
SDattrinfo/sfgainfo

June 26, 1998 2-79

HDF Reference Manual

SDattrinfo/sfgainfo

intn SDattrinfo(int32 obj_id, int32 attr_index, char *attr_name, int32 *data_type, int32 *count)

obj_id IN: Identifier of the object to which the attribute is attached to

attr_index IN: Index of the attribute

attr_name OUT: Name of the attribute

data_type OUT: Data type of the attribute values

count OUT: Total number of values in the attribute

Purpose Retrieves information about an attribute.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDattrinfo retrieves the name, data type, and number of values of the attribute
specified by its index, attr_index, and stores them in the parameters
attr_name, data_type, and count, respectively. This routine should be used
before reading the values of an attribute with SDreadattr.

The parameter obj_id can be either an SD interface identifier (sd_id), returned
by SDstart, a data set identifier (sds_id), returned by SDselect, or a dimension
identifier (dim_id), returned by SDgetdimid.

Valid values of the parameter attr_index range from 0 to the number of
attributes attached to the object - 1.

Valid values of the parameter data_type can be found in Table 1A of Section I
of this manual.

FORTRAN integer function sfgainfo(obj_id, attr_index, attr_name,
data_type, count)

character*(*) attr_name

integer obj_id, attr_index, data_type, count

SDcreate/sfcreate National Center for Supercomputing Applications

2-80 June 26, 1998

SDcreate/sfcreate

int32 SDcreate(int32 sd_id, char *name, int32 data_type, int32 rank, int32 dimsizes[])

sd_id IN: SD interface identifier returned by SDstart

name IN: Name of the data set

data_type IN: Data type for the values in the data set

rank IN: Number of the data set dimensions

dimsizes IN: Array containing the size of each dimension

Purpose Creates a new data set.

Return value Returns the data set identifier (sds_id) if successful and FAIL (or -1) otherwise.

Description SDcreate creates a data set with the name specified by the parameter name, the
values of the data type specified by parameter data_type, the number of
dimensions specified by the parameter rank, and the dimension sizes specified
by the array dimsizes.

Once a data set has been created, it is not possible to change its name, data
type, or rank. However, it is possible to create a data set and close the file
before writing any data values to it. The values can be added or modified at a
future time. To add data or modify an existing data set, use SDselect to get the
data set identifier instead of SDcreate.

If the parameter name is NULL in C or an empty string in Fortran, the default
name “Data Set” will be generated. If the length of the name specified by the
name parameter is longer than 64 characters, then the name will be truncated
to 64 characters.

The calling program must ensure that the length of the dimsizes array is the
value of the rank parameter, which is between 1 and MAX_VAR_DIMS (or 32).

To create a data set with an unlimited dimension, assign the value of
SD_UNLIMITED (or 0) to dimsizes[0] in C and to dimsizes(rank) in Fortran.

The data_type parameter can contain any data type supported by the HDF
library. These data types are listed in Table 1A in Section I of this manual.

FORTRAN integer function sfcreate(sd_id, name, data_type, rank,
dimsizes)

character*(*) name

integer sd_id, data_type, rank, dimsizes(*)

SDdiminfo/sfgdinfo

June 26, 1998 2-81

HDF Reference Manual

SDdiminfo/sfgdinfo

intn SDdiminfo(int32 dim_id, char *name, int32 *size, int32 *data_type, int32 *num_attrs)

dim_id IN: Dimension identifier returned by SDgetdimid

name OUT: Name of the dimension

size OUT: Size of the dimension

data_type OUT: Data type of the dimension scale

num_attrs OUT: Number of attributes assigned to the dimension

Purpose Retrieves information about a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDdiminfo retrieves the name, size, data type, and number of values of the
dimension specified by the parameter dim_id, and stores them in the
parameters name, size, data_type, and num_attrs, respectively.

If the output value of the parameter size is set to 0, then the dimension
specified by the dim_id parameter is unlimited. To get the number of records of
an unlimited dimension, use SDgetinfo.

If scale information has been stored for this dimension via SDsetdimscale, the
data_type parameter will contain the data type. Valid data types can be found
in Table 1A of Section I of this manual. If no scale information has been stored
for this dimension, the value returned in the data_type parameter will be 0.

If the user has not named the dimension via SDsetdimname, a default
dimension name of “fakeDim[x]” will be generated by the library, where [x]
denotes the dimension index. If the name is not desired, the parameter name
can be set to NULL in C and an empty string in Fortran.

FORTRAN integer function sfgdinfo(dim_id, name, size, data_type,
num_attrs)

character*(*) name

integer dim_id, size, data_type, num_attrs

SDend/sfend National Center for Supercomputing Applications

2-82 June 26, 1998

SDend/sfend

intn SDend(int32 sd_id)

sd_id IN: SD interface identifier returned by SDstart

Purpose Terminates access to an SD interface.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDend closes the file and frees memory allocated by the library when SD
interface activities are completed. If the calling program exits without invoking
this routine, recent changes made to the in-core file data are likely not to be
flushed to the file. Note that each SDstart must have a matching SDend.

FORTRAN integer function sfend(sd_id)

integer sd_id

SDendaccess/sfendacc

June 26, 1998 2-83

HDF Reference Manual

SDendaccess/sfendacc

intn SDendaccess(int32 sds_id)

sds_id IN: Data set identifier returned by SDcreate or SDselect

Purpose Terminates access to a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDendaccess frees the memory taken up by the HDF library’s data structures
devoted to the data set identified by the parameter sds_id.

 Failing to call this routine after all operations on the specified data set are
complete may result in loss of data. This routine must be called once for each
call to SDcreate or SDselect.

FORTRAN integer function sfendacc(sds_id)

integer sds_id

SDfileinfo/sffinfo National Center for Supercomputing Applications

2-84 June 26, 1998

SDfileinfo/sffinfo

intn SDfileinfo(int32 sd_id, int32 *num_datasets, int32 *num_global_attrs)

sd_id IN: SD interface identifier returned by SDstart

num_datasets OUT: Number of data sets in the file

num_global_attrsOUT: Number of global attributes in the file

Purpose Retrieves the number of data sets and the number of global attributes in a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDfileinfo returns the number of data sets in the parameter num_datasets and
the number of global attributes in the parameter num_global_attrs. The term
“global attributes” refers to attributes that are assigned to the file. The global
attributes are created by SDsetattr using an SD interface identifier (sd_id)
rather than a data set identifier (sds_id).

The value returned by the parameter num_datasets includes the number of
coordinate variable data sets. To determine if the data set is a coordinate
variable, use SDiscoordvar.

FORTRAN integer function sffinfo(sd_id, num_datasets, num_global_attrs)

integer sd_id, num_datasets, num_global_attrs

SDfindattr/sffattr

June 26, 1998 2-85

HDF Reference Manual

SDfindattr/sffattr

int32 SDfindattr(int32 obj_id, char *attr_name)

obj_id IN: Identifier of the object to which the attribute is attached

attr_name IN: Name of the attribute

Purpose Finds the index of an attribute given its name.

Return value Returns the index if successful and FAIL (or -1) otherwise.

Description SDfindattr retrieves the index of the object’s attribute with the name specified
by the parameter attr_name.

The attribute is attached to the object specified by the parameter obj_id. The
parameter obj_id can be either an SD interface identifier (sd_id), returned by
SDstart, a data set identifier (sds_id), returned by SDselect, or a dimension
identifier (dim_id), returned by SDgetdimid.

Wildcard characters are not allowed in the parameter attr_name. SDfindattr
searches for the name specified in the parameter attr_name in a case-sensitive
manner.

