
April 17, 1997 RM-1

Section
1

Introduction to the HDF APIs

1.1 Overview of the HDF Interfaces

The HDF library structure consists of three interface layers built upon a physical file format. (See
Figure 1a.) The first layer, or the low-level interface, is generally reserved for software developers
because it provides support for low-level details such as file I/O, error handling, and memory
management. The second layer, containing the single and multifile application interfaces, consists
of a set of interfaces designed to simplify the process of storing and accessing data. The single file
interfaces are operate on one file at a time, whereas the multifile interfaces can operate on several
simultaneously. The highest HDF layer includes a collection of command-line utilities that oper-
ate on HDF files or the data objects they contain.

FIGURE 1a The Three Levels of Interaction with the HDF File Format

1.2 The Low-Level Interface

This is the layer of HDF reserved for software developers and provides routines for error han-
dling, file I/O, memory management, and physical storage. For a more detailed discussion of the
low-level interface, consult the HDF Specification and Developer's Guide.

HDF File

Data Descriptor Block Data Elements File Header

HD Interface HE Interface

Low-level Interface

HL/HX Interface

General Applications

Commercial ApplicationsNCSA ApplicationsUtilities

Multi-File Interfaces
General
Raster

Scientific
 DataAnnotationsVgroups Vdata

Single File Interfaces
Scientific

 Data
8-Bit

 Raster Raster
24-Bit

AnnotationsPalette

RM-2 April 17, 1997

National Center for Supercomputing Applications

1.2.1 The H Interface

The low-level H interface provides a collection of routines, whose names begin with the letter H,
for managing HDF files.

Prior to HDF version 3.2, all low-level routines began with the prefix ’DF’. As of HDF version
3.3, the DF interface was no longer recommended for use. It is only supported to maintain back-
ward compatibility with programs and files created under earlier versions of the HDF library.

1.2.2 The HDF Interface

The names of these routines are prefaced by ’HDF’. As HDF begins expanding its interfaces to
include mult-file support for each data model, it is anticipated that the some H routines will evolve
into an HDF interface. There are only two such routines, HDFopen and HDFclose. HDFopen
and HDFclose currently operate as macros for Hopen and Hclose respectively.

1.2.3 The HE Interface

The HDF library incorporates an error stack via the HE interface. In addition to other functions,
the HE routines add information onto the error stack, print information from the stack, and clear
the stack.

1.3 Single-File Application Interfaces

The HDF single-file application interfaces include several independent modules each designed to
simplify the process of storing and accessing a specific type of data. These interfaces support the
8-bit raster image(DFR8), 24-bit raster image (DF24), palette (DFP), scientific data (DFSD), and
annotation (DFAN) models. All single- file interfaces are built upon the H routines - unless other-
wise specified, all the low-level details can be ignored.

1.3.1 8-bit Raster Image Sets: The DFR8 Interface

The HDF 8-bit raster interface provides a collection of routines for managing 8-bit raster image
sets. Any 8-bit raster image accompanied by its dimension record is recognized as an 8-bit raster
image set. Raster image sets may also include a palette.

Every function in the 8-bit raster interface begins with the prefix ’DFR8’. The equivalent Fortran-
77 functions use the prefix ’d8’.

1.3.2 Palettes: The DFP Interface

The HDF palette interface provides a collection of routines for managing palette data. This inter-
face is most often used for working with multiple palettes stored in a single file or palettes not spe-
cifically assigned to a raster image.

The names of the routines in the palette interface are prefaced by ’DFP’. The equivalent Fortran-
77 routine names are prefaced by ’dp’.

April 17, 1997 RM-3

1.3.3 24-bit Raster Image Sets: The DF24 Interface

The HDF 24-bit raster interface provides a collection of routines for managing 24-bit raster image
sets. Any 24-bit raster image array accompanied by its dimension record is recognized as a 24-bit
raster image set.

The names of the routines in the 24-bit raster interface are prefaced by ’DF24’. The equivalent
Fortran-77 routine names are prefaced by ’d2’.

1.3.4 Scientific Data Sets: The Single File DFSD Interface

There are two HDF interfaces that support multi-dimensional arrays: the single-file DFSD inter-
face described here, which permits access to only one file at a time, and the newer multifile SD
interface, which permits simultaneous access to more than one file.

