
exascaleproject.org

Achieving High Performance I/O with
HDF5

HDF5 Tutorial @ ECP Annual Meeting 2020

M. Scot Breitenfeld, Elena Pourmal
The HDF Group

Suren Byna, Quincey Koziol
Lawrence Berkeley National Laboratory

Houston, TX
Feb 6th, 2020

2

INTRODUCTION

Outline, Announcements and Resources

3 https://tinyurl.com/uoxkwaq

Tutorial Outline

• Foundations of HDF5
• Parallel I/O with HDF5
• ECP HDF5 features and applications
• Logistics

– Live Google doc for instant questions and
comments: https://tinyurl.com/uoxkwaq

4 https://tinyurl.com/uoxkwaq

Announcements

• HDF5 User Group meeting in June 2020
• The HDF Group Webinars

https://www.hdfgroup.org/category/webinar/
– Introduction to HDF5
– HDF5 Advanced Features
– HDF5 VOL connectors

5 https://tinyurl.com/uoxkwaq

Resources

• HDF5 home page: http://hdfgroup.org/HDF5/
• Latest releases:
ØHDF5 1.10.6 https://portal.hdfgroup.org/display/support/Downloads
ØHDF5 1.12.0

https://gamma.hdfgroup.org/ftp/pub/outgoing/hdf5_1.12/
• HDF5 repo:

https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/
• HDF5 Jira https://jira.hdfgroup.org
• Documentation https://portal.hdfgroup.org/display/HDF5/HDF5

6

FOUNDATIONS OF HDF5

Elena Pourmal

7 https://tinyurl.com/uoxkwaq

Foundations of HDF5

• Introduction to
– HDF5 data model, software and architecture
– HDF5 programming model

• Overview of general best practices

8 https://tinyurl.com/uoxkwaq

Why HDF5?

• Have you ever asked yourself:
– How do I organize and share my data?
– How can I use visualization and other tools with my data?
– What will happen to my data if I need to move my application to another system?
– How will I deal with one-file-per-processor in the exascale era?
– Do I need to be an “MPI I/O and Lustre, or Object Store, etc.” pro to do my research?

• HDF5 is an answer to the questions above and can hides all complexity so you
can concentrate on Science

9

WHAT IS HDF5?

10

What is HDF5?

• Hierarchical Data Format version 5 (HDF5)
– An extensible data model

• Structures for data organization and specification
– Open source software (I/O library and tools)

• Performs I/O on data organized according to the data model
• Works with POSIX and other types of backing store: Object

Stores (DAOS, AWS S3, AZURE, Ceph, etc.), memory hierarchies
and other storage devices

– Open file format	(POSIX	storage	only)

11 https://tinyurl.com/uoxkwaq

HDF5 is like …

12 https://tinyurl.com/uoxkwaq

HDF5 is designed for…
• High volume and complex data

– HDF5 files of GBs sizes are common

• Every size and type of system (portable)
– Works on from embedded systems, desktops and laptops to exascale systems

• Flexible, efficient storage and I/O
– See variety of backing store

• Enabling applications to evolve in their use of HDF5 and to accommodate new
models
– Data can be added, removed and reorganized in the file

• Supporting long-term data preservation
– Petabytes of remote sensing data including data for long term climate research is in NASA

archives now

13

HDF5 Ecosystem

Fi
le
	F
or
m
at

Li
br
ar
y

Da
ta
	M

od
el

Do
cu
m
en
ta
tio

n
…

Supporters

…
To
ol
s

14

HDF5 DATA MODEL

15 https://tinyurl.com/uoxkwaq

HDF5 File

lat	lon	temp
12	|		23	|		3.1
15	|		24	|		4.2
17	|		21	|		3.6An HDF5 file is a

container that
holds data objects.

16 https://tinyurl.com/uoxkwaq

HDF5 Data Model

File

Dataset Link

Group

Attribute Dataspace

DatatypeHDF5
Objects

17

HDF5 Dataset

• HDF5 datasets organize and contain data elements
• HDF5 datatype describes individual data elements

• HDF5 dataspace describes the logical layout of the data elements

Integer: 32-bit, LE

HDF5 Datatype

Multi-dimensional array of
identically typed data elements

Specifications for single data
element and array dimensions

3

Rank

Dim[2] = 5

Dimensions

Dim[0] = 7
Dim[1] = 4

HDF5 Dataspace

18 https://tinyurl.com/uoxkwaq

HDF5 Dataspace

Two roles:
Spatial information for Datasets and Attributes
– Empty sets and scalar values
– Multidimensional arrays

• Rank and dimensions
– Permanent part of object definition

Partial I/O: Dataspace and selection describe application’s data buffer and data
elements participating in I/O

Rank = 2
Dimensions = 4 x 6

Rank = 1
Dimension = 10

19 https://tinyurl.com/uoxkwaq

How to describe a subset in HDF5?

• Before writing and reading a subset of data one has to describe
it to the HDF5 Library.

• HDF5 APIs and documentation refer to a subset as a
“selection” or “hyperslab selection”.

• If specified, HDF5 performs I/O on a selection only and not on
all elements of a dataset.

20 https://tinyurl.com/uoxkwaq

Describing elements for I/O: HDF5 Hyperslab

• Everything is “measured” in number of elements; 0-based
• Example 1-dim:

– Start - starting location of a hyperslab (5)
– Block - block size (3)

• Example 2-dim:
– Start - starting location of a hyperslab (1,1)
– Stride - number of elements that separate each block (3,2)
– Count - number of blocks (2,6)
– Block - block size (2,1)

• All other selections are build using set operations

21 https://tinyurl.com/uoxkwaq

HDF5 Datatypes
• Describe individual data elements in an HDF5 dataset

• Wide range of datatypes is supported
– Atomic types: integer, floats

– User-defined (e.g., 12-bit integer, 16-bit float)

– Enum

– References to HDF5 objects and selected elements of datasets

– Variable-length types (e.g., strings, vectors)

– Compound (similar to C structures or Fortran derived types)

– Array (similar to matrix)

– More complex types can be built from types above

• HDF5 library provides predefined symbols to describe atomic datatypes

Extreme Scale Computing HDF5

22

HDF5 Dataset with Compound Datatype

uint16 char int32 2x3x2 array of float32
Compound
Datatype:

Dataspace: Rank = 2
Dimensions = 5 x 3

3

5

VVV
V		V		V
V		V		V

23 https://tinyurl.com/uoxkwaq

How are data elements stored? (1/2)

Chunked

Chunked &
Compressed

Better access time
for subsets;
extendible

Improves storage
efficiency,
transmission speed

Contiguous
(default)

Data elements
stored physically
adjacent to each
other

Buffer in memory Data in the file

24 https://tinyurl.com/uoxkwaq

Compression and filters in HDF5

• GZIP and SZIP (free version is available from German Climate Computing
Center)

• Other compression methods registered with The HDF Group at
https://portal.hdfgroup.org/display/support/Contributions#Contributions-filters
– BZIP2, JPEG, LZF, BLOSC, MAFISC, LZ4, Bitshuffle, and ZFP, etc.

• Listed above are available as dynamically loaded plugins
• See https://www.hdfgroup.org/downloads/hdf5/

• Filters:
– Fletcher32 (checksum)
– Shuffle
– Scale+offset
– n-bit

25 https://tinyurl.com/uoxkwaq

How are data elements stored? (2/2)

External

Virtual

Data elements
stored outside the
HDF5 file, possibly
in another file
format
Data elements
actually stored in
“source datasets”,
using selections to
map

Compact
Data elements
stored directly
within object’s
metadata

Buffer in memory Data in the file

Dataset
Object Header

Dataset
Object Header

26 https://tinyurl.com/uoxkwaq

HDF5 Attributes

• Attributes “decorate” HDF5 objects

• Contain user-defined metadata

• Similar to Key-Values:
– Have a unique name (for that object) and a value

• Analogous to a dataset
– “Value” is described by a datatype and a dataspace

– Do not support partial I/O operations; nor can they be compressed or extended

27 https://tinyurl.com/uoxkwaq

HDF5 File

lat	lon	temp
12	|		23	|		3.1
15	|		24	|		4.2
17	|		21	|		3.6An HDF5 file is a structured

container that holds data
objects.

28

HDF5 Groups and Links

lat	lon	temp
12	|		23	|		3.1
15	|		24	|		4.2
17	|		21	|		3.6

Experiment	Notes:
Serial	Number:	99378920
Date:	3/13/09
Configuration:	Standard	3

/

SimOutViz

HDF5 groups and links
organize data objects.

