
DFSDadddata/dsadata

April 17, 1997 RM-89

National Center for Supercomputing Applications

DFSDadddata/dsadata

intn DFSDadddata(char *filename, intn rank, int32 dimsizes[], VOIDP data)

filename IN: Name of the HDF file

rank IN: Number of dimensions in the data array to be written

dimsizes IN: Array containing the size of each dimension

data IN: Array containing the data to be stored

Purpose Appends a scientific dataset in its entirety to an existing HDF file if the file
exists. If not, a new file is created.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description In addition to appending a multidimensional array of data to an HDF file,
DFSDadddata automatically stores any information pertinent to the dataset.
It will not overwrite existing data in the file. The array data can be of any
valid type. However, if no data type has been set by DFSDsetNT, it is
assumed that the data is of type float32.

Calling DFSDadddata will write the scientific dataset and all associated
information. That is, when DFSDadddata is called, any information set by a
DFSDset* call is written to the file, along with the data array itself.

Example This example stores a three-dimensional array of type float32 in a scientific
dataset. The scientific dataset is added to a file called 'myfile.hdf', with no
other attribute information.

 #include "hdf.h"
 float32 points[5][20][5000];
 int dims[3];
 ...

 dims[0] = 5;
 dims[1] = 20;
 dims[2] = 5000;

 DFSDadddata("myfile.hdf",3, dims, points);

FORTRAN integer function dsadata(filename, rank, dimsizes, data)

character* (*) filename
integer rank
integer dimsizes(*), data(*)

DFSDclear/dsclear

RM-90 April 17, 1997

DFSDclear/dsclear

intn DFSDclear()

Purpose Clears all values set by DFSDset* routines.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description After a call to DFSDclear, values set by any DFSDset* call will not be writ-
ten unless they have been set again.

FORTRAN integer function dsclear()

DFSDendslab/dseslab

April 17, 1997 RM-91

National Center for Supercomputing Applications

DFSDendslab/dseslab

intn DFSDendslab()

Purpose Terminates a sequence of slab calls started by DFSDstartslab by closing the
file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

FORTRAN integer function dseslab()

DFSDendslice/dseslc

RM-92 April 17, 1997

DFSDendslice/dseslc

intn DFSDendslice()

Purpose Terminates the write operation after storing a slice of data in a scientific
dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDendslice must be called after all the slices are written. It checks to
ensure that the entire dataset has been written, and if it has not, returns an
error code. DFSDendslice is obsolete in favor of DFSDendslab. DFSDend-
slab is the recommended function call to use when terminating hyperslab
(previously known as data slices) operations. HDF will continue to support
DFSDendslice only to maintain backward compatibility with earlier ver-
sions of the library.

FORTRAN integer function dseslc()

DFSDgetcal/dsgcal

April 17, 1997 RM-93

National Center for Supercomputing Applications

DFSDgetcal/dsgcal

int32 DFSDgetcal(float64 *cal, float64 *cal_err, float64 *offset, float64 *offset_err, int32
*data_type)

cal OUT: Calibration factor

cal_err OUT: Calibration error

offset OUT: Uncalibrated offset

offset_err OUT: Uncalibrated offset error

data_type OUT: Data type of uncalibrated data

Purpose Retrieves the calibration record, if there is one, attached to a scientific
dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description A calibration record contains four 64-bit floating point values followed by a
32-bit integer.

 The relationship between a value iy stored in a dataset and the actual value y
is defined as:

 y = cal * (iy - offset)

The variable offset_err contains a potential error of offset, and cal_err
contains a potential error of cal. Currently the calibration record is provided
for information only. The SD interface performs no operations on the data
based on the calibration tag.

Example Suppose the values in the calibrated dataset iy[] are the following integers:

 iy[6] = {2, 4, 5, 11, 26, 81}

By defining cal = 0.50 and offset = -200.0 and applying the calibration
formula, the calibrated dataset iy[] returns to its original form as a floating
point array:

 y[6] = {1001.0, 1002.0, 1002.5, 1005.5,

 1013.0,1040.5}

FORTRAN integer function dsgcal(cal, cal_err, offset, offset_err,
data_type)

real cal, cal_err, offset, offset_err
integer data_type

DFSDgetdata/dsgdata

RM-94 April 17, 1997

DFSDgetdata/dsgdata

intn DFSDgetdata(char *filename, intn rank, int32 dimsizes[], VOIDP data)

filename IN: Name of the file

rank IN: Number of dimensions

dimsizes IN: Dimensions of the data buffer

data OUT: Buffer for the data

Purpose Reads the next dataset in the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If the values of rank or dimsizes aren’t known, DFSDgetdims must be
called to retrieve them and then use them to determine the buffer space
needed for the array data. If the data type of the data in a scientific dataset
isn’t know, DFSDgetNT must be called to retrieve it. Subsequent calls to
DFSDgetdata (or to DFSDgetdims and DFSDgetdata)will sequentially
read scientific datasets from the file. For example, if DFSDgetdata is called
three times in succession, the third call reads data from the third scientific
dataset in the file.

