its first dimension and the height as its second dimension. To
take this into account as you read image in your program, the image must be
built “on its side”.

FORTRAN integer function d8gimg(filename, image, width, height, palette)

character*(*) filename, image, palette

integer width, height
June 2017 306

The HDF Group Table of Contents DFR8getpalref
DFR8getpalref

intn DFR8getpalref(uint16 *pal_ref)

pal_ref OUT: Reference number of the palette

Purpose Retrieves the reference number of the palette associated with the last image
accessed.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Make certain that DFR8getdims is called before DFR8getpalref.
307 June 2017

DFR8lastref/d8lref Table of Contents HDF Reference Manual
DFR8lastref/d8lref

uint16 DFR8lastref()

Purpose Retrieves the last reference number written to or read from an RIS8.

Return value Returns a non-zero reference number if successful and FAIL (or 0) otherwise.

Description This routine is primarily used for attaching annotations to images and adding
images to vgroups. DFR8lastref returns the reference number of last raster
image set read or written.

FORTRAN integer function d8lref()
June 2017 308

The HDF Group Table of Contents DFR8nimages/d8nims
DFR8nimages/d8nims

intn DFR8nimages(char *filename)

filename IN: Name of the HDF file

Purpose Retrieves the number of 8-bit raster images stored in the specified file.

Return value Returns the number of raster images in the file if successful and FAIL (or -1)
otherwise.

FORTRAN integer function d8nims(filename)

character*(*) filename
309 June 2017

DFR8putimage/d8pimg Table of Contents HDF Reference Manual
DFR8putimage/d8pimg

intn DFR8putimage(char *filename, VOIDP image, int32 width, int32 height, uint16 compress)

filename IN: Name of the file to store the raster image in

image IN: Array with image to put in file

width IN: Number of columns in the image

height IN: Number of rows in the image

compress IN: Type of compression used, if any

Purpose Writes the RIS8 for the image as the first image in the file, overwriting any
information previously in the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The compress parameter identifies the method to be used for compressing the
data, if any. If IMCOMP compression is used, the image must include a
palette.

DFR8putimage overwrites any information that exists in the HDF file. To
write an image to a file by appending it, rather than overwriting it, use
DFR8addimage.

In FORTRAN-77, the dimensions of the image array must be the same as the
dimensions of the image itself.

The order in which dimensions are declared is different between C and
FORTRAN-77. Ordering varies because FORTRAN-77 arrays are stored in
column-major order, while C arrays are stored in row-major order. (Row-
major order implies that the horizontal coordinate varies fastest). When
DFR8putimage writes an image to a file, it assumes row-major order. The
FORTRAN-77 declaration that causes an image to be stored in this way must
have the width as its first dimension and the height as its second dimension, the
reverse of the way it is done in C. To take this into account as you build your
image in your FORTRAN-77 program, the image must be built “on its side”.

FORTRAN integer function d8pimg(filename, image, width, height, compress)

character*(*) filename, image

integer width, height, compress
June 2017 310

The HDF Group Table of Contents DFR8readref/d8rref
DFR8readref/d8rref

intn DFR8readref(char *filename, uint16 ref)

filename IN: Name of the file

ref IN: Reference number for next DFR8getimage

Purpose Specifies the reference number of the image to be read when DFR8getimage
is next called.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFR8readref is usually used in conjunction with DFANlablist, which returns
a list of labels for a given tag together with their reference numbers. It
provides, in a sense, a random access to images. There is no guarantee that
reference numbers appear in sequence in an HDF file; therefore, it is not safe to
assume that a reference number is the index of an image.

FORTRAN integer function d8rref(filename, ref)

character*(*) filename

integer ref
311 June 2017

DFR8restart/d8first Table of Contents HDF Reference Manual
DFR8restart/d8first

intn DFR8restart()

Purpose Causes the next get command to read from the first raster image set in the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

FORTRAN integer function d8first()
June 2017 312

The HDF Group Table of Contents DFR8setcompress/d8scomp
DFR8setcompress/d8scomp

intn DFR8setcompress(int32 type, comp_info *cinfo)

type IN: Type of compression

cinfo IN: Pointer to compression information structure

Purpose Sets the compression type to be used when writing the next 8-bit raster image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine provides a method for compressing the next raster image written.
The type can be one of the following values: COMP_NONE, COMP_JPEG,
COMP_RLE, COMP_IMCOMP. COMP_NONE is the default for storing images if this
routine is not called, therefore images are not compressed by default.
COMP_JPEG compresses images with a JPEG algorithm, which is a lossy
method. COMP_RLE uses lossless run-length encoding to store the image.
COMP_IMCOMP uses a lossy compression algorithm called IMCOMP, and is
included for backward compatibility only.

The comp_info union contains algorithm-specific information for the library
routines that perform the compression and is defined in the hcomp.h header
file as follows (refer to the header file for inline documentation):

typedef union tag_comp_info
{

struct
{

intn quality;
intn force_baseline;

} jpeg;

struct
{

int32 nt;
intn sign_ext;
intn fill_one;
intn start_bit;
intn bit_len;

} nbit;

struct
{

intn skp_size;
} skphuff;

struct
{

intn level;
} deflate;

}
comp_info;
313 June 2017

DFR8setcompress/d8scomp Table of Contents HDF Reference Manual
This union is defined to provide future expansion, but is currently only used by
the COMP_JPEG compression type. A pointer to a valid comp_info union is
required for all compression types other than COMP_JPEG, but the values in the
union are not used. The comp_info union is declared in the header file hdf.h
and is shown here for informative purposes only, it should not be re-declared in
a user program.

For COMP_JPEG compression, the quality member of the jpeg structure must be
set to the quality of the stored image. This number can vary from 100, the best
quality, to 0, terrible quality. All images stored with COMP_JPEG compression
are stored in a lossy manner, even images stored with a quality of 100. The
ratio of size to perceived image quality varies from image to image, some
experimentation may be required to determine an acceptable quality factor for
a given application. The force_baseline parameter determines whether the
quantization tables used during compression are forced to the range 0-255. It
should normally be set to 1 (forcing baseline results), unless special
applications require non-baseline images to be used.

If the compression type is JPEG, d8scomp defines the default JPEG
compression parameters to be used. If these parameters must be changed later,
the d8sjpeg routine must be used. (Refer to the Reference Manual page on
d8sjpeg).

FORTRAN integer function d8scomp(type)

integer type
June 2017 314

The HDF Group Table of Contents d8scomp
d8scomp

integer d8scomp(integer quality, integer baseline)

quality IN: JPEG quality specification

baseline IN: JPEG baseline specification

Purpose Fortran-specific routine that sets the parameters needed for the JPEG
algorithm.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description d8sjpeg changes the JPEG compression parameter settings set in the d8scomp
routine.
315 June 2017

d8sjpeg Table of Contents HDF Reference Manual
d8sjpeg

integer d8sjpeg(integer quality, integer baseline)

quality IN: JPEG quality specification

baseline IN: JPEG baseline specification

Purpose Fortran-specific routine that sets the parameters needed for the JPEG
algorithm.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description d8sjpeg changes the JPEG compression parameter settings set in the d8scomp
routine.
June 2017 316

The HDF Group Table of Contents DFR8setpalette/d8spal
DFR8setpalette/d8spal

intn DFR8setpalette(uint8 *palette)

palette IN: Palette data

Purpose Indicate which palette, if any, is to be used for subsequent image sets.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The specified palette remains the default palette until changed by a subsequent
call to DFR8setpalette.

FORTRAN integer function d8spal(palette)

character*(*) palette
317 June 2017

DFR8writeref/d8wref Table of Contents HDF Reference Manual
DFR8writeref/d8wref

intn DFR8writeref(char *filename, uint16 ref)

filename IN: Name of the HDF file

ref IN: Reference number for next call to DFR8putimage or
DFR8addimage

Purpose Specifies the reference number of the image to be written when
DFR8addimage or DFR8putimage is next called.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description It is unlikely that you will need this routine, but if you do, use it with caution.
There is no guarantee that reference numbers appear in sequence in an HDF
file; therefore, it is not safe to assume that a reference number is the index of an
image. In addition, using an existing reference number will overwrite the
existing 8-bit raster image data.

FORTRAN integer function d8wref(filename, ref)

character*(*) filename

integer ref
June 2017 318

The HDF Group Table of Contents DFR8writeref/d8wref
319 June 2017

DFPaddpal/dpapal Table of Contents HDF Reference Manual
DFPaddpal/dpapal

intn DFPaddpal(char *filename, VOIDP palette)

filename IN: Name of the HDF file

palette IN: Buffer containing the palette to be written

Purpose Appends a palette to a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If the named file does not exist, it is created and the palette written to it. The
palette buffer should beat least 768 bytes in length.

FORTRAN integer function dpapal(filename, palette)

character*(*) filename, palette
June 2017 322

The HDF Group Table of Contents DFPgetpal/dpgpal
DFPgetpal/dpgpal

intn DFPgetpal(char *filename, VOIDP palette)

filename IN: Name of the HDF file

palette OUT: Buffer for the returned palette

Purpose Retrieves the next palette from file and stores it in the buffer palette.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The palette buffer is assumed to be at least 768 bytes long. Successive calls to
DFPgetpal retrieve the palettes in the sequence they are stored in the file.

FORTRAN integer function dpgpal(filename, palette)

character*(*) filename. palette
323 June 2017

DFPlastref/dplref Table of Contents HDF Reference Manual
DFPlastref/dplref

uint16 DFPlastref(void)

Purpose Returns the value of the reference number most recently read or written by a
palette function call.

Return value Returns the reference number if successful and FAIL (or -1) otherwise.

FORTRAN integer function dplref()
June 2017 324

The HDF Group Table of Contents DFPnpals/dpnpals
DFPnpals/dpnpals

intn DFPnpals(char *filename)

filename IN: Name of the file

Purpose Indicates the number of palettes in the specified file.

Return value Returns the number of palettes if successful and FAIL (or -1) otherwise.

FORTRAN integer function dpnpals(filename)

character*(*) filename
325 June 2017

DFPputpal/dpppal Table of Contents HDF Reference Manual
DFPputpal/dpppal

intn DFPputpal (char *filename, VOIDP palette, intn overwrite, char *filemode)

filename IN: Name of the file

palette IN: Buffer containing the palette to be written

overwrite IN: Flag identifying the palette to be written

filemode IN: File access mode

Purpose Writes a palette to the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine provides more control of palette write operations than
DFPaddpal. Note that the combination filemode=”w” and overwrite=1 has no
meaning and will result in an error condition. To overwrite a palette, filename
must be the same filename as the last file accessed through the DFP interface.

Valid values for overwrite are: 1 to overwrite last palette; 0 to write a new
palette.

Valid values for filemode are: “a” to append the palette to the file and “w” to
create a new file.

The palette buffer must be at least 768 bytes in length.

FORTRAN integer function dpppal(filename, palette, overwrite, filemode)

character*(*) filename, palette, filemode

integer overwrite
June 2017 326

The HDF Group Table of Contents DFPreadref/dprref
DFPreadref/dprref

intn DFPreadref(char *filename, uint16 ref)

filename IN: Name of the file

ref IN: Reference number to be used in next DFPgetpal call

Purpose Retrieves the reference number of the palette to be retrieved next by
DFPgetpal.

Return value Returns SUCCEED (or 0) if the palette with the specified reference number exists
and FAIL (or -1) otherwise.

Description Used to set the reference number of the next palette to be retrieved.

FORTRAN integer function dprref(filename, ref)

character*(*) filename

integer ref
327 June 2017

DFPrestart/dprest Table of Contents HDF Reference Manual
DFPrestart/dprest

intn DFPrestart()

Purpose Specifies that DFPgetpal will read the first palette in the file, rather than the
next unread palette.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

FORTRAN integer function dprest()
June 2017 328

The HDF Group Table of Contents DFPwriteref/dpwref
DFPwriteref/dpwref

intn DFPwriteref(char *filename, uint16 ref)

filename IN: Name of the file

ref IN: Reference number to be assigned to the next palette written to a file

Purpose Determines the reference number of the next palette to be written.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The file name is ignored. The next palette written, regardless of the filename, is
assigned the reference number ref.

FORTRAN integer function dpwref(filename, ref)

character*(*) filename

integer ref
329 June 2017

DFKNTsize Table of Contents HDF Reference Manual
DFKNTsize

int DFKNTsize(int32 data_type)

data_type IN: Data type

Purpose Determines the size of the specified data type.

Return value Returns the size, in bytes, of the specified data type if successful and FAIL (or -
1) otherwise.
June 2017 332

The HDF Group Table of Contents DFKNTsize
333 June 2017

DFUfptoimage/duf2im Table of Contents HDF Reference Manual
DFUfptoimage/duf2im

int DFUfptoimage(int32 hdim, int32 vdim, float32 max, float32 min, float32 *hscale, float32 *vscale,
float32 *data, uint8 *palette, char *outfile, int ct_method, int32 hres, int32 vres,
int compress)

hdim IN: Horizontal dimension of the input data

vdim IN: Vertical dimension of the input data

max IN: Maximum value of the input data

min IN: Minimum value of the input data

hscale IN: Horizontal scale of the input data (optional)

vscale IN: Vertical scale of the input data (optional)

data IN: Buffer containing the input data

palette IN: Pointer to the palette data

outfile IN: Name of the file the image data will be stored in

ct_method IN: Color transformation method

hres IN: Horizontal resolution to be applied to the output image

vres IN: Vertical resolution to be applied to the output image

compress IN: Compression flag

Purpose Converts floating point data to 8-bit raster image format and stores the
converted image data in the specified file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine is very similar to the utility fptohdf, which takes its input from
one or more files, rather than from internal memory. Another difference is that
this routine allows compression (run-length encoding), whereas fptohdf does
not at present.