Every HDF5 file
has a root group

Parameters
10;100;1000

Timestep
36,000

29

HDF5 SOFTWARE AND ARCHITECTURE

30 https://tinyurl.com/uoxkwaq

HDF5 Software

HDF5 home page: http://hdfgroup.org/HDF5/
– Latest release: HDF5 1.10.6 (1.12.0 February 2020)

HDF5 source code:
– Written in C, and includes optional C++, Fortran, Java APIs, and High Level APIs
– Contains command-line utilities (h5dump, h5repack, h5diff, ..) and compile scripts

HDF5 pre-built binaries:
– When possible, include C, C++, Fortran, Java, and High Level libraries. Check

./lib/libhdf5.settings file.
– Built with the SZIP and ZLIB external libraries

3rd party software:

• h5py (Python)

• http://h5cpp.org/ (Contemporary C++ including support for MPI I/O)

31 https://tinyurl.com/uoxkwaq

M
PI

I/O

HDF5 Library Architecture (1.12.0)

HDF5 API and language bindings

Virtual Object Layer (VOL)

Pass-through VOL connectors (e.g., Async IO)
Native Connector

R
ES

T

D
AO

S

D
at

a
El

ev
at

or

AD
IO

S

PO
SI

X

S3

H
D

FS….

….

SW
M

R

VFDs

HDF5 Core
Library VOL

connectors

32

HDF5 PROGRAMMING MODEL AND API

33 https://tinyurl.com/uoxkwaq

The General HDF5 API

• C, FORTRAN, Java, and C++
• C routines begin with prefix: H5?

? corresponds to the type of object the function acts on

• Other language wrappers follow the same trend
• There are more than 300 APIs – pne can start just with

Example Functions:
H5D : Dataset interface e.g., H5Dread
H5F : File interface e.g., H5Fopen
H5S : dataSpace interface e.g., H5Sclose

34 https://tinyurl.com/uoxkwaq

General Programming Paradigm

• Properties of object are optionally defined
– Creation properties (e.g., use chunking storage)
– Access properties (e.g., using MPI I/O driver to access file)

• Object is opened or created
– Creation properties applied
– Access properties applied
– Supporting objects are defined (datatype, dataspace)

• Object is accessed, possibly many times
– Access property can be changed

• Object is closed

35 https://tinyurl.com/uoxkwaq

Standard HDF5 program “Skeleton”
H5Fcreate (H5Fopen) create (open) File

H5Screate_simple/H5Screate create dataSpace

H5Dcreate (H5Dopen) create (open) Dataset

H5Dread, H5Dwrite access Dataset

H5Dclose close Dataset

H5Sclose close dataSpace

H5Fclose close File

36

GENERAL BEST PRACTICES

37 https://tinyurl.com/uoxkwaq

Memory considerations

• Open Objects
– Open objects use up memory. The amount of memory used may be

substantial when many objects are left open. Application should:
• Delay opening of files and datasets as close to their actual use as is feasible.
• Close files and datasets as soon as their use is completed.
• If writing to a portion of a dataset in a loop, be sure to close the dataspace with each

iteration, as this can cause a large temporary "memory leak".

• There are APIs to determine if objects are left open.
H5Fget_obj_count will get the number of open objects in the file,
and H5Fget_obj_ids will return a list of the open object identifiers.

38 https://tinyurl.com/uoxkwaq

Memory considerations (cont’d)

• Metadata Cache
– The metadata cache can also memory usage. Modify the metadata cache settings to minimize

the size and growth of the cache as much as possible without decreasing performance.
– By default the metadata cache is 2 MB in size, and it can be allowed to increase to a

maximum of 32 MB per file. The metadata cache can be disabled or modified. Memory used
for the cache is not released until the datasets or file are closed.

– https://portal.hdfgroup.org/display/HDF5/Metadata+Caching+in+HDF5
– See https://portal.hdfgroup.org/display/HDF5/H5P_GET_MDC_CONFIG to get default MD

cache configurations and https://portal.hdfgroup.org/display/HDF5/H5P_SET_MDC_CONFIG
to set new configuration

– To keep MD cache from growing consider evicting objects on close
https://portal.hdfgroup.org/display/HDF5/H5P_SET_EVICT_ON_CLOSE

39 https://tinyurl.com/uoxkwaq

HDF5 Dataset I/O

• Issue large I/O requests
– At least as large as file system block size

• Avoid datatype conversion
– Use the same data type in the file as in memory

• Avoid dataspace conversion
– One dimensional buffer in memory to two dimensional array in the file

40 https://tinyurl.com/uoxkwaq

HDF5 Dataset - Storage

• Use contiguous storage if no data will be added and compression is not used
– Data will no be cached by HDF5

• Use compact storage when working with small data (<64K)
– Data becomes part of HDF5 internal metadata and is cached (metadata cache)

• If you have binary files that you would like to convert to HDF5 consider external
storage and use h5repack tool

• Avoid data duplication to reduce file sizes
– Use links to point to datasets stored in the same or external HDF5 file
– Use VDS to point to data stored in other HDF5 datasets

41 https://tinyurl.com/uoxkwaq

HDF5 Dataset – Chunked Storage

• Chunking is required when using extendibility and/or compression and other filters

• I/O is always performed on a whole chunk
• Understand how chunking cache works

https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5 and consider
– Do you access the same chunk often?
– What is the best chunk size (especially when using compression)?
– Do you need to adjust chunk cache size (1 MB default; can be set up per file or per dataset)?
– H5Pset_chunk_cache sets raw data chunk cache parameters for a dataset
- H5Pset_chunk_cache (dapl, …);

– H5Pset_cache sets raw data chunk cache parameters for all datasets in a file
- H5Pset_cache (fapl, …);

• Other parameters to control chunk cache

42 https://tinyurl.com/uoxkwaq

HDF5 Dataset – Chunked Storage (cont’d)

• Cache size is important when doing partial I/O to avoid many I/O
operations

• With the 1 MB cache size, a chunk will not fit into the cache
– All writes to the dataset must be immediately written to disk
– With compression, the entire chunk must be read and rewritten every time a

part of the chunk is written to
• Data must also be decompressed and recompressed each time
• Non sequential writes could result in a larger file

• Without compression, the entire chunk must be written when it is first
written to the file.

• To write multiple chunks at once increase the cache size to hold more
chunks

43 https://tinyurl.com/uoxkwaq

44 https://tinyurl.com/uoxkwaq

Effect of chunk cache size on read

• When compression is enabled, the library must always read entire
chunk once for each call to H5Dread (unless it is in cache)

• When compression is disabled, the library’s behavior depends on the
cache size relative to the chunk size.
– If the chunk fits in cache, the library reads entire chunk once for each

call to H5Dread
– If the chunk does not fit in cache, the library reads only the data that is

selected
• More read operations, especially if the read plane does not include the

fastest changing dimension
• Less total data read

https://tinyurl.com/uoxkwaq

45 https://tinyurl.com/uoxkwaq

Effect of cache size on read (cont’d)

• On read cache size does not matter when compression is enabled.

• Without compression, the cache must be large enough to hold all of
the chunks to get good performance.

• The optimum cache size depends on the exact shape of the data, as
well as the hardware, as well as access pattern.

https://tinyurl.com/uoxkwaq

46 https://tinyurl.com/uoxkwaq

What is the best way to organize data in HDF5 file?

• It depends on your goals!
• Ask yourself

– Do I need performance on write, read or both?
– Do I read all data (variables) at once?
– Do I want to use visualization tool that requires special organization of data?
– ?

47

How to organize data in HDF5 file?

48 https://tinyurl.com/uoxkwaq

I/O Test Pseudocode (T=20, A=500, X=100, Y=200)
START the clock

ACROSS P processes arranged in a R x C process grid

FOREACH step 1 .. T
FOREACH count 1 .. A

CREATE a double ARRAY of size [X,Y] | [RX,CY] (strong | weak)

(WRITE | READ) the ARRAY (to | from) a single HDF5 file

END

END

END

STOP the clock and REPORT the time / throughput

49

Basic data organization options & variations

T - steps, A - arrays, X - rows, Y - columns (strong scaling)

1. All data goes into a single 4D dataset [T, A, X, Y] or [A, T, X, Y]
2. A separate dataset for each step, i.e., T 3D datasets [A, X, Y]
3. A separate step series for each array, i.e., A 3D datasets [T, X, Y]
4. A separate dataset for each array for each step, i.e., T*A 2D datasets

[X,Y]
Variations:

● If all parameters are known in advance, you can get away w/ fixed layout
● If T is unknown, you can

○ Still use fixed layout under 2. And 4.
○ Pad (chunk size > 1 in the slowest dimension) your allocations under 3.

