
SDattrinfo/sfgainfo

April 17, 1997 RM-241

National Center for Supercomputing Applications

SDattrinfo/sfgainfo

intn SDattrinfo(int32 [file, sds, dim]_id, int32 attr_index, char *attr_name, int32 *data_type,
int32 *count)

[file, sds, dim]_id IN: Identifier of the object the attribute is to be attached to: an file_id
for a file, an sds_id for an SDS or a dim_id for a dimension

attr_index IN: Index of the attribute to read

attr_name OUT: Name assigned to the attribute/dataset/dimension

data_type OUT: Data type of the attribute values

count OUT: Total number of values in the specified attribute

Purpose Retrieves information about a global or local attribute.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine should be used before reading the value of an attribute with
SDreadattr. SDreadattr requires a buffer to hold the values of the attribute.
The size of this buffer should be at least count*DFKNTsize(data_type)
bytes long.

FORTRAN integer function sfgainfo([file, sds, dim]_id, attr_index,
 attr_name, data_type, count)

character* (*) attr_name
integer [file, sds, dim]_id, attr_index, data_type, count

SDcreate/sfcreate

RM-242 April 17, 1997

SDcreate/sfcreate

int32 SDcreate(int32 sd_id, char *name, int32 data_type, int32 rank, int32 dimsizes[])

sd_id IN: SD interface identifier returned from SDstart

name IN: ASCII string defining a variable name

data_type IN: Data type for the values in the dataset

rank IN: Number of dimensions in the dataset

dimsizes IN: Size of each dimension

Purpose Creates a new dataset.

Return value Returns the sds_id if successful and FAIL (or -1) otherwise.

Description If name is NULL a fake name will be generated. The name will be truncated to
the MAX_NC_NAME length as specified in the HDF header files.

Once a dataset has been created, it is impossible to change its name, data
type, or rank. However, it is possible to create a dataset and close the file
before writing any data values to it. The values can be added or modified at a
future time. If you wish to add data or modify an existing dataset, use SDse-
lect to get the sds_id.

In C, if dimsizes[0] is assigned the value SD_UNLIMITED then this dimension
is considered to be an "unlimited dimension" and the user can a ppend data to
this dimension at will. In Fortran-77, dimsizes(rank) is the only dimension
that can be unlimited. This is useful when the eventual size of a dataset is not
known at creation time.

Valid values for data_type are prefaced by DFNT_. The following are valid
symbolic names and their data types:

 32-bit float DFNT_FLOAT32 5

 64-bit float DFNT_FLOAT64 6

 8-bit signed int DFNT_INT8 20

 8-bit unsigned int DFNT_UINT8 21

 16-bit signed int DFNT_INT16 22

 16-bit unsigned int DFNT_UINT16 23

 32-bit signed int DFNT_INT32 24

 32-bit unsigned int DFNT_UINT32 25

SDcreate/sfcreate

April 17, 1997 RM-243

National Center for Supercomputing Applications

 8-bit unsigned character DFNT_CHAR8 4

MAX_VAR_DIMS is the maximum rank a dataset can have.

FORTRAN integer function sfcreate(sd_id, name, data_type, rank,
dimsizes)

character* (*) name
integer sd_id, data_type, rank, dimsizes(*)

SDdiminfo/sfgdinfo

RM-244 April 17, 1997

SDdiminfo/sfgdinfo

intn SDdiminfo(int32 dim_id, char *name, int32 *count, int32 *data_type, int32 *nattrs)

dim_id IN: Dimension identifier returned from SDgetdimid

name OUT: Array to retrieve dimension name

count OUT: Size of the dimension

data_type OUT: Data type of the data stored in the dataset

nattrs OUT: Attribute count assigned to the dimension's coordinate variable

Purpose Retrieves information about a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If scale information has been stored for this dimension via SDsetdimscale,
data_type will contain the data type - otherwise, data_type will be 0. If the
user has not named the dimension via SDsetdimname a place holder will be
generated by the library. If the name is unimportant, NULL can be passed in
for the name parameter.

The count argument is set to SD_UNLIMITED for unlimited dimensions. To
get the number of records of an unlimited dimension, use SDgetinfo.

If "label, unit, format" metadata (or "LUF" metadata) is assigned to a dimen-
stion, it will be "promoted" by the SD interface to be a variable. If the target
dimension specfied by dim_id is a varaible, the value returned in the
data_type argument will be 0.

FORTRAN integer function sfgdinfo(dim_id, name, count, data_type,
nattrs)

character* (*) name
integer dim_id, count, data_type, nattrs

SDend/sfend

April 17, 1997 RM-245

National Center for Supercomputing Applications

SDend/sfend

intn SDend(int32 sd_id)

sd_id IN: SD interface identifier returned from SDstart

Purpose Closes the file and frees memory allocated by the library.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDend closes the file when done with SD interface activities. If a user pro-
gram exits without calling this function, changes made to the file data in-core
are likely not to be flushed to the file.

FORTRAN integer function sfend(sd_id)

integer sd_id

SDendaccess/sfendacc

RM-246 April 17, 1997

SDendaccess/sfendacc

intn SDendaccess(int32 sds_id)

sds_id IN: Dataset identifier returned from SDselect

Purpose Disposes of a dataset identifier.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description When done interacting with a specific dataset, this routine should be called to
release the internal data structures. This routine should be called once for
each call to SDcreate or SDselect. Failing to call this function may result in
loss of data.

FORTRAN integer function sfendacc(sds_id)

integer sds_id

SDfileinfo/sffinfo

April 17, 1997 RM-247

National Center for Supercomputing Applications

SDfileinfo/sffinfo

intn SDfileinfo(int32 sd_id, int32 *ndatasets, int32 *nglobal_attr)

sd_id IN: SD interface identifier returned from SDstart

ndatasets OUT: Number of datasets in the file

nglobal_attr OUT: Number of global attributes in the file

Purpose Determines the number of datasets and global attributes in a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDfileinfo returns the number of currently defined datasets and global
attributes in the file. "Global attributes" refer to attributes assigned to the file
as opposed to "local attributes" which are assigned to specific datasets. For
example, "file_creator_date" would be a global attribute, while "units" would
typically be dataset-specific. Global attributes are created by SDsetattr using
the sd_id rather than an sds_id.