FORTRAN integer function sffattr(obj_id, attr_name)

integer obj_id

character*(*) attr_name

SDgetcal/sfgcal National Center for Supercomputing Applications

2-86 June 26, 1998

SDgetcal/sfgcal

intn SDgetcal(int32 sds_id, float64 *cal, float64 *cal_err, float64 *offset, float64 *offset_err, int32
*data_type)

sds_id IN: Data set identifier returned by SDcreate or SDselect

cal OUT: Calibration factor

cal_err OUT: Calibration error

offset OUT: Uncalibrated offset

offset_err OUT: Uncalibrated offset error

data_type OUT: Data type of uncalibrated data

Purpose Retrieves the calibration information associated with a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetcal reads the calibration record attached to the data set identified by the
parameter sds_id. A calibration record is comprised of four 64-bit floating
point values followed by a 32-bit integer. The information is listed in the
following table:

cal calibration factor

cal_err calibration error

offset uncalibrated offset

offset_err uncalibrated offset error

data_type data type of the uncalibrated data

The relationship between a calibrated value cal_value and the original value
orig_value is defined as orig_value = cal * (cal_value - offset) .

The variable offset_err contains a potential error of offset , and cal_err

contains a potential error of cal . Currently the calibration record is provided
for information only. The SD interface performs no operations on the data
based on the calibration tag.

FORTRAN integer function sfgcal(sds_id, cal, cal_err, offset, offset_err,
data_type)

integer sds_id, data_type

real*8 cal, cal_err, offset, offset_err

SDgetchunkinfo/sfgichnk

June 26, 1998 2-87

HDF Reference Manual

SDgetchunkinfo/sfgichnk

intn SDgetchunkinfo(int32 sds_id, HDF_CHUNK_DEF *cdef, int32 *flag)

sds_id IN: Data set identifier returned by SDcreate or SDselect

C only:

cdef OUT: Pointer to the chunk definition

flag OUT: Compression flag

Fortran only:

dim_length OUT: Array of chunk dimensions

flag OUT: Compression flag

Purpose Retrieves chunking information for a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetchunkinfo retrieves chunking information about the data set identified
by the parameter sds_id into the parameters cdef and flag in C, and to the
parameters dim_length and flag in Fortran.

Currently, only information about chunk dimensions is retrieved into the
corresponding cdef structure element for each type of compression in C, and in
the dim_length array in Fortran. No information on compression parameters is
available in the comp structure of the HDF_CHUNK_DEF union. Refer to the page
on SDsetchunk in this manual for specific information on the HDF_CHUNK_DEF

union.

The value returned in the flag parameter indicates the data set type (i.e., if the
data set is not chunked, chunked, and chunked and compressed).

If the chunk length for each dimension is not needed, NULL can be passed in as
the value of the cdef parameter in C.

The following table shows the type of the data set, possible values of the flag
parameter, and the corresponding cdef structure element filled with the chunk’s
dimensions.

Type of Data Set Values of flag in C
(Fortran)

cdef Structure Element Filled
with the Chunk’s Dimensions

Not chunked HDF_NONE (-1) None

Chunked HDF_CHUNK (0) cdef.chunk_lengths[]

SDgetchunkinfo/sfgichnk National Center for Supercomputing Applications

2-88 June 26, 1998

Chunked and compressed
with either the run-length
encoding (RLE), Skipping
Huffman or GZIP compres-
sion algorithms

HDF_CHUNK |
HDF_COMP (1) cdef.comp.chunk_lengths[]

Chunked and compressed
with NBIT compression

HDF_CHUNK |
HDF_NBIT (2) cdef.nbit.chunk_lengths[]

FORTRAN integer function sfgichnk(sds_id, dim_length, flag)

integer sds_id, dim_length(*), flag

Type of Data Set Values of flag in C
(Fortran)

cdef Structure Element Filled
with the Chunk’s Dimensions

SDgetdatastrs/sfgdtstr

June 26, 1998 2-89

HDF Reference Manual

SDgetdatastrs/sfgdtstr

intn SDgetdatastrs(int32 sds_id, char *label, char *unit, char *format, char *coordsys, intn length)

sds_id IN: Data set identifier returned by SDcreate or SDselect

label OUT: Label (predefined attribute)

unit OUT: Unit (predefined attribute)

format OUT: Format (predefined attribute)

coordsys OUT: Coordinate system (predefined attribute)

length IN: Maximum length of the above predefined attributes

Purpose Retrieves the predefined attributes of a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetdatastrs retrieves the predefined attributes for the data set specified by
the parameter sds_id. The predefined attributes are label, unit, format, and
coordinate system. They are then stored in the parameters label, unit, format,
and coordsys, respectively. Refer to Section 3.10 of the HDF User’s Guide for
more information on predefined attributes.

If a particular data string is not stored, the first character of the corresponding
SDgetdatastrs parameter is '\0 ' in C. In FORTRAN, the parameter contains an
empty string. Each string buffer must include the space to hold the null
termination character. In C, if a user does not want a string back, NULL can be
passed in for that string. Data strings are set by the SDsetdatastrs routine.

FORTRAN integer function sfgdtstr(sds_id, label, unit, format, coordsys,
length)

integer sds_id, length

character*(*) label, unit, format, coordsys

SDgetdimid/sfdimid National Center for Supercomputing Applications

2-90 June 26, 1998

SDgetdimid/sfdimid

int32 SDgetdimid(int32 sds_id, intn dim_index)

sds_id IN: Data set identifier returned by SDcreate or SDselect

dim_index IN: Index of the dimension

Purpose Returns the identifier of a dimension given its index.

Return value Returns the dimension identifier (dim_id) if successful and FAIL (or -1)
otherwise.

Description SDgetdimid returns the identifier of the dimension specified by its index, the
parameter dim_index.

The dimension index is a nonnegative integer and is less than the total number
of data set dimensions returned by SDgetinfo.

FORTRAN integer function sfdimid(sds_id, dim_index)

integer sds_id, dim_index

SDgetdimscale/sfgdscale

June 26, 1998 2-91

HDF Reference Manual

SDgetdimscale/sfgdscale

intn SDgetdimscale(int32 dim_id, VOIDP scale_buf)

dim_id IN: Dimension identifier returned by SDgetdimid

scale_buf OUT: Buffer for the scale values

Purpose Retrieves the scale values for a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetdimscale retrieves the scale values of the dimension identified by the
parameter dim_id and stores the values in the buffer scale_buf.

SDdiminfo should be used to determine whether a scale has been set for the
dimension, i.e., that the dimension scale data type is a valid HDF data type (not 0).
Also use SDdiminfo to obtain the number of scale values for space allocation
before calling SDgetdimscale.

It is not possible to read a subset of the scale values. SDgetdimscale returns all
of the scale values stored with the given dimension.

FORTRAN integer function sfgdscale(dim_id, scale_buf)

integer dim_id

<valid numeric data type> scale_buf(*)

SDgetdimstrs/sfgdmstr National Center for Supercomputing Applications

2-92 June 26, 1998

SDgetdimstrs/sfgdmstr

intn SDgetdimstrs(int32 dim_id, char *label, char *unit, char *format, intn length)

dim_id IN: Dimension identifier returned by SDgetdimid

label OUT: Label (predefined attribute)

unit OUT: Unit (predefined attribute)

format OUT: Format (predefined attribute)

length IN: Maximum length of the above predefined attributes

Purpose Retrieves the predefined attributes of a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetdimstrs retrieves the predefined attributes associated with the dimension
identified by the parameter dim_id. The predefined attributes are label, unit,
and format. These predefined attributes are stored in the parameters label,
unit, and format, respectively. Refer to Section 3.10 of the HDF User’s Guide
for more information on predefined attributes.

If a particular data string was not stored, the first character of the
corresponding SDgetdimstrs parameter is '\0 '. Each string buffer must include
space for the null termination character. If a user does not want a string
returned, the corresponding parameter can be set to NULL in C and an empty
string in Fortran. The predefined attributes are set by SDsetdimstrs.