● Add optical sugar through the use of groups
● More than a dozen ways to implement this, depending on assumptions

50

PARALLEL I/O WITH HDF5

Quincey Koziol and Scot Breitenfeld

51 https://tinyurl.com/uoxkwaq

Parallel File Systems – Lustre, GPFS, etc.

• Scalable, POSIX-compliant file systems designed for
large, distributed-memory systems

• Uses a client-server model with separate servers for file
metadata and file content

52 https://tinyurl.com/uoxkwaq

Types of Application I/O to Parallel File Systems

53 https://tinyurl.com/uoxkwaq

• Take advantage of high-performance parallel I/O while reducing
complexity
– Use a well-defined high-level I/O layer instead of POSIX or MPI-IO
– Use only a single or a few shared files

• “Friends don’t let friends use file-per-process!” J

• Code, Performance and Data Portability
– Rely on HDF5 to optimize for underlying storage system

Why Parallel HDF5?

54 https://tinyurl.com/uoxkwaq

• Parallel vs. Serial HDF5
• Implementation Layers
• HDF5 files (= composites of data & metadata) in a parallel file system
• Parallel HDF5 (PHDF5) I/O modes: collective vs. independent
• Data and Metadata I/O

What We’ll Cover Here

55 https://tinyurl.com/uoxkwaq

Terminology

• DATA – “problem-size” data, e.g., large arrays
• METADATA – is an overloaded term
• In this presentation:

Metadata “=“ HDF5 metadata
– For each piece of application metadata, there are many associated pieces of HDF5 metadata
– There are also other sources of HDF5 metadata

• Chunk indices, heaps to store group links and indices to look them up, object headers, etc.

56

PHDF5 implementation layers

HDF5 LIBRARY

MPI I/O LIBRARY

HDF5 FILE ON PARALLEL FILE SYSTEM

DISK ARCHITECTURE AND LAYOUT OF DATA ON DISK

COMPUTE NODE COMPUTE NODE COMPUTE NODE

APPLICATION

INTERCONNECT NETWORK + I/O SERVERS

57 https://tinyurl.com/uoxkwaq

(MPI-)Parallel vs. Serial HDF5

• PHDF5 allows multiple MPI processes in an MPI
application to perform I/O to a single HDF5 file

• Uses a standard parallel I/O interface (MPI-IO)
• Portable to different platforms
• PHDF5 files ARE HDF5 files conforming to the HDF5 file

format specification
• The PHDF5 API consists of:

– The standard HDF5 API
– A few extra knobs and calls
– A parallel “etiquette”

58 https://tinyurl.com/uoxkwaq

General Programming model

• Each process defines memory and file hyperslabs using H5Sselect_hyperslab
• Each process executes a write/read call using hyperslabs defined, which can be

either collective or independent
• The hyperslab parameters define the portion of the dataset to write to
- Contiguous hyperslab
- Regularly spaced data (column or row)
- Pattern
- Blocks

59 https://tinyurl.com/uoxkwaq

Starting with a simple serial HDF5 program:

file_id = H5Fcreate(FNAME, …, H5P_DEFAULT);

space_id = H5Screate_simple(…);

dset_id = H5Dcreate(file_id, DNAME, H5T_NATIVE_INT, space_id, …);

status = H5Dwrite(dset_id, H5T_NATIVE_INT, …, H5P_DEFAULT);

Example of a PHDF5 C Program

60 https://tinyurl.com/uoxkwaq

A parallel HDF5 program has a few extra calls:
MPI_Init(&argc, &argv);

…

fapl_id = H5Pcreate(H5P_FILE_ACCESS);

H5Pset_fapl_mpio(fapl_id, comm, info);

file_id = H5Fcreate(FNAME, …, fapl_id);

space_id = H5Screate_simple(…);

dset_id = H5Dcreate(file_id, DNAME, H5T_NATIVE_INT, space_id, …);

xf_id = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(xf_id, H5FD_MPIO_COLLECTIVE);

status = H5Dwrite(dset_id, H5T_NATIVE_INT, …, xf_id);

…

MPI_Finalize();

Example of a PHDF5 C Program

61 https://tinyurl.com/uoxkwaq

• PHDF5 opens a shared file with an MPI communicator
– Returns a file ID (as usual)
– All future access to the file via that file ID

• Different files can be opened via different communicators
• All processes must participate in collective PHDF5 APIs
• All HDF5 APIs that modify the HDF5 namespace and structural metadata are

collective!
– File ops., group structure, dataset dimensions, object life-cycle, etc.

https://support.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html

PHDF5 Etiquette

62 https://tinyurl.com/uoxkwaq

Collective vs. Independent Operations
• MPI Collective Operations:

– All processes of the communicator must participate, in the right
order. E.g.,

Process1 Process2
call A(); call B(); call A(); call B(); …CORRECT

call A(); call B(); call B(); call A(); …WRONG

• Collective operations are not necessarily synchronous, nor must they
require communication
– It could be that only internal state for the communicator changes

• Collective I/O attempts to combine multiple smaller independent I/O
ops into fewer larger ops; neither mode is preferable a priori

63 https://tinyurl.com/uoxkwaq

Writing and Reading Hyperslabs

• Distributed memory model: data is split among processes
• PHDF5 uses HDF5 hyperslab model
• Each process defines memory and file hyperslabs

• Each process executes partial write/read call
– Collective calls
– Independent calls

H5Sselect_hyperslab(space_id, H5S_SELECT_SET,

offset, stride, count, block)

64 https://tinyurl.com/uoxkwaq

Complex data patterns
HDF5 doesn’t have restrictions on data patterns and balance

Irregular hyperslabs created by union operators
H5Sselect_hyperslab(space_id, op,

start, stride, count, block)

65 https://tinyurl.com/uoxkwaq

Complex data patterns -- Selection

H5S_SELECT_SET

=)
<latexit sha1_base64="bYam8Ry+4WIzCC50UEPBKsaSdvU=">AAAB+HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx48VDC20Iay2W7SpZvdsLuplNB/4sWDild/ijf/jUmbg7Y+GHi8N8PMvCDhTBvH+bYqK6tr6xvVzdrW9s7unr1/8Khlqgj1iORSdQKsKWeCeoYZTjuJojgOOG0Ho5vCb4+p0kyKBzNJqB/jSLCQEWxyqW/bvTspIsWiocFKyada3647DWcGtEzcktShRKtvf/UGkqQxFYZwrHXXdRLjZ1gZRjid1nqppgkmIxzRbk4Fjqn2s9nlU3SSKwMUSpWXMGim/p7IcKz1JA7yzhiboV70CvE/r5ua8NLPmEhSQwWZLwpTjoxERQxowBQlhk9ygoli+a2IDLHCxORhFSG4iy8vE++scdVw7s/rzesyjSocwTGcggsX0IRbaIEHBMbwDK/wZmXWi/VufcxbK1Y5cwh/YH3+AOKkk10=</latexit><latexit sha1_base64="bYam8Ry+4WIzCC50UEPBKsaSdvU=">AAAB+HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx48VDC20Iay2W7SpZvdsLuplNB/4sWDild/ijf/jUmbg7Y+GHi8N8PMvCDhTBvH+bYqK6tr6xvVzdrW9s7unr1/8Khlqgj1iORSdQKsKWeCeoYZTjuJojgOOG0Ho5vCb4+p0kyKBzNJqB/jSLCQEWxyqW/bvTspIsWiocFKyada3647DWcGtEzcktShRKtvf/UGkqQxFYZwrHXXdRLjZ1gZRjid1nqppgkmIxzRbk4Fjqn2s9nlU3SSKwMUSpWXMGim/p7IcKz1JA7yzhiboV70CvE/r5ua8NLPmEhSQwWZLwpTjoxERQxowBQlhk9ygoli+a2IDLHCxORhFSG4iy8vE++scdVw7s/rzesyjSocwTGcggsX0IRbaIEHBMbwDK/wZmXWi/VufcxbK1Y5cwh/YH3+AOKkk10=</latexit><latexit sha1_base64="bYam8Ry+4WIzCC50UEPBKsaSdvU=">AAAB+HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx48VDC20Iay2W7SpZvdsLuplNB/4sWDild/ijf/jUmbg7Y+GHi8N8PMvCDhTBvH+bYqK6tr6xvVzdrW9s7unr1/8Khlqgj1iORSdQKsKWeCeoYZTjuJojgOOG0Ho5vCb4+p0kyKBzNJqB/jSLCQEWxyqW/bvTspIsWiocFKyada3647DWcGtEzcktShRKtvf/UGkqQxFYZwrHXXdRLjZ1gZRjid1nqppgkmIxzRbk4Fjqn2s9nlU3SSKwMUSpWXMGim/p7IcKz1JA7yzhiboV70CvE/r5ua8NLPmEhSQwWZLwpTjoxERQxowBQlhk9ygoli+a2IDLHCxORhFSG4iy8vE++scdVw7s/rzesyjSocwTGcggsX0IRbaIEHBMbwDK/wZmXWi/VufcxbK1Y5cwh/YH3+AOKkk10=</latexit>