FORTRAN integer function sffinfo(sd_id, ndatasets, nglobal_attr)

integer sd_id, ndatasets, nglobal_attr

SDfindattr/sffattr

RM-248 April 17, 1997

SDfindattr/sffattr

int32 SDfindattr(int32 [file, sds, dim]_id, char *attr_name)

[file, sds, dim]_id IN: Identifier of the object the attribute is to be attached to: an file_id
for a file, an sds_id for an SDS or a dim_id for a dimension

attr_name IN: Name assigned to the attribute

Purpose Finds the index for an attribute with a given name.

Return value Returns the attr_index if successful and FAIL (or -1) otherwise.

Description The attr_index returned by this function can be passed to SDattrinfo and
SDreadattr. This routine is case sensitive. Wild cards are not allowed in the
attr_name parameter.

FORTRAN integer function sffattr([file, sds, dim]_id, attr_name)

integer [file, sds, dim]_id
character* (*) attr_name

SDgetcal/sfgcal

April 17, 1997 RM-249

National Center for Supercomputing Applications

SDgetcal/sfgcal

intn SDgetcal(int32 sds_id, float64 *cal, float64 *cal_err, float64 *offset, float64 *offset_err,
int32 *data_type)

sds_id IN: Dataset identifier returned from SDselect

cal OUT: Calibration factor

cal_err OUT: Calibration error

offset OUT: Uncalibrated offset

offset_err OUT: Uncalibrated offset error

data_type OUT: Data type of uncalibrated data

Purpose Retrieves the calibration information associated with the specified dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetcal reads the calibration record attached to a dataset. A calibration
record contains four 64-bit floating point values followed by a 32-bit integer,
to be interpreted as follows:

 cal calibration factor

 cal_err calibration error

 offset uncalibrated offset

 offset_err uncalibrated offset error

 data_type data type of uncalibrated data

The relationship between a value iy stored in a dataset and the actual value is
defined as: y = cal * (iy - offset)

The variable offset_err contains a potential error of offset, and cal_err
contains a potential error of cal. Currently the calibration record is provided
for information only. The SD interface performs no operations on the data
based on the calibration tag.

FORTRAN integer function sfgcal(sds_id, cal, cal_err, offset,
offset_err, data_type)

integer sds_id, data_type
real*8 cal, cal_err, offset, offset_err

SDgetchunkinfo

RM-250 April 17, 1997

SDgetchunkinfo

intn SDgetchunkinfo(int32 sds_id, HDF_CHUNK_DEF *cdef, int32 *flags)

sds_id IN: Dataset identifier returned from SDselect

cdef OUT: Union structure containing information about the chunks in the
SDS

flags OUT: Flags determining routine behavior

Purpose Obtains chunking information about a scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description A pointer to a chunk_lengths array (defined in the comp_info union
pointed to by cdef) containing chunk dimension size information will be
returned if the value of flags is HDF_CHUNK, and a pointer to a
comp_info structure containing the dimension size of the chunks and
compression information will be returned if the value of flags is
HDF_CHUNK bitwise-OR’ed with HDF_COMP.

For the definition of the HDF_CHUNK_DEF union, refer to the Reference Man-
ual page for SDsetchunk.

SDgetchunkinfo can also be used to determine if the target SDS is not
chunked. In this case, the value of flags is set to HDF_NONE and the cdef
parameter is ignored

A NULL value can also be passed in as the cdef parameter if chunking infor-
mation is not desired.

SDgetdatastrs/sfgdtstr

April 17, 1997 RM-251

National Center for Supercomputing Applications

SDgetdatastrs/sfgdtstr

intn SDgetdatastrs(int32 sds_id, char *label, char *unit, char *format, char *coordsys, intn len)

sds_id IN: Dataset identifier returned from SDselect

label OUT: Label describing the data

unit OUT: Unit to be used with the data

format OUT: Format to be used in displaying data

coordsys OUT: Coordinate system to be used with the data

len IN: Maximum length string it is safe to return

Purpose Returns the data strings associated with the specified dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetdatastrs returns the data strings stored by SDsetdatastrs. If a particu-
lar string was not stored the first character of the return string will be '\0'.
Each string buffer is assumed to be at least len characters long including the
space to hold the ’\0’ string termination character. If a user does not want a
string back, NULL can be passed for any of the string values.

FORTRAN integer function sfgdtstr(sds_id, label, unit, format,
coordsys, len)

integer sds_id, len
character* (*) label, unit, format, coordsys

SDgetdimid/sfdimid

RM-252 April 17, 1997

SDgetdimid/sfdimid

int32 SDgetdimid(int32 sds_id, intn dim_number)

sds_id IN: Dataset identifier returned from SDselect

dim_number IN: Number of dimensions

Purpose Retrieves the dimension identifier associated with the specified dimension in
the dataset.

Return valu Returns a dim_id if successful and FAIL (or -1) otherwise.

Description The dim_id is required by all other calls that will deal with this particular
dimension. Dimensions are zero based so: 0 <= dim_number < rank.

FORTRAN integer function sfdimid(sds_id, dim_number)

integer sds_id, dim_number

SDgetdimscale/sfgdscale

April 17, 1997 RM-253

National Center for Supercomputing Applications

SDgetdimscale/sfgdscale

intn SDgetdimscale(int32 dim_id, VOIDP data)

dim_id IN: Dimension identifier returned from SDgetdimid

data OUT: Buffer for the scale values for the specified dimension

Purpose Retrieves the scale values for the specified dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description It is assumed that the user has already called SDdiminfo and has thus allo-
cated sufficient space to hold the values. SDdiminfo is used to check if a
scale has been set for the target dimension. If the data type parameter value
returned by SDdiminfo is 0, no scale has been set and SDgetdimscale
should not be called.

It is not possible to read a subset of the scale values. SDgetdimscale returns
all of the scale values stored with the given dimension.

FORTRAN integer function sfgdscale(dim_id, data)

integer dim_id
<valid numeric data type> data

SDgetdimstrs/sfgdmstr

RM-254 April 17, 1997

SDgetdimstrs/sfgdmstr

intn SDgetdimstrs(int32 dim_id, char *label, char *unit, char *format, intn len)

dim_id IN: Dimension identifier returned from SDgetdimid

label OUT: Label that describes this dimension

unit OUT: Unit to be used with this dimension

format OUT: Format to be used in displaying scale for this dimension

len IN: Maximum string length it is safe to return

Purpose Retrieves the label, unit, and format strings for a given dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine returns the dimension strings stored by SDsetdimstrs. If a par-
ticular string was not stored, the first character of the return string will be '\0'.
Each string buffer is assumed to be at least len characters long. If a user does
not want a string returned, NULL can be passed for any of the string values.

