
Happendable

RM-162 April 17, 1997

Happendable

intn Happendable(int32 h_id)

h_id IN: Access identifier returned by Hstartwrite

Purpose Specifies that the specified element can be appended to

Return value Returns SUCCEED (or 0) if data element can be appended and FAIL (or -1)
otherwise.

Description If a data element is at the end of a file Happendable allows Hwrite to
append data to it, converting it to linked-block element only when necessary.

Hbitappendable

April 17, 1997 RM-163

National Center for Supercomputing Applications

Hbitappendable

intn Hbitappendable(int32 h_id)

h_id IN: Bit-access element identifier returned by Hstartwrite

Purpose Specifies that the given bit-access element can be appended to.

Return value Returns SUCCEED (or 0) if the element can be appended and FAIL (or -1) oth-
erwise

Description If a dataset is at the end of a file, this routine allows Hbitwrite to write past
the end of a file. This allows for the existence of expanding datasets without
the use of linked-blocks.

Hbitread

RM-164 April 17, 1997

Hbitread

intn Hbitread(int32 h_id, intn count, uint32 *data)

h_id IN: Bit-access element identifier returned by Hstartwrite

count IN: Number of bits to bewritten

data IN/OUT: Pointer to the bits to be read will be in the lowest-order bits.
Pointer to the bits read in will be in the highest-order bits.

Purpose Reads the specfied number of bits from the specified bit-access element.

Return value Returns the number of bits read if successful and FAIL (or -1) otherwise

Description Hbitread buffers the bits and then reads them when appropriate through a
call to Hread.

Hbitseek

April 17, 1997 RM-165

National Center for Supercomputing Applications

Hbitseek

intn Hbitseek(int32 h_id, int32 byte_offset, intn bit_offset)

h_id IN: Bit-access element identifier returned by Hstartwrite

byte_offset IN: Byte offset to seek to within the bit-access element

bit_offset IN: Bit offset to seek to within the bit-access element.

Purpose Seeks to the specified bit position within the specified bit-access element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise

Description If seeking to the fifteenth bit in a bit-element, the syntax of the call would be:

Hbitseek(bitid, 1 ,7);

If converting from a direct bit-offset variable the syntax of the call would be:

Hbitseek(bitid, bit_offset/8, bit_offset%8);

Hbitwrite

RM-166 April 17, 1997

Hbitwrite

intn Hbitwrite(int32 h_id, intn count, uint32 data)

h_id IN: Bit-access element identifier returned by Hstartwrite

count IN: Number of bits to be written

data IN: Bits to be written (must be in the lowest-order bits)

Purpose Writes the specfied number of bits to the specified bit-access element.

Return value Returns the number of bits written if successful and FAIL (or -1) otherwise

Description Hbitwrite buffers the bits and then reads them when appropriate through a
call to Hwrite.

Hcache

April 17, 1997 RM-167

National Center for Supercomputing Applications

Hcache

intn Hcache(int32 file_id, intn cache_switch)

file_id IN: File identifier returned by Hopen

cache_switch IN: Flag to enable or disable caching

Purpose Enables low-level caching for the specified file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If file_id is set to CACHE_ALL_FILES, then the value of cache_switch is used
to modify the default file cache setting.

Valid values for cache_switch are: TRUE (or 1) to enable caching and FALSE
(or 0) to disable caching.

Hclose/hclose

RM-168 April 17, 1997

Hclose/hclose

intn Hclose(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Closes the access path to the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The file identifier file_id is validated before the file is closed. If the identifier
is valid, the function closes the access path to the file.

If there are still access identifiers attached to the file, the error DFE_OPENAID
is placed on the error stack, FAIL (or -1) is returned, and the file remains
open. This is a common error when developing new interfaces. Refer to the
Reference Manual page on Hendaccess for a discussion of this problem.

FORTRAN integer function hclose(file_id)

integer file_id

Hdeldd

April 17, 1997 RM-169

National Center for Supercomputing Applications

Hdeldd

intn Hdeldd(int32 file_id, uint16 tag, uint16 ref)

file_id IN: File identifier returned by Hopen

tag IN: Tag of data descriptor to be deleted

ref IN: Reference number of data descriptor to be deleted

Purpose Deletes a tag and reference number from the data descriptor list.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Once the data descriptor is removed, the data in the data object becomes
inaccessible and is marked as such. To remove inaccessible data from an
HDF file, use the utility hdfpack.