If DFSDgetdims or DFSDgetdata is called and there are no more scientific
datasets left in the file, an error code is returned and nothing is read. DFS-
Drestart can be used to override this convention.

Example The following code reads an array whose dimensions are known to be 100 x
200, and whose data type is known to be int16.

 #include "hdf.h"
 unit16 density[100][200];
 int32 sizes[2], ret;

 sizes[0] = 100;
 sizes[1] = 200;
 ret = DFSDgetdata ("myfile.hdf", 2, sizes, density);

FORTRAN integer function dsgdata(filename, rank, dimsizes, data)

character* (*) filename
integer rank
integer dimsizes(*), data(*)

DFSDgetdatalen/dsgdaln

April 17, 1997 RM-95

National Center for Supercomputing Applications

DFSDgetdatalen/dsgdaln

intn DFSDgetdatalen(intn *label_len, intn *unit_len, intn *format_len, intn *coords_len)

label_len OUT: Maximum length of the label string

unit_len OUT: Maximum length of the unit string

format_len OUT: Maximum length of the format string

coords_len OUT: Maximum length of the coordinate system string

Purpose Retrieves the lengths of the label, unit, format, and coordinate system strings.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The space allocated for the label, unit, format, and coordinate system strings
must be at least one byte larger than the actual length of the string to account
for the null termination.

FORTRAN integer function dsgdaln(label_len, unit_len, format_len,
coords_len)

integer label_len, unit_len, format_len, coords_len

DFSDgetdatastrs/dsgdast

RM-96 April 17, 1997

DFSDgetdatastrs/dsgdast

intn DFSDgetdatastrs(char *label, char *unit, char *format, char *coordsys)

label OUT: Label describing the data

unit OUT: Unit to be used with the data

format OUT: Format to be used in displaying data

coordsys OUT: Coordinate system

Purpose Retrieves information about the the label, unit, and format attribute strings
associated with the data.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The parameter coordsys gives the coordinate system that is to be used for
interpreting the dimension information.

FORTRAN integer function dsgdast(label, unit, format, coordsys)

character* (*) label, unit, format, coordsys

DFSDgetdimlen/dsgdiln

April 17, 1997 RM-97

National Center for Supercomputing Applications

DFSDgetdimlen/dsgdiln

intn DFSDgetdimlen (intn dim, intn *label_len, intn *unit_len, intn *format_len)

dim IN: Dimension the label, unit, and format refer to

label_len OUT: Length of the label

unit_len OUT: Length of the unit

format_len OUT: Length of the format

Purpose Retrieves the length of the label, unit, and format attribute strings associated
with the specified dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The space allocated to hold the label, unit, and format strings must be at least
one byte larger than the actual length of the string, to account for the null ter-
mination.

FORTRAN integer function dsgdiln(dim, label_len, unit_len, format_len)

integer dim, label_len, unit_len, format_len

DFSDgetdims/dsgdims

RM-98 April 17, 1997

DFSDgetdims/dsgdims

intn DFSDgetdims(char *filename, intn *rank, int32 dimsizes[], intn maxrank)

filename IN: Name of the HDF file

rank OUT: Number of dimensions

dimsizes OUT: Buffer for the returned dimensions

maxrank IN: Size of the storage buffer dimsizes

Purpose Retrieves the number of dimensions (rank) of the dataset and the sizes of the
dimensions (dimsizes) for the next scientific dataset in the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The maxrank parameter tells DFSDgetdims the size of the array that is allo-
cated for storing the dimsizes array. The value of rank must not exceed the
value of maxrank.

The allocation of a buffer for the scientific dataset data should correspond to
the values retrieved by DFSDgetdims. The first value in the array dimsizes
should equal the first dimension of the array that is allocated to hold the
dataset; the second value in dimsizes should equal the second dimension of
the dataset, and so forth.

FORTRAN integer function dsgdims(filename, rank, dimsizes, maxrank)

character* (*) filename
integer rank, maxrank
integer dimsizes(*)

DFSDgetdimscale/dsgdisc

April 17, 1997 RM-99

National Center for Supercomputing Applications

DFSDgetdimscale/dsgdisc

intn DFSDgetdimscale(intn dim, int32 size, VOIDP scale)

dim IN: Dimension this scale corresponds to

size IN: Size of the scale buffer

scale OUT: Array of values defining reference points along a specified
dimension

Purpose Gets the scale corresponding to the specified dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The DFSD interface requires the dimension scales to be of the same da ta
type as the corresponding data. To store dimension scales of a different data
type than the corresponding data, use the multifile SD interface.