FORTRAN integer function sfgdmstr(dim_id, label, unit, format, len)

integer dim_id, len
character* (*) label, unit, format

SDgetfillvalue/sfgfill/sfgcfill

April 17, 1997 RM-255

National Center for Supercomputing Applications

SDgetfillvalue/sfgfill/sfgcfill

intn SDgetfillvalue(int32 sds_id, VOIDP fill_val)

sds_id IN: Dataset identifier returned from SDselect

fill_val OUT: Buffer for the returned fill value

Purpose Reads the fill value for the given dataset if it exists.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description It is assumed that the data type of the fill value is the same as for the dataset.

Note that there are two Fortran-77 versions of this routine: sfgfill and sfgcfill.
The sfgfill routine reads numeric fill value data and sfgcfill reads character
fill value data.

FORTRAN integer function sfgfill(sds_id, fill_val)

integer sds_id
<valid numeric data type> fill_val

integer function sfgcfill(sds_id, fill_val)

integer sds_id
character* (*) fill_val

SDgetinfo/sfginfo

RM-256 April 17, 1997

SDgetinfo/sfginfo

intn SDgetinfo(int32 sds_id, char *sds_name, int32 *rank, int32 dimsizes[], int32 *data_type,
int32 *nattrs)

sds_id IN: Dataset identifier returned from SDselect

sds_name OUT: Buffer for the name, if any, of the dataset

rank OUT: Buffer for the number of dimensions in the dataset

dimsizes OUT: Buffer for the size of each dimension in the dataset

data_type OUT: Buffer for the data type for the data stored in the dataset

nattrs OUT: Buffer for the number of "netCDF-style" attributes for this
dataset

Purpose Retrieves the name, rank, dimension sizes, data type and attribute count for
the specified dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Returns basic information about a given dataset. All fields must be provided.
The dataset name can be at most MAX_NC_NAME characters long and the rank
of the dataset is limited to MAX_VAR_DIMS.

In the case of unlimited dimensions, the dimsizes[0] argument returns the
number of records in the dimension.

FORTRAN integer function sfginfo(sds_id, sds_name, rank, dimsizes,
data_type, nattrs)

character* (*) sds_name
integer sds_id, rank, dimsizes(*)
integer data_type, nattrs

SDgetrange/sfgrange

April 17, 1997 RM-257

National Center for Supercomputing Applications

SDgetrange/sfgrange

intn SDgetrange(int32 sds_id, VOIDP max, VOIDP min)

sds_id IN: Dataset identifier returned from SDselect

max OUT: Highest value in the range

min OUT: Lowest value in the range

Purpose Retrieves the maximum and minimum values as they are stored with the sci-
entific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The maximum and minimum values must be set via a call to SDsetrange.
They are not automatically stored when a dataset is written to a file. As the
max imumand minimum values are supposed to relate to the data itself, it is
assumed that they are of the same data type as the data itself. One implication
of this is that in the C version of SDgetrange the arguments are pointers,
rather than simple variables, whereas in the Fortran-77 version they are sim-
ple variables of the same data type as the data array.

FORTRAN integer function sfgrange(sds_id, max, min)

integer sds_id
<valid numeric data type> max, min

SDidtoref/sfid2ref

RM-258 April 17, 1997

SDidtoref/sfid2ref

int32 SDidtoref(int32 sds_id)

sds_id IN: Dataset identifier returned from SDselect

Purpose Retrieves the reference number assigned to the specified dataset.

Return value Returns sds_ref if successful and FAIL (or -1) otherwise.

Description The specified reference number can be used to add the dataset to a vgroup as
well as a means of using the HDF annota tions interface to annotate the
dataset.

FORTRAN integer function sfid2ref(sds_id)

integer sds_id

SDiscoordvar/sfiscvar

April 17, 1997 RM-259

National Center for Supercomputing Applications

SDiscoordvar/sfiscvar

intn SDiscoordvar(int32 sds_id)

sds_id IN: Dataset identifier returned from SDselect

Purpose Determines if a dataset is a coordinate variable

Return value Returns TRUE if the dataset is a coordinate variable, and FALSE otherwise.

Description Coordinate variables are created to store metadata associated with dimen-
sions. Due to netCDF compatibility, coordinate variables are also considered
datasets which sometimes is a source of confusion.

FORTRAN integer function sfiscvar(sds_id)

integer sds_id

SDisdimval_bwcomp/sfisdmvc

RM-260 April 17, 1997

SDisdimval_bwcomp/sfisdmvc

intn SDisdimval_bwcomp(int32 dim_id)

dim_id IN: Dimension identifier returned from SDgetdimid

Purpose Determines whether the specified dimension will have the old and new
representations or the new representation only.

Return value Returns SD_DIMVAL_BW_COMP (or 1) if backward compatible,
SD_DIMVAL_BW_INCOMP (or 0) if incompatible, FAIL (or -1) if error.

Description SDstart reads dimension records into memory. The compatiblity mode of
each dimesion is decided by the existance of the dimension vdata of class
"DimVal0.0" in the dimension vgroup for that dimension.

If "DimVal0.0" vdata doesn't exist in that dimension vgroup, it will be
flagged as backward-incompatible. The compatibility mode can be changed
by calls to SDsetdimval_comp at any time between the calls to SDstart and
SDend.

FORTRAN integer function sfisdmvc(dim_id)

integer dim_id

SDisrecord

April 17, 1997 RM-261

National Center for Supercomputing Applications

SDisrecord

int32 SDisrecord(int32 sds_id)

sds_id IN: SDS identifier returned from SDselect

Purpose Determines if a dataset is a record variable

Return value Returns TRUE if the dataset is a record variable, and FALSE otherwise.

SDnametoindex/sfn2index

RM-262 April 17, 1997

SDnametoindex/sfn2index

int32 SDnametoindex(int32 sd_id, char *sds_name)

sd_id IN: SD interface identifier returned from SDstart

sds_name IN: Name of the dataset to index

Purpose Determines the index assigned to the scientific dataset defined by sds_name.

Return value Returns an sds_index if successful and FAIL (or -1) otherwise.

