
TM

HDF Reference Manual
Version 4.1r2 • March 1998

NCSA HDF source code and documentation are in the public domain. Specifically, we give to the public domain
all rights for future licensing of the source code, all resale rights, and all publishing rights.

We ask, but do not require, that the following message be included in all derived works: Portions developed at the
National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.

Disclaimer
The University of Illinois gives no warranty, express or implied, for the software and/or documentation provided,
including, without limitation, warranty of merchantibility and warranty of fitness for a particular purpose.

Trademarks
Sun is a registered trademark, and Sun Workstation, Sun/OS and Solaris are trademarks of Sun Microsystems Inc.
/ UNIX is a registered trademark of X/Open / VAX and VMS are trademarks of Digital Equipment Corporation /
Macintosh is a trademark of Apple Computer, Inc. / CRAY and UNICOS are registered trademarks of Silicon
Graphics , Inc. / IBM PC is a registered trademark of International Business Machines Corporation ./ MS-DOS is
a registered trademark of Microsoft Corporation.

Authors
Mike Folk - mfolk@ncsa.uiuc.edu

Barbara Jones - bljones@ncsa.uiuc.edu

Elena Pourmal - epourmal@ncsa.uiuc.edu

Binh-Minh Ribler - bmribler@ncsa.uiuc.edu

William Whitehouse - whitehou@ncsa.uiuc.edu

Shiming Xu - sxu@ncsa.uiuc.edu

NCSA Contacts
Mail user feedback, bug reports, and questions to:

Software Development Division
NCSA HDF
152 Computing Applications Bldg.
605 E. Springfield Ave.
Champaign, IL 61820-5518

Send electronic correspondence and bug reports to the following:

hdfhelp@ncsa.uiuc.edu

Hardcopy Source
Hardcopies of HDF documentation can be obtained through Fortner Software LLC. They have a Web page where
orders may be placed at

http://www.fortner.com/docs/order_form.html.

Orders may also be placed by contacting Fortner Software directly at

Fortner Software LLC

100 Carpenter Dr.

Sterling, VA 20164-4464

Sales and Customer Service : [800] 252.6479 or [703] 478.0181

Facsimile : [703] 689.9593

Internet Access
The HDF library, and electronic copies of the accompanying documentation, is available without charge from the
HDF Group’s anonymous FTP server

hdf.ncsa.uiuc.edu

They are also accessible through the HDF Group’s Web home page at

http://hdf.ncsa.uiuc.edu/

National Center for Supercomputing Applications
Table of Contents
1.1 Overview of the HDF Interfaces 1-1
1.2 Low-Level Interface 1-1
1.3 Multifile Application Interfaces 1-2

1.3.1 Scientific Data Sets: SD Interface 1-2
1.3.2 Annotations: AN Interface 1-2
1.3.3 General Raster Images: GR Interface 1-2
1.3.4 Scientific Data Sets: netCDF Interface 1-2
1.3.5 Vdata: The VS Interface 1-3
1.3.6 Vdata Query: VSQ Interface 1-3
1.3.7 Vdata Fields: VF Interface 1-3
1.3.8 Vgroups: V Interface 1-3
1.3.9 Vdata/Vgroups: VH Interface 1-3
1.3.10 Vgroup Inquiry: VQ Interface 1-3

1.4 Single-File Application Interfaces 1-4
1.4.1 24-bit Raster Image Sets: DF24 Interface 1-4
1.4.2 8-bit Raster Image Sets: DFR8 Interface 1-4
1.4.3 Palettes: DFP Interface 1-4
1.4.4 Scientific Data Sets: DFSD Interface 1-4
1.4.5 Annotations: DFAN Interface 1-5

1.5 FORTRAN-77 and C Language Issues 1-5
1.5.1 FORTRAN-77-to-C Translation 1-5
1.5.2 Case Sensitivity 1-5
1.5.3 Name Length 1-5
1.5.4 Header Files 1-5
1.5.5 Data Type Specifications 1-6
1.5.6 Array Specifications 1-7
1.5.7 FORTRAN-77, ANSI C and K&R C 1-7

