Parallel I/0 with HDF5 and
Performance Tuning Techniques

June 26, 2020

)=
™L/1 M. Scot Breitenfeld
The HDF Group Chen Wang

Elena Pourmal

Outline LT
The HDF Group

* Overview of parallel HDF5

» General best practices which effect parallel performance
» Best methods for HDF5 parallel 1/0O

 Using Parallel 1/0O instrumentation for tuning

Resources T

The HDF Group
« HDF5 home page: http://hdfgroup.org/HDFES/
 HDF5 Jira: https://jira.hdfgroup.org
» Documentation: https://portal.ndfgroup.org/display/HDF5/HDFS

* HDF5 repo: https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdfs/

» We are moving to Github! Stay tuned for announcement

o Latest releases: https://portal.hdfgroup.org/display/support/Downloads
« HDF5 1.8.21
« HDF5 1.10.6

E- HDF5 1.12.0]

HDF5 Version for parallel HDF5 g

« CGNS scaling for different versions of HDF5 (Summit, ORNL).

200

I HDF5, v1.8.21
I HDF5, v1.10.6
| I HDF5, v1.12.0

Completion Time (s)
IS o o = I~ = > %
(=} (=) S [=} (=} (=) (=} (=}

[s~]
(=]
T

(=}

1764 3528
Number of Processes

14112

Parallel HDF5 Overview =D

The HDF Group

* In this section we will remind you about basics of parallel HDF5

* If you are new to parallel HDF5, see:
» Online tutorials https://portal.hdfgroup.org/display/HDFES/Introduction+to+Parallel+HDF5

* In-person tutorials
» Super Computing Conference (MPI 10)
+ ECP annual meetings
* National Laboratories (Argonne Training Program on Extreme-Scale Computing (ATPESC))

Why Parallel HDF5? ot

The HDF Group

» Take advantage of high-performance parallel I/0O while reducing
complexity
« Use a well-defined high-level I/O layer instead of POSIX or MPI-IO

« Use only a single or a few shared files
* “Friends don’t let friends use file-per-process!” @

« Maintained code base, performance and data portability
* Rely on HDF5 to optimize for underlying storage system

Benefit of Parallel I/0 — Strong Scaling Example

Write Time (sec)

LN
g g |
The HDF Group

—e— Collective
—=— Independent | 5

Read Time (sec)

1
21

L
4

Number of Processes

1
84

—=— Collective
—=— Independent -|

1 Il
126 1 21 42 84
Number of Processes

CGNS - SUMMIT, ORNL

126

M=

PHDF5 implementation layers The HBF Group

APPLICATION
goo

COMPUTE NODE - COMPUTE NODE -~ COMPUTE ODE

] HDF5 LIBRARY

MPI 1/O LIBRARY

‘t DF5 FILE ON PARALLEL FILE SYSTEM

YoEUUUWUUUUUEEE

DISK ARCHITECTURE AND LAYOUT OF DATA ON DISK

Parallel HDF5 (PHDF5) vs. Serial HDF5 T

10

The HDF Group

 PHDF5 allows multiple MPI processes in an MPI application
to perform 1/O to a single HDF5 file

« Uses a standard parallel I/O interface (MPI-10)
 Portable to different platforms

« PHDF5 files ARE HDF5 files conforming to the HDFS file
format specification

 The PHDF5 API consists of:
* The standard HDF5 API

» A few extra knobs and calls
» A parallel “etiquette”

Parallel HDF5 Etiquette T

The HDF Group

 PHDF5 opens a shared file with an MPl communicator
* Returns afile ID (as usual)
« All future access to the file via that file ID

« Different files can be opened via different communicators
#All processes must participate in collective PHDF5 APls

#All HDF5 APls that modify the HDF5 namespace and structural metadata are

collective!
 File ops., group structure, dataset dimensions, object life-cycle, etc.
https://support.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html

« Raw data operations can either be collective or independent
» For collective, all processes must participate, but they don’t need to read/write data.