=)
<latexit sha1_base64="bYam8Ry+4WIzCC50UEPBKsaSdvU=">AAAB+HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx48VDC20Iay2W7SpZvdsLuplNB/4sWDild/ijf/jUmbg7Y+GHi8N8PMvCDhTBvH+bYqK6tr6xvVzdrW9s7unr1/8Khlqgj1iORSdQKsKWeCeoYZTjuJojgOOG0Ho5vCb4+p0kyKBzNJqB/jSLCQEWxyqW/bvTspIsWiocFKyada3647DWcGtEzcktShRKtvf/UGkqQxFYZwrHXXdRLjZ1gZRjid1nqppgkmIxzRbk4Fjqn2s9nlU3SSKwMUSpWXMGim/p7IcKz1JA7yzhiboV70CvE/r5ua8NLPmEhSQwWZLwpTjoxERQxowBQlhk9ygoli+a2IDLHCxORhFSG4iy8vE++scdVw7s/rzesyjSocwTGcggsX0IRbaIEHBMbwDK/wZmXWi/VufcxbK1Y5cwh/YH3+AOKkk10=</latexit><latexit sha1_base64="bYam8Ry+4WIzCC50UEPBKsaSdvU=">AAAB+HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx48VDC20Iay2W7SpZvdsLuplNB/4sWDild/ijf/jUmbg7Y+GHi8N8PMvCDhTBvH+bYqK6tr6xvVzdrW9s7unr1/8Khlqgj1iORSdQKsKWeCeoYZTjuJojgOOG0Ho5vCb4+p0kyKBzNJqB/jSLCQEWxyqW/bvTspIsWiocFKyada3647DWcGtEzcktShRKtvf/UGkqQxFYZwrHXXdRLjZ1gZRjid1nqppgkmIxzRbk4Fjqn2s9nlU3SSKwMUSpWXMGim/p7IcKz1JA7yzhiboV70CvE/r5ua8NLPmEhSQwWZLwpTjoxERQxowBQlhk9ygoli+a2IDLHCxORhFSG4iy8vE++scdVw7s/rzesyjSocwTGcggsX0IRbaIEHBMbwDK/wZmXWi/VufcxbK1Y5cwh/YH3+AOKkk10=</latexit><latexit sha1_base64="bYam8Ry+4WIzCC50UEPBKsaSdvU=">AAAB+HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx48VDC20Iay2W7SpZvdsLuplNB/4sWDild/ijf/jUmbg7Y+GHi8N8PMvCDhTBvH+bYqK6tr6xvVzdrW9s7unr1/8Khlqgj1iORSdQKsKWeCeoYZTjuJojgOOG0Ho5vCb4+p0kyKBzNJqB/jSLCQEWxyqW/bvTspIsWiocFKyada3647DWcGtEzcktShRKtvf/UGkqQxFYZwrHXXdRLjZ1gZRjid1nqppgkmIxzRbk4Fjqn2s9nlU3SSKwMUSpWXMGim/p7IcKz1JA7yzhiboV70CvE/r5ua8NLPmEhSQwWZLwpTjoxERQxowBQlhk9ygoli+a2IDLHCxORhFSG4iy8vE++scdVw7s/rzesyjSocwTGcggsX0IRbaIEHBMbwDK/wZmXWi/VufcxbK1Y5cwh/YH3+AOKkk10=</latexit>

=)
<latexit sha1_base64="bYam8Ry+4WIzCC50UEPBKsaSdvU=">AAAB+HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx48VDC20Iay2W7SpZvdsLuplNB/4sWDild/ijf/jUmbg7Y+GHi8N8PMvCDhTBvH+bYqK6tr6xvVzdrW9s7unr1/8Khlqgj1iORSdQKsKWeCeoYZTjuJojgOOG0Ho5vCb4+p0kyKBzNJqB/jSLCQEWxyqW/bvTspIsWiocFKyada3647DWcGtEzcktShRKtvf/UGkqQxFYZwrHXXdRLjZ1gZRjid1nqppgkmIxzRbk4Fjqn2s9nlU3SSKwMUSpWXMGim/p7IcKz1JA7yzhiboV70CvE/r5ua8NLPmEhSQwWZLwpTjoxERQxowBQlhk9ygoli+a2IDLHCxORhFSG4iy8vE++scdVw7s/rzesyjSocwTGcggsX0IRbaIEHBMbwDK/wZmXWi/VufcxbK1Y5cwh/YH3+AOKkk10=</latexit><latexit sha1_base64="bYam8Ry+4WIzCC50UEPBKsaSdvU=">AAAB+HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx48VDC20Iay2W7SpZvdsLuplNB/4sWDild/ijf/jUmbg7Y+GHi8N8PMvCDhTBvH+bYqK6tr6xvVzdrW9s7unr1/8Khlqgj1iORSdQKsKWeCeoYZTjuJojgOOG0Ho5vCb4+p0kyKBzNJqB/jSLCQEWxyqW/bvTspIsWiocFKyada3647DWcGtEzcktShRKtvf/UGkqQxFYZwrHXXdRLjZ1gZRjid1nqppgkmIxzRbk4Fjqn2s9nlU3SSKwMUSpWXMGim/p7IcKz1JA7yzhiboV70CvE/r5ua8NLPmEhSQwWZLwpTjoxERQxowBQlhk9ygoli+a2IDLHCxORhFSG4iy8vE++scdVw7s/rzesyjSocwTGcggsX0IRbaIEHBMbwDK/wZmXWi/VufcxbK1Y5cwh/YH3+AOKkk10=</latexit><latexit sha1_base64="bYam8Ry+4WIzCC50UEPBKsaSdvU=">AAAB+HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx48VDC20Iay2W7SpZvdsLuplNB/4sWDild/ijf/jUmbg7Y+GHi8N8PMvCDhTBvH+bYqK6tr6xvVzdrW9s7unr1/8Khlqgj1iORSdQKsKWeCeoYZTjuJojgOOG0Ho5vCb4+p0kyKBzNJqB/jSLCQEWxyqW/bvTspIsWiocFKyada3647DWcGtEzcktShRKtvf/UGkqQxFYZwrHXXdRLjZ1gZRjid1nqppgkmIxzRbk4Fjqn2s9nlU3SSKwMUSpWXMGim/p7IcKz1JA7yzhiboV70CvE/r5ua8NLPmEhSQwWZLwpTjoxERQxowBQlhk9ygoli+a2IDLHCxORhFSG4iy8vE++scdVw7s/rzesyjSocwTGcggsX0IRbaIEHBMbwDK/wZmXWi/VufcxbK1Y5cwh/YH3+AOKkk10=</latexit>