The single-file scientific data set interface provides a collection of routines for reading and writing
arrays of arbitrary rank and number type. Any array accompanied by a record of its rank and num-
ber type qualifies as a scientific data set. Scientific data sets may also include predefined attribute
records.

The names of the routines in the single-file scientific data set interface are prefaced by ’DFSD’.
The equivalent Fortran-77 routine names are prefaced by ’ds’.

1.3.5 Annotations: The DFAN Interface

The single-file annotation interface provides a collection of routines for reading and writing text
strings assigned to HDF data objects or files. Annotations consist of labels and descriptions. A
label is a null-terminated sequence of characters.

The names of the routines in the single-file annotation interface are prefaced by ’DFAN’. The
equivalent Fortran-77 routine names are prefaced by ’da’.

1.4 Multi-File Application Interfaces

The HDF multifile interfaces are designed to allow operations on more than one file and more
than one data object at the same time. The multifile interfaces provided are the AN, GR, SD, VS,
VSQ, VF, V, and VH interfaces. The AN interface is the multifile version of the DFAN annotation
interface. The GR interface is the multifile version of the 8- and 24-bit annotation interfaces. The
SD interface is the multifile version of the scientific data set interface. The VS, VSQ, and VF
interfaces support the vdata model and have always provided multiple file access. Similarly, the V
and VH interfaces also provide multiple file access for the vgroup data model.

Like the single-file interfaces, the multifile interfaces are built upon the low-level H routines.
Unlike single-file operations, operations performed via a multifile interface are not implicitly pre-
ceded by Hopen and followed by Hclose. Instead, each series of operations on a file must be pre-
ceded by an explicit call to open and close the file. Once the file is opened, it remains open until
an explicit call is made to close it. This process allows for operations on more than one file at a
time.

RM-4 April 17, 1997

National Center for Supercomputing Applications

1.4.1 Scientific Data Sets: The SD Interface

The scientific data set interface provides a collection of routines for reading and writing arrays of
arbitrary dimension and number type. Multidimensional arrays accompanied by a record of their
dimension and number type are called scientific data sets. Under the multifile interface, scientific
data sets may include predefined or user defined attribute records. Each attribute record is optional
and describes a particular facet of the environment from which the scientific data was taken.

The names of the routines in the multifile scientific data set interface are prefaced by ’SD’. The
equivalent Fortran-77 routine names are prefaced by ’sf’.

1.4.2 Multifile Annotations: The AN Interface
The purpose of the AN multifile annotation interface is to permit concurrent operations on a set of
annotations that exist in more than one file. The design of the AN interface is similar to the multi-
file interfaces for raster image (GR) and scientific data set objects (SD).

The C routine names of the multifile annotation interface are prefaced by the string ’AN’ and the
Fortran-77 routine names are prefaced by ’af’.

1.4.3 General Raster Images: The GR Interface
The routines in the GR interface provide for multifile operations on general raster (GR) image
data sets.

The C routine names in the general raster interface have the prefix ’GR’ and the equivalent For-
tran-77 routine names are prefaced by ’mg’.

1.4.4 Scientific Data Sets: The netCDF Interface

The SD interface is designed to be as interoperable as possible with netCDF, an interface devel-
oped by the Unidata Program Center. Consequently, the SD interface can read files written by the
netCDF interface, and the netCDF interface (as implemented in HDF) can read both netCDF files
and HDF files that contain scientific data sets.

Further information regarding the netCDF interface routines and their equivalents in the HDF
interface can be found in the User's Guide. Additional information on the netCDF interface can
be found in the netCDF User's Guide available by anonymous FTP from unidata.ucar.edu.

1.4.5 Vdata: The VS Interface

The VS interface provides a collection of routines for reading and writing customized tables. Each
table is comprised of a series of vdata records whose values are stored in fixed length fields. In
addition to its records, a vdata may contain three kinds of identifying information: a vdata name,
vdata class, and several vdata field names.

Routines in the VS interface are prefaced by ’VS’. The equivalent Fortran-77 routine names are
prefaced by ’vsf’.