Example In this example an 800 x 500 data array is read from 'myfile.hdf', together
with a scale for each dimension. The scales are assumed to be of type
float32.

 intn rank;
 int32 dimsizes[2];
 float32 yscale[800], xscale[500];
 float32 pressure[800][500];

 DFSDgetdims ("SDex2.hdf", rank, dimsizes, 2);
 DFSDgetdata ("SDex2.hdf", rank, dimsizes, pressure);
 DFSDgetdimscale (1, dimsizes[0], yscale);
 DFSDgetdimscale (2, dimsizes[1], xscale);

FORTRAN integer function dsgdisc(dim, size, scale)

integer dim, size
integer scale(*)

DFSDgetdimstrs/dsgdist

RM-100 April 17, 1997

DFSDgetdimstrs/dsgdist

intn DFSDgetdimstrs(intn dim, char *label, char *unit, char *format)

dim IN: Dimension this label, unit and format refer to

label OUT: Label that describes this dimension

unit OUT: Unit to be used with this dimension

format OUT: Format to be used in displaying scale for this dimension

Purpose Retrieves the label, unit, and format attribute strings corresponding to the
specified dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The space allocated for the label, unit, and format string must be at least one
byte larger than the length of the string to accomodate the null termination .
If the length is unknown when the program is written, declare the array size
as 1+maxlen_label, maxlen_unit, or maxlen_format after they are set by
DFSDsetlengths. The maximum default string length is 255.

FORTRAN integer function dsgdist(dim, label, unit, format)

integer dim
character* (*) label, unit, format

DFSDgetfillvalue/dsgfill

April 17, 1997 RM-101

National Center for Supercomputing Applications

DFSDgetfillvalue/dsgfill

intn DFSDgetfillvalue(VOIDP fill_value)

fill_value OUT: Fill value

Purpose Retrieves the fill value of a DFSD scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The fill value is set by DFSDsetfillvalue and returned in the variable
fill_value. Note that DFSDgetfillvalue does not take a file name as an
argument. As a result, a DFSD call to initialize the file information structures
is required before calling DFSDgetfillvalue. One such call is DFSDget-
dims.

FORTRAN integer function dsgfill(fill_value)

character* (*) fill_value

DFSDgetNT/dsgnt

RM-102 April 17, 1997

DFSDgetNT/dsgnt

intn DFSDgetNT(int32 *data_type)

data_type OUT: Data type of data in the scientific dataset

Purpose Retrieves the data type of the next dataset to be read.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Note that DFSDgetNT does not take a file name as an argument. As a result,
a DFSD call to initialize the file information structures is required before
calling DFSDgetNT. One such call is DFSDgetdims.

Valid values for data_type are of the general form DFNT_. The following are
valid symbolic names and their data types:

 32-bit float DFNT_FLOAT32 5

 64-bit float DFNT_FLOAT64 6

 8-bit signed int DFNT_INT8 20

 8-bit unsigned int DFNT_UINT8 21

 16-bit signed int DFNT_INT16 22

 16-bit unsigned int DFNT_UINT16 23

 32-bit signed int DFNT_INT32 24

 32-bit unsigned int DFNT_UINT32 25

 8-bit character DFNT_CHAR8 4

FORTRAN integer function dsgnt(num_type)

integer num_type

DFSDgetrange/dsgrang

April 17, 1997 RM-103

National Center for Supercomputing Applications

DFSDgetrange/dsgrang

intn DFSDgetrange(VOIDP max, VOIDP min)

max OUT: Maximum value stored with the scientific dataset

min OUT: Maximum value stored with the scientific dataset

Purpose Retrieves the maximum and minimum values stored with the scientific
dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The max and min values are set via a call to DFSDsetrange. They are not
automatically stored when a dataset is written to a file. The data type of these
values is the data type of the dataset array. One implication of this is that in
the C version of DFSDgetrange the arguments are pointers, rather than sim-
ple variables, whereas in the Fortran-77 version they are simple variables of
the same type as the data array.

Neither DFSDgetrange nor DFSDgetdata compare the max and min values
stored with the dataset to the actual values in the dataset; they merely retrieve
the data. As a result, the maximum and minimum values may not always
reflect the actual maximum and minimum values in the dataset. In some
cases the max and min values may actually lie outside the range of values in
the dataset.

Example In this example 16-bit data is read from an HDF file.

 int16 max, min, data[100][100];
 ...
 DFSDgetrange(&max, &min);
 DFSDgetdata("myfile.hdf", rank, dims, data);

FORTRAN integer function dsgrang(max, min)

character* (*) max, min

DFSDgetslice/dsgslc

RM-104 April 17, 1997

DFSDgetslice/dsgslc

intn DFSDgetslice(char *filename, int32 winst[], int32 windims[], VOIDP data, int32 dims[])

filename IN: Name of HDF file

winst IN: Array containing the coordinates for the start of the slice

windim IN: Array containing the dimensions of the slice

data OUT: Array for returning slice

dims OUT: Dimensions of array data

Purpose Reads part of a scientific dataset from a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDgetslice accesses the dataset last accessed by DFSDgetdims. If DFS-
Dgetdims has not been called for the named file, DFSDgetslice gets a slice
from the next dataset in the file. Array winst specifies the coordinates of the
start of the slice. Array windims gives the size of the slice. The number of ele-
ments in winst and windims must be equal to the rank of the dataset. For
example, if the file contains a three-dimensional dataset, winst may contain
the values {2, 4, 3}, while windims contains the values {3, 1, 4} and the
dims should be at least {3, 1, 4}, the same size as the slice. This will
extract a 3 x 4, two-dimensional slice, containing the elements between (2,
4, 3) and (4, 4, 6) from the original dataset.