As this routine is meant to mimic many of the features of NCSA DataScope,
much of the code has been taken directly from the DataScope source.

Valid values for ct_method are: 1 (or EXPAND) for expansion and 2 (or INTERP)
for interpolation.

Valid values for compress are: 0 for no compression and 1 for compression
enabled.

FORTRAN integer function duf2im(hdim, vdim, max, min, hscale, vscale,
data, palette, outfile, ct_method, hres, vres,
compress)

integer hdim, vdim
June 2017 336

The HDF Group Table of Contents DFUfptoimage/duf2im
real max, min, hscale, vscale, data

character*(*) palette, outfile

integer ctmethod, hres, vres, compress
337 June 2017

DFANaddfds/daafds Table of Contents HDF Reference Manual
DFANaddfds/daafds

intn DFANaddfds(int32 file_id, char *description, int32 desc_len)

file_id IN: File identifier returned by Hopen

description IN: Sequence of ASCII characters (may include NULL or '\0')

desc_len IN: Length of the description

Purpose Adds a file description to a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description These annotations are associated with the file, not with any particular object
within the file. The parameter description can contain any sequence of ASCII
characters. It does not have to be a string. Use the general purpose routines
Hopen and Hclose to manage file access as the file annotation routines will not
open and close HDF files.

FORTRAN integer function daafds(file_id, description, desc_len)

integer file_id, desc_len

character*(*) description
June 2017 340

The HDF Group Table of Contents DFANaddfid/daafid
DFANaddfid/daafid

intn DFANaddfid(int32 file_id, char *label)

file_id IN: The file identifier returned by Hopen.

label IN: A null-terminated string.

Purpose Writes a file label to a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description These annotations are associated with the file, not with any particular object
within the file. The label must be a single string. Use the general purpose
routines Hopen and Hclose to manage file access because the file annotation
routines will not open and close HDF files for you.

In the FORTRAN-77 version, the string length for the label should be close to
the actual expected string length, because in FORTRAN-77 string lengths
generally are assumed to be the declared length of the array that holds the
string.

FORTRAN integer function daafid(file_id, label)

integer file_id

character*(*) label
341 June 2017

DFANclear/daclear Table of Contents HDF Reference Manual
DFANclear/daclear

intn DFANclear()

Purpose Resets all internal library structures and parameters of the DFAN annotation
interface.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description When a file is regenerated in a single run by a library routine of another
interface (such as DFSDputdata), DFANclear should be called to reset the
interface.

FORTRAN integer function daclear()
June 2017 342

The HDF Group Table of Contents DFANgetdesc/dagdesc
DFANgetdesc/dagdesc

intn DFANgetdesc(char *filename, uint16 tag, uint16 ref, char *desc_buf, int32 buf_len)

filename IN: Name of the file

tag IN: Tag of the data object assigned the description

ref IN: Reference number of the data object assigned the description

desc_buf OUT: Buffer allocated to hold the description

buf_len IN: Size of the buffer allocated to hold the description

Purpose Reads the description assigned to the data object with the given tag and
reference number.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The parameter buf_len specifies the storage space available for the description.
The length of buf_len must account for the null termination character appended
to the description.

FORTRAN integer function dagdesc(filename, tag, ref, desc_buf, buf_len)

character*(*) filename, desc_buf

integer tag, ref

integer buf_len
343 June 2017

DFANgetdesclen/dagdlen Table of Contents HDF Reference Manual
DFANgetdesclen/dagdlen

int32 DFANgetdesclen(char *filename, uint16 tag, uint16 ref)

filename IN: Name of the file

tag IN: Tag of the data object assigned the description

ref IN: Reference number of the data object assigned the description

Purpose Retrieves the length of a description of the data object with the given tag and
reference number.

Return value Returns the length of a description if successful and FAIL (or -1) otherwise.

Description This routine should be used to insure that there is enough space allocated for a
description before actually reading it.

FORTRAN integer function dagdlen(filename, tag, ref)

character*(*) filename

integer tag, ref
June 2017 344

The HDF Group Table of Contents DFANgetfds/dagfds
DFANgetfds/dagfds

int32 DFANgetfds(int32 file_id, char *desc_buf, int32 buf_len, intn isfirst)

file_id IN: File identifier returned by Hopen

desc_buf OUT: The buffer allocated to hold the description

buf_len IN: Size of the buffer allocated to hold the description

isfirst IN: Determines the description to be retrieved

Purpose Reads the next file description.

Return value Returns the length of the file description if successful and FAIL (or -1)
otherwise.

Description If isfirst is 0, DFANgetfds gets the next file description from an HDF file. For
example, if there are three file descriptions in a file, three successive calls to
DFANgetfds will get all three descriptions. If isfirst is 1, DFANgetfds gets the
first file description.

Valid values for isfirst are: 1 to read the first description and 0 to read the next
description.

FORTRAN integer function dagfds(file_id, desc_buf, buf_len, isfirst)

integer file_id, buf_len, isfirst

character*(*) desc_buf
345 June 2017

DFANgetfdslen/dagfdsl Table of Contents HDF Reference Manual
DFANgetfdslen/dagfdsl

int32 DFANgetfdslen(int32 file_id, intn isfirst)

file_id IN: File identifier returned by Hopen

isfirst IN: Determines the description the retrieved length information applies
to

Purpose Returns the length of a file description.

Return value Returns the length of the file description if successful and FAIL (or -1)
otherwise.

Description When DFANgetfdslen is first called for a given file, it returns the length of the
first file description. In order to get the lengths of successive file descriptions,
you must call DFANgetfds between calls to DFANgetfdslen. Successive calls
to DFANgetfdslen without calling DFANgetfds between them will return the
length of the same file description.

Valid values for isfirst are: 1 to read the length of the first description and 0 to
read the length of the next description.

FORTRAN integer function dagfdsl(file_id, isfirst)

integer file_id, isfirst
June 2017 346

The HDF Group Table of Contents DFANgetfid/dagfid
DFANgetfid/dagfid

int32 DFANgetfid(int32 file_id, char *desc_buf, int32 buf_len, intn isfirst)

file_id IN: File identifier returned by Hopen

label_buf OUT: The buffer allocated to hold the label

buf_len IN: Size of the buffer allocated to hold the label

isfirst IN: Determines the file label to be retrieved

Purpose Reads a file label from a file.

Return value Returns the length of the file description if successful and FAIL (or -1)
otherwise.

Description If isfirst is 0, DFANgetfid gets the next file label from the file. If isfirst is 1,
DFANgetfid gets the first file label in the file. If buf_len is not large enough,
the label is truncated to buf_len-1 characters in the buffer label_buf.

Valid values of isfirst are: 1 to read the first label, 0 to read the next label

FORTRAN integer function dagfid(file_id, label_buf, buf_len, isfirst)

integer file_id, buf_len, isfirst

character*(*) label_buf
347 June 2017

DFANgetfidlen/dagfidl Table of Contents HDF Reference Manual
DFANgetfidlen/dagfidl

int32 DFANgetfidlen(int32 file_id, intn isfirst)

file_id IN: File identifier returned by Hopen

isfirst IN: Determines the file label the retrieved length information applies to

Purpose Returns the length of a file label.

Return value Returns the length of the file label if successful and FAIL (or -1) otherwise.

Description When DFANgetfidlen is first called for a given file, it returns the length of the
first file label. In order to retrieve the lengths of successive file labels,
DFANgetfid must be called between calls to DFANgetfidlen. Otherwise,
successive calls to DFANgetfidlen will return the length of the same file label.

Valid values of isfirst are: 1 to read the first label, and 0 to read the next label.

FORTRAN integer function dagfidl(file_id, isfirst)

integer file_id, isfirst
June 2017 348

The HDF Group Table of Contents DFANgetlabel/daglab
DFANgetlabel/daglab

intn DFANgetlabel(char *filename, uint16 tag, uint16 ref, char *label_buf, int32 buf_len)

filename IN: Name of the HDF file

tag IN: Tag of the data object assigned the label

ref IN: Reference number of the data object assigned the label

label_buf OUT: Buffer for the label

buf_len IN: Size of the buffer allocated for the label

Purpose Reads the label assigned to the data object identified by the given tag and
reference number.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The parameter buf_len specifies the storage space available for the label. The
length of buf_len must account for the null termination character appended to
the annotation.

FORTRAN integer function daglab(filename, tag, ref, label_buf, buf_len)

character*(*) filename, label_buf

integer tag, ref, buf_len
349 June 2017

DFANgetlablen/dagllen Table of Contents HDF Reference Manual
DFANgetlablen/dagllen

int32 DFANgetlablen(char *filename, uint16 tag, uint16 ref)

filename IN: Name of the file

tag IN: Tag of the data object assigned the label

ref IN: Reference number the data object assigned the label

Purpose Returns the length of a label assigned to the object with a given tag and
reference number.

Return value Returns the length of the label if successful and FAIL (or -1) otherwise.

Description This routine should be used to insure that there is enough space allocated for a
label before actually reading it.

FORTRAN integer function dagllen(filename, tag, ref)

character*(*) filename

integer tag, ref
June 2017 350

The HDF Group Table of Contents DFANlablist/dallist
DFANlablist/dallist

int DFANlablist(char *filename, uint16 tag, unit16 ref_list[], char *label_list, int list_len, intn
label_len, intn start_pos)

filename IN: Name of the file

tag IN: Tag to be queried

ref_list OUT: Buffer for the returned reference numbers

label_list OUT: Buffer for the returned labels

list_len IN: Size of the reference number list and the label list

label_len IN: Maximum length allowed for a label

start_pos IN: Starting position of the search

Purpose Returns a list of all reference numbers and labels (if labels exist) for a given
tag.

Return value Returns the number of reference numbers found if successful and FAIL (or -1)
otherwise.

Description Entries are returned from the start_pos entry up to the list_len entry.

The list_len determines the number of available entries in the reference
number and label lists, label_len is the maximum length allowed for a label,
and start_pos tells which label to start reading for the given tag. (If start_pos is
1, for instance, all labels will be read; if start_pos is 4, all but the first 3 labels
will be read.) The ref_list contains a list of reference numbers for all objects
with a given tag. The label_list contains a corresponding list of labels, if any. If
there is no label stored for a given object, the corresponding entry in label_list
is an empty string.

Taken together, the ref_list and label_list constitute a directory of all objects
and their labels (where they exist) for a given tag. The label_list parameter can
display all of the labels for a given tag. Or it can be searched to find the
reference number of a data object with a certain label. Once the reference
number for a given label is found, the corresponding data object can be
accessed by invoking other HDF routines. Therefore, this routine provides a
mechanism for the direct access to data objects in HDF files.

FORTRAN integer function dallist(filename, tag, ref_list, label_list,
list_len, label_len, start_pos)

character*(*) filename, label_list

integer ref_list(*)

integer list_len, label_len, start_pos
351 June 2017

DFANlastref/dalref Table of Contents HDF Reference Manual
DFANlastref/dalref

uint16 DFANlastref()

Purpose Returns the reference number of the annotation last written or read.

Return value Returns the reference number if successful and FAIL (or -1) otherwise.

FORTRAN integer function dalref()
June 2017 352

The HDF Group Table of Contents DFANputdesc/dapdesc
DFANputdesc/dapdesc

int DFANputdesc(char *filename, uint16 tag, uint16 ref, char *description, int32 desc_len)

filename IN: Name of the file

tag IN: Tag of the data object to be assigned the description

ref IN: Reference number the data object to be assigned the description

description IN: Sequence of ASCII characters (may include NULL or '\0')

desc_len IN: Length of the description

Purpose Writes a description for the data object with the given tag and reference
number.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The parameter description can contain any sequence of ASCII characters; it
does not have to be a string. If DFANputdesc is called more than once for the
same tag/reference number pair, only the last description is stored in the file.

FORTRAN integer function dapdesc(filename, tag, ref, description,
desc_len)

character*(*) filename, description

integer tag, ref, desc_len
353 June 2017

DFANputlabel/daplab Table of Contents HDF Reference Manual
DFANputlabel/daplab

intn DFANputlabel(char *filename, uint16 tag, uint16 ref, char *label)

filename IN: Name of the file

tag IN: Tag of the data object to be assigned the label

ref IN: Reference number the data object to be assigned the label

label IN: Null-terminated label string

Purpose Assigns a label to the data object with the given tag/reference number pair.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

FORTRAN integer function daplab(filename, tag, ref, label)

character*(*) filename, label

integer tag, ref
June 2017 354

The HDF Group Table of Contents DFANputlabel/daplab
355 June 2017

Happendable Table of Contents HDF Reference Manual
Happendable

intn Happendable(int32 h_id)

h_id IN: Access identifier returned by Hstartwrite

Purpose Specifies that the specified element can be appended to

Return value Returns SUCCEED (or 0) if data element can be appended and FAIL (or -1)
otherwise.

Description If a data element is at the end of a file Happendable allows Hwrite to append
data to it, converting it to linked-block element only when necessary.
June 2017 398

The HDF Group Table of Contents Hcache
Hcache

intn Hcache(int32 file_id, intn cache_switch)

file_id IN: File identifier returned by Hopen

cache_switch IN: Flag to enable or disable caching

Purpose Enables low-level caching for the specified file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If file_id is set to CACHE_ALL_FILES, then the value of cache_switch is used to
modify the default file cache setting.