Hdeldd only deletes the specified tag and reference number from the data
descriptor list. Data objects containing the deleted tag and reference number
are not automatically updated. For example, if the tag and reference number
deleted from the descriptor list referenced an object in a vgroup, the tag and
reference number will still exist in the vgroup even though the data is inac-
cessible.

Hdupdd

RM-170 April 17, 1997

Hdupdd

intn Hdupdd(int32 file_id, uint16 tag, uint16 ref, uint16 old_tag, uint16 old_ref)

file_id IN: File identifier returned by Hopen

tag IN: Tag for the duplicate data descriptor

ref IN: Reference number for the duplicate data descriptor

old_tag IN: Tag for original data descriptor

old_ref IN: Reference number for the original data descriptor

Purpose Duplicates the specified data descriptor in the data descriptor list.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Data descriptors contain the following information: tag, reference number,
length, and offset. When a data descriptor is duplicated, it's length and offset
are added to the data descriptor list under a new tag and reference number.

Because duplicate data descriptors contain the same length and offset infor-
mation, both descriptors point to the same data element in the file. In other
words, duplicating a data descriptor does not duplicate the data contained in
the original data object. It simply creates a second data object by redundantly
pointing to the same data location in the file.

The tag and reference number for the duplicate data descriptor are assigned
when Hdupdd is called. If the specified tag and reference number already
exist in the file, the original data descriptor is not duplicated and Hdupdd
returns an error.

Hendaccess

April 17, 1997 RM-171

National Center for Supercomputing Applications

Hendaccess

intn Hendaccess(int32 h_id)

h_id IN: Access identifier returned by Hstartread, Hstartwrite, or Hnex-
tread

Purpose Terminates access to a data object by disposing of the access identifier.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The number of active access identifiers is limited to MAX_ACC as defined in
the hlimits.h header file. Because of this restriction, it is very important to
call Hendaccess immediately following the last operation on a data element.

When developing new interfaces, a common mistake is to omit calling Hen-
daccess for all of the elements accessed. When this happens, Hclose will
return FAIL, and a dump of the error stack will report the number of active
access identifiers. Refer to the Reference Manual page on HEprint.

This is a difficult problem to debug because the low levels of the HDF library
cannot determine who and where an access identifier was originated. As a
result, there is no automated method of determining which access identifiers
have yet to be released.

Hendbitaccess

RM-172 April 17, 1997

Hendbitaccess

intn Hendbitaccess(int32 h_id, intn flushbit)

h_id IN: Identifier of the bit-access element to be disposed of

flushbit IN: Specifies how the leftover bits are to be flushed

Purpose Disposes of the specified bit-access file element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If called after a bit-write operation, Hendbitaccess flushes all buffered bits to
the dataset, then calls Hendaccess..

"Leftover bits" are bits that have been buffered, but are fewer than the num-
ber of bits defined by BITNUM, which is usually set to 8.

Valid codes for flushbit are:

0 - flush with zeros

1 - flush with ones

-1 - dispose of leftover bits

Hexist

April 17, 1997 RM-173

National Center for Supercomputing Applications

Hexist

intn Hexist(int32 h_id, uint16 search_tag, uint16 search_ref)

h_id IN: Access identifier returned by Hstartread, Hstartwrite, or Hnex-
tread

search_tag IN: Tag of the object to be searched for

search_ref IN: Reference number of the object to be searched for

Purpose Locates an object in an HDF file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Simple interface to Hfind that determines if a given tag/reference number
pair exists in a file. Wildcards apply..

Hfind performs all validity checking; this is just a very simple wrapper
around it.

Hfidinquire

RM-174 April 17, 1997

Hfidinquire

intn Hfidinquire(int32 file_id, char **filename, intn *access, intn *attach)

file_id IN: File identifier returned by Hopen

filename OUT: Complete path and filename for the file

access OUT: Access mode file is opened with

attach OUT: Number of access identifiers attached to the file

Purpose Returns file information through a reference of its file identifier.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Gets the complete path name, access mode, and number of access identifiers
associated with a file. The filename parameter is a pointer to a character
pointer which will be modified when the function returns. Upon completion,
filename is set to point to the file name in internal storage. All output parame-
ters must be non-null pointers.