1.6 Error Codes 1-7
2.1 Reference Section Overview 2-1
 ANannlen/afannlen 2-3
 ANannlist/afannlist 2-4
 ANatype2tag/afatypetag 2-5
 ANcreate/afcreate 2-6
 ANcreatef/affcreate 2-7
 ANend/afend 2-8
 ANendaccess/afendaccess 2-9
 ANfileinfo/affileinfo 2-10
 ANget_tagref/afgettagref 2-11
 ANid2tagref/afidtagref 2-12
 ANnumann/afnumann 2-13
 ANreadann/afreadann 2-14
 ANselect/afselect 2-15
 ANstart/afstart 2-16
 ANtag2atype/aftagatype 2-17
 ANtagref2id/aftagrefid 2-18
 ANwriteann/afwriteann 2-19
March 17, 1998 TOC-1

Table of ContentsNational Center for Supercomputing Applications
 GRattrinfo/mgatinf 2-20
 GRcreate/mgcreat 2-21
 GRend/mgend 2-23
 GRendaccess/mgendac 2-24
 GRfileinfo/mgfinfo 2-25
 GRfindattr/mgfndat 2-26
 GRgetattr/mggnatt/mggcatt 2-27
 GRgetchunkinfo/mggichnk 2-28
 GRgetiminfo/mggiinf 2-30
 GRgetlutid/mggltid 2-31
 GRgetlutinfo/mgglinf 2-32
 GRidtoref/mgid2rf 2-33
 GRluttoref/mglt2rf 2-34
 GRnametoindex/mgn2ndx 2-35
 GRreadimage/mgrdimg/mgrcimg 2-36
 GRreadlut/mgrdlut/mgrclut 2-38
 GRreftoindex/mgr2idx 2-39
 GRreqimageil/mgrimil 2-40
 GRreqlutil/mgrltil 2-41
 GRselect/mgselct 2-42
 GRsetattr/mgsnatt/mgscatt 2-43
 GRsetcompress/mgscompress 2-45
 GRsetchunk/mgschnk 2-46
 GRsetchunkcache/mgscchnk 2-49
 GRsetexternalfile/mgsxfil 2-50
 GRstart/mgstart 2-51
 GRwriteimage/mgwrimg/mgwcimg 2-52
 GRwritelut/mgwrlut/mgwclut 2-54
 Hclose/hclose 2-56
 Hgetfileversion/hgfilver 2-57
 Hgetlibversion/hglibver 2-58
 Hishdf 2-59
 Hopen/hopen 2-60
 HDdont_atexit/hddontatexit 2-61
 HEprint/heprnt 2-62
 HEstring 2-63
 HXsetcreatedir/hxiscdir 2-64
 HXsetdir/hxisdir 2-65
 SDattrinfo/sfgainfo 2-67
 SDcreate/sfcreate 2-68
 SDdiminfo/sfgdinfo 2-69
 SDend/sfend 2-70
 SDendaccess/sfendacc 2-71
 SDfileinfo/sffinfo 2-72
 SDfindattr/sffattr 2-73
TOC-2 March 17, 1998

National Center for Supercomputing Applications
 SDgetcal/sfgcal 2-74
 SDgetchunkinfo/sfgichnk 2-75
 SDgetdatastrs/sfgdtstr 2-77
 SDgetdimid/sfdimid 2-78
 SDgetdimscale/sfgdscale 2-79
 SDgetdimstrs/sfgdmstr 2-80
 SDgetfillvalue/sfgfill/sfgcfill 2-81
 SDgetinfo/sfginfo 2-82
 SDgetrange/sfgrange 2-83
 SDidtoref/sfid2ref 2-84
 SDiscoordvar/sfiscvar 2-85
 SDisdimval_bwcomp/sfisdmvc 2-86
 SDisrecord/sfisrcrd 2-87
 SDnametoindex/sfn2index 2-88
 SDreadattr/sfrnatt/sfrcatt 2-89
 SDreadchunk/sfrchnk/sfrcchnk 2-90
 SDreaddata/sfrdata/sfrcdata 2-91
 SDreftoindex/sfref2index 2-93
 SDselect/sfselect 2-94
 SDsetattr/sfsnatt/sfscatt 2-95
 SDsetblocksize/sfsblsz 2-97
 SDsetcal/sfscal 2-98
 SDsetchunk/sfschnk 2-100
 SDsetchunkcache/sfscchnk 2-103
 SDsetcompress/sfscompress 2-104
 SDsetdatastrs/sfsdtstr 2-106
 SDsetdimname/sfsdmname 2-107
 SDsetdimscale/sfsdscale 2-108
 SDsetdimstrs/sfsdmstr 2-109
 SDsetdimval_comp/sfsdmvc 2-110
 SDsetexternalfile/sfsextf 2-111
 SDsetfillmode/sfsflmd 2-112
 SDsetfillvalue/sfsfill 2-113
 SDsetnbitdataset/sfsnbit 2-114
 SDsetrange/sfsrange 2-116
 SDstart/sfstart 2-117
 SDwritechunk/sfwchnk/sfwcchnk 2-118
 SDwritedata/sfwdata/sfwcdata 2-119
 Vaddtagref/vfadtr 2-121
 Vattach/vfatch 2-122
 Vattrinfo/vfainfo 2-123
 Vdelete/vfdelete 2-124
 Vdeletetagref/vfdtr 2-125
 Vdetach/vfdtch 2-126
 Vend/vfend 2-127
March 17, 1998 TOC-3