FORTRAN integer function sfgdmstr(dim_id, label, unit, format, length)

integer dim_id, length

character*(*) label, unit, format

SDgetfillvalue/sfgfill/sfgcfill

June 26, 1998 2-93

HDF Reference Manual

SDgetfillvalue/sfgfill/sfgcfill

intn SDgetfillvalue(int32 sds_id, VOIDP fill_value)

sds_id IN: Data set identifier returned by SDcreate or SDselect

fill_value OUT: Buffer for the returned fill value

Purpose Reads the fill value of a data set, if the value has been set.

Return value Returns SUCCEED (or 0) if a fill value is retrieved and FAIL (or -1) otherwise,
including when the fill value is not set.

Description SDgetfillvalue reads the fill value which has been set for the data set specified
by the parameter sds_id. It is assumed that the data type of the fill value is the
same as that of the data set.

Note that there are two FORTRAN-77 versions of this routine: sfgfill and
sfgcfill. The sfgfill routine reads numeric fill value data and sfgcfill reads
character fill value data.

FORTRAN integer function sfgfill(sds_id, fill_value)

integer sds_id

<valid numeric data type> fill_value

integer function sfgcfill(sds_id, fill_value)

integer sds_id

character*(*) fill_value

SDgetinfo/sfginfo National Center for Supercomputing Applications

2-94 June 26, 1998

SDgetinfo/sfginfo

intn SDgetinfo(int32 sds_id, char *sds_name, int32 *rank, int32 dimsizes[], int32 *data_type, int32
*num_attrs)

sds_id IN: Data set identifier returned by SDcreate and SDselect

sds_name OUT: Name of the data set

rank OUT: Number of dimensions in the data set

dimsizes OUT: Array containing the size of each dimension in the data set

data_type OUT: Data type for the data stored in the data set

num_attrs OUT: Number of attributes for the data set

Purpose Retrieves the name, rank, dimension sizes, data type and number of attributes
for a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetinfo retrieves the name, number of dimensions, sizes of dimensions, data
type, and number of attributes of the data set identified by sds_id, and stores
them in the parameters sds_name, rank, dimsizes, data_type, and num_attrs,
respectively.

The buffer sds_name can have at most 64 characters. If the name of the data set
is not desired, then the parameter sds_name can be set to NULL in C and an
empty string in Fortran.

The maximum value of the rank parameter is MAX_VAR_DIMS (or 32).

If the data set is created with an unlimited dimension, then in the C interface,
the first element of the dimsizes array (corresponding to the slowest-changing
dimension) contains the number of records in the unlimited dimension; in the
FORTRAN-77 interface, the last element of the dimsizes array (corresponding
to the slowest-changing dimension) contains this information. Use SDisrecord
to determine if the data set has an unlimited dimension.

FORTRAN integer function sfginfo(sds_id, sds_name, rank, dimsizes,
data_type, num_attrs)

character*(*) sds_name

integer sds_id, rank, dimsizes(*)

integer data_type, num_attrs

SDgetrange/sfgrange

June 26, 1998 2-95

HDF Reference Manual

SDgetrange/sfgrange

intn SDgetrange(int32 sds_id, VOIDP max, VOIDP min)

sds_id IN: Data set identifier returned by SDcreate or SDselect

max OUT: Maximum value of the range

min OUT: Minimum value of the range

Purpose Retrieves the maximum and minimum values of the range.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetrange retrieves the maximum value of the range into the parameter max
and the minimum value into the parameter min. The maximum and minimum
values must be previously set via a call to SDsetrange.

It is assumed that the data type for the maximum and minimum range values
are the same as that of the data.

FORTRAN integer function sfgrange(sds_id, max, min)

integer sds_id

<valid numeric data type> max, min

SDidtoref/sfid2ref National Center for Supercomputing Applications

2-96 June 26, 1998

SDidtoref/sfid2ref

int32 SDidtoref(int32 sds_id)

sds_id IN: Data set identifier returned by SDcreate or SDselect

Purpose Returns the reference number assigned to a data set.

Return value Returns the data set reference number if successful and FAIL (or -1) otherwise.

Description SDidtoref returns the reference number of the data set specified by the
parameter sds_id. The reference number is assigned by the HDF library when
the data set is created. The specified reference number can be used to add the
data set to a vgroup as well as a means of using the HDF annotations interface
to annotate the data set.

FORTRAN integer function sfid2ref(sds_id)

integer sds_id

SDiscoordvar/sfiscvar

June 26, 1998 2-97

HDF Reference Manual

SDiscoordvar/sfiscvar

intn SDiscoordvar(int32 sds_id)

sds_id IN: Data set identifier returned by SDcreate or SDselect

Purpose Determines if a data set is a coordinate variable.

Return value Returns TRUE (or 1) if the data set is a coordinate variable, and FALSE (or 0)
otherwise.

Description SDiscoordvar determines if the data set specified by the parameter sds_id is a
coordinate variable.

Coordinate variables are created to store metadata associated with dimensions.
To ensure compatibility with netCDF, coordinate variables are implemented as
data sets.

FORTRAN integer function sfiscvar(sds_id)

integer sds_id

SDisdimval_bwcomp/sfisdmvc National Center for Supercomputing Applications

2-98 June 26, 1998

SDisdimval_bwcomp/sfisdmvc

intn SDisdimval_bwcomp(int32 dim_id)

dim_id IN: Dimension identifier returned by SDgetdimid

Purpose Determines whether a dimension has the old and new representations or the
new representation only.

Refer to the HDF User’s Guide, Chapter 3, titled SD Scientific Data Sets (SD
API), for information on old and new dimension representations.

Return value Returns SD_DIMVAL_BW_COMP (or 1) if backward compatible,
SD_DIMVAL_BW_INCOMP (or 0) if incompatible, FAIL (or -1) if error.

Description SDisdimval_bwcomp will flag the dimension specified by the parameter
dim_id as backward-compatible if a vdata with a class name of “DimVal0.0”
does not exist in the vgroup for that dimension. If the vdata does exist, the
specified dimension will be identified by SDisdimval_bcomp as backward-
incompatible.

The compatibility mode can be changed by calls to SDsetdimval_comp at any
time between the calls to SDstart and SDend.

FORTRAN integer function sfisdmvc(dim_id)

integer dim_id

SDisrecord/sfisrcrd

June 26, 1998 2-99

HDF Reference Manual

SDisrecord/sfisrcrd

int32 SDisrecord(int32 sds_id)

sds_id IN: Data set identifier returned by SDcreate or SDselect

Purpose Determines whether a data set is appendable.

Return value Returns TRUE (or 1) if the data set is appendable, and FALSE (or 0) otherwise.

Description SDisrecord will determine if the data set specified by the parameter sds_id is
appendable, which means that the slowest-changing dimension was declared
unlimited when the data set was created.

FORTRAN integer sfisrcrd(sd_id)

integer sd_id

SDnametoindex/sfn2index National Center for Supercomputing Applications

2-100 June 26, 1998

SDnametoindex/sfn2index

int32 SDnametoindex(int32 sd_id, char *sds_name)

sd_id IN: SD interface identifier returned by SDstart

sds_name IN: Name of the data set

Purpose Determines the index of a data set given its name.

Return value Returns the index of the data set (sds_index) if the data set is found and FAIL

(or -1) otherwise.

Description SDnametoindex returns the index of the data set with the name specified by
the parameter sds_name. The routine does not accept wildcards in the specified
data set name. It also searches on that name in a case-sensitive manner. If there
are more than one data set with the same name, the routine will return the index
of the first one.

FORTRAN integer function sfn2index(sd_id, sds_name)

integer sd_id

character*(*) sds_name

SDreadattr/sfrnatt/sfrcatt

June 26, 1998 2-101

HDF Reference Manual

SDreadattr/sfrnatt/sfrcatt

intn SDreadattr(int32 obj_id, int32 attr_index, VOIDP attr_buf)

obj_id IN: Identifier of the object the attribute is attached to

attr_index IN: Index of the attribute to be read

attr_buf OUT: Buffer for the attribute values

Purpose Reads the values of an attribute.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDreadattr reads the values of the attribute specified by the parameter
attr_index and stores the values in the buffer attr_buf. It is assumed that the
user has called SDattrinfo to retrieve the number of attribute values and
allocate sufficient space for the buffer. Note that the routine does not read a
subset of attribute values.