Hfind

April 17, 1997 RM-175

National Center for Supercomputing Applications

Hfind

intn Hfind(int32 file_id, uint16 search_tag, uint16 search_ref, uint16 *find_tag, uint16 *find_ref,
int32 *find_offset, int32 *find_length, intn direction)

file_id IN: File identifier returned by Hopen

search_tag IN: The tag to search for or DFTAG_WILDCARD

search_ref IN: Reference number to search for or DFREF_WILDCARD

find_tag IN/OUT: If (*find_tag == 0) and (*find_ref == 0) then start the search
from either the beginning or the end of the file. If the object is
found, the tags of the object will be returned here.

find_ref IN/OUT: If (*find_tag == 0) and (*find_ref == 0) then start the search
from either the beginning or the end of the file. If the object is
found, the reference numbers of the object will be returned
here.

find_offset OUT: Offset of the data element found

find_length OUT: Length of the data element found

direction IN: Direction to search in DF_FORWARD searches forward from the
current location, and DF_BACKWARD searches backward from
the current location

Purpose Locates the next object to be searched for in an HDF file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Hfind searches for the next data element that matches the specified tag and
reference number. Wildcards apply. If direction is DF_FORWARD, searching is
forward from the current position in the file, otherwise DF_BACKWARD speci-
fies backward searches from the current position in the file.

If find_tag and find_ref are both set to 0, this indicates the beginning of a
search, and the search will start from the beginning of the file if the direction
is DF_FORWARD and from the end of the file if the direction is DF_BACKWARD.

Hgetbit

RM-176 April 17, 1997

Hgetbit

intn Hgetbit(int32 h_id)

h_id IN: Bit-access element identifier

Purpose Reads one bit from the specified bit-access element.

Return value Returns the bit read (or 0 or 1) if successful and FAIL (or -1) otherwise.

Description This function is a wrapper for Hbitread.

Hgetelement

April 17, 1997 RM-177

National Center for Supercomputing Applications

Hgetelement

int32 Hgetelement(int32 file_id, uint16 tag, uint16 ref, uint8 *data)

file_id IN: File identifier returned by Hopen

tag IN: Tag of the data element to be read

ref IN: Reference number of the data element to be read

data OUT: Buffer the element will be read into

Purpose Reads the data element for the specified tag and reference number and writes
it to the data buffer.

Return value Returns the number of bytes read if successful and FAIL (or -1) otherwise.

Description It is assumed that the space allocated for the buffer is large enough to hold
the data.

Hgetfileversion

RM-178 April 17, 1997

Hgetfileversion

intn Hgetfileversion(int32 file_id, uint32 *major_v, uint32 *minor_v, uint32 *release, char
string[])

file_id IN: File identifier returned by Hopen

major_v OUT: Major version number

minor_v OUT: Minor version number

release OUT: Release number

string OUT: Version number text string

Purpose Retrieves version information for an HDF file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description It is still an open question as to w hat exactly the version number of a file
should mean, so we recommend that code not depend on this buffer. The
string argument is limited to a length of LIBVSTR_LEN characters as defined
in hfile.h.

Hgetlibversion

April 17, 1997 RM-179

National Center for Supercomputing Applications

Hgetlibversion

intn Hgetlibversion(uint32 *major_v, uint32 *minor_v, uint32 *release, char string[])

major_v OUT: Major version number

minor_v OUT: Minor version number

release OUT: Release number

string OUT: Version number text string

Purpose Retrieves the version information of the current HDF library.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The version information is compiled into the HDF library, so it is not neces-
sary to have any open files for this function to execute. The string buffer is
limited to a length of LIBVSTR_LEN characters as defined in hfile.h.

Hinquire

RM-180 April 17, 1997

Hinquire

intn Hinquire(int32 h_id, int32 *file_id, uint16 *tag, uint16 *ref, int32 *length, int32 *offset, int32
*position, int16 *access, int16 *special)

h_id IN: Access identifier returned by Hstartread, Hstartwrite, or Hnex-
tread

file_id OUT: File identifier returned by Hopen

tag OUT: Tag of the element pointed to

ref OUT: Reference number of the element pointed to

length OUT: Length of the element pointed to

offset OUT: Offset of the element in the file

position OUT: Current position within the data element

access OUT: The access type for this data element

special OUT: Special code

Purpose Returns access information about a data element.