Table of ContentsNational Center for Supercomputing Applications
 Vfind/vfind 2-128
 Vfindattr/vffdatt 2-129
 Vfindclass/vfndcls 2-130
 Vflocate/vffloc 2-131
 Vgetattr/vfgnatt/vfgcatt 2-132
 Vgetclass/vfgcls 2-133
 Vgetid/vfgid 2-134
 Vgetname/vfgnam 2-135
 Vgetnext/vfgnxt 2-136
 Vgettagref/vfgttr 2-137
 Vgettagrefs/vfgttrs 2-138
 Vgetversion/vfgver 2-139
 Vinqtagref/vfinqtr 2-140
 Vinquire/vfinq 2-141
 Vinsert/vfinsrt 2-142
 Visvg/vfisvg 2-143
 Visvs/vfisvs 2-144
 Vlone/vflone 2-145
 Vnattrs/vfnatts 2-146
 Vnrefs/vnrefs 2-147
 Vntagrefs/vntrc 2-148
 Vsetattr/vfsnatt/vfscatt 2-149
 Vsetclass/vfscls 2-150
 Vsetname/vfsnam 2-151
 Vstart/vfstart 2-152
 VHmakegroup/vhfmkgp 2-153
 VQueryref/vqref 2-154
 VQuerytag/vqtag 2-155
 VFfieldesize/vffesiz 2A-156
 VFfieldisize/vffisiz 2A-157
 VFfieldname/vffname 2A-158
 VFfieldorder/vffordr 2A-159
 VFfieldtype/vfftype 2A-160
 VFnfields/vfnflds 2A-161
 VHstoredata/vhfsd/vhfscd 2-162
 VHstoredatam/vhfsdm/vhfscdm 2-164
 VSappendable/vsapp (Obsolete) 2-166
 VSattach/vsfatch 2-167
 VSattrinfo/vsfainf 2-168
 VSdelete/vsfdlte 2-169
 VSdetach/vsfdtch 2-170
 VSelts/vsfelts 2-171
 VSfdefine/vsffdef 2-172
 VSfexist/vsfex 2-173
 VSfind/vsffnd 2-174
TOC-4 March 17, 1998

National Center for Supercomputing Applications
 VSfindattr/vsffdat 2-175
 VSfindclass/vffcls 2-176
 VSfindex/vsffidx 2-177
 VSfnattrs/vsffnas 2-178
 VSfpack/vsfcpak/vsfnpak 2-179
 VSgetattr/vsfgnat/vsfgcat 2-181
 VSgetclass/vsfgcls 2-182
 VSgetfields/vsfgfld 2-183
 VSgetid/vsfgid 2-184
 VSgetinterlace/vsfgint 2-185
 VSgetname/vsfgnam 2-186
 VSgetversion/vsgver 2-187
 VSinquire/vsfinq 2-188
 VSisattr/vsfisat 2-189
 VSlone/vsflone 2-190
 VSnattrs/vsfnats 2-191
 VSread/vsfrd/vsfrdc/vsfread 2-192
 VSseek/vsfseek 2-194
 VSsetattr/vsfsnat/vsfscat 2-195
 VSsetclass/vsfscls 2-197
 VSsetexternalfile/vsfsextf 2-198
 VSsetfields/vsfsfld 2-199
 VSsetinterlace/vsfsint 2-200
 VSsetname/vsfsnam 2-201
 VSsizeof/vsfsiz 2-202
 VSwrite/vsfwrt/vsfwrtc/vsfwrit 2-203
 VSQuerycount/vsqfnelt 2-205
 VSQueryfields/vsqfflds 2-206
 VSQueryinterlace/vsqfintr 2-207
 VSQueryname/vsqfname 2-208
 VSQueryref/vsqref 2-209
 VSQuerytag/vsqtag 2-210
 VSQueryvsize/vsqfvsiz 2-211
 DF24addimage/d2aimg 2-212
 DF24getdims/d2gdims 2-213
 DF24getimage/d2gimg 2-214
 DF24lastref/d2lref 2-215
 DF24nimages/d2nimg 2-216
 DF24putimage/d2pimg 2-217
 DF24readref/d2rref 2-218
 DF24reqil/d2reqil 2-219
 DF24restart/d2first 2-220
 DF24setcompress/d2scomp 2-221
 d2scomp 2-223
 d2sjpeg 2-224
March 17, 1998 TOC-5