1.4.6 Vdata Query: The VSQ Interface

The VSQ interface provides a collection of routines for inquiring about existing Vdata. These rou-
tines provide information such as the number of records in a Vdata, its field names, number types,
and name. All routines in the VSQ interface are prefaced by ’VSQ’.

April 17, 1997 RM-5

1.4.7 Vdata Fields: The VF Interface

The VF interface provides a collection of routines for inquiring about the fields in an existing
Vdata. These routines provide information such as the field name, size, order, and number type.

 All routines in the VF interface are prefaced by ’VF’. There are no equivalent Fortran-77 func-
tions.

1.4.8 Vgroups: The V Interface

The vgroup interface provides a collection of routines for reading and writing customized data
sets. Each vgroup may contain one or more vdatas, vgroups, or data objects stored via other HDF
data models. In addition to its members, a vgroup may also be given a vgroup name and a vgroup
class.

Every routine name in the vgroup interfaceare prefaced by ’V’. The equivalent Fortran-77 routine
names are prefaced by ’vf’.

1.4.9 High-Level Vdata/Vgroups: The VH Interface

The high-level VH interface provides a collection of routines for creating simple vdatas and
vgroups with a single function call. All routines in this interface are prefaced by ’VH’.

1.4.10 Vgroup Inquiry: The VQuery Interface

The high-level VQ interface provides one routine that returns tag information from a specified
vgroup, and one routine that returns reference number information from a specified vgroup. All C
routine names in this interface are prefaced by ’VQuery’.

1.5 Fortran-77 and C Language Issues

In order to make the Fortran-77 and C versions of each routine as similar as possible, some com-
promises have been made in the process of simplifying the interface for both programming lan-
guages.

1.5.1 Fortran-77-to-C Translation

Nearly all of the HDF library code is written in C. The Fortran-77 HDF API routines translate all
parameter data types to C data types, then call the C routine that performs the main function. For
example, d8aimg is the Fortran-77 equivalent for DFR8addimage. Calls to either routine execute
the same C code that adds an 8-bit raster image to an HDF file - see the following figure.

RM-6 April 17, 1997

National Center for Supercomputing Applications

FIGURE 2b Use of a Function Call Converter to Route Fortran-77 HDF Calls to the C Library

1.5.2 Case Sensitivity

Fortran-77 identifiers generally are not case sensitive, whereas C identifiers are. Although all of
the Fortran-77 routines shown in this manual are written in lower case, Fortran-77 programs can
generally call them using either upper- or lower-case letters without loss of meaning.

1.5.3 Name Length

Because some Fortran-77 compilers only interpret identifier names with seven or fewer charac-
ters, the first seven characters of the Fortran-77 HDF routine names are unique.

1.5.4 Header Files

The inclusion of header files is not generally permitted by Fortran-77 compilers. However, it is
sometimes available as an option. On UNIX systems, for example, the macro processors m4 and
cpp let your compiler include and preprocess header files. If this capability is not available, you
may have to copy whatever declarations, definitions, or values you need from the “constants.f” file
into your program code. If it is, include the header file named “hdf.inc” in your Fortran-77 code.
The “constants.f” file is included in the “hdf.inc” header file.

1.5.5 Data Type Specifications

When mixing machines, compilers, and languages, it is difficult to maintain consistent data type
definitions. For instance, on some machines an integer is a 32-bit quantity and on others, a 16-bit
quantity. In addition, the differences between Fortran-77 and C lead to difficulties in describing
the data types found in the argument lists of HDF routines. To maintain portability, the HDF
library expects assigned names for all data types used in HDF routines. (See TABLE 2A)

TABLE 2A Data Type Definitions

Data Type C Fortran-77

8-bit signed integer int8 Not supported.

8-bit unsigned integer uint8 character*1

16-bit signed integer int16 integer*2

16-bit unsigned integer uint16 Not supported.

32-bit signed integer int32 integer*4

32-bit unsigned integer uint32 Not supported.