=)
<latexit sha1_base64="bYam8Ry+4WIzCC50UEPBKsaSdvU=">AAAB+HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx48VDC20Iay2W7SpZvdsLuplNB/4sWDild/ijf/jUmbg7Y+GHi8N8PMvCDhTBvH+bYqK6tr6xvVzdrW9s7unr1/8Khlqgj1iORSdQKsKWeCeoYZTjuJojgOOG0Ho5vCb4+p0kyKBzNJqB/jSLCQEWxyqW/bvTspIsWiocFKyada3647DWcGtEzcktShRKtvf/UGkqQxFYZwrHXXdRLjZ1gZRjid1nqppgkmIxzRbk4Fjqn2s9nlU3SSKwMUSpWXMGim/p7IcKz1JA7yzhiboV70CvE/r5ua8NLPmEhSQwWZLwpTjoxERQxowBQlhk9ygoli+a2IDLHCxORhFSG4iy8vE++scdVw7s/rzesyjSocwTGcggsX0IRbaIEHBMbwDK/wZmXWi/VufcxbK1Y5cwh/YH3+AOKkk10=</latexit><latexit sha1_base64="bYam8Ry+4WIzCC50UEPBKsaSdvU=">AAAB+HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx48VDC20Iay2W7SpZvdsLuplNB/4sWDild/ijf/jUmbg7Y+GHi8N8PMvCDhTBvH+bYqK6tr6xvVzdrW9s7unr1/8Khlqgj1iORSdQKsKWeCeoYZTjuJojgOOG0Ho5vCb4+p0kyKBzNJqB/jSLCQEWxyqW/bvTspIsWiocFKyada3647DWcGtEzcktShRKtvf/UGkqQxFYZwrHXXdRLjZ1gZRjid1nqppgkmIxzRbk4Fjqn2s9nlU3SSKwMUSpWXMGim/p7IcKz1JA7yzhiboV70CvE/r5ua8NLPmEhSQwWZLwpTjoxERQxowBQlhk9ygoli+a2IDLHCxORhFSG4iy8vE++scdVw7s/rzesyjSocwTGcggsX0IRbaIEHBMbwDK/wZmXWi/VufcxbK1Y5cwh/YH3+AOKkk10=</latexit><latexit sha1_base64="bYam8Ry+4WIzCC50UEPBKsaSdvU=">AAAB+HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx48VDC20Iay2W7SpZvdsLuplNB/4sWDild/ijf/jUmbg7Y+GHi8N8PMvCDhTBvH+bYqK6tr6xvVzdrW9s7unr1/8Khlqgj1iORSdQKsKWeCeoYZTjuJojgOOG0Ho5vCb4+p0kyKBzNJqB/jSLCQEWxyqW/bvTspIsWiocFKyada3647DWcGtEzcktShRKtvf/UGkqQxFYZwrHXXdRLjZ1gZRjid1nqppgkmIxzRbk4Fjqn2s9nlU3SSKwMUSpWXMGim/p7IcKz1JA7yzhiboV70CvE/r5ua8NLPmEhSQwWZLwpTjoxERQxowBQlhk9ygoli+a2IDLHCxORhFSG4iy8vE++scdVw7s/rzesyjSocwTGcggsX0IRbaIEHBMbwDK/wZmXWi/VufcxbK1Y5cwh/YH3+AOKkk10=</latexit>

=)
<latexit sha1_base64="bYam8Ry+4WIzCC50UEPBKsaSdvU=">AAAB+HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx48VDC20Iay2W7SpZvdsLuplNB/4sWDild/ijf/jUmbg7Y+GHi8N8PMvCDhTBvH+bYqK6tr6xvVzdrW9s7unr1/8Khlqgj1iORSdQKsKWeCeoYZTjuJojgOOG0Ho5vCb4+p0kyKBzNJqB/jSLCQEWxyqW/bvTspIsWiocFKyada3647DWcGtEzcktShRKtvf/UGkqQxFYZwrHXXdRLjZ1gZRjid1nqppgkmIxzRbk4Fjqn2s9nlU3SSKwMUSpWXMGim/p7IcKz1JA7yzhiboV70CvE/r5ua8NLPmEhSQwWZLwpTjoxERQxowBQlhk9ygoli+a2IDLHCxORhFSG4iy8vE++scdVw7s/rzesyjSocwTGcggsX0IRbaIEHBMbwDK/wZmXWi/VufcxbK1Y5cwh/YH3+AOKkk10=</latexit><latexit sha1_base64="bYam8Ry+4WIzCC50UEPBKsaSdvU=">AAAB+HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx48VDC20Iay2W7SpZvdsLuplNB/4sWDild/ijf/jUmbg7Y+GHi8N8PMvCDhTBvH+bYqK6tr6xvVzdrW9s7unr1/8Khlqgj1iORSdQKsKWeCeoYZTjuJojgOOG0Ho5vCb4+p0kyKBzNJqB/jSLCQEWxyqW/bvTspIsWiocFKyada3647DWcGtEzcktShRKtvf/UGkqQxFYZwrHXXdRLjZ1gZRjid1nqppgkmIxzRbk4Fjqn2s9nlU3SSKwMUSpWXMGim/p7IcKz1JA7yzhiboV70CvE/r5ua8NLPmEhSQwWZLwpTjoxERQxowBQlhk9ygoli+a2IDLHCxORhFSG4iy8vE++scdVw7s/rzesyjSocwTGcggsX0IRbaIEHBMbwDK/wZmXWi/VufcxbK1Y5cwh/YH3+AOKkk10=</latexit><latexit sha1_base64="bYam8Ry+4WIzCC50UEPBKsaSdvU=">AAAB+HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx48VDC20Iay2W7SpZvdsLuplNB/4sWDild/ijf/jUmbg7Y+GHi8N8PMvCDhTBvH+bYqK6tr6xvVzdrW9s7unr1/8Khlqgj1iORSdQKsKWeCeoYZTjuJojgOOG0Ho5vCb4+p0kyKBzNJqB/jSLCQEWxyqW/bvTspIsWiocFKyada3647DWcGtEzcktShRKtvf/UGkqQxFYZwrHXXdRLjZ1gZRjid1nqppgkmIxzRbk4Fjqn2s9nlU3SSKwMUSpWXMGim/p7IcKz1JA7yzhiboV70CvE/r5ua8NLPmEhSQwWZLwpTjoxERQxowBQlhk9ygoli+a2IDLHCxORhFSG4iy8vE++scdVw7s/rzesyjSocwTGcggsX0IRbaIEHBMbwDK/wZmXWi/VufcxbK1Y5cwh/YH3+AOKkk10=</latexit>

=)
<latexit sha1_base64="bYam8Ry+4WIzCC50UEPBKsaSdvU=">AAAB+HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx48VDC20Iay2W7SpZvdsLuplNB/4sWDild/ijf/jUmbg7Y+GHi8N8PMvCDhTBvH+bYqK6tr6xvVzdrW9s7unr1/8Khlqgj1iORSdQKsKWeCeoYZTjuJojgOOG0Ho5vCb4+p0kyKBzNJqB/jSLCQEWxyqW/bvTspIsWiocFKyada3647DWcGtEzcktShRKtvf/UGkqQxFYZwrHXXdRLjZ1gZRjid1nqppgkmIxzRbk4Fjqn2s9nlU3SSKwMUSpWXMGim/p7IcKz1JA7yzhiboV70CvE/r5ua8NLPmEhSQwWZLwpTjoxERQxowBQlhk9ygoli+a2IDLHCxORhFSG4iy8vE++scdVw7s/rzesyjSocwTGcggsX0IRbaIEHBMbwDK/wZmXWi/VufcxbK1Y5cwh/YH3+AOKkk10=</latexit><latexit sha1_base64="bYam8Ry+4WIzCC50UEPBKsaSdvU=">AAAB+HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx48VDC20Iay2W7SpZvdsLuplNB/4sWDild/ijf/jUmbg7Y+GHi8N8PMvCDhTBvH+bYqK6tr6xvVzdrW9s7unr1/8Khlqgj1iORSdQKsKWeCeoYZTjuJojgOOG0Ho5vCb4+p0kyKBzNJqB/jSLCQEWxyqW/bvTspIsWiocFKyada3647DWcGtEzcktShRKtvf/UGkqQxFYZwrHXXdRLjZ1gZRjid1nqppgkmIxzRbk4Fjqn2s9nlU3SSKwMUSpWXMGim/p7IcKz1JA7yzhiboV70CvE/r5ua8NLPmEhSQwWZLwpTjoxERQxowBQlhk9ygoli+a2IDLHCxORhFSG4iy8vE++scdVw7s/rzesyjSocwTGcggsX0IRbaIEHBMbwDK/wZmXWi/VufcxbK1Y5cwh/YH3+AOKkk10=</latexit><latexit sha1_base64="bYam8Ry+4WIzCC50UEPBKsaSdvU=">AAAB+HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx48VDC20Iay2W7SpZvdsLuplNB/4sWDild/ijf/jUmbg7Y+GHi8N8PMvCDhTBvH+bYqK6tr6xvVzdrW9s7unr1/8Khlqgj1iORSdQKsKWeCeoYZTjuJojgOOG0Ho5vCb4+p0kyKBzNJqB/jSLCQEWxyqW/bvTspIsWiocFKyada3647DWcGtEzcktShRKtvf/UGkqQxFYZwrHXXdRLjZ1gZRjid1nqppgkmIxzRbk4Fjqn2s9nlU3SSKwMUSpWXMGim/p7IcKz1JA7yzhiboV70CvE/r5ua8NLPmEhSQwWZLwpTjoxERQxowBQlhk9ygoli+a2IDLHCxORhFSG4iy8vE++scdVw7s/rzesyjSocwTGcggsX0IRbaIEHBMbwDK/wZmXWi/VufcxbK1Y5cwh/YH3+AOKkk10=</latexit>