Return value Returns SUCCEED (or 0) if the access identifier points to a valid data element
and FAIL (or -1) otherwise.

Description If h_id is a valid access identifier the access type (read or write) is set regard-
less of whether or not the return value is FAIL (or -1). If h_id is invalid, the
function returns FAIL (or -1) and the access type is set to z ero. To avoid
excess information, pass NULL for any unnecessary pointer.

Hishdf

April 17, 1997 RM-181

National Center for Supercomputing Applications

Hishdf

intn Hishdf(const char *filename)

filename IN: Complete path and filename of the file to be checked

Purpose Determines if a file is an HDF file.

Return value Returns TRUE (or 1) if the file is an HDF file and FALSE (or 0) otherwise.

Description The first four bytes of a file identify it as an HDF file. It is possible that
Hishdf will identify a file as an HDF file but Hopen will be unable to open
the file; for example, if the data descriptor list is corrupt.

Hlength

RM-182 April 17, 1997

Hlength

int32 Hlength(int32 file_id, uint16 tag, uint16 ref)

file_id IN: File identifier returned by Hopen

tag IN: Tag of the data element

ref IN: Reference number of the data element

Purpose Returns the length of a data object specified by the tag and reference number.

Return value Returns the length of data element if found and FAIL (or -1) otherwise.

Description Hlength calls Hstartread, HQuerylength, and Hendaccess to determine
the length of a data element. Hlength uses Hstartread to obtain an access
identifier for the specified data object.

Hlength will return the correct data length for linked-block elements, how-
ever it is important to remember that the data in linked-block elements is not
stored contiguously.

Hmpget

April 17, 1997 RM-183

National Center for Supercomputing Applications

Hmpget

int Hmpget(int pagesize, int maxcache, int flags)

pagesize OUT: Page size to be used

maxcache OUT: Maximum number of pages to be cached

flags OUT: Optional routine flags

Purpose Returns the current settings of the page size and the maximum number of
pages to be cached during the next file open or create operation.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) therwise.

Hmpset

RM-184 April 17, 1997

Hmpset

int Hmpset(int pagesize, int maxcache, int flags)

pagesize IN: Page size to be used

maxcache IN: Maximum number of pages to be cached

flags IN: Optional routine flags

Purpose Specifies the page size and the maximum number of pages to be cached dur-
ing the next file open or create operation.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) therwise.

Description It is recommended that the value a pagesize be a power of 2.

The values set by Hmpset affect only the next file open or creation operation
and does not change the file’s paging settings after it has been created.

Currently the only valid values of flag is MP_PAGEALL which specifies that the
whole file is to be cached, or 0 which specifies that no caching will be per-
formed.

The maxcache parameter must have a value greater than 1, unless page buff-
ering is to be deactivated. In this case use a maxcache value of 0.

Hnewref

April 17, 1997 RM-185

National Center for Supercomputing Applications

Hnewref

uint16 Hnewref(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Returns a reference number that can be used with any tag to produce a
unique tag /reference number pair.

Return value Returns the reference number if successful and 0 otherwise.

Description Successive calls to Hnewref will generate reference number values that
increase by one each time until the highest possible reference number has
been returned. At this point, additional calls to Hnewref will return an
increasing sequence of unused reference number values starting from 1.

Hnextread

RM-186 April 17, 1997

Hnextread

intn Hnextread(int32 h_id, uint16 tag, uint16 ref, int origin)

h_id IN: Access identifier returned by Hstartread or previous Hnextread

tag IN: Tag to search for

ref IN: Reference number to search for

origin IN: Position to begin search: DF_START or DF_CURRENT

Purpose Searches for the next data descriptor that matches the specified tag and refer-
ence number.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Wildcards apply. If origin is DF_START, the search will start at the beginning
of the data descriptor list. If origin is DF_CURRENT, the search will begin at the
current position. Searching backwards from the end of a data descriptor list
is not yet implemented.

If the search is successful, the access identifier reflects the new data element,
otherwise it is not modified.