Table of ContentsNational Center for Supercomputing Applications
 DF24setdims/d2sdims 2-225
 DF24setil/d2setil 2-226
 DFR8addimage/d8aimg 2-227
 DFR8getdims/d8gdims 2-228
 DFR8getimage/d8gimg 2-229
 DFR8getpalref 2-230
 DFR8lastref/d8lref 2-231
 DFR8nimages/d8nims 2-232
 DFR8putimage/d8pimg 2-233
 DFR8readref/d8rref 2-234
 DFR8restart/d8first 2-235
 DFR8setcompress/d8scomp 2-236
 d8scomp 2-238
 d8sjpeg 2-239
 DFR8setpalette/d8spal 2-240
 DFR8writeref/d8wref 2-241
 DFPaddpal/dpapal 2-242
 DFPgetpal/dpgpal 2-243
 DFPlastref/dplref 2-244
 DFPnpals/dpnpals 2-245
 DFPputpal/dpppal 2-246
 DFPreadref/dprref 2-247
 DFPrestart/dprest 2-248
 DFPwriteref/dpwref 2-249
 DFKNTsize 2-250
 DFUfptoimage/duf2im 2-251
 DFANaddfds/daafds 2-253
 DFANaddfid/daafid 2-254
 DFANclear/daclear 2-255
 DFANgetdesc/dagdesc 2-256
 DFANgetdesclen/dagdlen 2-257
 DFANgetfds/dagfds 2-258
 DFANgetfdslen/dagfdsl 2-259
 DFANgetfid/dagfid 2-260
 DFANgetfidlen/dagfidl 2-261
 DFANgetlabel/daglab 2-262
 DFANgetlablen/dagllen 2-263
 DFANlablist/dallist 2-264
 DFANlastref/dalref 2-265
 DFANputdesc/dapdesc 2-266
 DFANputlabel/daplab 2-267
 DFSDadddata/dsadata 2-268
 DFSDclear/dsclear 2-269
 DFSDendslab/dseslab 2-270
 DFSDendslice/dseslc 2-271
TOC-6 March 17, 1998

National Center for Supercomputing Applications
 DFSDgetcal/dsgcal 2-272
 DFSDgetdata/dsgdata 2-273
 DFSDgetdatalen/dsgdaln 2-274
 DFSDgetdatastrs/dsgdast 2-275
 DFSDgetdimlen/dsgdiln 2-276
 DFSDgetdims/dsgdims 2-277
 DFSDgetdimscale/dsgdisc 2-278
 DFSDgetdimstrs/dsgdist 2-279
 DFSDgetfillvalue/dsgfill 2-280
 DFSDgetNT/dsgnt 2-281
 DFSDgetrange/dsgrang 2-282
 DFSDgetslice/dsgslc 2-283
 DFSDlastref/dslref 2-284
 DFSDndatasets/dsnum 2-285
 DFSDpre32sdg/dsp32sd 2-286
 DFSDputdata/dspdata 2-287
 DFSDputslice/dspslc 2-288
 DFSDreadref/dsrref 2-289
 DFSDreadslab/dsrslab 2-290
 DFSDrestart/dsfirst 2-291
 DFSDsetcal/dsscal 2-292
 DFSDsetdatastrs/dssdast 2-294
 DFSDsetdims/dssdims 2-295
 DFSDsetdimscale/dssdisc 2-296
 DFSDsetdimstrs/dssdist 2-297
 DFSDsetfillvalue/dssfill 2-298
 DFSDsetlengths/dsslens 2-299
 DFSDsetNT/dssnt 2-300
 DFSDsetrange/dssrang 2-301
 DFSDstartslab/dssslab 2-302
 DFSDstartslice/dssslc 2-303
 DFSDwriteref/dswref 2-304
 DFSDwriteslab/dswslab 2-305
 Happendable 2-307
 Hcache 2-308
 Hdeldd 2-309
 Hendaccess 2-310
 Hendbitaccess 2-311
 Hexist 2-312
 Hfidinquire 2-313
 Hfind 2-314
 Hgetbit 2-315
 Hgetelement 2-316
 Hinquire 2-317
 Hlength 2-318
March 17, 1998 TOC-7