The value of obj_id can be either an SD interface identifier (sd_id), returned by
SDstart, a data set identifier (sds_id), returned by SDselect, or a dimension
identifier (dim_id), returned by SDgetdimid.

The value of attr_index is a positive integer and is less than the total number of
attributes. The index value can be obtained using the routines SDnametoindex
and SDreftoindex. The total number of attributes for the object can be
obtained using the routines SDgetinfo, SDattrinfo , SDdiminfo and
SDfileinfo.

Note that this routine has two FORTRAN-77 versions: sfrnatt and sfrcatt. The
sfrnatt routine reads numeric attribute data and sfrcatt reads character
attribute data.

FORTRAN integer function sfrnatt(obj_id, attr_index, attr_buffer)

integer obj_id, attr_index

<valid numeric data> attr_buffer(*)

integer function sfrcatt(obj_id, attr_index, attr_buffer)

integer obj_id, attr_index

character*(*) attr_buffer

SDreadchunk/sfrchnk/sfrcchnk National Center for Supercomputing Applications

2-102 June 26, 1998

SDreadchunk/sfrchnk/sfrcchnk

intn SDreadchunk(int32 sds_id, int32 *origin, VOIDP datap)

sds_id IN: Data set identifier returned by SDcreate or SDselect

origin IN: Origin of the chunk to be read

datap OUT: Buffer for the chunk to be read

Purpose Reads a data chunk from a chunked data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDreadchunk reads the entire chunk of data from the chunked data set
identified by the parameter sds_id, and stores the data in the buffer datap.
Reading starts at the location specified by the parameter origin. SDreadchunk
is used when an entire chunk of data is to be read. SDreaddata is used when
the read operation is to be done regardless of the chunking scheme used in the
data set.

The parameter origin specifies the coordinates of the chunk according to the
chunk position in the chunked array. Refer to the Chapter 3 of the HDF User’s
Guide, titled Scientific Data Sets (SD API), for a description of the
organization of chunks in a data set.

SDreadchunk will return FAIL (or -1) when an attempt is made to read from a
non-chunked data set.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (sfrchnk) and one for character data (sfrcchnk).

FORTRAN integer sfrchnk(sds_id, origin, datap)

integer sds_id, origin(*)

<valid numeric data type> datap(*)

integer sfrcchnk(sds_id, origin, datap)

integer sds_id, origin(*)

character*(*) datap(*)

SDreaddata/sfrdata/sfrcdata

June 26, 1998 2-103

HDF Reference Manual

SDreaddata/sfrdata/sfrcdata

intn SDreaddata(int32 sds_id, int32 start[], int32 stride[], int32 edge[], VOIDP buffer)

sds_id IN: Data set identifier returned by SDcreate or SDselect

start IN: Array specifying the starting location from where data is read

stride IN: Array specifying the interval between the values that will be read
along each dimension

edge IN: Array specifying the number of values to be read along each
dimension

buffer OUT: Buffer to store the data read

Purpose Reads a subsample of data from a data set or coordinate variable.

Return value Returns SUCCEED (or 0) if successful or if the data set or coordinate variable
contains no data and FAIL (or -1) otherwise.

Description SDreaddata reads the specified subsample of data from the data set or
coordinate variable identified by the parameter sds_id. The read data is stored
in the buffer buffer. The subsample is defined by the parameters start, stride
and edge.

The array start specifies the starting position from where the subsample will be
read. Valid values of each element in the array start are from 0 to the size of the
corresponding dimension of the data set - 1. The dimension sizes are returned
by SDgetinfo.

The array edge specifies the number of values to read along each data set
dimension.

The array stride specifies the reading pattern along each dimension. For
example, if one of the elements of the array stride is 1, then every element
along the corresponding dimension of the data set will be read. If one of the
elements of the array stride is 2, then every other element along the
corresponding dimension of the data set will be read, and so on. Specifying
stride value of NULL in the C interface or setting all values of the array stride
to 1 in either interface specifies the contiguous reading of data. If all values in
the array stride are set to 0, SDreaddata returns FAIL (or -1). No matter what
stride value is provided, data is always placed contiguously in the buffer.

When reading data from a “chunked” data set using SDreaddata,
consideration should be given to the issues presented in the section on
chunking in Chapter 3 of the HDF User’s Manual, titled Scientific Data Sets
(SD API) and Chapter 13 of the HDF User’s Manual, titled HDF Performance
Issues.

Note that there are two FORTRAN-77 versions of this routine; sfrdata and
sfrcdata. The sfrdata routine reads numeric scientific data and sfrcdata reads
character scientific data.

SDreaddata/sfrdata/sfrcdata National Center for Supercomputing Applications

2-104 June 26, 1998

FORTRAN integer function sfrdata(sds_id, start, stride, edge, buffer)

integer sds_id, start(*), stride(*), edge(*)

<valid numeric data type> buffer(*)

integer function sfrcdata(sds_id, start, stride, edge, buffer)

integer sds_id, start(*), stride(*), edge(*)

character*(*) buffer

SDreftoindex/sfref2index

June 26, 1998 2-105

HDF Reference Manual

SDreftoindex/sfref2index

int32 SDreftoindex(int32 sd_id, int32 sds_ref)

sd_id IN: SD interface identifier returned by SDstart

sds_ref IN: Reference number of the data set

Purpose Returns the index of a data set given the reference number.

Return value Returns the index of the data set (sds_index) if the data set is found and FAIL

(or -1) otherwise.

Description SDreftoindex returns the index of a data set identified by its reference number,
sds_ref.

The value of sds_index returned by SDreftoindex can be passed to SDselect to
obtain a data set identifier (sds_id).

FORTRAN integer function sfref2index(sd_id, sds_ref)

integer sd_id, sds_ref

SDselect/sfselect National Center for Supercomputing Applications

2-106 June 26, 1998

SDselect/sfselect

int32 SDselect(int32 sd_id, int32 sds_index)

sd_id IN: SD interface identifier returned by SDstart

sds_index IN: Index of the data set

Purpose Obtains the data set identifier (sds_id) of a data set.

Return value Returns the data set identifier (sds_id) if successful and FAIL (or -1)
otherwise.

Description SDselect obtains the data set identifier (sds_id) of the data set specified by its
index, sds_index.

The integration with netCDF has required that a dimension (or coordinate
variable) is stored as a data set in the file. Therefore, the value of sds_index
may correspond to the coordinate variable instead of the actual data set. Users
should use the routine SDiscoordvar to determine whether the given data set is
a coordinate variable.

The value of sds_index is greater than or equal to 0 and less than the number of
data sets in the file. The total number of data sets in a file may be obtained
from a call to SDfileinfo. The SDnametoindex routine can be used to find the
index of a data set if its name is known.

FORTRAN integer function sfselect(sd_id, sds_index)

integer sd_id, sds_index

SDsetattr/sfsnatt/sfscatt

June 26, 1998 2-107

HDF Reference Manual

SDsetattr/sfsnatt/sfscatt

intn SDsetattr(int32 obj_id, char *attr_name, int32 data_type, int32 count, VOIDP values)

obj_id IN: Identifier of the object the attribute is to be attached to

attr_name IN: Name of the attribute

data_type IN: Data type of the values in the attribute

count IN: Total number of values to be stored in the attribute

values IN: Data values to be stored in the attribute

Purpose Attaches an attribute to an object.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetattr attaches the attribute to the object specified by the obj_id parameter.
The attribute is defined by its name, attr_name, data type, data_type, number
of attribute values, count, and the attribute values, values. SDsetattr provides a
generic way for users to define metadata. It implements the label = value data
abstraction.