Description The sds_index can be passed to SDselect to return an sds_id for the named
dataset. This routine is case sensitive and will not accept wild cards. In addi-
tion, this routine will only return the sds_index for the first dataset with the
given name.

FORTRAN integer function sfn2index(sd_id, sds_name)

integer sd_id
character* (*) sds_name

SDreadattr/sfrnatt/sfrcatt

April 17, 1997 RM-263

National Center for Supercomputing Applications

SDreadattr/sfrnatt/sfrcatt

intn SDreadattr(int32 [file, sds, dim]_id, int32 attr_index, VOIDP data)

[file, sds, dim]_id IN: Identifier of the object the attribute is to be attached to: an file_id
for a file, an sds_id for an SDS or a dim_id for a dimension

attr_index IN: Index of the attribute to be read

data OUT: Buffer for the attribute values

Purpose Reads the values of an attribute.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description It's assumed that the user has called SDattrinfo and that the buffer is large
enough to store the data. If an attribute has multiple values stored for it, this
routine will return all of them. It is not possible to read a subset of attribute
values.

Note that this routine has two Fortran-77 versions: sfrnatt and sfrcatt. The
sfrnatt routine reads numeric attribute data and sfrcatt reads character
attribute data.

The index returned as the attr_index argument is one-based.

FORTRAN integer function sfrnatt([file, sds, dim]_id, attr_index, data)

integer [file, sds, dim]_id, attr_index
<valid numeric data> data

integer function sfrcatt([file, sds, dim]_id, attr_index, data)

integer [file, sds, dim]_id, attr_index
character* (*) data

SDreadchunk

RM-264 April 17, 1997

SDreadchunk

intn SDreadchunk(int32 sds_id, int32 *origin, VOIDP datap)

sds_id IN: SD interface identifier returned from SDstart

origin IN: Origin of the chunk to be read

datap OUT: Buffer for the returned chunk data

Purpose Reads data from a chunked scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDreadchunk is used when an entire chunk of data is to be read.
SDreaddata is used when the read operation is to be done regardless of
the chunking scheme used in the SDS.

Also, SDreadchunk is written specifically for chunked SDSs and and
doesn’t have the overhead of the additional functionality supported by the
SDreaddata routine - therefore, it is much faster than SDreaddata.

SDreadchunk will return FAIL when an attempt is made to use it to read
from a non-chunked SDS.

SDreaddata/sfrdata/sfrcdata

April 17, 1997 RM-265

National Center for Supercomputing Applications

SDreaddata/sfrdata/sfrcdata

intn SDreaddata(int32 sds_id, int32 start[], int32 stride[], int32 edge[], VOIDP buffer)

sds_id IN: Dataset identifier returned from SDselect

start IN: Array specifying the starting location

stride IN: Array specifying the number of values to skip along each dimen-
sion

edge IN: Array specifying the number of values to read along each dimen-
sion

buffer OUT: Buffer for the data

Purpose Reads a hyperslab of data from a dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The start array specifies the multi-dimensional index of the starting corner
of the hyperslab to read. The values are zero-based.

The edge array specifies the number of values to read along each dimension
of the hyperslab.

The stride array allows for sub-sampling along each dimension. If a stride
value is specified for a dimension, that many values will be skipped over
when reading along that dimension. Specifying stride = NULL in the C inter-
face or stride = 1 in either interface specifies contiguous reading of data. If
the stride values are set to 0, SDreaddata returns FAIL (or -1). No matter
what stride value is provided, data is always placed contiguously in buffer.

If the SDS specified by sds_id contains no data, SDreaddata returns 0.

When reading data from a "chunked" SDS using SDreaddata, consider-
ation should be given to be issues presented in the section on chunking in
Chapter 3 of the HDF User’s Manual, tited Scientific Data Sets (SD API) and
Chapter 13 of the HDF User’s Manual, titled HDF Performance Issues.

Note that there are two Fortran-77 versions of this routine: sfrdata and sfrc-
data. The sfrdata routine reads numeric scientific data and sfrcdata reads
character scientific data.

FORTRAN integer function sfrdata(sds_id, start, stride, edge, buffer)

integer sds_id, start(*), stride(*), edge(*)
<valid numeric data> buffer(*)

integer function sfrcdata(sds_id, start, stride, edge, buffer)

integer sds_id, start(*), stride(*), edge(*)

SDreaddata/sfrdata/sfrcdata

RM-266 April 17, 1997

character* (*) buffer

SDreftoindex/sfref2index

April 17, 1997 RM-267

National Center for Supercomputing Applications

SDreftoindex/sfref2index

int32 SDreftoindex(int32 sd_id, int32 sds_ref)

sd_id IN: SD interface identifier returned from SDstart

sds_ref IN: Reference number for the specified dataset

Purpose Determines the index assigned to a scientific dataset given the specified ref-
erence number.

Return value Returns an sds_index if successful and FAIL (or -1) otherwise.

Description The value of sds_index can be passed to SDselect to return a dataset identi-
fier (sds_id).

FORTRAN integer function sfref2index(sd_id, sds_ref)

integer sd_id, sds_ref

SDselect/sfselect

RM-268 April 17, 1997

SDselect/sfselect

int32 SDselect(int32 sd_id, int32 sds_index)

sd_id IN: SD interface identifier returned from SDstart

sds_index IN: Index of the dataset

Purpose Retrieves the sds_id for the given dataset.

Return value Returns the sds_id if successful and FAIL (or -1) otherwise.

Description To get an sds_id for the Nth dataset, use N-1 as the index. N must be a num-
ber greater than or equal to 0 and less than the total number of datasets in the
file. The total number of datasets in a file may be obtained from a call to
SDfileinfo. The function SDnametoindex can be used to find the index of a
dataset if its name is known.

The integration with netCDF has required that dimension metadata be stored
as "coordinate variables." This sometimes causes problems when calling
SDselect as the coordinate variables can lead to different dataset ordering
than is expected. In situations such as these, users should use the routine
SDiscoordvar to determine if a given dataset is a coordinate variable or not.

FORTRAN integer function sfselect(sd_id, sds_index)

integer sd_id, sds_index

SDsetaccesstype/sfsacct

April 17, 1997 RM-269

National Center for Supercomputing Applications

SDsetaccesstype/sfsacct

intn SDsetaccesstype(int32 sd_id, int32 access_type)

sd_id IN: SD interface identifier returned from SDstart

access_type IN: I/O access mode of the dataset

Purpose Determines the I/O access mode to be used f or the specified dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The dataset must be an external element and the I/O access defined via this
routine applies to the specified external file only.