The data array is the array into which the slice is read. It must be at least as
big as the desired slice. The dims array is the array containing the actual
dimensions of the array data. The user assigns values to dims before calling
DFSDgetslice.

All parameters assume Fortran-77-style one-based arrays.

DFSDgetslice is obsolete in favor of DFSDreadslab. DFSDreadslab is the
recommended function call to use when reading hyperslabs (previously
known as data slices). HDF will continue to support DFSDgetslice only to
maintain backward compatibility with HDF applications built on earlier ver-
sions of the library.

Example Reading two slices.

 #include "hdf.h"
 main c {
 int i, rank;
 int32 dimsizes[2];

 DFSDgetdims("my_file", &rank, dimsizes, 2);

DFSDgetslice/dsgslc

April 17, 1997 RM-105

National Center for Supercomputing Applications

 /* Starting at (3,4) read 4 x 6 window. Use (3,4)
rather than (2,3) because FORTRAN-style indexing is used.*/

 getit("myfile", 3,4,4,6);

 /* starting at (1,10) read 10 x 2 window */
 getit("myfile", 1,10,10,2);
 }

 getit(filename, st0, st1, rows, cols)
 int st0, st1, rows, cols;
 char *filename;
 { int i, j;
 int32 winst[2], windims[2], dims[2];
 float32 data[500];

 winst[0]=st0;
 winst[1]=st1;
 dims[0] = windims[0] = rows;
 dims[1] = windims[1] = cols;
 DFSDgetslice(filename, winst, windims, data, dims);

 for (i=0; i < rows; i++) {
 printf("\n");
 for (j=0; j < cols; j++) {
 printf("%5.0f%c",data[i*cols+j], ' ');
 }
 printf("\n");
 }

FORTRAN integer function dsgslc(filename, winst, windims, data, dims)

character* (*) filename, data
integer winst(*), windims(*), dims(*)

DFSDlastref/dslref

RM-106 April 17, 1997

DFSDlastref/dslref

intn DFSDlastref()

Purpose Retrieves the most recent reference number used in writing or reading a sci-
entific dataset.

Return value Returns the reference number for the last accessed scientific dataset if suc-
cessful and FAIL (or -1) otherwise.

Description DFSDlastref returns the value of the last reference number of a scientific
dataset read from or written to the file.

FORTRAN integer function dslref()

DFSDndatasets/dsnum

April 17, 1997 RM-107

National Center for Supercomputing Applications

DFSDndatasets/dsnum

intn DFSDndatasets(char *filename)

filename IN: Name of the HDF file

Purpose Returns the number of scientific datasets in the file.

Return value Returns the number of datasets if successful and FAIL (or -1) otherwise.

Description In HDF version 3.3, DFSDndatasets replaced DFSDnumber. In order to
maintain backward compatibility with existing HDF applications, HDF will
continue to support DFSDnumber. However, it is recommended that all new
applications use DFSDndatasets instead of DFSDnumber.

FORTRAN integer function dsnum(filename)

character* (*) filename

DFSDpre32sdg/dsp32sd

RM-108 April 17, 1997

DFSDpre32sdg/dsp32sd

intn DFSDpre32sdg(char *filename, uint16 ref, intn *ispre32)

filename IN: The name of the HDF file containing the scientific dataset

ref IN: Reference number of SDG

ispre32 OUT: Pointer to results of the pre-HDF version 3.2 inquiry

Purpose Tests if the scientific dataset with the specified reference number was created
by an HDF library earlier than version 3.2.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If the scientific dataset was created with a version of HDF prior to version
3.2, ispre32 will be set to 1, otherwise it will be set to 0. Based on this infor-
mation, programmers can decide whether or not to transpose the correspond-
ing array.

FORTRAN integer function dsp32sd(filename, ref, ispre32)

character* (*) filename
integer ref, ispre32

DFSDputdata/dspdata

April 17, 1997 RM-109

National Center for Supercomputing Applications

DFSDputdata/dspdata

intn DFSDputdata(char *filename, intn rank, int32 dimsizes[], VOIDP data)

filename IN: Name of the HDF file

rank IN: Number of dimensions of data array to be stored

dimsizes IN: Buffer for the dimension sizes

data IN: Buffer for the data to be stored

Purpose Writes a scientific data and related information to an HDF file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDputdata will write data to an existing file by destroying the contents of
the original file. Use it with caution. If a new filename is used, DFSDput-
data functions exactly like DFSDadddata.

FORTRAN integer function dspdata(filename, rank, dimsizes, data)

character* (*) filename, data
integer rank
integer dimsizes(*)

DFSDputslice/dspslc

RM-110 April 17, 1997

DFSDputslice/dspslc

intn DFSDputslice(int32 windims[], VOIDP source, int32 dims[])

windims IN: Window dimensions specifying the size of the slice to be written

source IN: Buffer for the slice

dims IN: Dimensions of the source array

Purpose Writes part of a scientific dataset to a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDputslice read a subset of an array in memory and stores it as part of the
scientific dataset array last specified by DFSDsetdims. Slices must be stored
contiguously.