Hnumber/hnumber

April 17, 1997 RM-187

National Center for Supercomputing Applications

Hnumber/hnumber

int32 Hnumber(int32 file_id, uint16 tag)

file_id IN: File identifier returned by Hopen

tag IN: Tag to be counted

Purpose Returns the number of instances of a tag in a file.

Return value Returns the number of instances of a tag in a file if successful, and FAIL (or -
1) otherwise.

Description Hnumber determines how many objects with the specified tag are in a file.
To determine the total number of objects in a file, set the tag argument to
DFTAG_WILDCARD. Note that a return value of zero is not a fail condition.

FORTRAN integer function hnumber(file_id, tag)

integer file_id, tag

Hoffset

RM-188 April 17, 1997

Hoffset

int32 Hoffset(int32 file_id, uint16 tag, uint16 ref)

file_id IN: File identifier returned by Hopen

tag IN: Tag of the data element

ref IN: Reference number of the data element

Purpose Returns the offset of a data element in the file.

Return value Returns the offset of the data element if the data element exists and FAIL (or
-1) otherwise.

Description Hoffset calls Hstartread, HQueryoffset, and Hendaccess to determine the
length of a data element. Hoffset uses Hstartread to obtain an access identi-
fier for the specified data object.

Hoffset will return the correct offset for a linked-block element, however it is
important to remember that the data in linked-block elements is not stored
contiguously. The offset returned by Hoffset only reflects the position of the
first data block.

Hoffset should not be used to determine the offset of an external element. In
this case, Hoffset returns zero, an invalid offset for HDF files.

Hopen/hopen

April 17, 1997 RM-189

National Center for Supercomputing Applications

Hopen/hopen

int32 Hopen(char *filename, intn access, int16 n_dds)

filename IN: Complete path and filename for the file to be opened

access IN: Access code definition (preceded by DFACC_)

n_dds IN: Number of data descriptors in a block if a new file is to be created

Purpose Provides an access path to an HDF file by reading all the data descriptor
blocks into memory.

Return value Returns the file identifier if successful and FAIL (or -1) otherwise.

Description If given a new file name, Hopen will create a new file using the specified
access type and number of data descriptors. If given an existing file name,
Hopen will open the file using the specified access type and ignore the n_dds
argument.

If n_dds is set to 0, the number of data descriptors will be defined as the
machine default.

HDF provides several access code definitions:

DFACC_READ - Open for read only. If file does not exist, error

DFACC_CREATE - If file exists, delete it, then open a new file for read/
write.

DFACC_WRITE - Open for read/write. If file does not exist, create it.

If a file is opened and an attempt is made to reopen the file using
DFACC_CREATE, HDF will issue the error code DFE_ALROPEN. If the file is
opened with read-only access and an attempt is made to reopen the file for
write access using DFACC_RDWR or DFACC_WRITE, HDF will attempt to reopen
the file with read and write permissions.

Upon successful exit, the specified file is opened with the relevent permis-
sions, the data descriptors are set up in memory, and the associated file_id is
returned. For new files, the appropriate file headers are also set up.

FORTRAN integer function hopen(filename, access, n_dds)

character* (*) filename
integer access, n_dds

Hputbit

RM-190 April 17, 1997

Hputbit

intn Hputbit(int32 h_id, intn bit)

h_id IN: Bit-access element identifier

bit IN: Bit to be written

Purpose Writes one bit to the specified bit-access element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This function is a wrapper for Hbitwrite.

Hputelement

April 17, 1997 RM-191

National Center for Supercomputing Applications

Hputelement

int32 Hputelement(int32 file_id, uint16 tag, uint16 ref, uint8 *data, int32 length)

file_id IN: File identifier returned by Hopen

tag IN: Tag of the data element to add or replace

ref IN: Reference number of the data element to add or replace

data IN: Pointer to data buffer

length IN: Length of data to write

Purpose Writes a data element or replaces an existing data element in a HDF file.

Return value Returns the number of bytes written if successful and FAIL (or -1) otherwise.

Hread

RM-192 April 17, 1997

Hread

int32 Hread(int32 h_id, int32 length, VOIDP data)

h_id IN: Access identifier returned by Hstartread, Hstartwrite, or Hnex-
tread

length IN: Length of segment to be read

data OUT: Pointer to the data array to be read

Purpose Reads the next segment in a data element.