The value of obj_id can be an SD interface identifier (sd_id), returned by
SDcreate, a data set identifier (sds_id), returned by SDselect, or a dimension
identifier (dim_id), returned by SDgetdimid.

If an SD interface identifier (sd_id) is specified as the obj_id parameter, a
global attribute is created which applies to all objects in the file. If a data set
identifier (sds_id) is specified as the obj_id parameter, an attribute is attached
to the specified data set. If a dimension identifier (dim_id) is specified as the
obj_id parameter, an attribute is attached to the specified dimension.

The attr_name argument can be any ASCII string.

The data_type parameter can contain any data type supported by the HDF
library. These data types are listed in Table 1A in Section I of this manual.

Attribute values are passed in the parameter values. The number of attribute
values is defined by the count parameter. If more than one value is stored, all
values must have the same data type. If an attribute with the given name, data
type and number of values exists, it will be overwritten.

Note that there are two FORTRAN-77 versions of this routine; sfsnatt and
sfscatt. The sfsnatt routine writes numeric attribute data and sfscatt writes
character attribute data.

FORTRAN integer function sfsnatt(obj_id, attr_name, data_type, count,
values)

integer obj_id, data_type, count

SDsetattr/sfsnatt/sfscatt National Center for Supercomputing Applications

2-108 June 26, 1998

character*(*) attr_name

<valid numeric data type> values(*)

integer function sfscatt(obj_id, attr_name, data_type, count,
values)

integer obj_id, data_type, count

character*(*) attr_name, values

SDsetblocksize/sfsblsz

June 26, 1998 2-109

HDF Reference Manual

SDsetblocksize/sfsblsz

intn SDsetblocksize(int32 sd_id, int32 block_size)

sd_id IN: SD interface identifier returned by SDstart

block_size IN: Size of the block in bytes

Purpose Sets the block size used for storing data sets with unlimited dimensions.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetblocksize sets the block size defined in the parameter block_size for all
data sets in the file. SDsetblocksize is used when creating new data sets only;
it has no effect on pre-existing data sets.

SDsetblocksize must be used after calls to SDcreate or SDselect and before
the call to SDwritedata.

The block_size parameter should be set to a multiple of the desired buffer size.

FORTRAN integer sfsblsz(sd_id, block_size)

integer sd_id, block_size

SDsetcal/sfscal National Center for Supercomputing Applications

2-110 June 26, 1998

SDsetcal/sfscal

intn SDsetcal(int32 sds_id, float64 cal, float64 cal_err, float64 offset, float64 offset_err, int32
data_type)

sds_id IN: Data set identifier returned by SDcreate or SDselect

cal IN: Calibration factor

cal_err IN: Calibration error

offset IN: Uncalibrated offset

offset_err IN: Uncalibrated offset error

data_type IN: Data type of uncalibrated data

Purpose Sets the calibration information.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetcal stores the calibration record associated with a data set. A calibration
record contains the following information:

cal Calibration factor

cal_err Calibration error

offset Uncalibrated offset

offset_err Uncalibrated offset error

data_type Data type of uncalibrated data

The relationship between a value cal_value stored in a data set and the
original value is defined as: orig_value = cal * (cal_value - offset).

The variable offset_err contains a potential error of offset , and cal_err

contains a potential error of cal . Currently the calibration record is provided
for information only. The SD interface performs no operations on the data
based on the calibration tag.

The calibration information is automatically cleared after a call to SDreaddata
or SDwritedata. Therefore, SDsetcal must be called once for each data set that
is to be read or written.

FORTRAN integer function sfscal(sds_id, cal, cal_err, offset, offset_err,
data_type)

SDsetcal/sfscal

June 26, 1998 2-111

HDF Reference Manual

integer sds_id, data_type

real*8 cal, cal_err, offset, offset_err

SDsetchunk/sfschnk National Center for Supercomputing Applications

2-112 June 26, 1998

SDsetchunk/sfschnk

intn s(int32 sds_id, HDF_CHUNK_DEF cdef, int32 flag)

sds_id IN: Data set identifier returned by SDcreate or SDselect

C only:

cdef IN: Pointer to the chunk definition

flag IN: Compression flag

Fortran only:

dim_length IN: Chunk dimensions array

comp_flag IN: Type of compression

comp_prm IN: Compression parameters array

Purpose Sets the chunk size and the compression method, if any, of a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetchunk makes the data set specified by the parameter sds_id a chunked
data set according to the chunking and compression information provided in
the parameters cdef and flag in C, and in the parameters comp_type and
comp_prm in Fortran.

C only:

The parameter flag specifies the type of the data set, i.e., if the data set is
chunked or chunked and compressed with either RLE, Skipping Huffman,
GZIP or NBIT compression methods. Valid values of flag are HDF_CHUNK for a
chunked data set, HDF_CHUNK | HDF_COMP for a chunked data set compressed
with RLE, Skipping Huffman and GZIP compression methods, and
HDF_CHUNK | HDF_NBIT for a chunked NBIT-compressed data set.

Chunking and compression information is passed in the parameter cdef. The
parameter cdef has a type of HDF_CHUNK_DEF, defined in the HDF library as
follows:

SDsetchunk/sfschnk

June 26, 1998 2-113

HDF Reference Manual

typedef union hdf_chunk_def_u
 {
 int32 chunk_lengths[2]; /* chunk lengths along each dim */

 struct
 {
 int32 chunk_lengths[2];
 int32 comp_type; /* compression type */
 struct comp_info cinfo;
 } comp;

 struct
 {
 int32 chunk_lengths[2];
 intn start_bit;
 intn bit_len;
 intn sign_ext;
 intn fill_one;
 } nbit;
 } HDF_CHUNK_DEF

There are three pieces of chunking and compression information which should
be specified: chunking dimensions, compression type, and, if needed,
compression parameters.

If the data set is chunked, i.e., flag value is HDF_CHUNK, then chunk_lengths[]

elements of cdef union (cdef.chunk_lengths []) have to be initialized to the
chunk dimensions.

If data set is chunked and compressed using RLE, Skipping Huffman or GZIP
methods (i.e., flag value is set up to HDF_CHUNK | HDF_COMP), then the
elements chunk_lengths[] of the structure comp in the union cdef
(cdef.comp.chunk_lengths []) have to be initialized to the chunk dimensions.

If data set is chunked and NBIT compression is applied (i.e., flag values is set
up to HDF_CHUNK | HDF_NBIT), then the elements chunk_lengths[] of the
structure nbit in the union cdef (cdef.nbit.chunk_lengths []) have to be
initialized to the chunk dimensions.

Compression types are passed in the field comp_type of the structure cinfo ,
which is an element of the structure comp in the union cdef
(cdef.comp.cinfo.comp_type). Valid compression types are: COMP_CODE_RLE

for RLE, COMP_CODE_SKPHUFF for Skipping Huffman, COMP_CODE_DEFLATE for
GZIP compression.

For Skipping Huffman and GZIP compression parameters are passed in
corresponding fields of the structure cinfo . Specify skipping size for Skipping
Huffman compression in the field cdef.comp.cinfo.skphuff.skp_size .
Specify deflate level for GZIP compression in the field
cdef.comp.cinfo.deflate_level . Valid values of deflate levels are integers
between 1 and 9 inclusive.

Refer to the SDsetcompress page in this manual for the definition of the
structure comp_info .

NBIT compression parameters are specified in the fields start_bit , bit_len ,
sign_ext , and fill_one in the structure nbit of the union cdef.

SDsetchunk/sfschnk National Center for Supercomputing Applications

2-114 June 26, 1998

Fortran only:

The dim_length array specifies the chunk dimensions.

The comp_type parameter specifies the compression type. Valid compression
types and their values are defined in the hdf.inc file, and are listed below.