The access_type parameter can be defined as DFACC_SERIAL for sequential I/
O or DFACC_PARALLEL for parallel I/O. At present, HDF has only imple-
mented the CM5 CMFS parallel I/O.

Though the access mode is set for dataset sds_id, it applies to the entire
external file in which the dataset resides. If different access modes are
defined for datasets within the same HDF external file, unpredictable effects
will result. It is also the users’ responsibility to make sure the access mode is
appropriate for the files involved. For example, setting DFACC_PARALLEL on
a dataset contained in a serial file may result in slower I/O rates and some-
times failures.

FORTRAN integer function sfsacct(sd_id, access_type)

integer sd_id, access_type

SDsetattr/sfsnatt/sfscatt

RM-270 April 17, 1997

SDsetattr/sfsnatt/sfscatt

intn SDsetattr(int32 [file, sds, dim]_id, char *attr_name, int32 data_type, int32 count, VOIDP val-
ues)

[file, sds, dim]_id IN: Identifier of the object the attribute is to be attached to: an file_id
for a file, an sds_id for an SDS or a dim_id for a dimension

attr_name IN: Name to be assigned to the attribute

data_type IN: Data type of the values in the attribute

count IN: Total number of values to be stored in the attribute

values IN: Data values to be storde in the attribute

Purpose Defines a new type of attribute for the given variable.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine provides a generic way for users to define metadata. It imple-
ments the label=value data abstraction.

The attr_name argument can be any ASCII string for which one or more val-
ues may be stored. If more than one value is stored, all values must have the
same data type. If an attribute with the given scope and name exists, it will
be over written.

If an sd_id is given instead of an sds_id, a global attribute is created which
applies to the whole file. Global attributes refer to all objects in a file as
opposed to specific datasets. For example, "file_creator_date" is a global
attribute, whereas "units" is typically considered to be dataset-specific.

Valid values for data_type are prefaced by DFNT_. The following are valid
symbolic names and their data types:

 32-bit float DFNT_FLOAT32 5

 64-bit float DFNT_FLOAT64 6

 8-bit signed int DFNT_INT8 20

 8-bit unsigned int DFNT_UINT8 21

 16-bit signed int DFNT_INT16 22

 16-bit unsigned int DFNT_UINT16 23

 32-bit signed int DFNT_INT32 24

 32-bit unsigned int DFNT_UINT32 25

SDsetattr/sfsnatt/sfscatt

April 17, 1997 RM-271

National Center for Supercomputing Applications

 8-bit signed character DFNT_CHAR 4

Note that there are two Fortran-77 versions of this routine: sfsnatt and sfs-
catt. The sfsnatt routine writes numeric attribute data and sfscatt writes
character attribute data.

Example Store a "valid_range" attribute for a dataset.

 int32 range[2];
 int32 sds_id;
 int32 status;

 ...

 sds_id = SDcreate...;

 ...

 range[0] = 5;
 range[1] = 100;
 status = SDsetattr(sds_id, "valid_range", DFNT_INT32, 2, range);

FORTRAN integer function sfsnatt([file, sds, dim]_id, attr_name,
data_type, count, values)

character* (*) attr_name
integer [file, sds, dim]_id, data_type, count
<valid numeric data type> values(*)

integer function sfscatt([file, sds, dim]_id, attr_name,
data_type, count, values)

character* (*) attr_name, values
integer [file, sds, dim]_id, data_type, count

SDsetblocksize

RM-272 April 17, 1997

SDsetblocksize

intn SDsetblocksize(int32 sd_id, int32 block_size)

sd_id IN: SD interface identifier returned from SDstart

block_size IN: Size of the block in bytes

Purpose Sets the block size used for storing data datasets with unlimited dimensions.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetblocksize is used when creating new datasets only - it has no affect on
pre-existing datasets. The block_size parameter should be set to a multiple
of the "slice" size.

SDsetcal/sfscal

April 17, 1997 RM-273

National Center for Supercomputing Applications

SDsetcal/sfscal

intn SDsetcal(int32 sds_id, float64 cal, float64 cal_err, float64 offset, float64 offset_err, int32
data_type)

sds_id IN: Dataset identifier returned from SDselect

cal IN: Calibration factor

cal_err IN: Calibration error

offset IN: Uncalibrated offset

offset_err IN: Uncalibrated offset error

data_type IN: Data type of uncalibrated data

Purpose Sets the calibration information.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetcal stores the calibration record associated with a dataset. A calibration
record contains the following information:

 cal Calibration factor

 cal_err Calibration error

 offset Uncalibrated offset

 offset_err Uncalibrated offset error

 data_type Data type of uncalibrated data

The relationship between a value iy stored in a dataset and the actual value is
defined as: y = cal * (iy - offset)

The variable offset_err contains a potential error of offset, and cal_err
contains a potential error of cal. Currently the calibration record is provided
for information only. The SD interface performs no operations on the data
based on the calibration tag.

SDsetcal works like other SDset* routines, with one exception: the calibra-
tion information is automatically cleared after a call to SDreaddata or
SDwritedata. Hence, SDsetcal must be called anew for each dataset that is
to be written.

SDsetcal/sfscal

RM-274 April 17, 1997

FORTRAN integer function sfscal(sds_id, cal, cal_err, offset,
offset_err, data_type)

integer sds_id, data_type
real*8 cal, cal_err, offset, offset_err

SDsetchunk

April 17, 1997 RM-275

National Center for Supercomputing Applications

SDsetchunk

intn SDsetchunk(int32 sds_id, HDF_CHUNK_DEF cdef, int32 flags)

sds_id IN: SD interface identifier returned from SDstart

cdef IN: Union containing information on how the chunks are to be
defined

flags IN: Flags determining the behavior of the routine

Purpose Determines the chunk size and the compression method, if any, to be
applied when partitioning the array into chunks.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetchunk receives it’s information on how to partition the array into
chunks, as well as compression information, from a HDF_CHUNK_DEF union
passed in as its second argument. This union structure is defined in the HDF
library as follows:

typedef union hdf_chunk_def_u {
int32 chunk_lengths[MAX_VAR_DIMS];
struct {

int32 chunk_lengths[MAX_VAR_DIMS];
int32 comp_type;
comp_info cinfo;

} comp;
} HDF_CHUNK_DEF

The flags parameter can either be set to HDF_CHUNK if the SDS is to be
uncompressed, or to the bitwise-OR’ed values of HDF_CHUNK and
HDF_COMP (HDF_CHUNK | HDF_COMP) if a compression method is to be
applied to the array while it is being partitioned into chunks.