11

M=

Example of a PHDF5 C Program FLA

The HDF Group

Starting with a simple serial HDF5 program:

file id = H5Fcreate(FNAME, .., H5P_DEFAULT);
space_id = H5Screate simple(..);
dset _id = HS5Dcreate(file id, DNAME, H5T NATIVE INT, space_id,

status = H5Dwrite(dset_id, H5T NATIVE_INT, .., H5P DEFAULT);

12

)

Example of a PHDF5 C Program

A parallel HDF5 program has a few extra calls:
MPI Init(&argc, &argv);

fapl id = H5Pcreate(H5P_FILE_ACCESS);

H5Pset fapl mpio(fapl id, comm, info);

file _id = H5Fcreate(FNAME, .., fapl id);

space_id = H5Screate_simple(..);

dset_id = HS5Dcreate(file_id, DNAME, H5T NATIVE_ INT, space_id,
xf_id = H5Pcreate(H5P_DATASET XFER);

H5Pset dxpl mpio(xf_id, H5FD _MPIO COLLECTIVE);

status = H5Dwrite(dset _id, HS5T_NATIVE INT, .., xf_id);

MPI Finalize();

13

)

LN
g g |
The HDF Group

General HDF5 Programming Parallel Model forraw FOT-

data I/O The HDF Group

« Each process defines selections in memory and in file (aka HDF5 hyperslabs)
using H5Sselect_hyperslab

« The hyperslab parameters define the portion of the dataset to write to
— Contiguous hyperslab
- Regularly spaced data (column or row)
- Pattern
- Blocks

« Each process executes a write/read call using selections, which can be either
collective or independent

14

Collective vs. Independent Operations o1

_ . The HDF Group
* MPI Collective Operations:

 All processes of the communicator must participate, in the right order.
E.g.,
Process1 Process2
o [call A(); call B(); | (call A(); call B(); |...CORRECT

e call A(); call B(); call B(); call A();| ...WRONG
N J _ %

* Collective operations are not necessarily synchronous, nor must
they require communication
« It could be that only internal state for the communicator changes

 Collective I/O attempts to combine multiple smaller independent I/O
ops into fewer larger ops; neither mode is preferable a priori

15

Object Creation (Collective vs. Single Process)

16

Time (seconds)

I T] T
+—e— Collective Object Creation

T

—=— One Processes Object Creation

16 32 64 128

256

512

1024 2048 4096 8192 16384

Number of Processes

LN
g g |
The HDF Group

=

& CAUTION: Object Creation A

17

The HDF Group

(Collective vs. Single Process)

In sequential mode, HDF5 allocates chunks incrementally, i.e., when data is
written to a chunk for the first time.
» Chunk is also initialized with the default or user-provided fill value.

In the parallel case, chunks are always allocated when the dataset is created

(not incrementally).
 The more ranks there are, the more chunks need to be allocated and
initialized/written, which manifests itself as a slowdown

A& CAUTION: Object Creation L
(SEISM-10, Blue Waters—NCSA) 5

v Set HDF5 to never fill chunks (H5Pset_fill_time with HSD_FILL TIME NEVER)

700
600
500

400

Runtime (s)

300

200

18 write_original WSS open_original ==@=open_neverfill ==@==write_neverfill

Parallel Compression (HDF5 1.10.2 and later)

250

200

50

19

I
—e— No Compression

—e&— o7ip level=4

36 72

144

288
Number of Processes

572

6000

5000

4000

3000

2000

1000

HDFS File Size (MB)

LN
g g |
The HDF Group

Memory considerations ot

The HDF Group

* Open Objects
* Open objects use up memory. The amount of memory used may be

substantial when many objects are left open. Application should:
» Delay opening of files and datasets as close to their actual use as is feasible.
» Close files and datasets as soon as their use is completed.

* If opening a dataspace in a loop, be sure to close the dataspace with each iteration, as
this can cause a large temporary "memory leak".

* There are APlIs to determine if objects are left open.
HS5Fget_obj_count will get the number of open objects in the file,
and H5Fget_obj_ids will return a list of the open object identifiers.