COMP_CODE_NONE (or 0) for uncompressed data
COMP_CODE_RLE (or 1) for data compressed using the RLE compression
 algorithm
COMP_CODE_NBIT (or 2) for data compressed using the NBIT compression
 algorithm
COMP_CODE_SKPHUFF (or 3) for data compressed using the Skipping Huffman
 compression algorithm
COMP_CODE_DEFLATE (or 4) for data compressed using the GZIP compression
 algorithm

The comp_prm(1) parameter specifies the skipping size for the Skipping
Huffman compression method and the deflate level for the GZIP compression
method.

For NBIT compression, the four elements of the array comp_prm correspond
to the four NBIT compression parameters listed in the structure nbit . The
value of comp_prm(1) should be set to the value of start_bit , the value of
comp_prm(2) should be set to the value of bit_len , the value of comp_prm(3)
should be set to the value of sign_ext , and the value of comp_prm(4) should
be set to the value of fill_one . See the HDF_CHUNK_DEF union description and
the description of SDsetnbitdataset function for NBIT compression
parameters definitions.

FORTRAN integer sfschnk(sds_id, dim_length, comp_type, comp_prm)

integer sds_id, dim_length, comp_type, comp_prm(*)

SDsetchunkcache/sfscchnk

June 26, 1998 2-115

HDF Reference Manual

SDsetchunkcache/sfscchnk

intn SDsetchunkcache(int32 sds_id, int32 maxcache, int32 flag)

sds_id IN: Data set identifier returned by SDcreate or SDselect

maxcache IN: Maximum number of chunks in the cache

flag IN: Flag determining the behavior of the routine

Purpose Sets the size of the chunk cache.

Return value Returns the maximum number of chunks that can be cached (the value of the
parameter maxcache) if successful and FAIL (or -1) otherwise.

Description SDsetchunkcache sets the size of the chunk cache to the value of the
parameter maxcache.

Currently the only allowed value of the parameter flag is 0, which designates
default operation.

By default, when a generic data set is promoted to be a chunked data set, the
parameter maxcache is set to the number of chunks along the fastest changing
dimension and a cache for the chunks is created.

If the chunk cache is full and the value of the parameter maxcache is greater
then the current maxcache value, then the chunk cache is reset to the new value
of maxcache. Otherwise the chunk cache remains at the current value of
maxcache. If the chunk cache is not full, then the chunk cache is set to the new
value of maxcache only if the new maxcache value is greater than the current
number of chunks in the cache.

Do not set the value of maxcache to be less than the number of chunks along
the fastest-changing dimension of the biggest slab to be written or read via
SDreaddata or SDwritedata. Doing this will cause internal thrashing. See the
section on chunking in Chapter 13 of the HDF User’s Guide, titled HDF
Performance Issues, for more information on this.

FORTRAN integer sfscchnk(sds_id, maxcache, flag)

integer sds_id, maxcache, flag

SDsetcompress/sfscompress National Center for Supercomputing Applications

2-116 June 26, 1998

SDsetcompress/sfscompress

intn SDsetcompress(int32 sds_id, int32 comp_type, comp_info *c_info)

sds_id IN: Data set identifier returned by SDcreate or SDselect

comp_type IN: Compression method

C only:

c_info IN: Pointer to the comp_info union

Fortran only:

comp_prm IN: Compression parameters array

Purpose Compresses the data set with the specified compression method.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetcompress compresses the data set identified by the parameter sds_id
according to the compression method specified by the parameter comp_type and
the compression information specified by the parameter c_info in C and
comp_prm in Fortran. SDsetcompress compresses the data set data at the time it
is called, not during the next call to SDwritedata.

SDsetcompress is a simplified interface to the HCcreate routine and should be
used instead of HCcreate unless the user is familiar with working with the
lower-level routines.

The parameter comp_type is the compression type definition and is set to
COMP_CODE_RLE (or 1) for run-length encoding (RLE), COMP_CODE_SKPHUFF (or
3) for Skipping Huffman, COMP_CODE_DEFLATE (or 4) for GZIP compression, or
COMP_CODE_NONE (or 0) for no compression.

The parameter c_info is a pointer to a union structure of type comp_info . This
union structure is defined as follows:

SDsetcompress/sfscompress

June 26, 1998 2-117

HDF Reference Manual

typedef union tag_comp_info
{

struct
{

/* Not used by SDsetcompress */
} jpeg;

struct
{

/* Not used by SDsetcompress */
} nbit;

struct
{ /* struct to contain info about how to compress */

 /* size of the elements when skipping */
intn skp_size;

} skphuff;

struct
{ /* struct to contain info about how to compress */

 /* or decompress a gzip encoded dataset */
 /* how hard to work when compressing data */

intn level;
} deflate;

} comp_info;

The skipping size for the Skipping Huffman algorithm is specified in the field
c_info.skphuff.skp_size in C and in the parameter comp_prm(1) in
Fortran.

The deflate level for the GZIP algorithm is specified in the
c_info.deflate.level field in C and in the parameter comp_prm(1) in the
Fortran.

FORTRAN integer sfscompress(sds_id, comp_type, comp_prm)

integer sds_id, comp_type, comp_prm(*)

SDsetdatastrs/sfsdtstr National Center for Supercomputing Applications

2-118 June 26, 1998

SDsetdatastrs/sfsdtstr

intn SDsetdatastrs(int32 sds_id, char *label, char *unit, char *format, char *coordsys)

sds_id IN: Data set identifier returned by SDcreate or SDselect

label IN: Label (predefined attribute)

unit IN: Unit (predefined attribute)

format IN: Format (predefined attribute)

coordsys IN: Coordinate system (predefined attribute)

Purpose Sets the predefined attributes for a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetdatastrs sets the predefined attributes of the data set, identified by
sds_id, to the values specified in the parameters label, unit, format and
coordsys. The predefined attributes are label, unit, format, and coordinate
system. If the user does not want a string returned, the corresponding
parameter can be set to NULL in C and an empty string in Fortran.

For more information about predefined attributes, refer to Section 3.10 of the
HDF User’s Guide.

FORTRAN integer function sfsdtstr(sds_id, label, unit, format, coordsys)

integer sds_id

character*(*) label, unit, format, coordsys

SDsetdimname/sfsdmname

June 26, 1998 2-119

HDF Reference Manual

SDsetdimname/sfsdmname

intn SDsetdimname(int32 dim_id, char *dim_name)

dim_id IN: Dimension identifier returned by SDgetdimid

dim_name IN: Name of the dimension

Purpose Assigns a name to a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetdimname sets the name of the dimension identified by the parameter
dim_id to the value specified in the parameter dim_name. Dimensions that are
not explicitly named by the user will have the default name of “fakeDim[x]”
specified by the HDF library, where [x] denotes the dimension index.

If another dimension exists with the same name it is assumed that they refer to
the same dimension object and changes to one will be reflected in the other. If
the dimension with the same name has a different size, an error condition will
result.

Naming dimensions is optional but encouraged.

The length of the parameter dim_name can be at most 64 characters.

FORTRAN integer function sfsdmname(dim_id, dim_name)

integer dim_id

character*(*) dim_name

SDsetdimscale/sfsdscale National Center for Supercomputing Applications

2-120 June 26, 1998

SDsetdimscale/sfsdscale

intn SDsetdimscale(int32 dim_id, int32 count, int32 data_type, VOIDP data)

dim_id IN: Dimension identifier returned by SDgetdimid

count IN: Total number of values along the dimension

data_type IN: Data type of the values along the dimension

data IN: Value of each increment along the dimension

Purpose Stores the values of a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetdimscale stores scale information for the dimension identified by the
parameter dim_id. Note that it is possible to store dimension scale values
without naming the dimension.

For fixed-size arrays, the value of count must be equal to the the dimension
size or the routine will fail.

Note that, due to the existence of the parameter data_type, the dimension
scales need not have the same data type as the data set.