Return value Returns the length of segment actually read if successful and FAIL (or -1)
otherwise.

Description Hread begins reading at the current file position, reads the specified number
of bytes, and increments the current file position by one. Calling Hread with
the length = 0 reads the entire data element. To reposition an access identifier
before writing data, use Hseek.

If length is longer than the data element, the read operation is terminated at
the end of the data element, and the number of read bytes is returned.
Although only one access identifier is allowed per data element, it is possible
to interlace reads from multiple data elements in the same file. It is assumed
that data is large enough to hold the specified data length.

Hseek

April 17, 1997 RM-193

National Center for Supercomputing Applications

Hseek

intn Hseek(int32 h_id, int32 offset, intn origin)

h_id IN: Access identifier returned by Hstartread, Hstartwrite, or Hnex-
tread

offset IN: Number of bytes to seek to from the origin

origin IN: Position of the offset origin

Purpose Sets the access pointer to an offset within a data element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Sets the seek position for the next Hread or Hwrite operation by moving an
access identifier to the specified position in a data element. The origin and
the offset arguments determine the byte location for the access identifier. If
origin is set to DF_START, the offset is added to the beginning of the data ele-
ment. If origin is set to DF_CURRENT, the offset is added to the current position
of the access identifier.

 Valid values for origin are: DF_START (the beginning of the file) or
DF_CURRENT (the current position in the file).

This routine fails if the access identifier if h_id is invalid or if the seek posi-
tion is outside the range of the data element.

Hsetaccesstype

RM-194 April 17, 1997

Hsetaccesstype

int32 Hsetaccesstype(int32 h_id, uintn access_type)

h_id IN: Access identifier returned by Hstartread or Hnextread

access_type IN: I/O access type

Purpose Sets the I/O access type (serial, parallel, etc.) for a data element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Hsetlength

April 17, 1997 RM-195

National Center for Supercomputing Applications

Hsetlength

int32 Hsetlength(int32 file_id, int32 length)

file_id IN: File identifier returned by Hopen

length IN: Length of the new element

Purpose Specifies the length of a new HDF element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This function can only be used when called after Hstartaccess on a new data
element and before any data is written to that element.

Hshutdown

RM-196 April 17, 1997

Hshutdown

int32 Hshutdown()

Purpose Deallocates buffers previously allocated in other H routines.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise..

Description Should only be called by the function HDFend.

Hstartaccess

April 17, 1997 RM-197

National Center for Supercomputing Applications

Hstartaccess

int32 Hstartaccess(int32 file_id, uint16 tag, uint16 ref, uint32 flags)

file_id IN: File identifier returned by Hopen

tag IN: Tag to search for

ref IN: Reference number to search for

flags IN: Reference number to search for

Purpose Prepares an access element for either reading or writing.

Return value Returns the identifier of the access element if successful and FAIL (or -1)
otherwise.

Description The data descriptor list of the specified file is searched first. If the tag/refer-
ence number pair is found, it is not replaced and the seek position is presum-
ably 0. If the pair doesn’t exist, it is created.

Hstartbitread

RM-198 April 17, 1997

Hstartbitread

int32 Hstartbitread(int32 file_id, uint16 tag, uint16 ref)

file_id IN: File identifier returned by Hopen

tag IN: Tag to be searched for

ref IN: Reference number to be searched for

Purpose Searches the data descriptor list for the bit-read data element with the speci-
fied tag and reference number.

Return value Returns the identifier for the bit-read access element if successful and FAIL
(or -1) otherwise.

Description All searches begin at the head of the data descriptor list.

Wildcards can be used for any tag or reference number (DFTAG_WILDCARD or
DFREF_WILDCARD). All access identifiers must be released through Hendac-
cess before closing the HDF file.

Hstartread

April 17, 1997 RM-199

National Center for Supercomputing Applications

Hstartread

int32 Hstartread(int32 file_id, uint16 tag, uint16 ref)

file_id IN: File identifier returned by Hopen

tag IN: Tag to be searched for

ref IN: Reference number to be searched for

Purpose Searches the data descriptor list for the data element with the specified tag
and reference number.

Return value Returns the access identifier for a data element if successful and FAIL (or -1)
otherwise.