SDsetchunkcache

RM-276 April 17, 1997

SDsetchunkcache

intn SDsetchunkcache(int32 sds_id, int32 maxcache, int32 flags)

sds_id IN: SD interface identifier returned from SDstart

maxcache IN: Maximum number of chunks in the cache

flags IN: Flags determining the behavior of the routine

Purpose Determines the size of the chunk cache.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description By default, when a generic SDS is promoted to be a chunked SDS, the max-
cache parameter is set to the number of chunks along the last dimension and
a cache for the chunks is created.

If the chunk cache is full and the value of the maxcache parameter is larger
than the currently allowed maximum number of cached chunks, then the
maximum number of cached chunks is reset to the value of maxcache. If the
chunk cache is not full, then the size of the chunk cache is reset to the value
of maxcache only if it is greater than current number of chunks in the cache.

Never set the value of maxcache to be less than the number of chunks along
the last dimension of the biggest slab to be written or read via SDreaddata
or SDwritedata. Doing this will cause internal thrashing. See the section on
chunking in Chapter 13 of the HDF User’s Guide, titled HDF Performance
Issues, for more information on this.

Currently the only allowed value of the flags parameter is 0, which desig-
nates default operation. In the near future, the value HDF_CACHEALL will be
supported to be used to specifiy that the whole SDS object is to be cached.

SDsetcompress

April 17, 1997 RM-277

National Center for Supercomputing Applications

SDsetcompress

intn SDsetcompress(int32 sd_id, char *comp_type, comp_info *cinfo)

sd_id IN: SD interface identifier returned from SDstart

comp_type IN: Compression method

cinfo IN: Pointer to compression information structure

Purpose Sets the compression method for the specified dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The SDsetcompress routine is a simplified interface to the HCcreate
routine, and should be used instead of HCcreate unless the user is
familiar with working with the lower-level routines..

The comp_type parameter is the compression type definition and is set to
COMP_CODE_RLE for run-length encoding, COMP_CODE_DEFLATE for Gnu ZIP
(or GZIP) compression, COMP_CODE_SKPHUFF for skipping Huffman or
COMP_CODE_NONE for no compression. The c_info parameter is a union
structure of type tag_comp_info.

SDsetcompress compresses the dataset data at the time it is called, not
during the next call to SDwritedata.

SDsetdatastrs/sfsdtstr

RM-278 April 17, 1997

SDsetdatastrs/sfsdtstr

intn SDsetdatastrs(int32 sds_id, char *label, char *unit, char *format, char *coordsys)

sds_id IN: Dataset identifier returned from SDselect

label IN: Label that describes the data

unit IN: Unit to be used with the data

format IN: Format to be used in displaying the data

coordsys IN: Coordinate system to be used with the data

Purpose Sets the label, unit, format, and coordinate system strings for a given dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine can be used to set the label, unit, format, and coordinate system
strings for a given dataset. NULL can be passed for any strings the user does
not want to set.

FORTRAN integer function sfsdtstr(sds_id, label, unit, format,
coordsys)

integer sds_id
character* (*) label, unit, format, coordsys

SDsetdimname/sfsdmname

April 17, 1997 RM-279

National Center for Supercomputing Applications

SDsetdimname/sfsdmname

intn SDsetdimname(int32 dim_id, char *dim_name)

dim_id IN: Dimension identifier returned from SDgetdimid

dim_name IN: ASCII string to name dimension

Purpose Assigns a name to the specified dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If another dimension exists with the same name it is assumed tha t they refer
to the same dimension object and changes to one will be reflected in the
other. Naming dimensions is optional but encouraged. Dimensions that are
not explicitly named by the user will have default names generated by the
HDF library.

FORTRAN integer function sfsdmname(dim_id, dim_name)

integer dim_id
character* (*) dim_name

SDsetdimscale/sfsdscale

RM-280 April 17, 1997

SDsetdimscale/sfsdscale

intn SDsetdimscale(int32 dim_id, int32 count, int32 data_type, VOIDP data)

dim_id IN: Dimension identifier returned from SDgetdimid

count IN: Total number of values along the specified dimension

data_type IN: Data type of the values along the specified dimension

data IN: Value of each increment along the specified dimension

Purpose Stores the values of the specified dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Users should note that it is possible to store values for a dimension without
naming it. Even though its redundant, the count argument has been included
for backward compatibility. Note that there is now a data_type parameter so
the dimension scales are no longer required to be the same data type as the
dataset.

FORTRAN integer function sfsdscale(dim_id, count, data_type, data)

integer dim_id, count, data_type
character* (*) data

SDsetdimstrs/sfsdmstr

April 17, 1997 RM-281

National Center for Supercomputing Applications

SDsetdimstrs/sfsdmstr

intn SDsetdimstrs(int32 dim_id, char *label, char *unit, char *format)

dim_id IN: Dimension identifier returned from SDgetdimid

label IN: Label that describes this dimension

unit IN: Unit to be used with this dimension

format IN: Format to be used to display scale

Purpose Sets the label, unit, and format strings for a given dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetdimstrs sets the label, unit, and format specifications for a dimension
and its scale. If NULL is passed for a string, that string will not be written.

FORTRAN integer function sfsdmstr(dim_id, label, unit, format)

integer dim_id
character* (*) label, unit, format

SDsetdimval_comp/sfsdmvc

RM-282 April 17, 1997

SDsetdimval_comp/sfsdmvc

intn SDsetdimval_comp(int32 dim_id, intn comp_mode)

dim_id IN: Dimension identifier returned from SDgetdimid

comp_mode IN: Compatibility mode to be set

Purpose Determines whether the specified dimension will have the old and new
representations or the new representation only.

Return value Returns either SUCCEED (or 0) on successful completion, or FAIL (or -1)
otherwise.