21

HDF5 Dataset I/0 =D

The HDF Group

* Issue large I/O requests
At least as large as file system block size

- Avoid datatype conversion©®
» Use the same data type in the file as in memory

« Avoid dataspace conversion®
» One dimensional buffer in memory to two-dimensional array in the file

@ Can break collective operations; check what mode was used
H5Pget _mpio_actual _io_mode, and why
H5Pget_mpio_no_collective_cause

22

HDF5 Dataset — Storage Type T

The HDF Group

« Use contiguous storage if no data will be added and compression is not used
 Data will no be cached by HDF5

« Use compact storage when working with small data (<64K)
» Data becomes part of HDF5 internal metadata and is cached (metadata cache)

» Avoid data duplication to reduce file sizes
» Use links to point to datasets stored in the same or external HDF5 file
« Use VDS to point to data stored in other HDF5 datasets

23

HDF5 Dataset — Chunked Storage o1

The HDF Group

« Chunking is required when using extendibility and/or compression and other filters
* /0 is always performed on a whole chunk

* Understand how chunking cache works

https://portal.ndfgroup.org/display/HDF5/Chunking+in+HDFS and consider

* Do you access the same chunk often?
* What is the best chunk size (especially when using compression)?

24

Performance Tuning is a Multi-layer Problem

Application
(Semantic organization, standards compliance ...)

Storage Hardware

LN
g g |
The HDF Group

Our focus today is on
HDF5 and PFS

26

Parallel File Systems — Lustre, GPFS, etc.

27

Compute Node

Compute Node

Compute Node

Compute Node

« Scalable, POSIX-compliant file systems designed for
large, distributed-memory systems

« Uses a client-server model with separate servers for file
metadata and file content

The HDF Group

Effects of Software/Hardware Changes L=

The HDF Group
» Poor/Improved performance can be a result of FS changes
« Single shared file using MPI-IO performance degradation [Byna, NERSC].

Benchmark Performance over Time
35k

30k

25k

20k

15k |
10k
®

5k s

MB/s

-®- Value

k
Jan'17 May '17 Sep '17 Jan'18 May '18

28 Date

Effects of influencing object’s in the file layout Dl

The HDF Group

« H5Pset_alignment — controls alignment of file objects on addresses.

500 T T 0.05
e 19,Q2 -- independant (no H5Pset_alignment)
. 19,Q2 -- collective ey
== 19,Q3 -- independant (no H5Pset_alignment) 5
3 19,Q3 -- collective 0.045
1 20,Q2 -- independant (no H5Pset_alignment) E‘)
B 20,Q2 -- collective o
400 | === 20,Q2 -- independant (H5Pset_ali) ﬁ 0.04
§I
& 0035
- =
S S
2%300 . S 003
= =
8 =
] 80025
wn
e ®
-
200 - = 002
T =
= 9
20015
@
13
E
100 F = 0.01
=
3
) 0.005 -
A
ool niianad aunooed oaomond Al AAdhin : ‘ ‘ ‘
0 - - 1764 3528 7056 14112 28224
1764 3528 7056 14112 28224 56448
Number of Processes
Number of processes

VPIC, Summit, ORNL
29

How to pass hints to MPI from HDF5 Dl

The HDF Group

* To set hints for MPI using HDF5, see: H5Pset fapl mpio

« Use the 'info' parameter to pass these kinds of low-level MPI-1O tuning tweaks.

« C Example — Controls the number of aggregators on GPFS:
MPI_Info info;
MPI Info create(&info); /* MPI hints: the key and value are strings */
MPI Info set(info, "bg nodes pset", "1");
H5Pset fapl mpio(plist_id, MPI_COMM_WORLD, info);
/* Pass plist id to H5Fopen or H5Fcreate */
file id = HS5Fcreate(HSFILE_NAME, HS5F _ACC_TRUNC, H5P_DEFAULT, plist_id);

30

[¥
g |
cfd data standard The HDF Group

« CGNS = Computational Fluid Dynamics (CFD) General Notation System

 An effort to standardize CFD input and output data including:
 Grid (both structured and unstructured), flow solution
» Connectivity, boundary conditions, auxiliary information.

* Two parts:
A standard format for recording the data
« Software that reads, writes, and modifies data in that format.

« An American Institute of Aeronautics and Astronautics Recommended
Practice

32

33

LN
g g |
The HDF Group

Performance issue: Slow opening of an HDF5
File ...

* Opening an existing file
* CGNS reads the entire HDF5 file structure, loading a lot of (HDF5) metadata

* Reads occur independently on ALL ranks competing for the same metadata
s 'Read Storm” 1000

" cgp_open (CG_MODE_WRITE), IMPROVED & 1
coh oSen ((CG MODE WRITE)) ORIGINAL 5 IMPRACT|CAL

100
‘ BEFORE COLLE}TNE
10| - METADATA

Time (sec.)