H5S_SELECT_OR

H5S_SELECT_AND

H5S_SELECT_XOR

H5S_SELECT_NOTB

H5S_SELECT_NOTA

66 https://tinyurl.com/uoxkwaq

Examples of irregular selection

Internally…
1. The HDF5 library creates an MPI datatype for each

lower dimension in the selection
2. It then combines those types into one large structured

MPI datatype

P0: MPI_Type_create_stuct

P1: MPI_Type_create_stuct

P2: MPI_Type_create_stuct

67

P0

P1

Example 1: Writing dataset by rows

P2

P3

Memory File

68

Example 1: Writing dataset by rows

count[0] = dimsf[0]/mpi_size
count[1] = dimsf[1];
offset[0] = mpi_rank * count[0]; /* = 2 */
offset[1] = 0;

count[0]

count[1]

offset[0]

offset[1]Process P1

Memory File

69

Example 1: Writing dataset by rows

71 /*
72 * Each process defines dataset in memory and

* writes it to the hyperslab
73 * in the file.
74 */
75 count[0] = dimsf[0]/mpi_size;
76 count[1] = dimsf[1];
77 offset[0] = mpi_rank * count[0];
78 offset[1] = 0;
79 memspace = H5Screate_simple(RANK,count,NULL);
80
81 /*
82 * Select hyperslab in the file.
83 */
84 filespace = H5Dget_space(dset_id);
85 H5Sselect_hyperslab(filespace,

H5S_SELECT_SET,offset,NULL,count,NULL);

70

C Example: Collective write and read
95 /*
96 * Create property list for collective dataset write.
97 */
98 plist_id = H5Pcreate(H5P_DATASET_XFER);

->99 H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);
100
101 status = H5Dwrite(dset_id, H5T_NATIVE_INT,
102 memspace, filespace, plist_id, data);

103 /*
104 * Collective dataset read.
105 */
106

->107 status = H5Dread(dset_id, H5T_NATIVE_INT,
108 memspace, filespace, plist_id, data);
109

71

Writing by rows: Output of h5dump

HDF5 "SDS_row.h5" {
GROUP "/" {

DATASET "IntArray" {
DATATYPE H5T_STD_I32BE
DATASPACE SIMPLE { (8, 5) / (8, 5) }
DATA {

10, 10, 10, 10, 10,
10, 10, 10, 10, 10,
11, 11, 11, 11, 11,
11, 11, 11, 11, 11,
12, 12, 12, 12, 12,
12, 12, 12, 12, 12,
13, 13, 13, 13, 13,
13, 13, 13, 13, 13

}
}

}
}

72 https://tinyurl.com/uoxkwaq

In a Parallel File System

File Dataset data

OST 1 OST 2 OST 3 OST 4

The file is striped over multiple “disks” (e.g. Lustre OSTs) depending on
the stripe size and stripe count with which the file was created.

And it gets worse before it gets better…

73 https://tinyurl.com/uoxkwaq

Contiguous Storage

• Metadata header separate from dataset data
• Data stored in one contiguous block in HDF5 file

Application memoryMetadata cache
Dataset header

………….
Datatype

Dataspace
………….
Attributes

…

File

Dataset data

Dataset data

74 https://tinyurl.com/uoxkwaq

Chunked Storage

• Dataset data is divided into equally sized blocks (chunks).
• Each chunk is stored separately as a contiguous block in HDF5

file.

Application memory

Metadata cache
Dataset header

………….
Datatype

Dataspace
………….
Attributes

…

File

Dataset data

A DC Bheader Chunk
index

Chunk
index

A B C D

75 https://tinyurl.com/uoxkwaq

In a Parallel File System

File A DC B

OST 1 OST 2 OST 3 OST 4

The file is striped over multiple OSTs depending on the stripe size and stripe
count with which the file was created.

header Chunk
index

76 https://tinyurl.com/uoxkwaq

Compact dataset

Application memory

Metadata cache (MDC)

Dataset array data
Dataset header

HDF5 File Dataset header

Raw data is written when object header is written

77

PERFORMANCE TUNING

Scot Breitenfeld

78 https://tinyurl.com/uoxkwaq

Write Pattern Effects

Variable
1

Pattern 1 – General HDF5 pattern

Pattern 2- MPI-IO pattern

P0 P1 P2 P0 P1 P2

P0 P0

P0 P1 P2

Variable 2 Variable n
…

P0 P1 P1 P1 P2 P2 P2
… … …

79 https://tinyurl.com/uoxkwaq

Case Study – Data Layout Effects

Benchmark:
• 9 1-D variables with the same

number of elements (~1e9).
• Total file size is about 40GB.
• Can switch between writing with

MPI-IO or HDF5.
• Used independent IO for write.

80 https://tinyurl.com/uoxkwaq

HDF5 Pattern 2 Implementation

• Use HDF5 compound datatype, then one big HDF5 write for each process

• An optional multi-dataset, access pattern specifier is in development.

81 https://tinyurl.com/uoxkwaq

CGNS

• CGNS = Computational Fluid Dynamics (CFD) General Notation System
• An effort to standardize CFD input and output data including:

– Grid (both structured and unstructured), flow solution
– Connectivity, boundary conditions, auxiliary information.

• Two parts:
– A standard format for recording the data
– Software that reads, writes, and modifies data in that format.

• An American Institute of Aeronautics and Astronautics Recommended
Practice

82 https://tinyurl.com/uoxkwaq

Performance issue: Slow opening of an HDF5 File …

BEFORE COLLECTIVE
METADATA

COLLECTIVE METADATA

IMPRACTICAL

• Opening an existing file
– CGNS reads the entire HDF5 file structure, loading a lot of (HDF5) metadata
– Reads occur independently on ALL ranks competing for the same metadata

è”Read Storm”

83 https://tinyurl.com/uoxkwaq

Metadata Read Storm Problem (I)

• All metadata “write” operations are required to be collective:

• Metadata read operations are not required to be collective:

if(0 == rank)
H5Dcreate(“dataset1”);

else if(1 == rank)
H5Dcreate(“dataset2”);

O
/* All ranks have to call */
H5Dcreate(“dataset1”);
H5Dcreate(“dataset2”);

P

if(0 == rank)
H5Dopen(“dataset1”);

else if(1 == rank)
H5Dopen(“dataset2”);

/* All ranks have to call */
H5Dopen(“dataset1”);
H5Dopen(“dataset2”);

PP

84 https://tinyurl.com/uoxkwaq

Metadata Read Storm Problem (II)

• Metadata read operations are treated by the library as
independent read operations.

• Consider a very large MPI job size where all processes
want to open a dataset that already exists in the file.

• All processes
– Call H5Dopen(“/G1/G2/D1”);
– Read the same metadata to get to the dataset and the metadata of

the dataset itself
• IF metadata not in cache, THEN read it from disk.

– Might issue read requests to the file system for the same small
metadata.

è READ STORM

85 https://tinyurl.com/uoxkwaq

Avoiding a Read Storm
• Hint that metadata access is done collectively

– H5Pset_coll_metadata_write, H5Pset_all_coll_metadata_ops

• A property on an access property list
• If set on the file access property list, then all metadata read operations will be

required to be collective
• Can be set on individual object property list
• If set, MPI rank 0 will issue the read for a metadata entry to the file system and

broadcast to all other ranks

86 https://tinyurl.com/uoxkwaq

Improve the performance of reading/writing H5S_all
selected datasets

(1) New in HDF5 1.10.5
• If:

– All the processes are reading/writing the same data
– And the dataset is less than 2GB

• Then
– The lowest process id in the communicator will read and broadcast the data or will write the

data.

(2) Use of compact storage, or
– For compact storage, this same algorithm gets used.