Description The comp_mode parameter is set to either SD_DIMVAL_BW_COMP, which spec-
ifies compatible mode and that the old and new dimension representations
will be written to file , or SD_DIMVAL_BW_INCOMP, which specifies backward
incompatible mode and that only the new dimension representation will be
written to file.

Unlimited dimensions are always backward-compatable, therefore
SDsetdimval_comp takes no action on unlimited dimensions.

As of HDF4.1r1, the default mode is backward-incompatable. Subsequent
calls to SDsetdimval_comp will override the settings established in previous
calls to the routine.‘

FORTRAN integer function sfsdmvc(dim_id, comp_mode)

integer dim_id, comp_mode

SDsetexternalfile/sfsextf

April 17, 1997 RM-283

National Center for Supercomputing Applications

SDsetexternalfile/sfsextf

intn SDsetexternalfile(int32 sds_id, char *filename, int32 offset)

sds_id IN: Dataset identifier returned from SDselect

filename IN: Name of the external file

offset IN: Byte count from the beginning of the external file to where the
data starts

Purpose Stores data in an external file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetexternalfile allows users to move the data values for a dataset into an
external data file. Only the dataset values can be stored externally, all other
data must stay in the original file.

Data can only be moved once for any given dataset and it is the user's respon-
sibility to make sure the external data file is kept with the "original" file. The
offset parameter is the number of bytes from the beginning of the external file
to where the external data begins. This routine can only be called on HDF
post-version 3.2 files (i.e. calling on a netCDF file that was opened with the
multi-file interface will fail).

If the SDS specified by sds_id already exists, its data will be moved to the
external file and the connection between the tag and the data in the primary
file will be broken, effectively making that data inaccessible to the interface
routines. However, the data itself must be explicitly deleted by the hdfpack
command-line utility, as SDsetexternalfile doesn’t do this.

See the Reference Manual entries for HXsetcreatedir and HXsetdir for
more information on the options available for accessing external files.

FORTRAN integer function sfsextf(sds_id, file_name, offset)

integer sds_id, offset
character* (*) file_name

SDsetfillmode/sfsflmd

RM-284 April 17, 1997

SDsetfillmode/sfsflmd

intn SDsetfillmode(int32 file_id, intn fill_mode)

file_id IN: Dataset identifier returned from SDselect

fill_mode IN: Fill mode

Purpose Sets the fill mode for the specified file.

Return value Returns the previous fill mode if successful and FAIL (or -1) otherwise.

Description SDsetfillmode sets the fill mode to be applied to all SDSs contained in the
specified file.

When the specified file is first opened, or when the file is closed then re-
opened, its fill mode will be the default SD_FILL mode, which indicates that
fill values will be written when the SDS is created.

Possible values for fill_mode are: SD_FILL (or 0) or SD_NOFILL (or 256),
defined in "hdf.inc". SD_NOFILL indicates that fill values will not be written.

 When an SDS without unlimited dimensions is created, by default the first
SDwritedata call will fill the entire dataset with the user-defined fill value, or
the default fill value if there is no user-defined fill value, during the call to
SDsetfillvalue. In SDSs with an unlimited dimension defi ned as the slow-
est-changing dimension, if a new write operation takes place along the
unlimited dimension beyond the last location of the previous write operation,
the array locations between these written areas will be initialized to the user-
defined fill value, or the default fill value if a user-defined fill value hasn’t
been specified.

If it is certain that all dataset values will be written before any read operation
takes place, there is no need to write the fill values. Simply call SDsetfillm-
ode with a fill_mode value of SD_NOFILL which will eliminate all fill value
write operations to the dataset. For large datasets, this can improve the speed
by almost 50%.

FORTRAN integer function sfsflmd(file_id, fill_mode)

integer file_id, fill_mode

SDsetfillvalue/sfsfill

April 17, 1997 RM-285

National Center for Supercomputing Applications

SDsetfillvalue/sfsfill

intn SDsetfillvalue(int32 sds_id, VOIDP fill_value)

sds_id IN: Dataset identifier returned from SDselect

fill_value IN: Fill value

Purpose Sets the fill value for the specified dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The fill value is assumed to have the same data type as the dataset.

FORTRAN integer function sfsfill(sds_id, fill_value)

integer sds_id, fill_value

SDsetnbitdataset/sfsnbit

RM-286 April 17, 1997

SDsetnbitdataset/sfsnbit

intn SDsetnbitdataset(int32 sds_id, intn start_bit, intn bit_len, intn sign_ext, intn fill_one)

sds_id IN: Dataset identifier returned from SDselect

start_bit IN: Leftmost bit of the field to bewritten

bit_len IN: Length of the bit field to bewritten

sign_ext IN: Sign extend specifier

fill_one IN: Background bit specifier

Purpose Specifies a non-standard bit length for SDS data.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDnbitdataset allows the HDF user to specify that a particular SDS
array contains data of a non-standard length. Any length between 1 and
32 bits can be specified. After SDnbitdataset has been called for the
SDS array, any read or write operations will involve a conversion
between the new data length of the SDS array and the data length of the
read or write buffer.

Bit lengths of all data types are counted from the right of the bit field starting
with 0. In a bit field containing the values 01111011, bits 2 and 7 are set to 0
and all the other bits are set to 1.

The start_bit parameter specifies the leftmost position of the variable-
length bit field to be written. For example, in the bit field described in the pre-
ceeding paragraph a start_bit parameter set to 4 would correspond to the
the fourth bit value of 1 from the right.

The bit_len parameter specifies the number of bits of the variable-length
bit field to be written. This number includes the starting bit and the count pro-
ceeds toward the right end of the bit field - toward the lower-bit numbers. For
example, starting at bit 5 and writing 4 bits of the bit field described in the
preceeding paragraph would result in the bit field 1110 being written to the
dataset. This would correspond to a start_bit value of 5 and a bit_len
value of 4.

The sign_ext parameter specifies whether to use the leftmost bit of the vari-
able-length bit field to sign-extend to the leftmost bit of the dataset data. For
example, if 9-bit signed integer data is extracted from bits 17-25 and the bit
in position 25 is 1, then when the data is read back from disk, bits 26-31 will
be set to 1. Otherwise bit 25 will be 0 and bits 26-31 will be set to 0. The
sign_ext parameter is set to either TRUE or FALSE - specify TRUE to sign-
extend

SDsetnbitdataset/sfsnbit

April 17, 1997 RM-287

National Center for Supercomputing Applications

The fill_one specifies whether to fill the "background" bits with the value
1 or 0. This parameter is also set to either TRUE or FALSE.