Valid values for cache_switch are: TRUE (or 1) to enable caching and FALSE (or
0) to disable caching.
399 June 2017

Hdeldd Table of Contents HDF Reference Manual
Hdeldd

intn Hdeldd(int32 file_id, uint16 tag, uint16 ref)

file_id IN: File identifier returned by Hopen

tag IN: Tag of data descriptor to be deleted

ref IN: Reference number of data descriptor to be deleted

Purpose Deletes a tag and reference number from the data descriptor list.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Once the data descriptor is removed, the data in the data object becomes
inaccessible and is marked as such. To remove inaccessible data from an HDF
file, use the utility hdfpack.

Hdeldd only deletes the specified tag and reference number from the data
descriptor list. Data objects containing the deleted tag and reference number
are not automatically updated. For example, if the tag and reference number
deleted from the descriptor list referenced an object in a vgroup, the tag and
reference number will still exist in the vgroup even though the data is
inaccessible.
June 2017 400

The HDF Group Table of Contents Hendaccess
Hendaccess

intn Hendaccess(int32 h_id)

h_id IN: Access identifier returned by Hstartread, Hstartwrite, or
Hnextread

Purpose Terminates access to a data object by disposing of the access identifier.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The number of active access identifiers is limited to MAX_ACC as defined in the
hlimits.h header file. Because of this restriction, it is very important to call
Hendaccess immediately following the last operation on a data element.

When developing new interfaces, a common mistake is to omit calling
Hendaccess for all of the elements accessed. When this happens, Hclose will
return FAIL, and a dump of the error stack will report the number of active
access identifiers. Refer to the Reference Manual page on HEprint.

This is a difficult problem to debug because the low levels of the HDF library
cannot determine who and where an access identifier was originated. As a
result, there is no automated method of determining which access identifiers
have yet to be released.
401 June 2017

Hendbitaccess Table of Contents HDF Reference Manual
Hendbitaccess

intn Hendbitaccess(int32 h_id, intn flushbit)

h_id IN: Identifier of the bit-access element to be disposed of

flushbit IN: Specifies how the leftover bits are to be flushed

Purpose Disposes of the specified bit-access file element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If called after a bit-write operation, Hendbitaccess flushes all buffered bits to
the dataset, then calls Hendaccess.

“Leftover bits” are bits that have been buffered, but are fewer than the number
of bits defined by BITNUM, which is usually set to 8.

Valid codes for flushbit are: 0 for flush with zeros, 1 for flush with ones and -1
for dispose of leftover bits
June 2017 402

The HDF Group Table of Contents Hexist
Hexist

intn Hexist(int32 h_id, uint16 search_tag, uint16 search_ref)

h_id IN: Access identifier returned by Hstartread, Hstartwrite, or
Hnextread

search_tag IN: Tag of the object to be searched for

search_ref IN: Reference number of the object to be searched for

Purpose Locates an object in an HDF file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Simple interface to Hfind that determines if a given tag/reference number pair
exists in a file. Wildcards apply.

Hfind performs all validity checking; this is just a very simple wrapper around
it.
403 June 2017

Hfidinquire Table of Contents HDF Reference Manual
Hfidinquire

intn Hfidinquire(int32 file_id, char *filename, intn *access, intn *attach)

file_id IN: File identifier returned by Hopen

filename OUT: Complete path and filename for the file

access OUT: Access mode file is opened with

attach OUT: Number of access identifiers attached to the file

Purpose Returns file information through a reference of its file identifier.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Gets the complete path name, access mode, and number of access identifiers
associated with a file. The filename parameter is a pointer to a character pointer
which will be modified when the function returns. Upon completion, filename
is set to point to the file name in internal storage. All output parameters must
be non-null pointers.
June 2017 404

The HDF Group Table of Contents Hfind
Hfind

intn Hfind(int32 file_id, uint16 search_tag, uint16 search_ref, uint16 *find_tag, uint16 *find_ref, int32
*find_offset, int32 *find_length, intn direction)

file_id IN: File identifier returned by Hopen

search_tag IN: The tag to search for or DFTAG_WILDCARD

search_ref IN: Reference number to search for or DFREF_WILDCARD

find_tag IN/OUT: If (*find_tag == 0) and (*find_ref == 0) then start the search from
either the beginning or the end of the file. If the object is found, the
tags of the object will be returned here.

find_ref IN/OUT: If (*find_tag == 0) and (*find_ref == 0) then start the search from
either the beginning or the end of the file. If the object is found, the
reference numbers of the object will be returned here.

find_offset OUT: Offset of the data element found

find_length OUT: Length of the data element found

direction IN: Direction to search in DF_FORWARD searches forward from the current
location, and DF_BACKWARD searches backward from the current
location

Purpose Locates the next object to be searched for in an HDF file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Hfind searches for the next data element that matches the specified tag and
reference number. Wildcards apply. If direction is DF_FORWARD, searching is
forward from the current position in the file, otherwise DF_BACKWARD specifies
backward searches from the current position in the file.

If find_tag and find_ref are both set to 0, this indicates the beginning of a
search, and the search will start from the beginning of the file if the direction is
DF_FORWARD and from the end of the file if the direction is DF_BACKWARD.
405 June 2017

Hgetbit Table of Contents HDF Reference Manual
Hgetbit

intn Hgetbit(int32 h_id)

h_id IN: Bit-access element identifier

Purpose Reads one bit from the specified bit-access element.

Return value Returns the bit read (or 0 or 1) if successful and FAIL (or -1) otherwise.

Description This function is a wrapper for Hbitread.
June 2017 406

The HDF Group Table of Contents Hgetelement
Hgetelement

int32 Hgetelement(int32 file_id, uint16 tag, uint16 ref, uint8 *data)

file_id IN: File identifier returned by Hopen

tag IN: Tag of the data element to be read

ref IN: Reference number of the data element to be read

data OUT: Buffer the element will be read into

Purpose Reads the data element for the specified tag and reference number and writes it
to the data buffer.

Return value Returns the number of bytes read if successful and FAIL (or -1) otherwise.

Description It is assumed that the space allocated for the buffer is large enough to hold the
data.
407 June 2017

Hinquire Table of Contents HDF Reference Manual
Hinquire

intn Hinquire(int32 h_id, int32 *file_id, uint16 *tag, uint16 *ref, int32 *length, int32 *offset, int32
*position, int16 *access, int16 *special)

h_id IN: Access identifier returned by Hstartread, Hstartwrite, or
Hnextread

file_id OUT: File identifier returned by Hopen

tag OUT: Tag of the element pointed to

ref OUT: Reference number of the element pointed to

length OUT: Length of the element pointed to

offset OUT: Offset of the element in the file

position OUT: Current position within the data element

access OUT: The access type for this data element

special OUT: Special code

Purpose Returns access information about a data element.

Return value Returns SUCCEED (or 0) if the access identifier points to a valid data element
and FAIL (or -1) otherwise.

Description If h_id is a valid access identifier the access type (read or write) is set
regardless of whether or not the return value is FAIL (or -1). If h_id is invalid,
the function returns FAIL (or -1) and the access type is set to zero. To avoid
excess information, pass NULL for any unnecessary pointer.
June 2017 408

The HDF Group Table of Contents Hlength
Hlength

int32 Hlength(int32 file_id, uint16 tag, uint16 ref)

file_id IN: File identifier returned by Hopen

tag IN: Tag of the data element

ref IN: Reference number of the data element

Purpose Returns the length of a data object specified by the tag and reference number.

Return value Returns the length of data element if found and FAIL (or -1) otherwise.

Description Hlength calls Hstartread, HQuerylength, and Hendaccess to determine the
length of a data element. Hlength uses Hstartread to obtain an access
identifier for the specified data object.

Hlength will return the correct data length for linked-block elements, however
it is important to remember that the data in linked-block elements is not stored
contiguously.
409 June 2017

Hnewref Table of Contents HDF Reference Manual
Hnewref

uint16 Hnewref(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Returns a reference number that can be used with any tag to produce a unique
tag /reference number pair.

Return value Returns the reference number if successful and 0 otherwise.

Description Successive calls to Hnewref will generate reference number values that
increase by one each time until the highest possible reference number has been
returned. At this point, additional calls to Hnewref will return an increasing
sequence of unused reference number values starting from 1.
June 2017 410

The HDF Group Table of Contents Hnextread
Hnextread

intn Hnextread(int32 h_id, uint16 tag, uint16 ref, int origin)

h_id IN: Access identifier returned by Hstartread or previous Hnextread

tag IN: Tag to search for

ref IN: Reference number to search for

origin IN: Position to begin search: DF_START or DF_CURRENT

Purpose Searches for the next data descriptor that matches the specified tag and
reference number.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Wildcards apply. If origin is DF_START, the search will start at the beginning of
the data descriptor list. If origin is DF_CURRENT, the search will begin at the
current position. Searching backwards from the end of a data descriptor list is
not yet implemented.

If the search is successful, the access identifier reflects the new data element,
otherwise it is not modified.
411 June 2017

Hnumber/hnumber Table of Contents HDF Reference Manual
Hnumber/hnumber

int32 Hnumber(int32 file_id, uint16 tag)

file_id IN: File identifier returned by Hopen

tag IN: Tag to be counted

Purpose Returns the number of instances of a tag in a file.

Return value Returns the number of instances of a tag in a file if successful, and FAIL (or -1)
otherwise.

Description Hnumber determines how many objects with the specified tag are in a file. To
determine the total number of objects in a file, set the tag argument to
DFTAG_WILDCARD. Note that a return value of zero is not a fail condition.

FORTRAN integer function hnumber(file_id, tag)

integer file_id, tag
June 2017 412

The HDF Group Table of Contents Hoffset
Hoffset

int32 Hoffset(int32 file_id, uint16 tag, uint16 ref)

file_id IN: File identifier returned by Hopen

tag IN: Tag of the data element

ref IN: Reference number of the data element

Purpose Returns the offset of a data element in the file.

Return value Returns the offset of the data element if the data element exists and FAIL (or -
1) otherwise.

Description Hoffset calls Hstartread, HQueryoffset, and Hendaccess to determine the
length of a data element. Hoffset uses Hstartread to obtain an access
identifier for the specified data object.

Hoffset will return the correct offset for a linked-block element, however it is
important to remember that the data in linked-block elements is not stored
contiguously. The offset returned by Hoffset only reflects the position of the
first data block.

Hoffset should not be used to determine the offset of an external element. In
this case, Hoffset returns zero, an invalid offset for HDF files.
413 June 2017

Hputbit Table of Contents HDF Reference Manual
Hputbit

intn Hputbit(int32 h_id, intn bit)

h_id IN: Bit-access element identifier

bit IN: Bit to be written

Purpose Writes one bit to the specified bit-access element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This function is a wrapper for Hbitwrite.
June 2017 414

The HDF Group Table of Contents Hputelement
Hputelement

int32 Hputelement(int32 file_id, uint16 tag, uint16 ref, uint8 *data, int32 length)

file_id IN: File identifier returned by Hopen

tag IN: Tag of the data element to add or replace

ref IN: Reference number of the data element to add or replace

data IN: Pointer to data buffer

length IN: Length of data to write

Purpose Writes a data element or replaces an existing data element in a HDF file.

Return value Returns the number of bytes written if successful and FAIL (or -1) otherwise.
415 June 2017

Hread Table of Contents HDF Reference Manual
Hread

int32 Hread(int32 h_id, int32 length, VOIDP data)

h_id IN: Access identifier returned by Hstartread, Hstartwrite, or
Hnextread

length IN: Length of segment to be read

data OUT: Pointer to the data array to be read

Purpose Reads the next segment in a data element.

Return value Returns the length of segment actually read if successful and FAIL (or -1)
otherwise.

Description Hread begins reading at the current file position, reads the specified number of
bytes, and increments the current file position by one. Calling Hread with the
length = 0 reads the entire data element. To reposition an access identifier
before writing data, use Hseek.

If length is longer than the data element, the read operation is terminated at the
end of the data element, and the number of read bytes is returned. Although
only one access identifier is allowed per data element, it is possible to interlace
reads from multiple data elements in the same file. It is assumed that data is
large enough to hold the specified data length.
June 2017 416

The HDF Group Table of Contents Hseek
Hseek

intn Hseek(int32 h_id, int32 offset, intn origin)

h_id IN: Access identifier returned by Hstartread, Hstartwrite, or
Hnextread

offset IN: Number of bytes to seek to from the origin

origin IN: Position of the offset origin

Purpose Sets the access pointer to an offset within a data element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Sets the seek position for the next Hread or Hwrite operation by moving an
access identifier to the specified position in a data element. The origin and the
offset arguments determine the byte location for the access identifier. If origin
is set to DF_START, the offset is added to the beginning of the data element. If
origin is set to DF_CURRENT, the offset is added to the current position of the
access identifier.

Valid values for origin are: DF_START (the beginning of the file) or DF_CURRENT
(the current position in the file).