COLLECTIVE
METADATA

0.1

0.01 I 1 I 1 1 1 1 1 1 1 I 1 I
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
Number of Processes

34

LN
Metadata Read Storm Problem (I) The HBF Broup

« All metadata “write” operation

%re required to be collective:

/* All ranks have to call */ !i

if (0 == rank)
H5Dcreate (“datasetl”); H5Dcreate (Vdatasetl”) ;
else if (1 == rank) H5Dcreate (“dataset2”) ;

HS5Dcreate (“dataset2”) ;

« Metadata read operations are not required to be collective:

1f (0 == rank) v /* All ranks have to call */ y

H5Dopen (Ydatasetl”) ; H5Dopen (“datasetl”) ;
else if (1 == rank) H5Dopen (“dataset2”) ;
H5Dopen (“dataset2”) ;

HDF5 Metadata Read Storm Problem (ll) FT

The HDF Group

 HDF5 metadata read operations are treated by the library as
Independent read operations.

» Consider a very large MPI job size where all processes want
to open a dataset that already exists in the file.

* All processes
 Call H5Dopen(“/G1/G2/D1”);
« Read the same metadata to get to the dataset and the metadata of
the dataset itself
 |IF metadata not in cache, THEN read it from disk.
« Might issue read requests to the file system for the same small
metadata.

§ Read Storm
35

36

M=

Avoiding a Read Storm The HDF Group

o Hint that metadata access is done collectively
 H5Pset_coll_metadata_write, H5Pset_all_coll_metadata_ops

A property on an access property list

* If set on the file access property list, then all metadata read operations
will be required to be collective

« Can be set on individual object property list

* If set, MPI rank O will issue the read for a metadata entry to the file
system and broadcast to all other ranks

37

Improve the performance of reading/writing LA

H5S all selected datasets

(1) New in HDF5 1.10.5
o |f:

 All the processes are
reading/writing the same data
» And the dataset is less than 2GB

 Then

* The lowest process id in the
communicator will read and
broadcast the data or will write the
data.

(2) Use of compact storage, or

» For compact storage, this same
algorithm gets used.

Time (sec.)

LN
The HDF Group
1000 ¢ T
100 | 4
10 s - -
;}IQ.'.;*,
L1
1k '|‘||II |
' = ALL READ, NPROCS=768
& *- % -+ READ-PROC0-BCAST, NPROCS=768
ot #—e— ALL READ, NPROCS=1536 -
01 - B et +-© - READ-PROC0-BCAST, NPROCS=1536
' oot +—=— ALL READ, NPROCS=3072]
+- o -2 READ-PROCO-BCAST, NPROCS=3072
. #—— ALL READ, NPROCS=6144]
001 koot t-# - READ-PROCO-BCAST, NPROCS=6144 _
el O +—— ALL READ, NPROCS=12288]
I t- < - READ-PROC0-BCAST, NPROCS=12288
0.001_ : — : — : — :
1 10 100 1000 10000 100000

Read Size (MiB)

Time (sec.)

38

M=

SCALING OPTIMIZATIONS The HDF Group

100000

10000

1000

-
[=3
o

-
o

Execution Time (seconds)
o

0.01

0.001

32

Greg Sjaardema, Sandia National Labs

ORIGINAL
—e—Baseline Chart Area ‘/ua/
—e—Add MetaData BCast

—&-Improved N->1

—4—File-per-Processor (fpp)
—+—MPI_BCast()
——Serial Reference

" READ-PROCO-AND-BCAST
" WITHIN APPLICATION

(\
COMPACT STORAGE
. ‘///_-M“(‘\

seond]| E-PER-PROCESS

MPI Ranks

64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768

MPI|_Bcast

ddddddddddddddd

I/0 monitoring and profiling tools

 Two kinds of tools:
* 1/O benchmarks for measuring a system’s 1/O capabilities
« 1/O profilers for characterizing applications’ /O behavior

» Profilers have to compromise between
» Alot of detail = large trace files and overhead
» Aggregation =» loss of detail, but low overhead