The "background" bits of a variable-length dataset are the bits that fall out-
side of the variable-length bit field stored on disk. For example, if five bits of
an unsigned 16-bit integer dataset located in bits 5 to 9 are written to disk
with the fill_one parameter set to TRUE (or 1), then when the data is reread
into memory bits 0 to 4 and 10 to 15 w ould be set to 1. If the same 5-bit data
was written with a fill_one value of FALSE (or 0), then bits 0 to 4 and 10 to
15 would be set to 0.

This bit operation is performed before the sign-extend bit-filling. For exam-
ple, using the sign_ext example above, bits 0 to 16 and 26 to 31 will fi rst be
set to the "background" bit value, and then bits 26 to 31 will be set to 1 or 0
based on the value of the 25th bit.

FORTRAN integer function sfsnbit(sds_id, start_bit, bit_len, sign_ext,
fill_one)

integer sds_id, start_bit, bit_len, sign_ext, fill_one

SDsetrange/sfsrange

RM-288 April 17, 1997

SDsetrange/sfsrange

intn SDsetrange(int32 sds_id, VOIDP max, VOIDP min)

sds_id IN: Dataset identifier returned from SDselect

max IN: Highest value in the range

min IN: Lowest value in the range

Purpose Sets the "valid" maximum and minimum values for the given dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description It is assumed that the data type for the maximum and minimum values are
the same as the data type of the data. One implication of this is that in the C
version of SDsetrange the arguments are pointers, rather than simple vari-
ables, whereas in the Fortran-77 version they are simple variables of the
same type as the data array.

This routine does not compute the maximum and minimum values; it merely
stores the values it is given. As a result, the maximum and minimum values
may not always reflect the actual maximum and minimum values in the data
array.

FORTRAN integer function sfsrange(sds_id, max, min)

integer sds_id
<valid numeric data type> max, min

SDstart/sfstart

April 17, 1997 RM-289

National Center for Supercomputing Applications

SDstart/sfstart

int32 SDstart(char *filename, int32 access_mode)

filename IN: Name of the HDF file

access_mode IN: The SDS access mode in effect during the current session

Purpose Opens the HDF file and initializes the SD interface.

Return value Returns an sd_id if successful and FAIL (or -1) otherwise.

Description This routine opens a file and returns an sd_id. This routine must be called for
each file before any other SD calls can be made on tha t file. The
access_mode parameter is one of the following:

 DFACC_READ - Open existing file for read-only access. If the file doesn’t
exist, specifying this mode will result in an error condition.

 DFACC_WRITE - Open existing file for read and write access. If the file
doesn’t exist, specifying this mode will result in an error condition.

 DFACC_CREATE - Create a new file with read and write access. If the file
does exist, the contents of this file will be deleted before any new
writes occur (the file contents will be replaced).

The file can be any one of the following:an XDR-based netCDF file, "old-
style" DFSD file or a "new-style" SD file

If access_mode is set to DFACC_CREATE "new-style" SD files will be created.
If access_mode is set to DFACC_RDONLY, the specified file will not be created
if it doesn’t exist.

The type of identifier returned by SDstart is currently not the same as the
identifier returned by Hopen. As a result, sd_ids are not understood by other
HDF interfaces and h_ids are not recognized by the SD interface.

To mix SD calls and other HDF library calls, use SDstart and Hopen on the
same file. SDstart must precede all SD calls, and Hopen must proceed all
other HDF function calls. To terminate access to the file, use both SDend and
Hclose to dispose of the sd_id and the h_id.

FORTRAN integer function sfstart(filename, access_mode)

character* (*) filename
integer access_mode

SDwritechunk

RM-290 April 17, 1997

SDwritechunk

intn SDwritechunk(int32 sds_id, int32 *origin, VOIDP datap)

sds_id IN: SD interface identifier returned from SDstart

origin IN: Origin of the chunk to be written

datap IN: Buffer for the chunk data to be written

Purpose Writes data to a chunked scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDwritechunk is used when an entire chunk of data is to be written.
SDwritedata is used when the write operation is to be done regardless
of the chunking scheme used in the SDS.

Also, SDwritechunk is written specifically for chunked SDSs and doesn’t
have the overhead of the additional functionality supported by the SDwrite-
data routine - therefore, it is much faster than SDwritedata.

SDwritechunk will return FAIL when an attempt is made to use it to write to
a non-chunked SDS.

SDwritedata/sfwdata/sfwcdata

April 17, 1997 RM-291

National Center for Supercomputing Applications

SDwritedata/sfwdata/sfwcdata

intn SDwritedata(int32 sds_id, int32 start[], int32 stride[], int32 edge[], VOIDP data)

sds_id IN: Dataset identifier returned from SDselect

start IN: Array specifying the starting location

stride IN: Array specifying the number of values to skip along each dimen-
sion

edge IN: Array specifying the number of values to be written along each
dimension

data IN: Values to be written to the dataset

Purpose Writes a hyperslab of data for a dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The array start specifies the multi-dimensional index of the starting corner of
the hyperslab to write. The values are zero-based. The array edge gives the
number of values to write along each dimension of the hyperslab.

The stride array allows for sub-sampling along each dimension. If a stride
value is specified for a dimension, that many values will be skipped over
when reading along that dimension. Specifying stride = NULL in the C inter-
face or stride = 1 in either interface specifies the contiguous reading of data.
If the stride values are set to 0, SDreaddata returns FAIL (or -1). No matter
what stride value is provided, data is always placed contiguously in buffer.

When writing data to a "chunked" SDS using SDwritedata, consideration
should be given to be issues presented in the section on chunking in Chapter
3 of the HDF User’s Manual, tited Scientific Data Sets (SD API) and Chapter
13 of the HDF User’s Manual, titled HDF Performance Issues.

Note that there are two Fortran-77 versions of this routine: sfwdata and
sfwcdata. The sfwdata routine writes numeric data and sfwcdata writes
character scientific data.

FORTRAN integer function sfwdata(sds_id, start, stride, edge, data)

integer sds_id
integer start(*), stride(*), edge(*)
<valid numeric data type> data

integer function sfwcdata(sds_id, start, stride, edge, data)

integer sds_id
integer start(*), stride(*), edge(*)
character* (*) data