This routine fails if the access identifier if h_id is invalid or if the seek position
is outside the range of the data element.
417 June 2017

Hsetlength Table of Contents HDF Reference Manual
Hsetlength

int32 Hsetlength(int32 file_id, int32 length)

file_id IN: File identifier returned by Hopen

length IN: Length of the new element

Purpose Specifies the length of a new HDF element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This function can only be used when called after Hstartaccess on a new data
element and before any data is written to that element.
June 2017 418

The HDF Group Table of Contents Hshutdown
Hshutdown

int32 Hshutdown()

Purpose Deallocates buffers previously allocated in other H routines.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Should only be called by the function HDFend.
419 June 2017

Htagnewref Table of Contents HDF Reference Manual
Htagnewref

int32 Htagnewref(int32 file_id, uint16 tag)

file_id IN: Access identifier returned by Hstartread or Hnextread

tag IN: Tag to be identified with the returned reference number

Purpose Returns a reference number that is unique for the specified file that will
correspond to the specified tag.

Return value Returns the reference number if successful and 0 otherwise.

Description Successive calls to Htagnewref will generate a increasing sequence of
reference number values until the highest possible reference number value has
been returned. It will then return unused reference number values starting from
1 in increasing order.
June 2017 420

The HDF Group Table of Contents Htrunc
Htrunc

int32 Htrunc(int32 h_id, int32 trunc_len)

h_id IN: Access identifier returned by Hstartread or Hnextread

trunc_len IN: Length to truncate element

Purpose Truncates the data object specified by the h_id to the length trunc_len.

Return value Returns the length of a data element if found and FAIL (or -1) otherwise.

Description Htrunc does not handle special elements.
421 June 2017

Hwrite Table of Contents HDF Reference Manual
Hwrite

int32 Hwrite(int32 h_id, int32 length, VOIDP data)

h_id IN: Access identifier returned by Hstartwrite

len IN: Length of segment to be written

data IN: Pointer to the data to be written

Purpose Writes the next data segment to a specified data element.

Return value Returns the length of the segment actually written if successful and FAIL (or -
1) otherwise.

Description Hwrite begins writing at the current position of the access identifier, writes the
specified number of bytes, then moves the access identifier to the position
immediately following the last accessed byte. Calling Hwrite with length = 0
results in an error condition. To reposition an access identifier before writing
data, use Hseek.

If the space allocated in the data element is smaller than the length of data, the
data is truncated to the length of the data element. Although only one access
identifier is allowed per data element, it is possible to interlace writes to more
than one data element in a file.
June 2017 422

The HDF Group Table of Contents Hwrite
423 June 2017

DFSDadddata/dsadata Table of Contents HDF Reference Manual
DFSDadddata/dsadata

intn DFSDadddata(char *filename, intn rank, int32 dimsizes[], VOIDP data)

filename IN: Name of the HDF file

rank IN: Number of dimensions in the data array to be written

dimsizes IN: Array containing the size of each dimension

data IN: Array containing the data to be stored

Purpose Appends a scientific dataset in its entirety to an existing HDF file if the file
exists. If not, a new file is created.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description In addition to appending a multidimensional array of data to an HDF file,
DFSDadddata automatically stores any information pertinent to the dataset. It
will not overwrite existing data in the file. The array data can be of any valid
type. However, if no data type has been set by DFSDsetNT, it is assumed that
the data is of type float32.

Calling DFSDadddata will write the scientific dataset and all associated
information. That is, when DFSDadddata is called, any information set by a
DFSDset* call is written to the file, along with the data array itself.

FORTRAN integer function dsadata(filename, rank, dimsizes, data)

character*(*) filename

integer rank

integer dimsizes(*), data(*)
June 2017 358

The HDF Group Table of Contents DFSDclear/dsclear
DFSDclear/dsclear

intn DFSDclear()

Purpose Clears all values set by DFSDset* routines.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description After a call to DFSDclear, values set by any DFSDset* call will not be written
unless they have been set again.

FORTRAN integer function dsclear()
359 June 2017

DFSDendslab/dseslab Table of Contents HDF Reference Manual
DFSDendslab/dseslab

intn DFSDendslab()

Purpose Terminates a sequence of slab calls started by DFSDstartslab by closing the
file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

FORTRAN integer function dseslab()
June 2017 360

The HDF Group Table of Contents DFSDendslice/dseslc
DFSDendslice/dseslc

intn DFSDendslice()

Purpose Terminates the write operation after storing a slice of data in a scientific
dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDendslice must be called after all the slices are written. It checks to ensure
that the entire dataset has been written, and if it has not, returns an error code.
DFSDendslice is obsolete in favor of DFSDendslab. DFSDendslab is the
recommended function call to use when terminating hyperslab (previously
known as data slices) operations. HDF will continue to support DFSDendslice
only to maintain backward compatibility with earlier versions of the library.

FORTRAN integer function dseslc()
361 June 2017

DFSDgetcal/dsgcal Table of Contents HDF Reference Manual
DFSDgetcal/dsgcal

int32 DFSDgetcal(float64 *cal, float64 *cal_err, float64 *offset, float64 *offset_err, int32 *data_type)

cal OUT: Calibration factor

cal_err OUT: Calibration error

offset OUT: Uncalibrated offset

offset_err OUT: Uncalibrated offset error

data_type OUT: Data type of uncalibrated data

Purpose Retrieves the calibration record, if there is one, attached to a scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description A calibration record contains four 64-bit floating point values followed by a
32-bit integer.

The relationship between a value iy stored in a dataset and the actual value y
is defined as:

y = cal * (iy - offset)

The variable offset_err contains a potential error of offset, and cal_err
contains a potential error of cal. Currently the calibration record is provided for
information only. The SD interface performs no operations on the data based
on the calibration tag.

As an example, suppose the values in the calibrated dataset iy[] are the
following integers:

iy[6] = {2, 4, 5, 11, 26, 81}

By defining cal = 0.50 and offset = -200.0 and applying the calibration
formula, the calibrated dataset iy[] returns to its original form as a floating
point array:

y[6] = {1001.0, 1002.0, 1002.5, 1005.5, 1013.0,1040.5}

FORTRAN integer function dsgcal(cal, cal_err, offset, offset_err,
data_type)

real cal, cal_err, offset, offset_err

integer data_type
June 2017 362

The HDF Group Table of Contents DFSDgetdata/dsgdata
DFSDgetdata/dsgdata

intn DFSDgetdata(char *filename, intn rank, int32 dimsizes[], VOIDP data)

filename IN: Name of the file

rank IN: Number of dimensions

dimsizes IN: Dimensions of the data buffer

data OUT: Buffer for the data

Purpose Reads the next dataset in the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If the values of rank or dimsizes aren’t known, DFSDgetdims must be called
to retrieve them and then use them to determine the buffer space needed for the
array data. If the data type of the data in a scientific dataset isn’t know,
DFSDgetNT must be called to retrieve it. Subsequent calls to DFSDgetdata
(or to DFSDgetdims and DFSDgetdata)will sequentially read scientific
datasets from the file. For example, if DFSDgetdata is called three times in
succession, the third call reads data from the third scientific dataset in the file.

If DFSDgetdims or DFSDgetdata is called and there are no more scientific
datasets left in the file, an error code is returned and nothing is read.
DFSDrestart can be used to override this convention.

FORTRAN integer function dsgdata(filename, rank, dimsizes, data)

character*(*) filename

integer rank

integer dimsizes(*), data(*)
363 June 2017

DFSDgetdatalen/dsgdaln Table of Contents HDF Reference Manual
DFSDgetdatalen/dsgdaln

intn DFSDgetdatalen(intn *label_len, intn *unit_len, intn *format_len, intn *coords_len)

label_len OUT: Maximum length of the label string

unit_len OUT: Maximum length of the unit string

format_len OUT: Maximum length of the format string

coords_len OUT: Maximum length of the coordinate system string

Purpose Retrieves the lengths of the label, unit, format, and coordinate system strings.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The space allocated for the label, unit, format, and coordinate system strings
must be at least one byte larger than the actual length of the string to account
for the null termination.

FORTRAN integer function dsgdaln(label_len, unit_len, format_len,
coords_len)

integer label_len, unit_len, format_len, coords_len
June 2017 364

The HDF Group Table of Contents DFSDgetdatastrs/dsgdast
DFSDgetdatastrs/dsgdast

intn DFSDgetdatastrs(char *label, char *unit, char *format, char *coordsys)

label OUT: Label describing the data

unit OUT: Unit to be used with the data

format OUT: Format to be used in displaying data

coordsys OUT: Coordinate system

Purpose Retrieves information about the label, unit, and format attribute strings
associated with the data.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The parameter coordsys gives the coordinate system that is to be used for
interpreting the dimension information.

FORTRAN integer function dsgdast(label, unit, format, coordsys)

character*(*) label, unit, format, coordsys
365 June 2017

DFSDgetdimlen/dsgdiln Table of Contents HDF Reference Manual
DFSDgetdimlen/dsgdiln

intn DFSDgetdimlen (intn dim, intn *label_len, intn *unit_len, intn *format_len)

dim IN: Dimension the label, unit, and format refer to

label_len OUT: Length of the label

unit_len OUT: Length of the unit

format_len OUT: Length of the format

Purpose Retrieves the length of the label, unit, and format attribute strings associated
with the specified dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The space allocated to hold the label, unit, and format strings must be at least
one byte larger than the actual length of the string, to account for the null
termination.

FORTRAN integer function dsgdiln(dim, label_len, unit_len, format_len)

integer dim, label_len, unit_len, format_len
June 2017 366

The HDF Group Table of Contents DFSDgetdims/dsgdims
DFSDgetdims/dsgdims

intn DFSDgetdims(char *filename, intn *rank, int32 dimsizes[], intn maxrank)

filename IN: Name of the HDF file

rank OUT: Number of dimensions

dimsizes OUT: Buffer for the returned dimensions

maxrank IN: Size of the storage buffer dimsizes

Purpose Retrieves the number of dimensions (rank) of the dataset and the sizes of the
dimensions (dimsizes) for the next scientific dataset in the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The maxrank parameter tells DFSDgetdims the size of the array that is
allocated for storing the dimsizes array. The value of rank must not exceed the
value of maxrank.

The allocation of a buffer for the scientific dataset data should correspond to
the values retrieved by DFSDgetdims. The first value in the array dimsizes
should equal the first dimension of the array that is allocated to hold the
dataset; the second value in dimsizes should equal the second dimension of the
dataset, and so forth.

FORTRAN integer function dsgdims(filename, rank, dimsizes, maxrank)

character*(*) filename

integer rank, maxrank

integer dimsizes(*)
367 June 2017

DFSDgetdimscale/dsgdisc Table of Contents HDF Reference Manual
DFSDgetdimscale/dsgdisc

intn DFSDgetdimscale(intn dim, int32 size, VOIDP scale)

dim IN: Dimension this scale corresponds to

size IN: Size of the scale buffer

scale OUT: Array of values defining reference points along a specified
dimension

Purpose Gets the scale corresponding to the specified dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The DFSD interface requires the dimension scales to be of the same data type
as the corresponding data. To store dimension scales of a different data type
than the corresponding data, use the multi-file SD interface.

FORTRAN integer function dsgdisc(dim, size, scale)

integer dim, size

integer scale(*)
June 2017 368

The HDF Group Table of Contents DFSDgetdimstrs/dsgdist
DFSDgetdimstrs/dsgdist

intn DFSDgetdimstrs(intn dim, char *label, char *unit, char *format)

dim IN: Dimension this label, unit and format refer to

label OUT: Label that describes this dimension

unit OUT: Unit to be used with this dimension

format OUT: Format to be used in displaying scale for this dimension

Purpose Retrieves the label, unit, and format attribute strings corresponding to the
specified dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The space allocated for the label, unit, and format string must be at least one
byte larger than the length of the string to accommodate the null termination. If
the length is unknown when the program is written, declare the array size as
1+maxlen_label, maxlen_unit, or maxlen_format after they are set by
DFSDsetlengths. The maximum default string length is 255.

FORTRAN integer function dsgdist(dim, label, unit, format)

integer dim

character*(*) label, unit, format
369 June 2017

DFSDgetfillvalue/dsgfill Table of Contents HDF Reference Manual
DFSDgetfillvalue/dsgfill

intn DFSDgetfillvalue(VOIDP fill_value)

fill_value OUT: Fill value

Purpose Retrieves the fill value of a DFSD scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The fill value is set by DFSDsetfillvalue and returned in the variable
fill_value. Note that DFSDgetfillvalue does not take a file name as an
argument. As a result, a DFSD call to initialize the file information structures
is required before calling DFSDgetfillvalue. One such call is DFSDgetdims.

FORTRAN integer function dsgfill(fill_value)

character*(*) fill_value
June 2017 370

The HDF Group Table of Contents DFSDgetNT/dsgnt
DFSDgetNT/dsgnt

intn DFSDgetNT(int32 *data_type)

data_type OUT: Data type of data in the scientific dataset

Purpose Retrieves the data type of the next dataset to be read.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Note that DFSDgetNT does not take a file name as an argument. As a result, a
DFSD call to initialize the file information structures is required before calling
DFSDgetNT. One such call is DFSDgetdims.