Description All searches begin at the head of the data descriptor list.

Wildcards can be used for any tag or reference number (DFTAG_WILDCARD or
DFREF_WILDCARD). All access identifiers must be released through Hendac-
cess before closing the HDF file.

Hstartbitwrite

RM-200 April 17, 1997

Hstartbitwrite

int32 Hstartbitwrite(int32 file_id, uint16 tag, uint16 ref, int32 length)

file_id IN: File identifier returned by Hopen

tag IN: Tag to be written to

ref IN: Reference number to be written to

length IN: The length of the data element

Purpose Enables a bit-access element for a write operation.

Return value Returns the identifier of the bit-access element if successful and FAIL (or -1)
otherwise.

Description This routine calls Hstartwrite for most initialization procedures. Hstartbit-
write only initializes the bit-level context.

Hstartwrite

April 17, 1997 RM-201

National Center for Supercomputing Applications

Hstartwrite

int32 Hstartwrite(int32 file_id, uint16 tag, uint16 ref, int32 length)

file_id IN: File identifier returned by Hopen

tag IN: Tag to be written to

ref IN: Reference number to be written to

length IN: The length of the data element

Purpose Positions a write access identifier at the beginning of a new or existing data
element.

Return value Returns the access identifier for a data object if successful and FAIL (or -1)
otherwise.

Description Hstartwrite searches the data descriptor list for the specified tag/reference
number pair. If it exists, Hstartwrite positions an access identifier at the
beginning of the existing data element. Data in the existing data element is
not overwritten until a call is made to Hwrite. If the tag and reference num-
ber are not found, Hstartwrite allocates space for a new data object of length
length and positions an access identifier at the head of the data element.

Hsync

RM-202 April 17, 1997

Hsync

intn Hsync(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Makes the disk image of the specified HDF file conform to its memory rep-
resentation.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine is currently not recommended for use as the disk representation
of an HDF file is always the same as its memory representation. However,
future releases of the HDF library will employ buffering schemes and this
routine will come into use at that time.

Htagnewref

April 17, 1997 RM-203

National Center for Supercomputing Applications

Htagnewref

int32 Htagnewref(int32 file_id, uint16 tag)

file_id IN: Access identifier returned by Hstartread or Hnextread

tag IN: Tag to be identified with the returned reference number

Purpose Returns a reference number that is unique for the specified file that will cor-
respond to the specified tag. Creates a new tag/refernce number pair.

Return value Returns the reference number if successful and 0 otherwise.

Description Successive calls to Hnewref will generate a increasing sequence of reference
number values until the highest possible reference number value has been
returned. It will then return unused reference number values starting from 1
in increasing order.

Htell

RM-204 April 17, 1997

Htell

int32 Htell(int32 h_id)

h_id IN: Access identifier returned by Hstartread or Hnextread

Purpose Returns the position of an access element within a da ta element.

Return value Returns the position of the data element and FAIL (or -1) otherwise.

Description Analogous to ftell.

Htrunc

April 17, 1997 RM-205

National Center for Supercomputing Applications

Htrunc

int32 Htrunc(int32 h_id, int32 trunc_len)

h_id IN: Access identifier returned by Hstartread or Hnextread

trunc_len IN: Length to truncate element

Purpose Truncates the data object specified by the h_id to the length trunc_len.

Return value Returns the length of a data element if found and FAIL (or -1) otherwise.

Description Htrunc does not handle special elements.

Hwrite

RM-206 April 17, 1997

Hwrite

int32 Hwrite(int32 h_id, int32 length, VOIDP data)

h_id IN: Access identifier returned by Hstartwrite

len IN: Length of segment to be written

data IN: Pointer to the data to be written

Purpose Writes the next data segment to a specified data element.

Return value Returns the length of the segment actually written if successful and FAIL (or
-1) otherwise.

Description Hwrite begins writing at the current position of the access identifier, writes
the specified number of bytes, then moves the access identifier to the position
immediately following the last accessed byte. Calling Hwrite with length =
0 results iu an error condition. To reposition an access identifier before writ-
ing data, use Hseek.

If the space allocated in the data element is smaller than the length of da ta,
the data is truncated to the length of the data element. Although only one
access identifier is allowed per data element, it is possible to interlace writes
to more than one data element in a file.