FORTRAN integer function sfsdscale(dim_id, count, data_type, data)

integer dim_id, count, data_type

<valid data type> data(*)

SDsetdimstrs/sfsdmstr

June 26, 1998 2-121

HDF Reference Manual

SDsetdimstrs/sfsdmstr

intn SDsetdimstrs(int32 dim_id, char *label, char *unit, char *format)

dim_id IN: Dimension identifier returned by SDgetdimid

label IN: Label (predefined attribute)

unit IN: Unit (predefined attribute)

format IN: Format (predefined attribute)

Purpose Sets the predefined attribute of a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetdimstrs sets the predefined attribute (label, unit, and format) for a
dimension and its scale to the values specified in the parameters label, unit and
format. If a parameter is set to NULL in C and an empty string in Fortran, then
the attribute corresponding to that parameter will not be written. For more
information about predefined attributes, refer to Section 3.10 of the HDF
User’s Guide.

FORTRAN integer function sfsdmstr(dim_id, label, unit, format)

integer dim_id

character*(*) label, unit, format

SDsetdimval_comp/sfsdmvc National Center for Supercomputing Applications

2-122 June 26, 1998

SDsetdimval_comp/sfsdmvc

intn SDsetdimval_comp(int32 dim_id, intn comp_mode)

dim_id IN: Dimension identifier returned by SDgetdimid

comp_mode IN: Compatibility mode to be set

Purpose Determines whether a dimension will have the old and new representations or
the new representation only.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetdimval_comp sets the compatibility mode specified by the comp_mode
parameter for the dimension identified by the dim_id parameter. The two
possible compatibility modes are: “backward-compatible” mode, which
implies that the old and new dimension representations are written to the file,
and “backward-incompatible” mode, which implies that only the new
dimension representation is written to the file.

Unlimited dimensions are always backward-compatible, therefore
SDsetdimval_comp takes no action on unlimited dimensions.

As of HDF version 4.1r1, the default mode is backward-incompatible.
Subsequent calls to SDsetdimval_comp will override the settings established
in previous calls to the routine.

The comp_mode parameter can be set to SD_DIMVAL_BW_COMP (or 1), which
specifies backward-compatible mode, or SD_DIMVAL_BW_INCOMP (or 0), which
specifies backward-incompatible mode.

FORTRAN integer function sfsdmvc(dim_id, comp_mode)

integer dim_id, comp_mode

SDsetexternalfile/sfsextf

June 26, 1998 2-123

HDF Reference Manual

SDsetexternalfile/sfsextf

intn SDsetexternalfile(int32 sds_id, char *filename, int32 offset)

sds_id IN: Data set identifier returned by SDcreate or SDselect

filename IN: Name of the external file

offset IN: Number of bytes from the beginning of the external file to where the
data will be written

Purpose Stores data in an external file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetexternalfile allows users to move the actual data values (i.e., not
metadata) of a data set, sds_id, into the external data file named by the
parameter filename, and started at the offset specified by the parameter offset.
The metadata remains in the original file. Note that this routine works only
with HDF post-version 3.2 files.

Data can only be moved once for any given data set, and it is the user's
responsibility to make sure the external data file is kept with the “original” file.

If the data set already exists, its data will be moved to the external file. Space
occupied by the data in the primary file will not be released. To release the
space in the primary file use the hdfpack command-line utility. If the data set
does not exist, its data will be written to the external file during the consequent
calls to SDwritedata.

See the Reference Manual entries for HXsetcreatedir and HXsetdir for more
information on the options available for accessing external files.

FORTRAN integer function sfsextf(sds_id, file_name, offset)

integer sds_id, offset

character*(*) file_name

SDsetfillmode/sfsflmd National Center for Supercomputing Applications

2-124 June 26, 1998

SDsetfillmode/sfsflmd

intn SDsetfillmode(int32 sd_id, intn fill_mode)

sd_id IN: SD interface identifier returned by SDstart

fill_mode IN: Fill mode

Purpose Sets the current fill mode of a file.

Return value Returns the fill mode value before it was reset if successful and FAIL (or -1)
otherwise.

Description SDsetfillmode applies the fill mode specified by the parameter fill_mode to all
data sets contained in the file identified by the parameter sd_id.

Possible values of fill_mode are SD_FILL (or 0) and SD_NOFILL (or 256).
SD_FILL is the default mode, and indicates that fill values will be written when
the data set is created. SD_NOFILL indicates that fill values will not be written.

When a data set without unlimited dimensions is created, by default the first
SDwritedata call will fill the entire data set with the default or user-defined
fill value (set by SDsetfillvalue). In data sets with an unlimited dimension , if a
new write operation takes place along the unlimited dimension beyond the last
location of the previous write operation, the array locations between these
written areas will be initialized to the user-defined fill value, or the default fill
value if a user-defined fill value has not been specified.

If it is certain that all data set values will be written before any read operation
takes place, there is no need to write the fill values. Simply call SDsetfillmode
with fill_mode value set to SD_NOFILL, which will eliminate all fill value write
operations to the data set. For large data sets, this can improve the speed by
almost 50%.

FORTRAN integer function sfsflmd(sd_id, fill_mode)

integer sd_id, fill_mode

SDsetfillvalue/sfsfill/sfscfill

June 26, 1998 2-125

HDF Reference Manual

SDsetfillvalue/sfsfill/sfscfill

intn SDsetfillvalue(int32 sds_id, VOIDP fill_value)

sds_id IN: Data set identifier returned by SDcreate or SDselect

fill_value IN: Fill value

Purpose Sets the fill value for a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetfillvalue sets the fill value specified by the fill_value parameter for the
data set identified by the sds_id parameter.

The fill value is assumed to have the same data type as the data set.

It is recommended to call SDsetfillvalue before writing data.

FORTRAN integer function sfsfill(sds_id, fill_value)

integer sds_id

<valid numeric data type> fill_value

integer function sfscfill(sds_id, fill_value)

integer sds_id

character*(*) fill_value

SDsetnbitdataset/sfsnbit National Center for Supercomputing Applications

2-126 June 26, 1998

SDsetnbitdataset/sfsnbit

intn SDsetnbitdataset(int32 sds_id, intn start_bit, intn bit_len, intn sign_ext, intn fill_one)

sds_id IN: Data set identifier returned by SDcreate or SDselect

start_bit IN: Leftmost bit of the field to be written

bit_len IN: Length of the bit field to be written

sign_ext IN: Sign extend specifier

fill_one IN: Background bit specifier

Purpose Specifies a non-standard bit length for the data set values.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetnbitdataset allows the HDF user to specify that the data set identified by
the parameter sds_id contains data of a non-standard length defined by the
parameters start_bit and bit_len. Additional information about the non-
standard bit length decoding are specified in the parameters sign_ext and
fill_one.

Any length between 1 and 32 bits can be specified. After SDsetnbitdataset has
been called for the data set array, any read or write operations will involve a
conversion between the new data length of the data set array and the data
length of the read or write buffer.

Bit lengths of all data types are counted from the right of the bit field starting
with 0. In a bit field containing the values 01111011 , bits 2 and 7 are set to 0

and all the other bits are set to 1.

The start_bit parameter specifies the leftmost position of the variable-length
bit field to be written. For example, in the bit field described in the preceding
paragraph a start_bit parameter set to 4 would correspond to the fourth bit
value of 1 from the right.

The bit_len parameter specifies the number of bits of the variable-length bit
field to be written. This number includes the starting bit and the count proceeds
toward the right end of the bit field - toward the lower-bit numbers. For
example, starting at bit 5 and writing 4 bits of the bit field described in the
preceding paragraph would result in the bit field 1110 being written to the data
set. This would correspond to a start_bit value of 5 and a bit_len value of 4.