87

SCALING OPTIMIZATIONS

Ti
m

e
(s

ec
.)

Greg Sjaardema, Sandia National Labs

ORIGINAL

MPI_Bcast

READ-PROC0-AND-BCAST WITHIN
APPLICATION

COMPACT STORAGE

FILE-PER-PROCESS

88 https://tinyurl.com/uoxkwaq

Don’t Forget: It’s a Multi-layer Problem

Storage Hardware

Parallel File System
(Lustre – stripe factor and stripe size)

MPI-IO
(Number of collective buffer nodes, collective buffer size, …)

HDF5
(cache chunk size, independent/collective …)

Application
(Semantic organization, standards compliance …)

89

DIAGNOSTICS AND INSTRUMENTATION
Tools

90 https://tinyurl.com/uoxkwaq

“Poor Man’s Debugging”

• Build a version of PHDF5 with
• ./configure --enable-build-mode=debug --enable-parallel …

• setenv H5FD_mpio_Debug “rw”

• This allows the tracing of MPIO I/O calls in the HDF5 library such as
MPI_File_read_xx and MPI_File_write_xx

• You’ll get something like this…

91 https://tinyurl.com/uoxkwaq

Chunked by Column
% setenv H5FD_mpio_Debug ’rw’

% mpirun -np 4 ./a.out 1000 # Indep., Chunked by column.

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=3688 size_i=8000

in H5FD_mpio_write mpi_off=11688 size_i=8000

in H5FD_mpio_write mpi_off=27688 size_i=8000

in H5FD_mpio_write mpi_off=19688 size_i=8000

in H5FD_mpio_write mpi_off=96 size_i=40

in H5FD_mpio_write mpi_off=136 size_i=544

in H5FD_mpio_write mpi_off=680 size_i=120

in H5FD_mpio_write mpi_off=800 size_i=272
…

•

Metadata

Metadata

Dataset elements

92 https://tinyurl.com/uoxkwaq

I/O monitoring and profiling tools

• Two kinds of tools:
– I/O benchmarks for measuring a system’s I/O capabilities
– I/O profilers for characterizing applications’ I/O behavior

• Two examples:
– h5perf (in the HDF5 source code distro)
– Darshan (from Argonne National Laboratory)

• Profilers have to compromise between
– A lot of detail è large trace files and overhead
– Aggregation è loss of detail, but low overhead

93 https://tinyurl.com/uoxkwaq

h5perf(_serial)

• Measures performance of a filesystem for different I/O patterns and APIs
• Three File I/O APIs for the price of one!

– POSIX I/O (open/write/read/close…)
– MPI-I/O (MPI_File_{open,write,read,close})
– HDF5 (H5Fopen/H5Dwrite/H5Dread/H5Fclose)

• An indication of I/O speed ranges and HDF5 overheads
• Expectation management…

94 https://tinyurl.com/uoxkwaq

A Parallel Run

Minimum
Average
Maximum

0

500

1000

1500

2000

2500

3000

3500

POSIX MPI-IO HDF5 POSIX MPI-IO HDF5 POSIX MPI-IO HDF5 POSIX MPI-IO HDF5

Write
Write	Open-Close

Read

Read	Open-Close

M
B/
s

h5perf,	3	MPI	processes,	3	iterations,	3	GB	dataset	(total),
1	GB	per	process,	1	GB	transfer	buffer,

HDF5	dataset	contiguous	storage,	HDF5	SVN	trunk,	NCSA	BW

Minimum

Average

Maximum

95 https://tinyurl.com/uoxkwaq

Darshan (ECP DataLib team)

• Design goals:
– Transparent integration with user environment
– Negligible impact on application performance

• Provides aggregate figures for:
– Operation counts (POSIX, MPI-IO, HDF5, PnetCDF)
– Datatypes and hint usage
– Access patterns: alignments, sequentiality, access size
– Cumulative I/O time, intervals of I/O activity

• Does not provide I/O behavior over time
• An excellent starting point, maybe not your final stop

96 https://tinyurl.com/uoxkwaq

Darshan Sample Output

Source: NERSC

97 https://tinyurl.com/uoxkwaq

AMRex I/O
(collective vs. independent)

Lo
w

er
 is

 b
et

te
r

9.
5X

6.
5X

5.
8X

I/O
 ti

m
e

(s
ec

)

61 GB 494 GB 987 GB

Chombo I/O
(collective vs. independent)

98

ECP EXAIO - HDF5 PROJECT

NEW FEATURES AND APPLICATION SUPPORT

Suren Byna

99 https://tinyurl.com/uoxkwaq

ECP HDF5 project mission

• Work with ECP applications and facilities to meet their needs
• Productize HDF5 features

• Support, maintain, package, and release HDF5

• R&D toward future architectures and incoming requests from ECP teams

100 https://tinyurl.com/uoxkwaq

Features: Virtual Object Layer (VOL)

• Abstraction Layer within HDF5 Library
– Redirect I/O operations into VOL “connector”, immediately after an API routine is

invoked
○ VOL Connectors

○ Implement “storage” for HDF5 objects, and “methods” on those objects
○ Dataset create, write / read selection, query metadata, close, …

○ Able to be transparently invoked from a dynamically loaded shared library,

without modifying application source code (or even rebuilding the app binary)

○ Can be stacked, to allow many types of connector to be invoked
○ “Pass-through” and “Terminal” connector types

101 https://tinyurl.com/uoxkwaq

VOL overview and connectors

SC19 HDF5 BOFNovember 19, 2019

HDF5 API

He
rm

es
….

RE
ST

DA
O

S

Na
tiv

e

In
de

pe
nd

en
t

M
et

ad
at

a

As
yn

c.

Py
th

on

Ad
ap

te
r

….

All Other
HDF5
Operations

Pa
ss

-th
ro

ug
h

Te
rm

in
al

Da
ta

El
ev

at
orVirtual

Object
Layer (VOL)

Operations on a Container

HDF5 Library
Infrastructure

102 https://tinyurl.com/uoxkwaq

Features: Asynchronous I/O

○ Allows asynchronous operations for HDF5

applications:
○ Implicit: For unmodified applications; transparently invoked by

setting environment variable; conservative asynchronous

behavior

○ Explicit: For applications that want more control of async

operations; can extract more performance using async

operations that return “request tokens” to app

Compute

Compute

I
O Compute I

O Compute I
O …

I
O

Compute

I
O

Compute

I
O

Time Saved

…

Time

103 https://tinyurl.com/uoxkwaq

Asynchronous HDF5 Operations VOL Connector

● Implemented as a pass-through VOL
connector w/background threads,
using Argobots

● Transparent from the application, no
major code changes

● Execute I/O operations in the
background thread

● Lightweight and low overhead for all
I/O operations

● No need to launch and maintain extra
server processes

Start

Application thread

File Open

Create Obj

Write Obj

Compute /
File Close

End

Asynchronous I/O Initialization
Start

App status
check

Background thread

App
thread
idle?

No

Task
Execution

Yes

End

Task Queue

Asynchronous I/O Finalize

○ More details in PDSW Paper

https://sc19.supercomputing.org/proceedings/workshops/workshop_files/ws_pdsw109s2-file1.pdf

https://bitbucket.hdfgroup.org/projects/HDF5VOL/repos/async/

104 https://tinyurl.com/uoxkwaq

Asynchronous HDF5 Operations VOL Connector

● Implemented as a pass-through VOL
connector w/background threads,
using Argobots

● Transparent from the application, no
major code changes

● Execute I/O operations in the
background thread

● Lightweight and low overhead for all
I/O operations

● No need to launch and maintain extra
server processes

○ More details in PDSW Paper:
○ https://sc19.supercomputing.org/proceedings/workshops/workshop_files/ws_pdsw109s2-file1.pdf

On Summit

https://bitbucket.hdfgroup.org/projects/HDF5VOL/repos/async/

105 https://tinyurl.com/uoxkwaq

Features: Data Elevator for using shared burst buffers -
Write

• Data Elevator write caching using burst buffers
– Transparent data movement in storage hierarchy
– In situ data analysis capability using burst buffers

• Tested with a PIC code and Chombo-IO benchmark

• Applications evaluating Data Elevator
– E3SM-MMF and Sandia ATDM project is evaluating performance
– Other candidates: EQSim, AMReX

• Installed on NERSC’s Cori system (module load data-elevator)

Memory

Parallel file system

Archival storage
(HPSS tape)