Valid values for data_type are of the general form DFNT_. The following are
valid symbolic names and their data types:

 32-bit float DFNT_FLOAT32 5

 64-bit float DFNT_FLOAT64 6

 8-bit signed int DFNT_INT8 20

 8-bit unsigned int DFNT_UINT8 21

 16-bit signed int DFNT_INT16 22

 16-bit unsigned int DFNT_UINT16 23

 32-bit signed int DFNT_INT32 24

 32-bit unsigned int DFNT_UINT32 25

 8-bit character DFNT_CHAR8 4

FORTRAN integer function dsgnt(num_type)

integer num_type
371 June 2017

DFSDgetrange/dsgrang Table of Contents HDF Reference Manual
DFSDgetrange/dsgrang

intn DFSDgetrange(VOIDP max, VOIDP min)

max OUT: Maximum value stored with the scientific dataset

min OUT: Maximum value stored with the scientific dataset

Purpose Retrieves the maximum and minimum values stored with the scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The max and min values are set via a call to DFSDsetrange. They are not
automatically stored when a dataset is written to a file. The data type of these
values is the data type of the dataset array. One implication of this is that in the
C version of DFSDgetrange the arguments are pointers, rather than simple
variables, whereas in the FORTRAN-77 version they are simple variables of
the same type as the data array.

Neither DFSDgetrange nor DFSDgetdata compare the max and min values
stored with the dataset to the actual values in the dataset; they merely retrieve
the data. As a result, the maximum and minimum values may not always
reflect the actual maximum and minimum values in the dataset. In some cases
the max and min values may actually lie outside the range of values in the
dataset.

FORTRAN integer function dsgrang(max, min)

character*(*) max, min
June 2017 372

The HDF Group Table of Contents DFSDgetslice/dsgslc
DFSDgetslice/dsgslc

intn DFSDgetslice(char *filename, int32 winst[], int32 windims[], VOIDP data, int32 dims[])

filename IN: Name of HDF file

winst IN: Array containing the coordinates for the start of the slice

windim IN: Array containing the dimensions of the slice

data OUT: Array for returning slice

dims OUT: Dimensions of array data

Purpose Reads part of a scientific dataset from a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDgetslice accesses the dataset last accessed by DFSDgetdims. If
DFSDgetdims has not been called for the named file, DFSDgetslice gets a
slice from the next dataset in the file. Array winst specifies the coordinates of
the start of the slice. Array windims gives the size of the slice. The number of
elements in winst and windims must be equal to the rank of the dataset. For
example, if the file contains a three-dimensional dataset, winst may contain the
values {2, 4, 3}, while windims contains the values {3, 1, 4} and the dims
should be at least {3, 1, 4}, the same size as the slice. This will extract a 3 x
4, two-dimensional slice, containing the elements between (2, 4, 3) and (4,
4, 6) from the original dataset.

The data array is the array into which the slice is read. It must be at least as big
as the desired slice. The dims array is the array containing the actual
dimensions of the array data. The user assigns values to dims before calling
DFSDgetslice.

All parameters assume FORTRAN-77-style one-based arrays.

DFSDgetslice is obsolete in favor of DFSDreadslab. DFSDreadslab is the
recommended function call to use when reading hyperslabs (previously known
as data slices). HDF will continue to support DFSDgetslice only to maintain
backward compatibility with HDF applications built on earlier versions of the
library.

FORTRAN integer function dsgslc(filename, winst, windims, data, dims)

character*(*) filename, data

integer winst(*), windims(*), dims(*)
373 June 2017

DFSDlastref/dslref Table of Contents HDF Reference Manual
DFSDlastref/dslref

intn DFSDlastref()

Purpose Retrieves the most recent reference number used in writing or reading a
scientific dataset.

Return value Returns the reference number for the last accessed scientific dataset if
successful and FAIL (or -1) otherwise.

Description DFSDlastref returns the value of the last reference number of a scientific
dataset read from or written to the file.

FORTRAN integer function dslref()
June 2017 374

The HDF Group Table of Contents DFSDndatasets/dsnum
DFSDndatasets/dsnum

intn DFSDndatasets(char *filename)

filename IN: Name of the HDF file

Purpose Returns the number of scientific datasets in the file.

Return value Returns the number of datasets if successful and FAIL (or -1) otherwise.

Description In HDF version 3.3, DFSDndatasets replaced DFSDnumber. In order to
maintain backward compatibility with existing HDF applications, HDF will
continue to support DFSDnumber. However, it is recommended that all new
applications use DFSDndatasets instead of DFSDnumber.

FORTRAN integer function dsnum(filename)

character*(*) filename
375 June 2017

DFSDpre32sdg/dsp32sd Table of Contents HDF Reference Manual
DFSDpre32sdg/dsp32sd

intn DFSDpre32sdg(char *filename, uint16 ref, intn *ispre32)

filename IN: The name of the HDF file containing the scientific dataset

ref IN: Reference number of SDG

ispre32 OUT: Pointer to results of the pre-HDF version 3.2 inquiry

Purpose Tests if the scientific dataset with the specified reference number was created
by an HDF library earlier than version 3.2.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If the scientific dataset was created with a version of HDF prior to version 3.2,
ispre32 will be set to 1, otherwise it will be set to 0. Based on this information,
programmers can decide whether or not to transpose the corresponding array.

FORTRAN integer function dsp32sd(filename, ref, ispre32)

character*(*) filename

integer ref, ispre32
June 2017 376

The HDF Group Table of Contents DFSDputdata/dspdata
DFSDputdata/dspdata

intn DFSDputdata(char *filename, intn rank, int32 dimsizes[], VOIDP data)

filename IN: Name of the HDF file

rank IN: Number of dimensions of data array to be stored

dimsizes IN: Buffer for the dimension sizes

data IN: Buffer for the data to be stored

Purpose Writes a scientific data and related information to an HDF file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDputdata will write data to an existing file by destroying the contents of
the original file. Use it with caution. If a new filename is used, DFSDputdata
functions exactly like DFSDadddata.

FORTRAN integer function dspdata(filename, rank, dimsizes, data)

character*(*) filename

<valid numeric data type> data

integer rank

integer dimsizes(*)
377 June 2017

DFSDputslice/dspslc Table of Contents HDF Reference Manual
DFSDputslice/dspslc

intn DFSDputslice(int32 windims[], VOIDP source, int32 dims[])

windims IN: Window dimensions specifying the size of the slice to be written

source IN: Buffer for the slice

dims IN: Dimensions of the source array

Purpose Writes part of a scientific dataset to a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDputslice read a subset of an array in memory and stores it as part of the
scientific dataset array last specified by DFSDsetdims. Slices must be stored
contiguously.

Array windims (“window dimensions”) specifies the size of the slice to be
written. The windims array must contain as many elements as there are
dimensions in the entire scientific dataset array. The source argument is an
array in memory containing the slice and dims is an array containing the
dimensions of the array source.

Notice that windims and dims need not be the same. The windims argument
could refer to a sub-array of source, in which case only a portion of source is
written to the scientific data array.

All parameters assume FORTRAN-77-style one-based arrays.

DFSDputslice is obsolete in favor of DFSDwriteslab. DFSDwriteslab is the
recommended function call to use when writing hyperslabs (previously known
as data slices). HDF will continue to support DFSDputslice only to maintain
backward compatibility with earlier versions of the library.
June 2017 378

The HDF Group Table of Contents DFSDreadref/dsrref
DFSDreadref/dsrref

intn DFSDreadref(char *filename, uint16 ref)

filename IN: Name of the HDF file

ref IN: Reference number for next DFSDgetdata call

Purpose Specifies the reference number for the dataset to be read during the next read
operation.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine is commonly used in conjunction with DFANgetlablist, which
returns a list of labels for a given tag together with their reference numbers. It
provides a sort of random access to scientific datasets.

There is no guarantee that reference numbers appear in sequence in an HDF
file, so it is not generally safe to assume that a reference number is an index
number of a scientific dataset.

FORTRAN integer function dsrref(filename, ref)

character*(*) filename

integer ref
379 June 2017

DFSDreadslab/dsrslab Table of Contents HDF Reference Manual
DFSDreadslab/dsrslab

intn DFSDreadslab(char *filename, int32 start[], int32 slab_size[], int32 stride[], VOIDP buffer, int32
buffer_size[])

filename IN: Name of the HDF file

start IN: Buffer of size rank containing the coordinates for the start of the slab

slab_size IN: Buffer of size rank containing the size of each dimension in the slab

stride IN: Subsampling (not yet implemented)

buffer OUT: \Buffer for the returned slab

buffer_size OUT: Dimensions of the buffer parameter

Purpose Reads a slab of data from any scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDreadslab will access to the scientific dataset following the current one if
DFSDgetdims or DFSDgetdata are not called earlier. The start array indices
are one-based. The rank of start must be the same as the number of dimensions
of the specified variable. The elements of slab_size must be no larger than the
dimensions of the scientific dataset in order. The stride feature is not currently
implemented. For now just pass the start array as the argument for stride where
it will be ignored.

To extract a slab of lower dimension than that of the dataset, enter 1 in the
slab_size array for each omitted dimension. For example, to extract a two-
dimensional slab from a three-dimensional dataset, specify the beginning
coordinates in three dimensions and enter a 1 for the missing dimension in the
slab_size array. More specifically, to extract a 3 x 4 slab containing the
elements (6, 7, 8) through (8, 7, 11) specify the beginning coordinates as
{6, 7, 8} and the slab size as {3, 1, 4}.

FORTRAN integer function dsrslab(filename, start, slab_size, stride,
buffer, buffersize)

character*(*) filename, buffer

integer start(*), slab_size(*),

integer stride(*), buffer_size(*)
June 2017 380

The HDF Group Table of Contents DFSDrestart/dsfirst
DFSDrestart/dsfirst

intn DFSDrestart()

Purpose Causes the next read command to be read from the first scientific dataset in the
file, rather than the scientific dataset following the one that was most recently
read.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

FORTRAN integer function dsfirst()
381 June 2017

DFSDsetcal/dsscal Table of Contents HDF Reference Manual
DFSDsetcal/dsscal

intn DFSDsetcal(float64 cal, float64 cal_err, float64 offset, float64 offset_err, int32 data_type)

cal IN: Calibration factor

cal_err IN: Calibration error

offset IN: Uncalibrated offset

offset_err IN: Uncalibrated offset error

data_type IN: Data type of uncalibrated data

Purpose Sets the calibration information associated with data

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine sets the calibration record associated with a dataset. A calibration
record contains four 64-bit floating point values followed by a 32-bit integer,
to be interpreted as follows:

 cal calibration factor

 cal_err calibration error

 offset calibrated offset

 offset_err calibrated offset error

 data_type data type of uncalibrated data

The relationship between a value iy stored in a dataset and the actual value y is
defined as:

y = cal * (iy - offset)

The variable offset_err contains a potential error of offset, and cal_err
contains a potential error of cal. Currently the calibration record is provided
for information only. The SD interface performs no operations on the data
based on the calibration tag.

DFSDsetcal works like other DFSDset* routines, with one exception: the
calibration information is automatically cleared after a call to DFSDputdata
or DFSDadddata. Hence, DFSDsetcal must be called again for each dataset
that is to be written.

As an example, suppose the values in a dataset y[] are as follows:
y[6]={1001.0, 1002.0, 1002.5, 1005.5, 1013.0, 1040.5}

By defining cal = 0.50 and offset = -200.0 and applying the calibration
formula, the calibrated dataset iy[] becomes as follows:
iy[6]={2, 4, 5, 11, 26, 81}

The array iy[] can then be stored as integers.
June 2017 382

The HDF Group Table of Contents DFSDsetcal/dsscal
FORTRAN integer function dsscal(cal, cal_err, offset, offset_err,
data_type)

real*8 cal, cal_err, offset, offset_err

integer data_type
383 June 2017

DFSDsetdatastrs/dssdast Table of Contents HDF Reference Manual
DFSDsetdatastrs/dssdast

intn DFSDsetdatastrs(char *label, char *unit, char *format, char *coordsys)

label IN: Label describing the data

unit IN: Unit to be used with the data

format IN: Format to be used in displaying the data

coordsys IN: Coordinate system of the data

Purpose Sets the label, unit, format, and coordinate system for the next dataset written
to file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

FORTRAN integer function dssdast(label, unit, format, coordsys)

character*(*) label, unit, format, coordsys
June 2017 384

The HDF Group Table of Contents DFSDsetdims/dssdims
DFSDsetdims/dssdims

intn DFSDsetdims (intn rank, int32 dimsizes[])

rank IN: Number of dimensions

dimsizes IN: Dimensions of the scientific dataset

Purpose Sets the rank and dimension sizes for all subsequent scientific datasets written
to the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine must be called before calling either DFSDsetdimstrs or
DFSDsetdimscale. DFSDsetdims need not be called if other set routines are
not called and the correct dimensions are supplied in DFSDputdata or
DFSDadddata.

If the rank or dimension sizes change, all previous set calls are cleared, except
for the data type, which is set by calling DFSDsetNT.

FORTRAN integer function dssdims(rank, dimsizes)

integer rank

integer dimsizes(*)
385 June 2017

DFSDsetdimscale/dssdisc Table of Contents HDF Reference Manual
DFSDsetdimscale/dssdisc

intn DFSDsetdimscale (intn dim, int32 dimsize, VOIDP scale)

dim IN: Dimension this scale corresponds to

dimsize IN: Size of the scale buffer

scale IN: Buffer for the scale values

Purpose Defines the scale for a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description A scale is a one-dimensional array whose values describe reference points
along one dimension of the dataset. For example, a two-dimensional dataset
representing points on a map could have two scales, one representing points of
latitude, and the other points of longitude.