Table of ContentsNational Center for Supercomputing Applications
 Hnewref 2-319
 Hnextread 2-320
 Hnumber/hnumber 2-321
 Hoffset 2-322
 Hputbit 2-323
 Hputelement 2-324
 Hread 2-325
 Hseek 2-326
 Hsetlength 2-327
 Hshutdown 2-328
 Htagnewref 2-329
 Htrunc 2-330
 Hwrite 2-331
 HDFclose/hdfclose 2-332
 HDFopen/hdfopen 2-333
 HEclear 2-334
 HEpush 2-335
 HEreport 2-336
 HEvalue 2-337
3.1 Definition List Overview 3-1
TOC-8 March 17, 1998

Section
1

Introduction to the HDF APIs
n a

le I/O,
tifile
g
ltifile
us
n

dling,
or a
1.1 Overview of the HDF Interfaces

The HDF library structure consists of two interface layers and one application layer built upo
physical file format. (See Figure 1a.) The first layer, or the low-level interface, is generally
reserved for software developers because it provides support for low-level details such as fi
error handling, and memory management. The second layer, containing the single and mul
application interfaces, consists of a set of interfaces designed to simplify the process of storin
and accessing data. The single-file interfaces operate on one file at a time, whereas the mu
interfaces can operate on several files simultaneously. The highest HDF layer includes vario
NCSA and commercial applications and a collection of command-line utilities that operate o
HDF files or the data objects they contain.

FIGURE 1a Three Levels of Interaction with the HDF File Format

1.2 Low-Level Interface

This is the layer of HDF reserved for software developers and provides routines for error han
file I/O, memory management, and physical storage. These routines are prefaced with ’H’. F
more detailed discussion of the low-level interface, consult the HDF Specification and Devel-
oper's Guide.

HDF File

Data Descriptor Block Data Elements File Header

Low-level Interface (Routines starting with H)

General Applications

Commercial ApplicationsNCSA ApplicationsUtilities

Multifile Interfaces
General
Raster

Scientific
 DataAnnotationsVgroups Vdata

Single-File Interfaces
Scientific

 Data
8-Bit

 Raster Raster
24-Bit

AnnotationsPalette
March 17, 1998 1-1

National Center for Supercomputing Applications

’, or
The

ack-

re
,
e.

 inter-
es
el.

pre-
re-
ntil an
e.

ys of
 are
fined

r facet

he

et of

 the

ets.

FOR-

eloped

The low-level interface provides a collection of routines that are prefaced with either ’H’, ’HE
’HX’. The H routines are for managing HDF files. The HE routines provide error handlings.
HX routines are for managing HDF external files.

Prior to HDF version 3.2, all low-level routines began with the prefix ’DF’. As of HDF version
3.3, the DF interface was no longer recommended for use. It is only supported to maintain b
ward compatibility with programs and files created under earlier versions of the HDF library.

1.3 Multifile Application Interfaces

The HDF multifile interfaces are designed to allow operations on more than one file and mo
than one data object at the same time. The multifile interfaces provided are AN, GR, SD, VS
VSQ, VF, V, and VH. The AN interface is the multifile version of the DFAN annotation interfac
The GR interface is the multifile version of the 8- and 24-bit raster image interfaces. The SD
face is the multifile version of the scientific data set interface. The VS, VSQ, and VF interfac
support the vdata model. The V and VH interfaces provide support for the vgroup data mod

Like the single-file interfaces, the multifile interfaces are built upon the low-level H routines.
Unlike single-file operations, operations performed via a multifile interface are not implicitly
ceded by Hopen and followed by Hclose. Instead, each series of operations on a file must be p
ceded by an explicit call to open and close the file. Once the file is opened, it remains open u
explicit call is made to close it. This process allows operations on more than one file at a tim

1.3.1 Scientific Data Sets: SD Interface

The scientific data set interface provides a collection of routines for reading and writing arra
data. Multidimensional arrays accompanied by a record of their dimension and number type
called scientific data sets. Under the multifile interface, scientific data sets may include prede
or user defined attribute records. Each attribute record is optional and describes a particula
of the environment from which the scientific data was taken.