Shared burst buffer

Node-local storage

Campaign storage

0	
50	

100	
150	
200	
250	
300	

1024	 2048	 4096	 8192	 16384	

Ti
m
e	
(s
)	

Number	of	CPU	Cores	

Lustre	 DataWarp	Command	
DataWarp	API	 Data	Elevator	

0	

1	

2	

3	

4	

5	

1024	 2048	 4096	 8192	

Ti
m
e	
(s
ec
/G

B)
	

Number	of	CPU	Cores	

Lustre	 DataWarp	Command	
DataWarp	API	 Data	Elevator	

0	 100	 200	 300	

Data	Elevator	
VPIC		+		Burst	

DataWarp		API		
VPIC		+	Burst	Buffer	

DataWarp	
VPIC	+	Burst	Buffer	

VPIC		+	Lustre	

Time	(s)	

Compu=ng	 Wri=ng	Data	 Moving	Data	from	BB		to	PFS	

106 https://tinyurl.com/uoxkwaq

Features: Data Elevator for using shared burst buffers -
Read

• ARCHIE - Array caching in hierarchical storage
• ARCHIE predicts data accesses based on a

history of accesses, and prefetches them in
faster storage layers for future use

• Automatic conversion of expensive non-
contiguous accesses to storage devices into
faster contiguous data accesses

• ARCHIE supports HDF5 I/O library and is part
of the Data Elevator Virtual Object Layer (VOL)
connector

SSD File System
Miss

Hits

Data Analysis
Applications
Parallel Read

Metadata
Table

 ARCHIE
-- metadata manager
-- consistency manager
-- prediction algorithm
-- parallel reader/writer
-- garbage collection
-- fault tolerance manager
--

Disk File System

...

...

...

...

 Parallel chunk prefetching

Cached chunks

Array to be
analyzed

Insert, Update, Query , ...

0.8X

3.4X

5.8X

0

20

40

60

80

Lustre(Disk) DataWarp(Disk+SSD) ARCHIE(Disk) ARCHIE(Disk+SSD)

Ti
m

e
(s)

Stage (only for DataWarp) Read #1 Read #2
Read #3 Read #4 Read #5
Read #6 Read #7 Read #8

https://bitbucket.hdfgroup.org/projects/HDF5VOL/repos/dataelevator

107 https://tinyurl.com/uoxkwaq

UnifyFS for node-local storage (Project collaboration)

• A file system for node-local burst buffers
– Developed by LLNL, ORNL, and NCSA team

• Goal: make using burst buffers on exascale systems
easy and fast

• Results on Summit show scalable write performance
for UnifyFS with shared files on burst buffers

• Designing Data Elevator to use UnifyFS as a single
node-local burst buffer namespace for caching

• UnifyFS is designing an API for supporting HDF5,
ADIOS, netCDF, etc.

/unifyfs

108 https://tinyurl.com/uoxkwaq

Features: Sub-filing

• Writing to single shared file is slow due to:
– Locking contention

• A solution: Sub-filing
– Multiple small files
– A metadata file stitching the small files together

• Benefits
– Better use of parallel I/O subsystem
– Reduced locking and contention issues improve

performance

• Designing production quality implementation of
sub-filing in HDF5 using Virtual File Driver (VFD)
– Will use node-local storage for caching

Performance on Cori with prototype
implementation to show the potential of sub-
filing

0.00	

10.00	

20.00	

30.00	

40.00	

50.00	

60.00	

70.00	

80.00	

1K	 2K	 4K	

W
rit
e	
ra
te
	(G

B/
s)

	

Number	of	MPI	processes	(CPU	cores)	

Original	

Subfiling	

109 https://tinyurl.com/uoxkwaq

Features: Querying datasets
• HDF5 index objects and API routines allow the creation of indexes on the

contents of HDF5 containers, to improve query performance
• HDF5 query objects and API routines enable the construction of query requests

for execution on HDF5 containers
– H5Qcreate
– H5Qcombine
– H5Qapply
– H5Qclose

0

20

40

60

80

100

1 2 4 8 16 32

Build Index (seconds)

of MPI procs

Ti
m

e
(s

)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 2 4 8 16 32

Evaluate Query (seconds)

of MPI procs

Ti
m

e
(s

)
• Parallel scaling of index generation and query resolution is

evidenced even for small-scale experiments:

• HDF5 Bitbucket repo containing the “topic-parallel-indexing” source
code: https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5

110 https://tinyurl.com/uoxkwaq

Features: System topology-aware VFD

• Taking advantage of the topology of compute and I/O nodes and network
among them improves overall I/O performance

• Developing topology-aware data-movement algorithms and collective I/O
optimizations within a new HDF5 virtual file driver (VFD)

Performance comparison of the new HDF5
VFD, using one-sided aggregation, with the
default binding to Cray MPICH MPI-IO. Data

was collected on Theta using an I/O
benchmarking tool (the HDF5 Exerciser),

Prototype implementation: CCIO branch
https://bitbucket.hdfgroup.org/projects/HDFFV/
repos/hdf5/

111 https://tinyurl.com/uoxkwaq

Features: Independent metadata updates

○ Allows HDF5 metadata operations to be performed independently
○ Currently, all HDF5 metadata modification operations must be collective

○ Dataset / group creation & deletion, attribute create, write, etc.
○ Each metadata modification is “voted on” by other HDF5 processes writing to that file

using non-blocking communication channels, then committed to the file
○ IMM is a pass-through VOL connector

○ Allows IMM operations for any underlying HDF5 VOL connector
○ Connector is extendible to multiple comm. channels: MPI, ZeroMQ,

POSIX, etc.
○ Async and IMM connectors demonstrate the power of pass-through VOL

connectors to modify behavior of HDF5 library

112 https://tinyurl.com/uoxkwaq

Applications: AMReX-based applications

• AMReX - SW framework for building
massively parallel block- structured adaptive
mesh refinement (AMR) applications

– Combustion, accelerator physics, carbon capture,
cosmology apps from ECP use this framework

• HDF5: Integrated HDF5-based I/O functions
for reading and writing plot files and particle
data

Liquid jet in supersonic flow

On Cori at NERSC

113 https://tinyurl.com/uoxkwaq

Applications: EQSIM

• EQSIM is a high performance, multidisciplinary
simulation for regional-scale earthquake
hazard and risk assessments

• Integrating various I/O functionality using HDF5
file format - for portability and for performance

– Converted reading HDF5 formatted file
– Implemented checkpointing data to HDF5
– Implementing SW4 image output to HDF5

114 https://tinyurl.com/uoxkwaq

Applications: WarpX and QMCPACK

• WarpX is an advanced electromagnetic
Particle-In-Cell code

• Applied file system and MPI-IO level
optimizations to achieve good HDF5
I/O performance (uses h5py)

Warp-IO

Default
Lustre tuning

h5py bug fix
+

Lustre tuning

• QMCPACK, is a modern high-
performance open-source Quantum
Monte Carlo (QMC) simulation code

• HDF5 optimizations in file close and
fixing a bug improved I/O performance

QMCPACK

115 https://tinyurl.com/uoxkwaq

Facilities: Astrophysics and Neuroscience codes

• Supporting any I/O issue related tickets at facilities
• The following are astrophysics and neurological disorder pipelines

that experienced high I/O overhead
• Used performance introspection interfaces of HDF5 to identify

bottlenecks

Athena astrophysics code
40% of execution time in I/O, using HDF5
profiling tools identified a large number of
concurrent writes; with collective I/O,
reduced I/O portion to less than 1% of the
execution time.

Neurological Disorder I/O Pipeline
Identified that h5py interface was prefilling
HDF5 dataset buffers unnecessarily and
avoiding that improved performance by 20X
(from 40 min to 2 min)

116 https://tinyurl.com/uoxkwaq

Facilities: HDF5 benchmarking

• Benchmarking HDF5 on Cori, Theta, and Summit each quarter
• Benchmarks:

– VPIC-IO: a simple I/O benchmark that writes particles from a PIC code
– BD-CATS-IO: an I/O kernel from a clustering code

117 https://tinyurl.com/uoxkwaq

Need help?

• HDF-FORUM https://forum.hdfgroup.org/
• HDF Helpdesk help@hdfgroup.org

– Indicate that you are with ECP project

• For ECP teams:
Contact the ExaIO POCs for existing collaborations and the PIs for
new collaborations.

118 https://tinyurl.com/uoxkwaq

Thank you!