32-bit floating point number float32 real*4

64-bit floating point number float64 real*8

Your
C

Program

DFR8addimage

Your
Fortran-77
Program

d8aimg

Fortran-77 to C

HDF Library d8aimg to DFR8addimage

April 17, 1997 RM-7

When using a Fortran-77 data type that is not supported, the general practice is to use another data
type of the same size. For example, an 8-bit signed integer can be used to store an 8-bit unsigned
integer variable unless the code relies on a sign-specific operation.

1.5.6 Array Specifications

In the declarations contained in the headers of Fortran-77 functions, the following conventions are
followed:

• <valid data type> x(*) means that x refers to an array that contains an indefinite num-
ber of elements of the specified type. It is the responsibility of the calling program to allo-
cate enough space to hold whatever data is stored in the array.

1.5.7 Fortran-77, ANSI C and K&R C

As much as possible, we have conformed the HDF API routines to those implementations of For-
tran and C that are in most common use today, namely Fortran-77, ANSI C and K&R C. Due to
the increasing availability of ANSI C, future versions of HDF will no longer support K&R C.

As Fortran-90 is a superset of Fortran-77, HDF programs should compile and run correctly when
using a Fortran-90 compiler.

1.6 Error Codes

The error codes defined in the HDF library are defined in the following table.

TABLE 1B HDF Error Codes

Native signed integer intn integer

Native unsigned integer uintn Not supported.

Error Code Code Definition

DFE_NONE No error.

DFE_FNF File not found.

DFE_DENIED Access to file denied.

DFE_ALROPEN File already open.

DFE_TOOMANY Too many AID's or files open.

DFE_BADNAME Bad file name on open.

DFE_BADACC Bad file access mode.

DFE_BADOPEN Miscellaneous open error.

DFE_NOTOPEN File can't be closed because it hasn’t been opened.

DFE_CANTCLOSE fclose error

DFE_READERROR Read error.

DFE_WRITEERROR Write error.

DFE_SEEKERROR Seek error.

DFE_RDONLY File is read only.

DFE_BADSEEK Attempt to seek past end of element.

DFE_PUTELEM Hputelement error.

Data Type C Fortran-77

RM-8 April 17, 1997

National Center for Supercomputing Applications

DFE_GETELEM Hgetelement error.

DFE_CANTLINK Cannot initialize link information.

DFE_CANTSYNC Cannot syncronize memory with file.

DFE_BADGROUP Error from DFdiread in opening a group.

DFE_GROUPSETUP Error from DFdisetup in opening a group.

DFE_PUTGROUP Error on putting a tag/reference number pair into a group.

DFE_GROUPWRITE Error when writing group contents.

DFE_DFNULL Data file reference is a null pointer.

DFE_ILLTYPE Data file contains an illegal type: internal error.

DFE_BADDDLIST The DD list is non-existent: internal error.

DFE_NOTDFFILE The current file is not an HDF file and it is not zero length.

DFE_SEEDTWICE The DD list already seeded: internal error.

DFE_NOSUCHTAG No such tag in the file: search failed.

DFE_NOFREEDD There are no free DD's left: internal error.

DFE_BADTAG Illegal WILDCARD tag.

DFE_BADREF Illegal WILDCARD reference number.

DFE_NOMATCH No DDs (or no more DDs) that match the specified tag/reference number pair.

DFE_NOTINSET Warning: Set contained unknown tag. Ignored.

DFE_BADOFFSET Illegal offset specified.

DFE_CORRUPT File is corrupted.

DFE_NOREF No more reference numbers are available.

DFE_DUPDD The new tag/reference number pair has been allocated.

DFE_CANTMOD Old element doesn’t exisr. Cannot modify.

DFE_DIFFFILES Attempt to merge objects in different files.

DFE_BADAID An invalid AID was received.

DFE_OPENAID Active AIDs still exist.

DFE_CANTFLUSH Cannot flush DD back to file.

DFE_CANTUPDATE Cannot update the DD block.

DFE_CANTHASH Cannot add a DD to the hash table.

DFE_CANTDELDD Cannot delete a DD in the file.

DFE_CANTDELHASH Cannot delete a DD from the hash table.

DFE_CANTACCESS Cannot access specified tag/reference number pair.

DFE_CANTENDACCESS Cannot end access to data element.

DFE_TABLEFULL Access table is full.

DFE_NOTINTABLE Cannot find element in table.