The names of the routines in the multifile scientific data set interface are prefaced by ’SD’. T
equivalent FORTRAN-77 routine names are prefaced by ’sf’.

1.3.2 Annotations: AN Interface
The purpose of the AN multifile annotation interface is to permit concurrent operations on a s
annotations that exist in more than one file. Annotations consist of labels and descriptions.

The C routine names of the multifile annotation interface are prefaced by the string ’AN’ and
FORTRAN-77 routine names are prefaced by ’af’.

1.3.3 General Raster Images: GR Interface
The routines in the GR interface provide multifile operations on general raster image data s

The C routine names in the general raster interface have the prefix ’GR’ and the equivalent
TRAN-77 routine names are prefaced by ’mg’.

1.3.4 Scientific Data Sets: netCDF Interface

The SD interface is designed to be as compatible as possible with netCDF, an interface dev
by the Unidata Program Center. Consequently, the SD interface can read files written by the
1-2 March 17, 1998

 files

F
can

Each
dition
 type

es

 rou-
types,
N-

ype.

ata
a

7

uiv-

d
 All C
netCDF interface, and the netCDF interface (as implemented in HDF) can read both netCDF
and HDF files that contain scientific data sets.

Further information regarding the netCDF interface routines and their equivalents in the HD
interface can be found in the User's Guide. Additional information on the netCDF interface
be found in the netCDF User's Guide available by anonymous ftp from unidata.ucar.edu .

1.3.5 Vdata: The VS Interface

The VS interface provides a collection of routines for reading and writing customized tables.
table is comprised of a series of records whose values are stored in fixed length fields. In ad
to its records, a vdata may contain four kinds of identifying information: a name, class, data
and a number of field names.

Routines in the VS interface are prefaced by ’VS’. The equivalent FORTRAN-77 routine nam
are prefaced by ’vsf’.

1.3.6 Vdata Query: VSQ Interface

The VSQ interface provides a collection of routines for inquiring about existing vdata. These
tines provide information such as the number of records in a vdata, its field names, number
and name. All routines in the VSQ interface are prefaced by ’VSQ’. The equivalent FORTRA
77 routine names are prefaced by ’vsq’.

1.3.7 Vdata Fields: VF Interface

The VF interface provides a collection of routines for inquiring about the fields in an existing
vdata. These routines provide information such as the field name, size, order, and number t

All routines in the VF interface are prefaced by ’VF’. There are no equivalent FORTRAN-77
functions.

1.3.8 Vgroups: V Interface

The vgroup interface provides a collection of routines for grouping and manipulating HDF d
objects in the file. Each vgroup may contain one or more vdatas, vgroups, or other HDF dat
objects. In addition to its members, a vgroup may also be given a name and a class.

Every routine name in the vgroup interface are prefaced by ’V’. The equivalent FORTRAN-7
routine names are prefaced by ’vf’.

1.3.9 Vdata/Vgroups: VH Interface

The high-level VH interface provides a collection of routines for creating simple vdatas and
vgroups with a single function call. All routines in this interface are prefaced by ’VH’. The eq
alent FORTRAN-77 routine names are prefaced by ’vh’.

1.3.10 Vgroup Inquiry: VQ Interface

The high-level VQ interface provides one routine that returns tag information from a specifie
vgroup, and one routine that returns reference number information from a specified vgroup.
March 17, 1998 1-3

National Center for Supercomputing Applications

s are

igned
pport
SD),
ss

age
ied

ent

ge
ied

-

nter-
t spe-

R-

er-
 SD
ngle-
ated
e

iting
ied
rds.
routine names in this interface are prefaced by ’VQ’. The equivalent Fortran-77 routine name
prefaced by ’vq’.