« Examples of I/O benchmarks:
» h5perf (in the HDF5 source code distro and binaries)
* IOR https://github.com/hpc/ior

« Examples of profilers
» Darshan https://www.mcs.anl.gov/research/projects/darshan/
» Recorder https://github.com/uiuc-hpc/Recorder

 TAU built with HDF5
https://qithub.com/UO-OACISS/tau2/wiki/Configuring-TAU- to-measure-1O-libraries

40

LN
g g |
The HDF Group

“Poor Man’s Debugging” =D

The HDF Group
* Build a version of PHDFw(\
B ./configure --enable-build-mode=debug --enable-paralle

B setenv H5FD_mpio_Debug “rw”

* This allows the tracing of MPIO 1/O calls in the HDF5 library such as
MPI File read xxand MPI File write_ xx

* You'll get something like this...

41

“Poor Man’s Debugging”(cont’d)

Example - Chunked by Column

% setenv HS5FD mpio Debug ’rw’

42

% mpirun -np 4 ./a.out 1000

in
in
in
in
in
in
in
in
in
in
in
in

HS5FD_mpio_write
HS5FD_mpio_write
HS5FD_mpio_write
H5FD_mpio_write
HS5FD_mpio_write
HS5FD_mpio_write
HS5FD_mpio_write
H5FD_mpio_write
H5FD_mpio_write
HS5FD_mpio_write
H5FD_mpio_write
H5FD_mpio_write

mpi off=0
mpi_off=0
mpi_off=0
mpi_off=0

mpi off=3688
mpi_ off=11688
mpi_off=27688
mpi_off=19688
mpi_off=96
mpi_off=136
mpi_off=680
mpi_off=800

LN
g g |
The HDF Group

Indep., Chunked by column.
size i=96
size_i=96
size_i=96
size i=96
size_1=8000
size_1=8000
size 1=8000
size 1=8000
size i=40
size i=544
size _i=120
size_i=272

HDF5 metadata

Dataset elements

HDF5 metadata

“Poor Man’s Debugging” (cont’d) Dl

Debugging Collective Operations The HDF Group

setenv H5_COLL_API_SANITY _CHECK 1

« HDF5 library will perform an MPI1_Barrier() call inside each metadata operation
that modifies the HDF5 namespace.

 Helps to find which rank is hanging in the MPI barrier

43

Darshan (ECP DataLib team)

» Design goals:
« Transparent integration with user environment
» Negligible impact on application performance

* Provides aggregate figures for:
* Operation counts (POSIX, MPI-I10, HDF5? PnetCDF)
« Datatypes and hint usage
« Access patterns: alignments, sequentially, access size
« Cumulative I/O time, intervals of 1/O activity

* An excellent starting point

6 New feature in Darshan 3.2.0+

45

I g W e
g g |
The HDF Group

Darshan Use-Case (Blue Waters, NCSA) o1

The HDF Group

 PSDNS code solves the incompressible Navier-Stokes equations in a periodic
domain using pseudo-spectral methods.

» Uses custom sub-filing by collapsing the 3D in-memory layout into a 2D
arrangement of HDF5 files

» Uses virtual dataset which combines the datasets distributed over several
HDF5 files into a single logical dataset

@ Slow read times.

Ran experiments on 32,768 processes with Darshan 3.1.3 to create an |/O profile.

46

Darshan Use-Case (Blue Waters, NCSA) T

The HDF Group

total POSIX_SIZE_READ_0_100: 196608
total POSIX_SIZE_READ_100_1K: 393216
total_POSIX_SIZE_READ_1K_10K: 617472
total POSIX_SIZE_ READ_10K_100K: 32768
total_POSIX_SIZE_READ_100K_1M: 2097152
total_POSIX_SIZE_READ_1M_4M: 0
total_POSIX_SIZE_READ_4M_10M: 0

total POSIX_SIZE_READ_10M_100M: 0
total_POSIX_SIZE_READ_100M_1G: 0
total_POSIX_SIZE_READ_1G_PLUS: 0

Large numbers of reads of only small amounts of data.

@g Multiple MPI ranks independently read data from a small restart file which
contains a virtual dataset.