Array windims ("window dimensions") specifies the size of the slice to be
written. The windims array must contain as many elements as there are
dimensions in the entire scientific dataset array. The source argument is an
array in memory containing the slice and dims is an array containing the
dimensions of the array source.

Notice that windims and dims need not be the same. The windims argument
could refer to a sub-array of source, in which case only a portion of source is
written to the scientific data array.

All parameters assume Fortran-77-style one-based arrays.

DFSDputslice is obsolete in favor of DFSDwriteslab. DFSDwriteslab is
the recommended function call to use when writing hyperslabs (previously
known as data slices). HDF will continue to support DFSDputslice only to
maintain backward compatibility withearlier versions of the library.

Example Suppose we want to create a 7 x 12 scientific dataset array, and we want to
write it using slices. Suppose also that the array from which we get our data
is a 10 x 12 array in memory called source, and we want to write the 7 x 12
"window" from top of that array. The following example will do this.

 intn rank;
 int SDSdims[2], sourcedims[2], windims[2];
 float data[10][12];

 /*code that builds the array source goes here */
 ...

 SDSdims[0]=7;
 SDSdims[1]=12;
 sourcedims[0]=10;
 sourcedims[1]=12;

DFSDputslice/dspslc

April 17, 1997 RM-111

National Center for Supercomputing Applications

 DFSDsetdims(2, SDSdims);

 /*write out scientific dataset in slices */

 DFSDstartslice(filename);

 windims[0]=2;
 windims[1]=12; /* {(1,1) to (2,12)} */
 DFSDputslice(windims, &data[0][0], sourcedims);

 windims[0]=4;
 windims[1]=12; /* {(3,1) to (6,12)} */
 DFSDputslice(windims, &data[2][0], sourcedims);

 windims[0]=1;
 windims[1]=4; /* {(7,1) to (7,4)} */
 DFSDputslice(windims, &data[6][0], sourcedims);

 windims[0]=1;
 windims[1]=8; /* {(7,5) to (7,12)} */
 DFSDputslice(windims, &data[6][4], sourcedims);

 windims[0]=3;
 windims[1]=12; /* {(8,1) to (10,12)} */
 DFSDputslice(windims, &data[7][0], sourcedims);

 DFSDendslice();

FORTRAN integer function dspslc(windims, source, dims)

integer windims(*), dims(*), source(*)

DFSDreadref/dsrref

RM-112 April 17, 1997

DFSDreadref/dsrref

intn DFSDreadref(char *filename, uint16 ref)

filename IN: Name of the HDF file

ref IN: Reference number for next DFSDgetdata call

Purpose Specifies the reference number for the dataset to be read during the next read
operation.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine is commonly used in conjunction with DFANgetlablist, which
returns a list of labels for a given tag together with their reference numbers. It
provides a sort of random access to scientific datasets.

There is no guarantee that reference numbers appear in sequence in an HDF
file, so it is not generally safe to assume that a reference number is an index
number of a scientific dataset.

FORTRAN integer function dsrref(filename, ref)

character* (*) filename
integer ref

DFSDreadslab/dsrslab

April 17, 1997 RM-113

National Center for Supercomputing Applications

DFSDreadslab/dsrslab

intn DFSDreadslab(char *filename, int32 start[], int32 slab_size[], int32 stride[], VOIDP buffer,
int32 buffer_size[])

filename IN: Name of the HDF file

start IN: Buffer of size rank containing the coordinates for the start of the
slab

slab_size IN: Buffer of size rank containing the size of each dimension in the
slab

stride IN: Subsampling (not yet implemented)

buffer OUT: \Buffer for the returned slab

buffer_size OUT: Dimensions of the buffer buffer

Purpose Reads a slab of data from any scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDreadslab will access to the scientific dataset following the current one
if DFSDgetdims or DFSDgetdata are not called earlier. The start array
indices are one-based. The rank of start must be the same as the number of
dimensions of the specified variable. The elements of slab_sizemust be no
larger than the dimensions of the scientific dataset in order. The stride feature
is not currently implemented. For now just pass the start array as the argu-
ment for stride where it will be ignored.

To extract a slab of lower dimension than that of the dataset, enter 1 in the
slab_size array for each omitted dimension. For example, to extract a two-
dimensional slab from a three-dimensional dataset, specify the beginning
coordinates in three dimensions and enter a 1 for the missing dimension in
the slab_size array. More specifically, to extract a 3 x 4 slab containing the
elements (6, 7, 8) through (8, 7, 11) specify the beginning coordinates
as {6, 7, 8} and the slab size as {3, 1, 4}.

