
HLconvert

RM-234 April 17, 1997

HLconvert

intn HLconvert(int32 h_id, int32 block_length, int32 n_blocks)

h_id IN: Standard access element identifier

block_length IN: Standard length of a linked block

n_blocks IN: Number of linked list objects in each block header

Purpose Converts a standard access element into a linked block special data element
that can be easily appended.

Return value Returns SUCCEED (or 0) successful and FAIL (or -1) otherwise.

Description If the standard-access element already exists, it is promoted to being a
linked-block element, otherwise a new element is created.

All of the blocks of the linked list are the same size (specified by
block_length) except for the first one which retains its size at the time
HLcreate was called.

This routine is similar to HLcreate but is used to convert an existing stan-
dard access element into a linked-block element "in-place". This is done for
convenience and ease-of-use in many HDF library routines, but it is allow-
able for user-level code to do this also.

Appropriate values for n_blocks and block_length are very data and applica-
tion dependent.

HLcreate

April 17, 1997 RM-235

National Center for Supercomputing Applications

HLcreate

int32 HLcreate(int32 file_id, uint16 tag, uint16 ref, int32 block_len, int32 n_blocks)

file_id IN: File identifier returned by Hopen

tag IN: Tag of the new data descriptor

ref IN: Reference number of the new data descriptor

block_len IN: Length of blocks to be created

n_blocks IN: Number of blocks to be created per linked-block record

Purpose Creates a linked-block special data element.

Return value Returns an access identifier if successful and FAIL (or -1) otherwise.

Description Appending data to existing data objects is a problem in early versions of the
HDF library because objects are required to be stored contiguously. When
appending, the HDF library deleted the existing element and moved it to the
end of the file. HDF version 3.2 added the concept of linked block elements
which allow unlimited appending without deleting or copying existing data.

HLcreate creates a new linked-block element if given an unused tag and ref-
erence number. If an existing tag and reference number are used, HLcreate
promotes the existing data element to a linked block element. To create a
linked data element, specify the number of data blocks for the element in
n_blocks and their length in block_len. All data blocks must be the same
length unless the element was promoted from a non-linked-block data ele-
ment. In this case, all but the original data block must conform to the length
specification.

HLcreate creates linked-block elements by inserting a linked-block structure
between a data descriptor and its associated data element. The linked-block
structure is used to keep track of the different blocks of data appended to the
same data object. All data blocks associated with a new linked-block element
are stored at the same location. If a linked-block element is promoted from a
standard data element, the block containing the original data remains in its
original position with the remaining data blocks stored together at a different
file location. This non-contiguous configuration is known to cause problems
with Hoffset and Hlength which assume that data in a data element is stored
contiguously.

Promoting existing data elements to linked-block elements will not automat-
ically close opened access identifiers. Open access identifiers prevent a file
from closing, therefore it is important to use Hendaccess to remove any open
identifiers before attempting to close a file.