FORTRAN integer function dssdisc (dim, dimsize, scale)

integer dim

integer dimsize(*), scale(*)
June 2017 386

The HDF Group Table of Contents DFSDsetdimstrs/dssdist
DFSDsetdimstrs/dssdist

intn DFSDsetdimstrs(intn dim, char *label, char *unit, char *format)

dim IN: Dimension this label, unit and format refer to

label IN: Label that describes this dimension

unit IN: Unit to be used with this dimension

format IN: Format to be used to display scale

Purpose Sets the label, unit, and format strings corresponding to the specified
dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description In both FORTRAN-77 and C programs, dim = 1 for the first dimension, and
dim = 2 for the second dimension. If the user is not interested in one or more
strings, empty strings can be used as parameters for the DFSDsetdimstrs call.
For example, DFSDsetdimstrs(1, “vertical”, “ “, “ “) will set the label for the
first dimension to “vertical” and set the unit and format to empty strings.

FORTRAN integer function dssdist(dim, label, unit, format)

integer dim

character*(*) label, unit, format
387 June 2017

DFSDsetfillvalue/dssfill Table of Contents HDF Reference Manual
DFSDsetfillvalue/dssfill

intn DFSDsetfillvalue(VOIDP fill_value)

fill_value IN: Fill value

Purpose Set the value used to fill in any unwritten location in a scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description It is assumed that the fill value has the same data type as the dataset. Once the
fill value is set for a particular SDS, it cannot be changed.

If DFSDsetfillvalue is called before the first call to DFSDstartslab,
DFSDstartslab will set the fill value tag attribute to the value specified in the
DFSDsetfillvalue call, but will not actually write out the fill value when
DFSDwriteslab is called. However, if DFSDsetfillvalue is called after the
first call the DFSDstartslab, the fill value tag attribute will be set by
DFSDsetfillvalue and the fill value will be written to the slab during the
DFSDwriteslab call.

FORTRAN integer function dssfill(fill_value)

character*(*) fill_value
June 2017 388

The HDF Group Table of Contents DFSDsetlengths/dsslens
DFSDsetlengths/dsslens

intn DFSDsetlengths(intn label_len, intn unit_len, intn format_len, intn coords_len)

label_len IN: Maximum length of label strings

unit_len IN: Maximum length of unit strings

format_len IN: Maximum length of format strings

coords_len IN: Maximum length of coordinate system strings

Purpose Sets the maximum lengths for the strings that will hold labels, units, formats,
and the name of the coordinate system.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The lengths set by this routine are used by the routines DFSDgetdimstrs and
DFSDgetdatastrs to determine the maximum lengths of strings that they get
from the file.

Normally, DFSDsetlengths is not needed. If it is not called, default maximum
lengths of 255 are used for all strings.

FORTRAN integer function dsslens(label_len, unit_len, format_len,
coords_len)

integer label_len, unit_len, format_len, coords_len
389 June 2017

DFSDsetNT/dssnt Table of Contents HDF Reference Manual
DFSDsetNT/dssnt

intn DFSDsetNT(int32 data_type)

data_type IN: Data type

Purpose Sets the data type of the data to be written in the next write operation.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDsetNT must be called if a data type other than float32 is to be stored.
DFSDsetNT and DFSDsetdims can be called in any order, but they should be
called before any other DFSDset* functions and before DFSDputdata or
DFSDadddata.

The following symbolic names can be used as the value of data_type:

 32-bit float DFNT_FLOAT32 5

 64-bit float DFNT_FLOAT64 6

 8-bit signed int DFNT_INT8 20

 8-bit unsigned int DFNT_UINT8 21

 16-bit signed int DFNT_INT16 22

 16-bit unsigned int DFNT_UINT16 23

 32-bit signed int DFNT_INT32 24

 32-bit unsigned int DFNT_UINT32 25

 8-bit character DFNT_CHAR8 4

FORTRAN integer function dssnt(num_type)

integer num_type
June 2017 390

The HDF Group Table of Contents DFSDsetrange/dssrang
DFSDsetrange/dssrang

intn DFSDsetrange(VOIDP max, VOIDP min)

max IN: Highest value in the range

min IN: Lowest value in the range

Purpose Stores the specified maximum and minimum data values.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description It is assumed that the data type of max and min is the same as the type of the
data. One implication of this is that in the C version of DFSDsetrange the
arguments are pointers, rather than simple variables, whereas in the
FORTRAN-77 version they are simple variables of the same type as the data
array.

This routine does not compute the maximum and minimum values; it merely
stores the values it is given. As a result, the maximum and minimum values
may not always reflect the actual maximum and minimum values in the data
array.

When the maximum and minimum values are written to a file, the HDF
element that holds these values is cleared, because it is assumed that
subsequent datasets will have different values for max and min.

FORTRAN integer function dssrang(max, min)

character*(*) max, min
391 June 2017

DFSDstartslab/dssslab Table of Contents HDF Reference Manual
DFSDstartslab/dssslab

intn DFSDstartslab(char *filename)

filename IN: Name of the HDF file

Purpose Prepares the DFSD interface to write a slab of data to a scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDsetdims must be called before calling DFSDstartslab. No call which
involves a file open may be made after a DFSDstartslab call until
DFSDendslab is called. This routine will write out the fill values if
DFSDsetfillvalue is called before this routine.

FORTRAN integer function dssslab(filename)

character*(*) filename
June 2017 392

The HDF Group Table of Contents DFSDstartslice/dssslc
DFSDstartslice/dssslc

intn DFSDstartslice(char *filename)

filename IN: Name of the HDF file

Purpose Prepares the interface to write a data slice to the specified file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Before calling DFSDstartslice, DFSDsetdims must be called to specify the
dimensions of the dataset to be written to the file. DFSDstartslice always
appends a new dataset to an existing file.

Also, DFSDstartslice must be called before DFSDputslice or DFSDendslice.

DFSDstartslice is obsolete in favor of DFSDstartslab. DFSDstartslab is the
recommended function call to use when beginning hyperslab operations. HDF
will continue to support DFSDstartslice only to maintain backward
compatibility earlier versions of the library.

FORTRAN integer function dssslc(filename)

character*(*) filename
393 June 2017

DFSDwriteref/dswref Table of Contents HDF Reference Manual
DFSDwriteref/dswref

intn DFSDwriteref(char *filename, uint16 ref)

filename IN: Name of the HDF file

ref IN: Reference number for next add or put operation

Purpose Specifies the reference number, ref, of the dataset to be overwritten next by
DFSDputdata or DFSDadddata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDwriteref verifies the refence number’s existence before returning. If a
non-existent reference number is specified, an error code will be returned.

As this routine alters data in a destructive manner, DFSDwriteref should be
used with caution.

FORTRAN integer function dswref(filename, ref)

character*(*) filename

integer ref
June 2017 394

The HDF Group Table of Contents DFSDwriteslab/dswslab
DFSDwriteslab/dswslab

intn DFSDwriteslab(int32 start[], int32 stride[], int32 count[], VOIDP data)

start IN: Array containing the starting coordinates of the slab

stride IN: Array containing the dimensions for subsampling

count IN: Array containing the size of the slab

data IN: Array to hold the floating point data to be written

Purpose Writes a slab of data to a scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The start indices are relative to 1. The rank of start must be the same as the
number of dimensions of the specified variable. The elements of start must be
no larger than the scientific dataset's dimensions in order. The stride feature is
not currently implemented. For now just pass the start array as the argument
for the stride parameter, where it will be ignored.

The rank of count must be the same as the number of dimensions of the
specified variable. The elements of count must be no larger than the scientific
dataset's dimensions in order. The order in which the data will be written into
the specified hyperslab is with the last dimension varying fastest. The data
should be of the appropriate type for the dataset. Note that neither the compiler
nor HDF software can detect if the wrong type of data is used.

FORTRAN integer function dswslab(start, stride, count, data)

integer start(*), stride(*), count(*)

character*(*) data
395 June 2017

HDFclose/hdfclose Table of Contents HDF Reference Manual
HDFclose/hdfclose

intn HDFclose(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Closes the access path to the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The file identifier file_id is validated before the file is closed. If the identifier is
valid, the function closes the access path to the file.

If there are still access identifiers attached to the file, the error code
DFE_OPENAID is returned and the file is not closed. This is a common
occurrence when developing new interfaces. See Hendaccess for further
discussion of this problem.

FORTRAN integer function hdfclose(file_id)

integer file_id
June 2017 426

The HDF Group Table of Contents HDFopen/hdfopen
HDFopen/hdfopen

int32 HDFopen(char *filename, intn access, int16 n_dds)

filename IN: Complete path and filename for the file to be opened

access IN: File access code

n_dds IN: Number of data descriptors in a block if a new file is to be created

Purpose Provides an access path to an HDF file by reading all the data descriptor blocks
into memory.

Return value Returns the file identifier if successful and FAIL (or -1) otherwise.

Description If given a new file name, HDFopen will create a new file using the specified
access type and number of data descriptors. If given an existing file name,
HDFopen will open the file using the specified access type and ignore the
n_dds argument.

HDF provides several file access code definitions:

DFACC_READ - Open for read only. If file does not exist, an error condition
results.
DFACC_CREATE - If file exists, delete it, then open a new file for read/write.
DFACC_WRITE - Open for read/write. If file does not exist, create it.

If a file is opened and an attempt is made to reopen the file using
DFACC_CREATE, HDF will issue the error DFE_ALROPEN. If the file is opened with
read only access and an attempt is made to reopen the file for write access
using DFACC_RDWR, DFACC_WRITE, or DFACC_ALL, HDF will attempt to reopen
the file with read and write permissions.

Upon successful exit, the named file is opened with the relevant permissions,
the data descriptors are set up in memory, and the associated file_id is returned.
For new files, the appropriate file headers are also set up.

FORTRAN integer function hdfopen(filename, access, n_dds)

character*(*) filename

integer access, n_dds
427 June 2017

HEclear Table of Contents HDF Reference Manual
HEclear

VOID HEclear()

Purpose Clears all information on reported errors from the error stack.

Return value None.

Description HEpush creates an error stack. HEclear is then used to clear this stack after all
errors are processed or when desired.
June 2017 430

The HDF Group Table of Contents HEprint/heprntf/heprnt
HEprint/heprntf/heprnt

VOID HEprint(FILE *stream, int32 level)

stream IN: Stream to print error message to

level IN: Level of error stack to print

Purpose Prints information to the error stack.

Return value None.

Fortran function returns 0 (zero) on success or -1 on failure.

Description If level is 0, all of the errors currently on the error stack are printed. Output
from this function is sent to the file pointed to by stream.

The following information is printed: the ASCII description of the error, the
reporting routine, the reporting routine as source file name, and the line at
which the error was reported. If the programmer has supplied extra information
by means of HEreport, this information is printed as well.

The FORTRAN-77 routine heprnt uses one less parameter than the C routine
because it doesn't allow the user to specify the print stream. Instead, it always
prints to stdout.

The FORTRAN-77 routine heprntf is available on all platforms; heprnt is not
supported on Microsoft Windows platforms.

The heprntf parameter filename is the name of the file to which error output is
to be written. If the value of filename is an empty string (’’), error output will
be written to standard output, stdout.

FORTRAN integer function heprntf(filename, level)

character*(*) filename

integer level

integer function heprnt(level)

integer level
431 June 2017

HEpush Table of Contents HDF Reference Manual
HEpush

VOID HEpush(int16 error_code, char *funct_name, char *file_name, intn line)

error_code IN: HDF error code corresponding to the error

func_name IN: Name of function in which the error occurred

file_name IN: Name of file in which the error occurred

line IN: Line number in the file that error occurred

Purpose Pushes a new error onto the error stack.

Return value None.

Description HEpush pushes the file name, function name, line number, and generic
description of the error onto the error stack. HEreport can then be used to give
a more case-specific description of the error.

If the stack is full, the error will be ignored. HEpush assumes that the
character strings func_name and file_name are in semi-permanent storage, so
only pointers to the strings are saved.
June 2017 432

The HDF Group Table of Contents HEreport
HEreport

VOID HEreport(char *format, ...)

format IN: Output string specification

Purpose Adds a text string to the description of the most-recently-reported error (only
one text string per error).

Return value None

Description HEpush places on the error stack the file name, function name, line number,
and a generic description of the error type. HEreport can then be used to give
a more case-specific description of the error. Only one additional annotation
can be attached to each error report.

The format argument must conform to the string specification requirements of
printf.
433 June 2017

HEstring/hestringf Table of Contents HDF Reference Manual
HEstring/hestringf

const char *HEstring(hdf_err_code_t error_code)

error_code IN: HDF error code

Purpose Returns the error message associated with specified error code.

Return value Returns a pointer to a string associated with the error code, if successful.

Description Returns a text description of the given error code. These strings are statically
declared and should not be deallocated from memory (using the free routine)
by the user. If a defined text description cannot be found a generic default
message is returned.

FORTRAN integer function hestringf(error_code, error_message)

integer error_code

character*(*) error_message
June 2017 434

The HDF Group Table of Contents HEvalue
HEvalue

int16 HEvalue(int32 level)

level IN: Level of the error stack to be returned

Purpose Returns an error code from the specified level of the error stack.

Return value The error code if successful or DFE_NONE otherwise.

Description HEvalue returns the error code at the top of the stack, when level is 1. Refer to
Table 1B of Section 1 in this reference manual for a complete list of HDF4
error codes.
435 June 2017

SECTION 3 -- HDF Constant Definition List
3.1 Definition List Overview

This section of the Reference Manual contains a listing of all constant definitions used with HDF
routines. The definitions are categorized by their name prefix (the portion of the name before the
underscore) into tables. The tables themselves are alphabetized by name.