FORTRAN integer function dsrslab(filename, start, slab_size, stride,
buffer, buffersize)

character* (*) filename, buffer
integer start(*), slab_size(*),
integer stride(*), buffer_size(*)

DFSDrestart/dsfirst

RM-114 April 17, 1997

DFSDrestart/dsfirst

intn DFSDrestart()

Purpose Causes the next read command to be read from the first scientific dataset in
the file, rather than the scientific dataset following the one that was most
recently read.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

FORTRAN integer function dsfirst()

DFSDsetcal/dsscal

April 17, 1997 RM-115

National Center for Supercomputing Applications

DFSDsetcal/dsscal

intn DFSDsetcal(float64 cal, float64 cal_err, float64 offset, float64 offset_err, int32 data_type)

cal IN: Calibration factor

cal_err IN: Calibration error

offset IN: Uncalibrated offset

offset_err IN: Uncalibrated offset error

data_type IN: Data type of uncalibrated data

Purpose Sets the calibration information associated with data

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine sets the calibration record associated with a dataset. A calibra-
tion record contains four 64-bit floating point values followed by a 32-bit
integer, to be interpreted as follows:

 cal calibration factor

 cal_err calibration error

 offset uncalibrated offset

 offset_err uncalibrated offset error

 data_type data type of uncalibrated data

The relationship between a value iy stored in a dataset and the actual value y
is defined as:

 y = cal * (iy - offset)

The variable offset_err contains a potential error of offset, and cal_err
contains a potential error of cal. Currently the calibration record is provided
for information only. The SD interface performs no operations on the data
based on the calibration tag.

DFSDsetcal works like other DFSDset* routines, with one exception: the
calibration information is automatically cleared after a call to DFSDputdata
or DFSDadddata. Hence, DFSDsetcal must be called again for each dataset
that is to be written.

Example Suppose the values in a dataset y[] are as follows:

 y[6]={1001.0, 1002.0, 1002.5, 1005.5,

1013.0, 1040.5}

DFSDsetcal/dsscal

RM-116 April 17, 1997

By defining cal = 0.50 and offset = -200.0 and applying the calibration
formula, the calibrated dataset iy[] becomes as follows:

 iy[6]={2, 4, 5, 11, 26, 81}

The array iy[] can then be stored as integers.

FORTRAN integer function dsscal(cal, cal_err, offset, offset_err,
data_type)

real cal, cal_err, offset, offset_err
integer data_type

DFSDsetdatastrs/dssdast

April 17, 1997 RM-117

National Center for Supercomputing Applications

DFSDsetdatastrs/dssdast

intn DFSDsetdatastrs(char *label, char *unit, char *format, char *coordsys)

label IN: Label describing the data

unit IN: Unit to be used with the data

format IN: Format to be used in displaying the data

coordsys IN: Coordinate system of the data

Purpose Sets the label, unit, format, and coordinate system for the next dataset written
to file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Example In this example a 200 x 300 data array is written to a file called 'myfile.hdf',
together with label, unit, and format information about the data. In this exam-
ple we assume that the coordsys parameter is of no interest to the user, so the
empty string (" ") is given as the fourth parameter to DFSDsetdatastrs.

 float32 press1[200][300];
 int dims[2];
 ...
 dims[0] = 200;
 dims[1] = 300;

 DFSDsetdims(2, dims);
 DFSDsetdatastrs ("pressure 1", "Pascals", "E15.9", " ");
 DFSDadddata("myfile.hdf", 2, dims, press1);

FORTRAN integer function dssdast(label, unit, format, coordsys)

character* (*) label, unit, format, coordsys

DFSDsetdims/dssdims

RM-118 April 17, 1997

DFSDsetdims/dssdims

intn DFSDsetdims (intn rank, int32 dimsizes[])

rank IN: Number of dimensions

dimsizes IN: Dimensions of the scientific dataset

Purpose Sets the rank and dimension sizes for all subsequent scientific datasets writ-
ten to the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine must be called before calling either DFSDsetdimstrs or DFSD-
setdimscale. DFSDsetdims need not be called if other set r outines are not
called and the correct dimensions are supplied in DFSDputdata or DFS-
Dadddata.

If the rank or dimension sizes change, all previous set calls are cleared,
except for the data type, which is set by calling DFSDsetNT.

FORTRAN integer function dssdims(rank, dimsizes)

integer rank
integer dimsizes(*)

DFSDsetdimscale/dssdisc

April 17, 1997 RM-119

National Center for Supercomputing Applications

DFSDsetdimscale/dssdisc

intn DFSDsetdimscale (intn dim, int32 dimsize, VOIDP scale)

dim IN: Dimension this scale corresponds to

dimsize IN: Size of the scale buffer

scale IN: Buffer for the scale values

Purpose Defines the scale for a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description A scale is a one-dimensional array whose values describe reference points
along one dimension of the dataset. For example, a two-dimensional dataset
representing points on a map could have two scales, one representing points
of latitude, and the other points of longitude.