The sign_ext parameter specifies whether to use the leftmost bit of the
variable-length bit field to sign-extend to the leftmost bit of the data set data.
For example, if 9-bit signed integer data is extracted from bits 17-25 and the bit
in position 25 is 1, then when the data is read back from disk, bits 26-31 will be
set to 1. Otherwise bit 25 will be 0 and bits 26-31 will be set to 0. The sign_ext
parameter can be set to TRUE (or 1) or FALSE (or 0) - specify TRUE to sign-
extend.

SDsetnbitdataset/sfsnbit

June 26, 1998 2-127

HDF Reference Manual

The fill_one specifies whether to fill the “background” bits with the value 1 or
0. This parameter can also be set to TRUE or FALSE.

The “background” bits of a variable-length data set are the bits that fall outside
of the variable-length bit field stored on disk. For example, if five bits of an
unsigned 16-bit integer data set located in bits 5 to 9 are written to disk with
the fill_one parameter set to TRUE (or 1), then when the data is reread into
memory bits 0 to 4 and 10 to 15 would be set to 1. If the same 5-bit data was
written with a fill_one value of FALSE (or 0), then bits 0 to 4 and 10 to 15 would
be set to 0.

This bit operation is performed before the sign-extend bit-filling. For example,
using the sign_ext example above, bits 0 to 16 and 26 to 31 will first be set to
the “background” bit value, and then bits 26 to 31 will be set to 1 or 0 based on
the value of the 25th bit.

FORTRAN integer function sfsnbit(sds_id, start_bit, bit_len, sign_ext,
fill_one)

integer sds_id, start_bit, bit_len, sign_ext, fill_one

SDsetrange/sfsrange National Center for Supercomputing Applications

2-128 June 26, 1998

SDsetrange/sfsrange

intn SDsetrange(int32 sds_id, VOIDP max, VOIDP min)

sds_id IN: Data set identifier returned by SDcreate or SDselect

max IN: Maximum value of the range

min IN: Minimum value of the range

Purpose Sets the maximum and minimum range values for a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetrange sets the maximum and minimum range values of the data set
identified by the parameter sds_id with the values of the parameters max and
min. The term “range” is used here to describe the range of numeric values
stored in a data set.

It is assumed that the data type for the maximum and minimum range values
are the same as the data type of the data.

This routine does not compute the maximum and minimum range values, it
only stores the values as given. As a result, the maximum and minimum range
values may not always reflect the actual maximum and minimum range values
in the data set data.

FORTRAN integer function sfsrange(sds_id, max, min)

integer sds_id

<valid numeric data type> max, min

SDstart/sfstart

June 26, 1998 2-129

HDF Reference Manual

SDstart/sfstart

int32 SDstart(char *filename, int32 access_mode)

filename IN: Name of the HDF file

access_mode IN: The file access mode in effect during the current session

Purpose Opens an HDF file and initializes an SD interface.

Return value Returns an SD interface identifier if successful and FAIL (or -1) otherwise.

Description SDstart opens the file with the name specified by the parameter filename, with
the access mode specified by the parameter access_mode, and returns an SD
interface identifier (sd_id). This routine must be called for each file before any
other SD calls can be made on that file.

The type of identifier returned by SDstart is currently not the same as the
identifier returned by Hopen. As a result, the SD interface identifiers (sd_id)
returned by this routine are not understood by other HDF interfaces.

To mix SD API calls and other HDF API calls, use SDstart and Hopen on the
same file. SDstart must precede all SD calls, and Hopen must precede all
other HDF function calls. To terminate access to the file, use SDend to dispose
of the SD interface identifier, sd_id, and Hclose to dispose of the file identifier,
file_id.

The file identified by the parameter filename can be any one of the following:
an XDR-based netCDF file, “old-style” DFSD file or a “new-style” SD file.

The value of the parameter access_mode can be one of the following:

DFACC_READ - Open existing file for read-only access. If the file does not exist,
specifying this mode will cause SDstart to return FAIL (or -1).
DFACC_WRITE - Open existing file for read and write access. If the file does not exist,
specifying this mode will cause SDstart to return FAIL (or -1).
DFACC_CREATE - Create a new file with read and write access. If the file has already
existed, its contents will be replaced.

FORTRAN integer function sfstart(filename, access_mode)

character*(*) filename

integer access_mode

SDwritechunk/sfwchnk/sfwcchnk National Center for Supercomputing Applications

2-130 June 26, 1998

SDwritechunk/sfwchnk/sfwcchnk

intn SDwritechunk(int32 sds_id, int32 *origin, VOIDP datap)

sds_id IN: Data set identifier returned by SDcreate or SDselect

origin IN: Origin of the chunk to be written

datap IN: Buffer for the chunk data to be written

Purpose Writes a data chunk to a chunked data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDwritechunk writes the entire chunk of data stored in the buffer datap to the
chunked data set identified by the parameter sds_id. Writing starts at the
location specified by the parameter origin. SDwritechunk is used when an
entire chunk of data is to be written. SDwritedata is used when the write
operation is to be done regardless of the chunking scheme used in the data set.

SDwritechunk will return FAIL (or -1) when an attempt is made to use it to
write to a non-chunked data set.

The parameter origin specifies the coordinates of the chunk according to the
chunk position in the overall chunk array. Refer to Chapter 3 of the HDF
User’s Guide, titled Scientific Data Sets (SD API), for a description of the
organization of chunks in a data set.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (sfwchnk) and one for character data (sfwcchnk).

FORTRAN integer sfwchnk(sds_id, origin, datap)

integer sds_id, origin

<valid numeric data type> datap(*)

integer sfwcchnk(sds_id, origin, datap)

integer sds_id, origin

character*(*) datap(*)

SDwritedata/sfwdata/sfwcdata

June 26, 1998 2-131

HDF Reference Manual

SDwritedata/sfwdata/sfwcdata

intn SDwritedata(int32 sds_id, int32 start[], int32 stride[], int32 edge[], VOIDP buffer)

sds_id IN: Data set identifier returned by SDcreate or SDselect

start IN: Array specifying the starting location of the data to be written

stride IN: Array specifying the number of values to skip along each dimension

edge IN: Array specifying the number of values to be written along each
dimension

buffer IN: Buffer for the values to be written

Purpose Writes a subsample of data to a data set or to a coordinate variable.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDwritedata writes the specified subsample of data to the data set or
coordinate variable identified by the parameter sds_id. The data is written
from the buffer buffer. The subsample is defined by the parameters start, stride
and edge.

The array start specifies the starting position from where the subsample will
be written. Valid values of each element in the array start are from 0 to the size
of the corresponding dimension of the data set - 1. The dimension sizes are
returned by SDgetinfo.

The array edge specifies the number of values to write along each data set
dimension.

The array stride specifies the writing pattern along each dimension. For
example, if one of the elements of the array stride is 1, then every element
along the corresponding dimension of the data set will be written. If one of the
elements of the array stride is 2, then every other element along the
corresponding dimension of the data set will be written, and so on. Specifying
stride value of NULL in the C interface or setting all values of the array stride
to 1 in either interface specifies the contiguous writing of data. If all values in
the array stride are set to 0, SDwritedata returns FAIL (or -1).

When writing data to a chunked data set using SDwritedata, consideration
should be given to be issues presented in the section on chunking in Chapter 3
of the HDF User’s Manual, titled Scientific Data Sets (SD API) and Chapter 13
of the HDF User’s Manual, titled HDF Performance Issues.

Note that there are two FORTRAN-77 versions of this routine; sfwdata and
sfwcdata. The sfwdata routine writes numeric data and sfwcdata writes
character scientific data.

FORTRAN integer function sfwdata(sds_id, start, stride, edge, buffer)

SDwritedata/sfwdata/sfwcdata National Center for Supercomputing Applications

2-132 June 26, 1998

integer sds_id

integer start(*), stride(*), edge(*)

<valid numeric data type> buffer(*)

integer function sfwcdata(sds_id, start, stride, edge, buffer)

integer sds_id

integer start(*), stride(*), edge(*)

character*(*) buffer(*)