DFE_UNSUPPORTED Feature not currently supported.

DFE_NOSPACE malloc failed.

DFE_BADCALL Routine calls were in the wrong order.

DFE_BADPTR NULL pointer argument was specified.

DFE_BADLEN Invalid length was specified.

DFE_NOTENOUGH Not enought space for the data.

DFE_NOVALS Values were not available.

DFE_ARGS Invalid arguments passed to the routine.

DFE_INTERNAL Serious internal error.

DFE_NORESET Too late to modify this value.

DFE_GENAPP Generic application level error.

DFE_UNINIT Interface was not initialized correctly.

Error Code Code Definition

April 17, 1997 RM-9

DFE_CANTINIT Cannot initialize the interface the operation requires.

DFE_CANTSHUTDOWN Cannot shut down the interface the operation requires.

DFE_BADDIM Negative number of dimensions, or zero dimensions, was specified.

DFE_BADFP File contained an illegal floating point number.

DFE_BADDATATYPE Unknown or unavailable data type was specified.

DFE_BADMCTYPE Unknown or unavailable machine type was specified.

DFE_BADNUMTYPE Unknown or unavailable number type was specified.

DFE_BADORDER Unknown or illegal array order was specified.

DFE_RANGE Improper range for attempted access.

DFE_BADCONV Invalid data type conversion was specified..

DFE_BADTYPE Incompatible types were specified.

DFE_BADSCHEME Unknown compression scheme was specified.

DFE_BADMODEL Invalid compression model was specified.

DFE_BADCODER Invalid compression encoder was specified.

DFE_MODEL Error in the modeling layer of the compression operation.

DFE_CODER Error in the encoding layer of the compression operation.

DFE_CINIT Error in encoding initialization.

DFE_CDECODE Error in decoding compressed data.

DFE_CENCODE Error in encoding compressed data.

DFE_CTERM Error in encoding termination.

DFE_CSEEK Error seeking in an encoded dataset.

DFE_MINIT Error in modeling initialization.

DFE_COMPINFO Invalid compression header.

DFE_CANTCOMP Cannot compress an object.

DFE_CANTDECOMP Cannot decompress an object.

DFE_NODIM A dimension record was not associated with the image.

DFE_BADRIG Error processing a RIG.

DFE_RINOTFOUND Cannot find raster image.

DFE_BADATTR Invalide attribute.

DFE_BADTABLE The nsdg table has incorrect information.

DFE_BADSDG Error in processing an SDG.

DFE_BADNDG Error in processing an NDG.

DFE_VGSIZE Too many elements in the vgroup.

DFE_VTAB Element not in vtab[].

DFE_CANTADDELEM Cannot add the tag/reference number pair to the vgroup.

DFE_BADVGNAME Cannot set the vgroup name.

DFE_BADVGCLASS Cannot set the vgroup class.

DFE_BADFIELDS Invalid fields string passed to vset routine.

DFE_NOVS Cannot find the vset in the file.

DFE_SYMSIZE Too many symbols in the users table.

DFE_BADATTACH Cannot write to a previously attached vdata.

DFE_BADVSNAME Cannot set the vdata name.

DFE_BADVSCLASS Cannot set the vdata class.

DFE_VSWRITE Error writing to the vdata.

DFE_VSREAD Error reading from the vdata.

DFE_BADVH Error in the vdata header.

DFE_VSCANTCREATE Cannot create the vdata.

Error Code Code Definition

RM-10 April 17, 1997

National Center for Supercomputing Applications

DFE_VGCANTCREATE Cannot create the vgroup.

DFE_CANTATTACH Cannot attach to a vdata or vset.

DFE_CANTDETACH Cannot detach a vdata or vset with write access.

DFE_BITREAD A bit read error occurred.

DFE_BITWRITE A bit write error occurred.

DFE_BITSEEK A bit seek error occurred.

DFE_TBBTINS Failed to insert the element into tree.

DFE_BVNEW Failed to create a bit vector.

DFE_BVSET Failed when setting a bit in a bit vector.

DFE_BVGET Failed when getting a bit in a bit vector.

DFE_BVFIND Failed when finding a bit in a bit vector.

Error Code Code Definition