Example In this example a 200 x 300 data array is written to a file called "myfile.hdf",
together with scales for each dimension. It is assumed that the arrays
latscale and longscale have been assigned values that define the corre-
sponding scales.

 float32 press1[200][300];
 float32 latscale[200], longscale[300];
 int dims[2];
 ...
 dims[0] = 200;
 dims[1] = 300;

 DFSDsetdims(2, dims);
 DFSDsetdimscale(1, dims[0], latscale);
 DFSDsetdimscale(2, dims[1], longscale);
 DFSDadddata("myfile.hdf", 2, dims, press1);

FORTRAN integer function dssdisc (dim, dimsize, scale)

integer dim
integer dimsize(*), scale(*)

DFSDsetdimstrs/dssdist

RM-120 April 17, 1997

DFSDsetdimstrs/dssdist

intn DFSDsetdimstrs(intn dim, char *label, char *unit, char *format)

dim IN: Dimension this label, unit and format refer to

label IN: Label that describes this dimension

unit IN: Unit to be used with this dimension

format IN: Format to be used to display scale

Purpose Sets the label, unit, and format strings corresponding to the specified dimen-
sion.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description In both Fortran-77 and C programs, dim = 1 for the first dimension, and dim
= 2 for the second dimension. If the user is not inter ested in one or more
strings, empty strings can be used as parameters for the DFSDsetdimstrs
call. For example, DFSDsetdimstrs(1, "vertical", " ", " ") will set the label
for the first dimension to "vertical" and set the unit and format to empty
strings.

Example In this example a 200 x 300 data array is written to a file called 'myfile.hdf',
together with label, unit, and format information about each dimension.

 float32 press1[200][300];
 int dims[0], dims[2];
 ...
 dims[0] = 200;
 dims[1] = 300;

 DFSDsetdims(2, dims);
 DFSDsetdimstrs(1, "vertical", "cm", "F10.2");
 DFSDsetdimstrs(2, "horizontal", "m", "F10.3");
 DFSDadddata(myfile.hdf', 2, dims, press1);

FORTRAN integer function dssdist(dim, label, unit, format)

integer dim
character* (*) label, unit, format

DFSDsetfillvalue/dssfill

April 17, 1997 RM-121

National Center for Supercomputing Applications

DFSDsetfillvalue/dssfill

intn DFSDsetfillvalue(VOIDP fill_value)

fill_value IN: Fill value

Purpose Set the value used to fill in any unwritten location in a scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description It is assumed that the fill value has the same data type as the dataset. Once the
fill value is set for a particular SDS, it cannot be changed.

If DFSDsetfillvalue is called before the first call to DFSDstartslab, DFSD-
startslab will set the fill value tag attribute to the value specified in the DFS-
Dsetfillvalue call, but will not actually write out the fill value when
DFSDwriteslab is called. However, if DFSDsetfillvalue is called after the
first call the DFSDstartslab, the fill value tag attribute will be set by DFSD-
setfillvalue and the fill value will be written to the slab during the DFSD-
writeslab call. This is shown in the following C example.

Example In this example a 200 x 300 data array is written to a file called 'myfile.hdf',
together with label, unit, and format information about each dimension.

 int16 data[5] = {0, 1, 2, 3, 4};
int dims[1] = {5};
int32 start[1] = {1};
int 32 count[1] = {2};
int16 fillv = -9999;

main() {
int stat;

/* Set the fill value only; don’t write. */
stat = DFSDsetdims(1, dims);
stat = DFSDsetNT(DFNT_INT16);
stat = DFSDwriteslab("File.hdf");
stat = DFSDsetfillvalue((VOIDP)&fillv);
stat = DFSDwriteslab(start, start, count, (VOIDP)data);
stat = DFSDendslab();

/* Set the fill value and write it. */
stat = DFSDsetdims(1, dims);
stat = DFSDsetNT(DFNT_INT16);
stat = DFSDsetfillvalue((VOIDP)&fillv);
stat = DFSDstartslab("File.hdf");
stat = DFSDwriteslab(start, start, count, (VOIDP)data);
stat = DFSDendslab();

}

FORTRAN integer function dssfill(fill_value)

DFSDsetfillvalue/dssfill

RM-122 April 17, 1997

character* (*) fill_value

DFSDsetlengths/dsslens

April 17, 1997 RM-123

National Center for Supercomputing Applications

DFSDsetlengths/dsslens

intn DFSDsetlengths(intn label_len, intn unit_len, intn format_len, intn coords_len)

label_len IN: Maximum length of label strings

unit_len IN: Maximum length of unit strings

format_len IN: Maximum length of format strings

coords_len IN: Maximum length of coordinate system strings

Purpose Sets the maximum lengths for the strings that will hold labels, units, formats,
and the name of the coordinate system.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The lengths set by this routine are used by the routines DFSDgetdimstrs and
DFSDgetdatastrs to determine the maximum lengths of strings that they get
from the file.

Normally, DFSDsetlengths is not needed. If it is not called, default maxi-
mum lengths of 255 are used for all strings.

FORTRAN integer function dsslens(label_len, unit_len, format_len,
coords_len)

integer label_len, unit_len, format_len, coords_len

DFSDsetNT/dssnt

RM-124 April 17, 1997

DFSDsetNT/dssnt

intn DFSDsetNT(int32 data_type)

data_type IN: Data type

Purpose Sets the data type of the data to be written in the next write operation.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDsetNT must be called if a data type other than float32 is to be stored.
DFSDsetNT and DFSDsetdims can be called in any order, but they should
be called before any other DFSDset* functions and before DFSDputdata or
DFSDadddata.