This section is primarily intended to be of use to Fortran programmers whose compilers do not
support include files, and need to know the values of the definitions so that they can be explicitly
defined in their programs.

TABLE 3A *_INTERLACE - Interlace Mode Codes

TABLE 3B *_WILDCARD - Wildcard Code

TABLE 3C AN_* - Multifile Annotation Codes

TABLE 3D COMP_* - Raster Image Compression Codes

Definition Name
Definition

Value

FULL_INTERLACE 0

NO_INTERLACE 1

Definition Name
Definition

Value

DFREF_WILDCARD 0

DFTAG_WILDCARD 0

Definition Name
Definition

Value

AN_DATA_LABEL 0

AN_DATA_DESC 1

AN_FILE_LABEL 2

AN_FILE_DESC 3

Definition Name
Definition

Value
June 2017 436

The HDF Group Table of Contents Section 3 -- HDF Constant Definition List
TABLE 3E COMP_CODE_* - General Compression Codes

TABLE 3F DF_* - Maximum Length Codes

TABLE 3G DFACC_* - File Access Codes

TABLE 3H DFE_* - Error Codes

COMP_NONE 0

COMP_RLE 11

COMP_IMCOMP 12

COMP_JPEG 2

Definition Name
Definition

Value

COMP_CODE_NONE 0

COMP_CODE_RLE 1

COMP_CODE_NBIT 2

COMP_CODE_SKPHUFF 3

COMP_CODE_DEFLATE 4

COMP_CODE_SZIP 5

COMP_CODE_INVALID 6

COMP_CODE_JPEG 7

Definition Name
Definition

Value

DF_MAXFNLEN 256

Definition Name
Definition

Value

DFACC_READ 1

DFACC_WRITE 2

DFACC_CREATE 4

DFACC_ALL 7

DFACC_RDONLY 1

DFACC_RDWR 3

Definition Name
Definition

Value

DFE_NOERROR 0

DFE_NONE 0

DFE_FNF 1

DFE_DENIED 2

DFE_ALROPEN 3
437 June 2017

Section 3 -- HDF Constant Definition List Table of Contents HDF Reference Manual
DFE_TOOMANY 4

DFE_BADNAME 5

DFE_BADACC 6

DFE_BADOPEN 7

DFE_NOTOPEN 8

DFE_CANTCLOSE 9

DFE_READERROR 10

DFE_WRITEERROR 11

DFE_SEEKERROR 12

DFE_RDONLY 13

DFE_BADSEEK 14

DFE_PUTELEM 15

DFE_GETELEM 16

DFE_CANTLINK 17

DFE_CANTSYNC 18

DFE_BADGROUP 19

DFE_GROUPSETUP 20

DFE_PUTGROUP 21

DFE_GROUPWRITE 22

DFE_DFNULL 23

DFE_ILLTYPE 24

DFE_BADDDLIST 25

DFE_NOTDFFILE 26

DFE_SEEDTWICE 27

DFE_NOSUCHTAG 28

DFE_NOFREEDD 29

DFE_BADTAG 30

DFE_BADREF 31

DFE_NOMATCH 32

DFE_NOTINSET 33

DFE_BADOFFSET 34

DFE_CORRUPT 35

DFE_NOREF 36

DFE_DUPDD 37

DFE_CANTMOD 38

DFE_DIFFFILES 39

DFE_BADAID 40

DFE_OPENAID 41

DFE_CANTFLUSH 42

DFE_CANTUPDATE 43

DFE_CANTHASH 44

DFE_CANTDELDD 45
June 2017 438

The HDF Group Table of Contents Section 3 -- HDF Constant Definition List
DFE_CANTDELHASH 46

DFE_CANTACCESS 47

DFE_CANTENDACCESS 48

DFE_TABLEFULL 49

DFE_NOTINTABLE 50

DFE_UNSUPPORTED 51

DFE_NOSPACE 52

DFE_BADCALL 53

DFE_BADPTR 54

DFE_BADLEN 55

DFE_NOTENOUGH 56

DFE_NOVALS 57

DFE_ARGS 58

DFE_INTERNAL 59

DFE_NORESET 60

DFE_GENAPP 61

DFE_UNINIT 62

DFE_CANTINIT 63

DFE_CANTSHUTDOWN 64

DFE_BADDIM 65

DFE_BADFP 66

DFE_BADDATATYPE 67

DFE_BADMCTYPE 68

DFE_BADNUMTYPE 69

DFE_BADORDER 70

DFE_RANGE 71

DFE_BADCONV 72

DFE_BADTYPE 73

DFE_NOVGREP 74

DFE_BADSCHEME 75

DFE_BADMODEL 76

DFE_BADCODER 77

DFE_MODEL 78

DFE_CODER 79

DFE_CINIT 80

DFE_CDECODE 81

DFE_CENCODE 82

DFE_CTERM 83

DFE_CSEEK 84

DFE_MINIT 85

DFE_COMPINFO 86

DFE_CANTCOMP 87
439 June 2017

Section 3 -- HDF Constant Definition List Table of Contents HDF Reference Manual
DFE_CANTDECOMP 88

DFE_NOENCODER 89

DFE_NOSZLIB 90

DFE_COMPVERSION 91

DFE_READCOMP 92

DFE_NODIM 93

DFE_BADRIG 94

DFE_RINOTFOUND 95

DFE_BADATTR 96

DFE_LUTNOTFOUND 97

DFE_GRNOTFOUND 98

DFE_BADTABLE 99

DFE_BADSDG 100

DFE_BADNDG 101

DFE_VGSIZE 102

DFE_VTAB 103

DFE_CANTADDELEM 104

DFE_BADVGNAME 105

DFE_BADVGCLASS 106

DFE_BADFIELDS 107

DFE_NOVS 108

DFE_SYMSIZE 109

DFE_BADATTACH 110

DFE_BADVSNAME 111

DFE_BADVSCLASS 112

DFE_VSWRITE 113

DFE_VSREAD 114

DFE_BADVH 115

DFE_FIELDSSET 116

DFE_VSCANTCREATE 117

DFE_VGCANTCREATE 118

DFE_CANTATTACH 119

DFE_CANTDETACH 120

DFE_BITREAD 121

DFE_BITWRITE 122

DFE_BITSEEK 123

DFE_TBBTINS 124

DFE_BVNEW 125

DFE_BVSET 126

DFE_BVGET 127

DFE_BVFIND 128
June 2017 440

The HDF Group Table of Contents Section 3 -- HDF Constant Definition List
TABLE 3I DFNT_* - Machine Word Representation and Data Type Codes

Definition Name
Definition

Value

DFNT_HDF 0

DFNT_NATIVE 4096

DFNT_CUSTOM 8192

DFNT_LITEND 16384

DFNT_NONE 0

DFNT_QUERY 0

DFNT_VERSION 1

DFNT_FLOAT32 5

DFNT_FLOAT 5

DFNT_FLOAT64 6

DFNT_DOUBLE 6

DFNT_FLOAT128 7

DFNT_INT8 20

DFNT_UINT8 21

DFNT_INT16 22

DFNT_UINT16 23

DFNT_INT32 24

DFNT_UINT32 25

DFNT_INT64 26

DFNT_UINT64 27

DFNT_INT128 28

DFNT_UINT128 29

DFNT_UCHAR8 3

DFNT_UCHAR 3

DFNT_CHAR8 4

DFNT_CHAR 4

DFNT_CHAR16 42

DFNT_UCHAR16 43

DFNT_NFLOAT32 4101

DFNT_NFLOAT 4101

DFNT_NFLOAT64 4102

DFNT_NDOUBLE 4102

DFNT_NFLOAT128 4103

DFNT_NINT8 4116

DFNT_NUINT8 4117

DFNT_NINT16 4118

DFNT_NUINT16 4119

DFNT_NINT32 4120
441 June 2017

Section 3 -- HDF Constant Definition List Table of Contents HDF Reference Manual
TABLE 3J DFNTF_* - Floating-point Format Codes

DFNT_NUINT32 4121

DFNT_NINT64 4122

DFNT_NUINT64 4123

DFNT_NINT128 4124

DFNT_NUINT128 4125

DFNT_NUCHAR8 4099

DFNT_NUCHAR 4099

DFNT_NCHAR8 4100

DFNT_NCHAR 4100

DFNT_NCHAR16 4138

DFNT_NUCHAR16 4139

DFNT_LFLOAT32 16389

DFNT_LFLOAT 16389

DFNT_LFLOAT64 16390

DFNT_LDOUBLE 16390

DFNT_LFLOAT128 16391

DFNT_LINT8 16404

DFNT_LUINT8 16405

DFNT_LINT16 16406

DFNT_LUINT16 16407

DFNT_LINT32 16408

DFNT_LUINT32 16409

DFNT_LINT64 16410

DFNT_LUINT64 16411

DFNT_LINT128 16412

DFNT_LUINT128 16413

DFNT_LUCHAR8 16387

DFNT_LUCHAR 16387

DFNT_LCHAR8 16388

DFNT_LCHAR 16388

DFNT_LCHAR16 16426

DFNT_LUCHAR16 16427

Definition Name
Definition

Value

DFNTF_NONE 0

DFNTF_HDFDEFAULT 1

DFNTF_IEEE 1

DFNTF_VAX 2

DFNTF_CRAY 3
June 2017 442

The HDF Group Table of Contents Section 3 -- HDF Constant Definition List
TABLE 3K DFTAG_* - Object Tags

DFNTF_PC 4

DFNTF_CONVEX 5

DFNTF_VP 6

Definition Name
Definition

Value

DFTAG_WILDCARD 0

DFTAG_NULL 1

DFTAG_LINKED 20

DFTAG_VERSION 30

DFTAG_COMPRESSED 40

DFTAG_VLINKED 50

DFTAG_VLINKED_DATA 51

DFTAG_CHUNKED 60

DFTAG_CHUNK 61

DFTAG_FID 100

DFTAG_FD 101

DFTAG_TID 102

DFTAG_TD 103

DFTAG_DIL 104

DFTAG_DIA 105

DFTAG_NT 106

DFTAG_MT 107

DFTAG_ID8 200

DFTAG_IP8 201

DFTAG_RI8 202

DFTAG_CI8 203

DFTAG_II8 204

DFTAG_ID 300

DFTAG_LUT 301

DFTAG_RI 302

DFTAG_CI 303

DFTAG_RIG 306

DFTAG_LD 307

DFTAG_MD 308

DFTAG_MA 309

DFTAG_CCN 310

DFTAG_CFM 311

DFTAG_AR 312

DFTAG_DRAW 400
443 June 2017

Section 3 -- HDF Constant Definition List Table of Contents HDF Reference Manual
TABLE 3L HDF_* - Vdata Interface, Linked-block Element, and Vset Packing Mode Codes

DFTAG_RUN 401

DFTAG_XYP 500

DFTAG_MTO 501

DFTAG_T14 602

DFTAG_T105 603

DFTAG_SDG 700

DFTAG_SDD 701

DFTAG_SD 702

DFTAG_SDS 703

DFTAG_SDL 704

DFTAG_SDU 705

DFTAG_SDF 706

DFTAG_SDM 707

DFTAG_SDC 708

DFTAG_SDT 709

DFTAG_SDLNK 710

DFTAG_NDG 720

DFTAG_CAL 731

DFTAG_FV 732

DFTAG_BREQ 799

DFTAG_EREQ 780

DFTAG_SDRAG 781

DFTAG_VG 1965

DFTAG_VH 1962

DFTAG_VS 1963

DFTAG_RLE 11

DFTAG_IMC 12

DFTAG_IMCOMP 12

DFTAG_JPEG 13

DFTAG_GREYJPEG 14

DFTAG_JPEG5 15

DFTAG_GREYJPEG5 16

Definition Name
Definition

Value

_HDF_VDATA -1

_HDF_VSPACK 0

_HDF_VSUNPACK 1

_HDF_ENTIRE_VDATA -1
June 2017 444

The HDF Group Table of Contents Section 3 -- HDF Constant Definition List
TABLE 3M MFGR_* - Interlace Mode Codes

TABLE 3N SD_* - Scientific Data Set Configuration Codes

TABLE 3O SPECIAL_* - Special Element Identifier Codes

TABLE 3P SUCCEED/FAIL - Routine Return Status Codes

HDF_APPENDABLE_BLOCK_LEN 4096

HDF_APPENDABLE_BLOCK_NUM 16

Definition Name
Definition

Value

MFGR_INTERLACE_PIXEL 0

MFGR_INTERLACE_LINE 1

MFGR_INTERLACE_COMPONENT 2

Definition Name
Definition

Value

SD_UNLIMITED 0

SD_DIMVAL_BW_COMP 1

SD_DIMVAL_BW_INCOMP 0

SD_FILL 0

SD_NOFILL 256

SD_RAGGED -1

Definition Name
Definition

Value

SPECIAL_LINKED 1

SPECIAL_EXT 2

SPECIAL_COMP 3

SPECIAL_VLINKED 4

SPECIAL_CHUNKED 5

SPECIAL_BUFFERED 6

SPECIAL_COMPRAS 7

Definition Name
Definition

Value

SUCCEED 0

FAIL -1
445 June 2017

	HDF Reference Manual
	Section 1 -- Introduction to the HDF APIs
	1.1 Overview of the HDF Interfaces
	1.2 Low-Level Interface
	1.3 Multi-file Application Interfaces
	1.3.1 Scientific Data Sets: SD Interface
	1.3.2 Annotations: AN Interface
	1.3.3 General Raster Images: GR Interface
	1.3.4 Vdata: The VS Interface
	1.3.5 Vdata Query: VSQ Interface
	1.3.6 Vdata Fields: VF Interface
	1.3.7 Vgroups: V Interface
	1.3.8 Vdata/Vgroups: VH Interface
	1.3.9 Vgroup Inquiry: VQ Interface