47

Darshan Use-Case (Blue Waters, NCSA) T

The HDF Group
V “Broadcast” the restart file:

1. Rank O: read the restart file as a byte stream into a memory buffer.
2. Rank 0: broadcasts the buffer.

3. All MPI ranks open the buffer as an HDF5 file image, and proceed as if they were
performing reads against an HDF5 file stored in a file system.

Eliminates the “read storm”,

total_POSIX_SIZE_READ 0_100: 6
total_POSIX_SIZE_READ 100 _1K: 0
total_POSIX_SIZE_READ_1K_10K: 0
total_POSIX_SIZE_READ 10K_100K: 2
total_POSIX_SIZE_READ_100K_1M: O
total_POSIX_SIZE_READ_1M_4M: 0
total_POSIX_SIZE_READ 4M_10M: 0
total_POSIX_SIZE_READ_10M_100M: 0
total_POSIX_SIZE_READ_100M_1G: 32768
total_POSIX_SIZE_READ 1G_PLUS: 0

48

Recorder =

The HDF Group
« Multi-level I/O tracing library that captures function calls from HDF5, MPI and
POSIX.
* It keeps every function and its parameters. Useful to exam access patterns.

 Built-in visualizations for access patterns, function counters, I/O sizes, etc.

* Also reports 1/O conflicts such as write-after-write, write-after-read, etc. Useful
for consistency semantics check (File systems with weaker consistency
semantics).

Wang, Chen, Jinghan Sun, Marc Snir, Kathryn Mohror, and Elsa Gonsiorowski. "Recorder 2.0: Efficient Parallel 1/0
Tracing and Analysis." In IEEE International Workshop on High-Performance Storage (HPS), 2020.

https://github.com/uiuc-hpc/Recorder

50

Write Pattern Effects — Data location —b.n
in the file The HDF Group

Pattern 1 — HDF5 pattern
Variable 1 (v1) Variable 2 (v2) Varlable N (vN)

Py P1 P, [PolPy Py

Variables are contiguously stored in the file

ii?iii

iiEiEi

=
&=
=
=
=
&
=
&
2
A,

>§£

Pattern 2 — MPI-10 pattern (or HDF5 compound datatype)

v v2 vN v1 v2 vN v1 V2 vN

///
r

////

=

o Variables are interleaved in the file

HACC-10: MPI vs HDF5, why HDF5 is slow? D

Example of access patterns with 8 ranks writing 9GB.

data.mpi
1.000e+10

= Tead

8.000e+9 i
= WTrite

6.000e+9 I t

Offset
Offset

4.000e+9

2.000e+9

0.000e+0

Rank

MPI-10 Access Pattern

52

1.000e+10

8.000e+9

6.000e+9

4.000e+9

2.000e+9

0.000e+0

The HDF Group

Rank

HDF5 with individual dataset

HACC-IO: HDF5 access patterns o1

The HDF Group

data.h5

8.000e+10 8.000e+10 +

T m read]

8.000e+10 +

6.000e+10 6.000e+10

6.000e+10

4.000e+10 4.000e+10

4.000e+10 -

2.000e+10 2.000e+10

2.000e+10

0.000e+0 0.000e+0 0.000e+0]

0 200 400 600 800 1000
Rank

0 200 400 600 800 1000 0 200 400 600 800 1000
Rank Rank

TR AR
| L4l

75497472
8388608

HACC-IO: access patterns of HDF5 with
collective I/0

» Will Collective /0O make the access pattern (on the left) of individual dataset better?
— Problem size: 8GB per variable, 72GB in total
— Lustre config: Stripe count 32, Stripe Size 512M
— Each rank writes 9 variables
— The size of each write is 8GB/1024 Processes = 8MB

+ ROMIO:

— romio_cb_read/write = automatic
— "When set to automatic, ROMIO will use heuristics to determine when to enable the optimization."

8.000e+10
6.000e+10 4

4.000e+10

Offset

2.000e+10

data.h5

1 """ amread

e = WTite
R —

j—

—

0.000e+0

j—

54

T

T
800

L lil li[
400 600 1000
Rank

L
0 200

1 Writes are aiireiated bil i e N N
remain the same 2.000e+10 1

j—

s
The HDF Group
data.h5
8.000e+10 ~
=== ET = read
6.000e+10 4 " __==="""" s rite
- I —
o 1 i
& 4.000e+10 - e
O T 1 __;..---'---
0.000e40 J —m====5——"T
L} ' L} T l T | T LI L} ' l l T
0 200 400 600 800 1000

Rank

Interleaved is not always better, and neither Dl

is collective 10 The HDFGroup

» Write bandwidth with different stripe size.
» Individual dataset is better when using large stripe sizes.