The following symbolic names can be used as the value of data_type:

 32-bit float DFNT_FLOAT32 5

 64-bit float DFNT_FLOAT64 6

 8-bit signed int DFNT_INT8 20

 8-bit unsigned int DFNT_UINT8 21

 16-bit signed int DFNT_INT16 22

 16-bit unsigned int DFNT_UINT16 23

 32-bit signed int DFNT_INT32 24

 32-bit unsigned int DFNT_UINT32 25

 8-bit character DFNT_CHAR8 4

Example Assuming that DFNT_INT8 has been defined and i8data is an array with 8-bit
integer data, the following code fragments write out 8-bit integers to a scien-
tific dataset.

DFSDsetNT(DFNT_INT8);
DFSDadddata("myfile.hdf", rank, dims, i8data);

FORTRAN integer function dssnt(num_type)
integer num_type

DFSDsetrange/dssrang

April 17, 1997 RM-125

National Center for Supercomputing Applications

DFSDsetrange/dssrang

intn DFSDsetrange(VOIDP max, VOIDP min)

max IN: Highest value in the range

min IN: Lowest value in the range

Purpose Stores the specified maximum and minimum data values.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description It is assumed that the data type of max and min is the same as the type of the
data. One implication of this is that in the C version of DFSDsetrange the
arguments are pointers, rather than simple variables, whereas in the Fortran-
77 version they are simple variables of the same type as the data array.

This routine does not compute the maximum and minimum values; it merely
stores the values it is given. As a result, the maximum and minimum values
may not always reflect the actual maximum and minimum values in the data
array.

When the maximum and minimum values are written to a file, the HDF ele-
ment that holds these values is cleared, because it is assumed that subsequent
datasets will have different values for max and min.

Example In this example 16-bit data is written to an HDF file. Notice that max and min
must be the same data type as the scientific dataset array data.

 int16 max, min, data[100][100];

 ...

 DFSDsetrange(&max, &min);
 DFSDadddata("myfile.hdf", rank, dims, data);

FORTRAN integer function dssrang(max, min)
character* (*) max, min

DFSDstartslab/dssslab

RM-126 April 17, 1997

DFSDstartslab/dssslab

intn DFSDstartslab(char *filename)

filename IN: Name of the HDF file

Purpose Prepares the DFSD interface to write a slab of data to a scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDsetdims must be called before calling DFSDstartslab. No call which
involves a file open may be made after a DFSDstartslab call until DFS-
Dendslab is called. This routine will write out the fill values if DFSDset-
fillvalue is called before this routine.

FORTRAN integer function dssslab(filename)

character* (*) filename

DFSDstartslice/dssslc

April 17, 1997 RM-127

National Center for Supercomputing Applications

DFSDstartslice/dssslc

intn DFSDstartslice(char *filename)

filename IN: Name of the HDF file

Purpose Prepares the interface to write a data slice to the specified file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Before calling DFSDstartslice, DFSDsetdims must be called to specify the
dimensions of the dataset to be written to the file. DFSDstartslice always
appends a new dataset to an existing file.

Also, DFSDstartslice must be called before DFSDputslice or DFSDend-
slice.

DFSDstartslice is obsolete in favor of DFSDstartslab. DFSDstartslab is
the recommended function call to use when beginning hyperslab operations.
HDF will continue to support DFSDstartslice only to maintain backward
compatibility earlier versions of the library.

FORTRAN integer function dssslc(filename)

character* (*) filename

DFSDwriteref/dswref

RM-128 April 17, 1997

DFSDwriteref/dswref

intn DFSDwriteref(char *filename, uint16 ref)

filename IN: Name of the HDF file

ref IN: Reference number for next add or put operation

Purpose DFSDwriteref determines the reference number of the dataset to overwritten
next by DFSDputdata or DFSDadddata, after checking for its existance.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If a non-existent reference number is specified, an error code will be
returned.

As this routine alters data in a destructive manner, DFSDwriteref should be
used with caution.

FORTRAN integer function dswref(filename, ref)

character* (*) filename
integer ref

DFSDwriteslab/dswslab

April 17, 1997 RM-129

National Center for Supercomputing Applications

DFSDwriteslab/dswslab

intn DFSDwriteslab(int32 start[], int32 stride[], int32 count[], VOIDP data)

start IN: Array containing the starting coordinates of the slab

stride IN: Array containing the dimensions for subsampling

count IN: Array containing the size of the slab

data IN: Array to hold the floating point data to be written

Purpose Writes a slab of data to a scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The start indices are relative to 1. The rank of start must be the same as the
number of dimensions of the specified variable. The elements of start must
be no larger than the scientific dataset's dimensions in order. The stride fea-
ture is not currently implemented. For now just pass the start array as the
argument for the strideparamater, where it will be ignored.

The rank of count must be the same as the number of dimensions of the spec-
ified variable. The elements of count must be no larger than the scientific
dataset's dimensions in order. The order in which the data will be written into
the specified hyperslab is with the last dimension varying fastest. The data
should be of the appropriate type for the dataset. Note that neither the com-
piler nor HDF software can detect if the wrong type of data is used.

FORTRAN integer function dswslab(start, stride, count, data)

integer start(*), stride(*), count(*)
character* (*) data