	1.4 Single-File Application Interfaces
	1.4.1 24-bit Raster Image Sets: DF24 Interface
	1.4.2 8-bit Raster Image Sets: DFR8 Interface
	1.4.3 Palettes: DFP Interface
	1.4.4 Scientific Data Sets: DFSD Interface
	1.4.5 Annotations: DFAN Interface

	1.5 FORTRAN-77 and C Language Issues
	1.5.1 FORTRAN-77-to-C Translation
	1.5.2 Case Sensitivity
	1.5.3 Name Length
	1.5.4 Header Files
	1.5.5 Data Type Specifications
	1.5.6 String and Array Specifications
	1.5.7 FORTRAN-77, ANSI C and K&R C

	1.6 Error Codes

	Section 2 -- HDF Routine Reference
	2.1 Reference Section Overview
	ANannlen/afannlen
	ANannlist/afannlist
	ANatype2tag/afatypetag
	ANcreate/afcreate
	ANcreatef/affcreate
	ANend/afend
	ANendaccess/afendaccess
	ANfileinfo/affileinfo
	ANgetdatainfo
	ANget_tagref/afgettagref
	ANid2tagref/afidtagref
	ANnumann/afnumann
	ANreadann/afreadann
	ANselect/afselect
	ANstart/afstart
	ANtag2atype/aftagatype
	ANtagref2id/aftagrefid
	ANwriteann/afwriteann
	GRattrinfo/mgatinf
	GRcreate/mgcreat
	GRend/mgend
	GRendaccess/mgendac
	GRfileinfo/mgfinfo
	GRfindattr/mgfndat
	GRgetattdatainfo
	GRgetattr/mggnatt/mggcatt
	GRgetchunkinfo/mggichnk
	GRgetcompinfo/mggcompress
	GRgetcomptype
	GRgetdatainfo
	GRgetiminfo/mggiinf
	GRgetlutid/mggltid
	GRgetlutinfo/mgglinf
	GRgetnluts/mggnluts
	GRgetpalinfo
	GRidtoref/mgid2rf
	GRluttoref/mglt2rf
	GRnametoindex/mgn2ndx
	GRreadchunk/mgrchnk/mgrcchnk
	GRreadimage/mgrdimg/mgrcimg
	GRreadlut/mgrdlut/mgrclut
	GRreftoindex/mgr2idx
	GRreqimageil/mgrimil
	GRreqlutil/mgrltil
	GRselect/mgselct
	GRsetaccesstype/mgsactp
	GRsetattr/mgsnatt/mgscatt
	GRsetchunk/mgschnk
	GRsetchunkcache/mgscchnk
	GRsetcompress/mgscompress
	GRsetexternalfile/mgsxfil
	GRstart/mgstart
	GRwritechunk/mgwchnk/mgwcchnk
	GRwriteimage/mgwrimg/mgwcimg
	GRwritelut/mgwrlut/mgwclut
	GR2bmapped
	Hclose/hclose
	Hgetfileversion/hgfilver
	Hgetlibversion/hglibver
	Hgetntinfo
	Hishdf/hishdff
	Hopen/hopen
	HCget_config_info
	HDdont_atexit/hddontatexit
	HXsetcreatedir/hxiscdir
	HXsetdir/hxisdir
	SDattrinfo/sfgainfo
	SDcheckempty/sfchempty
	SDcreate/sfcreate
	SDdiminfo/sfgdinfo
	SDend/sfend
	SDendaccess/sfendacc
	SDfileinfo/sffinfo
	SDfindattr/sffattr
	SDgetanndatainfo
	SDgetattdatainfo
	SDgetcal/sfgcal
	SDgetchunkinfo/sfgichnk
	SDgetcompinfo/sfgcompress
	SDgetdatainfo
	SDgetdatastrs/sfgdtstr
	SDgetdimid/sfdimid
	SDgetdimscale/sfgdscale
	SDgetdimstrs/sfgdmstr
	SDgetexternalinfo
	SDgetfilename
	SDgetfillvalue/sfgfill/sfgcfill
	SDgetinfo/sfginfo
	SDgetnamelen
	SDgetnumvars_byname
	SDgetoldattdatainfo
	SDgetrange/sfgrange
	SDget_maxopenfiles
	SDget_numopenfiles
	SDidtoref/sfid2ref
	SDidtype
	SDiscoordvar/sfiscvar
	SDisdimval_bwcomp/sfisdmvc
	SDisrecord/sfisrcrd
	SDnametoindex/sfn2index
	SDnametoindices
	SDreadattr/sfrnatt/sfrcatt
	SDreadchunk/sfrchnk/sfrcchnk
	SDreaddata/sfrdata/sfrcdata
	SDreftoindex/sfref2index
	SDreset_maxopenfiles
	SDselect/sfselect
	SDsetaccesstype/sdfsacct
	SDsetattr/sfsnatt/sfscatt
	SDsetblocksize/sfsblsz
	SDsetcal/sfscal
	SDsetchunk/sfschnk
	SDsetchunkcache/sfscchnk
	SDsetcompress/sfscompress
	SDsetdatastrs/sfsdtstr
	SDsetdimname/sfsdmname
	SDsetdimscale/sfsdscale
	SDsetdimstrs/sfsdmstr
	SDsetdimval_comp/sfsdmvc
	SDsetexternalfile/sfsextf
	SDsetfillmode/sfsflmd
	SDsetfillvalue/sfsfill/sfscfill
	SDsetnbitdataset/sfsnbit
	SDsetrange/sfsrange
	SDstart/sfstart
	SDwritechunk/sfwchnk/sfwcchnk
	SDwritedata/sfwdata/sfwcdata
	Vaddtagref/vfadtr
	Vattach/vfatch
	Vattrinfo/vfainfo
	Vattrinfo2
	Vdelete/vdelete
	Vdeletetagref/vfdtr
	Vdetach/vfdtch
	Vend/vfend
	Vfind/vfind
	Vfindattr/vffdatt
	Vfindclass/vfndcls
	Vflocate/vffloc
	Vgetattdatainfo
	Vgetattr/vfgnatt/vfgcatt
	Vgetattr2
	Vgetclass/vfgcls
	Vgetclassnamelen
	Vgetid/vfgid
	Vgetname/vfgnam
	Vgetnamelen
	Vgetnext/vfgnxt
	Vgettagref/vfgttr
	Vgettagrefs/vfgttrs
	Vgetversion/vfgver
	Vgetvgroups/vfgvgroups
	Vgisinternal
	Vinqtagref/vfinqtr
	Vinquire/vfinq
	Vinsert/vfinsrt
	Visvg/vfisvg
	Visvs/vfisvs
	Vlone/vflone
	Vnattrs/vfnatts
	Vnattrs2
	Vnrefs/vnrefs
	Vntagrefs/vfntr
	Vsetattr/vfsnatt/vfscatt
	Vsetclass/vfscls
	Vsetname/vfsnam
	Vstart/vfstart
	VHmakegroup/vhfmkgp
	VQueryref/vqref
	VQuerytag/vqtag
	VFfieldesize/vffesiz
	VFfieldisize/vffisiz
	VFfieldname/vffname
	VFfieldorder/vffordr
	VFfieldtype/vfftype
	VFnfields/vfnflds
	VSQuerycount/vsqfnelt
	VSQueryfields/vsqfflds
	VSQueryinterlace/vsqfintr
	VSQueryname/vsqfname
	VSQueryref/vsqref
	VSQuerytag/vsqtag
	VSQueryvsize/vsqfvsiz
	VHstoredata/vhfsd/vhfscd
	VHstoredatam/vhfsdm/vhfscdm
	VSappendable/vsapp (Obsolete)
	VSattach/vsfatch
	VSattrinfo/vsfainf
	VSdelete/vsfdlte
	VSdetach/vsfdtch
	VSelts/vsfelts
	VSfdefine/vsffdef
	VSfexist/vsfex
	VSfind/vsffnd
	VSfindattr/vsffdat
	VSfindclass/vffcls
	VSfindex/vsffidx
	VSfnattrs/vsffnas
	VSfpack/vsfcpak/vsfnpak
	VSgetattdatainfo
	VSgetattr/vsfgnat/vsfgcat
	VSgetblockinfo/vsfgetblinfo
	VSgetclass/vsfgcls
	VSgetdatainfo
	VSgetexternalinfo
	VSgetfields/vsfgfld
	VSgetid/vsfgid
	VSgetinterlace/vsfgint
	VSgetname/vsfgnam
	VSgetvdatas/vsfgvdatas
	VSgetversion/vsgver
	VSinquire/vsfinq
	VSisattr/vsfisat
	VSisinternal
	VSlone/vsflone
	VSnattrs/vsfnats
	VSofclass
	VSread/vsfrd/vsfrdc/vsfread
	VSseek/vsfseek
	VSsetattr/vsfsnat/vsfscat
	VSsetblocksize/vsfsetblsz
	VSsetclass/vsfscls
	VSsetexternalfile/vsfsextf
	VSsetfields/vsfsfld
	VSsetinterlace/vsfsint
	VSsetname/vsfsnam
	VSsetnumblocks/vsfsetnmbl
	VSsizeof/vsfsiz
	VSwrite/vsfwrt/vsfwrtc/vsfwrit
	DF24addimage/d2aimg
	DF24getdims/d2gdims
	DF24getimage/d2gimg
	DF24lastref/d2lref
	DF24nimages/d2nimg
	DF24putimage/d2pimg
	DF24readref/d2rref
	DF24reqil/d2reqil
	DF24restart/d2first
	DF24setcompress/d2scomp
	d2scomp
	d2sjpeg
	DF24setdims/d2sdims
	DF24setil/d2setil
	DFR8addimage/d8aimg
	DFR8getdims/d8gdims
	DFR8getimage/d8gimg
	DFR8getpalref
	DFR8lastref/d8lref
	DFR8nimages/d8nims
	DFR8putimage/d8pimg
	DFR8readref/d8rref
	DFR8restart/d8first
	DFR8setcompress/d8scomp
	d8scomp
	d8sjpeg
	DFR8setpalette/d8spal
	DFR8writeref/d8wref
	DFPaddpal/dpapal
	DFPgetpal/dpgpal
	DFPlastref/dplref
	DFPnpals/dpnpals
	DFPputpal/dpppal
	DFPreadref/dprref
	DFPrestart/dprest
	DFPwriteref/dpwref
	DFKNTsize
	DFUfptoimage/duf2im
	DFANaddfds/daafds
	DFANaddfid/daafid
	DFANclear/daclear
	DFANgetdesc/dagdesc
	DFANgetdesclen/dagdlen
	DFANgetfds/dagfds
	DFANgetfdslen/dagfdsl
	DFANgetfid/dagfid
	DFANgetfidlen/dagfidl
	DFANgetlabel/daglab
	DFANgetlablen/dagllen
	DFANlablist/dallist
	DFANlastref/dalref
	DFANputdesc/dapdesc
	DFANputlabel/daplab
	Happendable
	Hcache
	Hdeldd
	Hendaccess
	Hendbitaccess
	Hexist
	Hfidinquire
	Hfind
	Hgetbit
	Hgetelement
	Hinquire
	Hlength
	Hnewref
	Hnextread
	Hnumber/hnumber
	Hoffset
	Hputbit
	Hputelement
	Hread
	Hseek
	Hsetlength
	Hshutdown
	Htagnewref
	Htrunc
	Hwrite
	DFSDadddata/dsadata
	DFSDclear/dsclear
	DFSDendslab/dseslab
	DFSDendslice/dseslc
	DFSDgetcal/dsgcal
	DFSDgetdata/dsgdata
	DFSDgetdatalen/dsgdaln
	DFSDgetdatastrs/dsgdast
	DFSDgetdimlen/dsgdiln
	DFSDgetdims/dsgdims
	DFSDgetdimscale/dsgdisc
	DFSDgetdimstrs/dsgdist
	DFSDgetfillvalue/dsgfill
	DFSDgetNT/dsgnt
	DFSDgetrange/dsgrang
	DFSDgetslice/dsgslc
	DFSDlastref/dslref
	DFSDndatasets/dsnum
	DFSDpre32sdg/dsp32sd
	DFSDputdata/dspdata
	DFSDputslice/dspslc
	DFSDreadref/dsrref
	DFSDreadslab/dsrslab
	DFSDrestart/dsfirst
	DFSDsetcal/dsscal
	DFSDsetdatastrs/dssdast
	DFSDsetdims/dssdims
	DFSDsetdimscale/dssdisc
	DFSDsetdimstrs/dssdist
	DFSDsetfillvalue/dssfill
	DFSDsetlengths/dsslens
	DFSDsetNT/dssnt
	DFSDsetrange/dssrang
	DFSDstartslab/dssslab
	DFSDstartslice/dssslc
	DFSDwriteref/dswref
	DFSDwriteslab/dswslab
	HDFclose/hdfclose
	HDFopen/hdfopen
	HEclear
	HEprint/heprntf/heprnt
	HEpush
	HEreport
	HEstring/hestringf
	HEvalue

	Section 3 -- HDF Constant Definition List
	3.1 Definition List Overview