@ MPl+Independent B MPI+Collective Individual+independent ® Individual+Collective
B Compound+Independent W Compound+Collective M Multi+Independent B Multi+Collective

<

o

=

©

% JM\IIILI\II\ILLIIL
m

o P

=

==

128M 512M

55 Stripe Size

Interleaved is not always better, and neither Dl

. = The HDF Group
is collective 10
* When the request size is big, the collective communication overhead increases and the
benefits from collective I/O becomes limited.
* Request size is 8MB in our case.
» Collective writes are indeed much faster: 83 seconds vs 1539 seconds in independent mode.
» However, the cost for communication-is too high
‘E MPI Njle sync]
g H5Pset fapl \npio —
dyuL . MPI File opeq +
H5Past Top) e 83 seconds
ﬁ_ MPI File read _at
MPI File open
H5Fflush H5Dread
H5Fclose H5Fflush
MPI Fil t view
~ MPI Barrier — 1539 seconds
read
MPI_ File read at all ot |
MPI File write at -
MPI File write at all
Over 8000 second? 2000 4000 6000 8000 o 500 1000 1500 2000 2500 3000
Ovel"head. Spent Tjn]e (Seconds) Spent Time (Seconds)
Collective Independent

56 Accumulated time spent on each function

Interleaved is not always better, and neither Dl

is collective 10 The HDFGroup

» Write bandwidth with different stripe size.
» Individual dataset is better when using large stripe sizes.

@ MPl+Independent B MPI+Collective Individual+independent ® Individual+Collective
B Compound+Independent W Compound+Collective M Multi+Independent B Multi+Collective

L
el
E 60000
S
©
n -
I
"=
==
36M 72M 128M 512M

57 Stripe Size

HACC-IO: MPI vs HDF5 =D

The HDF Group

« Same access pattern, but why MPI is faster?

read — P.OOOOOI

opent64 — h000004 H5Dopen2 —2.5152639999999913

MPI_Comm size - h00019899999999999963 MPI Beast 113.4720360000000072

MPI_Comm mnk-#l00026199999999999975 H5Fclose 4111.736943000000018
unlink — h0010669999999999998 H5Pset _fapl mpio 8.645506999999995
umask | |0.002468999999999989 M PI on Iy fsync 161.90578799999992 H D F5
mmap - h01257600000000003 MPI File_sync 161.9176529999997

§ Iseek h03286999999999985 - MPI_File_open 195.23960900000003
§ close — P.06993200000000128 § read 188.4871760000023
MPI_Reduce — h10109000000000047 lE MPI File read at 188.6345039999978
open - F).5807950000000015 H5Dread 489.03935599999926

MPI_Barrier — F).9220439999999992 H5Fflush 716.6966140000001

MPI File close -126495859000000004

write 4 1014

Tt T T Tt T T T T
100 &

MPI_Barrier 990.6089910000062

MPI_File_write_atis
slower in HDF5?

999918

t T
0 500 1000 1500

—tT —t
2000 2500 3000

Spent Time (Seconds)

Spent Time (Seconds)

» HDF5 writes 2048 bytes
metadata at the beginning

, of the file.

MPI_BYTE X7f1 ce * This causes the alignment

issue for the data writes.

7093442 7093810

7093820 7093856

093859 7093860
93864 7147935
4119

e wie ois sie

5
5
5
5
P
S

7094144 7147900
58 7147940 7148015

€ ~=
N

Need help @

 HDF Knowledge base
https://portal.hdfgroup.org/display/knowledge/Parallel+HDF5

« HDF-FORUM https://forum.hdfgroup.org/
« HDF Helpdesk help@hdfgroup.org

59

LN
g g |
The HDF Group

Acknowledgement ot

The HDF Group

This material is based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences under Award Number DE-
ACO05-000R22725.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

60

Questions & Comments?