1.4 Single-File Application Interfaces

The HDF single-file application interfaces include several independent modules each is des
to simplify the process of storing and accessing a specific type of data. These interfaces su
the 8-bit raster image(DFR8), 24-bit raster image (DF24), palette (DFP), scientific data (DF
and annotation (DFAN) models. All single-file interfaces are built upon the H routines - unle
otherwise specified, all the low-level details can be ignored.

1.4.1 24-bit Raster Image Sets: DF24 Interface

The HDF 24-bit raster interface provides a collection of routines for managing 24-bit raster im
sets. A 24-bit raster image set is comprised of a 24-bit raster image array and its accompan
dimension record. Raster image sets may also include a palette.

The names of the routines in the 24-bit raster interface are prefaced by ’DF24’. The equival
FORTRAN-77 routine names are prefaced by ’d2’.

1.4.2 8-bit Raster Image Sets: DFR8 Interface

The HDF 8-bit raster interface provides a collection of routines for managing 8-bit raster ima
sets. An 8-bit raster image set is comprised of an 8-bit raster image array and its accompan
dimension record. Raster image sets may also include a palette.

Every function in the 8-bit raster interface begins with the prefix ’DFR8’. The equivalent FOR
TRAN-77 functions use the prefix ’d8’.

1.4.3 Palettes: DFP Interface

The HDF palette interface provides a collection of routines for managing palette data. This i
face is most often used for working with multiple palettes stored in a single file or palettes no
cifically assigned to a raster image.

The names of the routines in the palette interface are prefaced by ’DFP’. The equivalent FO
TRAN-77 routine names are prefaced by ’dp’.

1.4.4 Scientific Data Sets: DFSD Interface

There are two HDF interfaces that support multidimensional arrays: the single-file DFSD int
face described here, which permits access to only one file at a time, and the newer multifile
interface, which permits simultaneous access to more than one file. The existence of the si
file scientific data set interface is simply to support backward compatibility for previously cre
files and applications. It is recommended that the multifile scientific data set interface is to b
used where possible.

The single-file scientific data set interface provides a collection of routines for reading and wr
arrays of data. A scientific data set is comprised of a scientific data array and its accompan
rank, name and number type. Scientific data sets may also include predefined attribute reco
1-4 March 17, 1998

D’.

ext
.

e

ome
ing

n. For

figure.

h all
 pro-
ing.

char-

r, it
The names of the routines in the single-file scientific data set interface are prefaced by ’DFS
The equivalent FORTRAN-77 routine names are prefaced by ’ds’.

1.4.5 Annotations: DFAN Interface

The single-file annotation interface provides a collection of routines for reading and writing t
strings assigned to HDF data objects or files. Annotations consist of labels and descriptions

The names of the routines in the single-file annotation interface are prefaced by ’DFAN’. Th
equivalent FORTRAN-77 routine names are prefaced by ’da’.

1.5 FORTRAN-77 and C Language Issues

In order to make the FORTRAN-77 and C versions of each routine as similar as possible, s
compromises have been made in the process of simplifying the interface for both programm
languages.

1.5.1 FORTRAN-77-to-C Translation

Nearly all of the HDF library code is written in C. The Fortran HDF API routines translate all
parameter data types to C data types, then call the C routine that performs the main functio
example, d8aimg is the FORTRAN-77 equivalent for DFR8addimage. Calls to either routine
execute the same C code that adds an 8-bit raster image to an HDF file - see the following

FIGURE 2b Use of a Function Call Converter to Route FORTRAN-77 HDF Calls to the C Library

1.5.2 Case Sensitivity

FORTRAN-77 identifiers generally are not case sensitive, whereas C identifiers are. Althoug
of the FORTRAN-77 routines shown in this manual are written in lower case, FORTRAN-77
grams can generally call them using either upper- or lower-case letters without loss of mean

1.5.3 Name Length

Because some FORTRAN-77 compilers only interpret identifier names with seven or fewer
acters, the first seven characters of the FORTRAN-77 HDF routine names are unique.

1.5.4 Header Files

The inclusion of header files is not generally permitted by FORTRAN-77 compilers. Howeve
is sometimes available as an option. On UNIX systems, for example, the macro processors m4 and

Your
C

Program

DFR8addimage

Your
FORTRAN-77

Program

d8aimg

FORTRAN-77 to C

HDF Library d8aimg to DFR8addimage
March 17, 1998 1-5

National Center for Supercomputing Applications

 user
 the

er’s

type
 16-bit
rib-
DF

nother
bit
cpp let the compiler include and preprocess header files. If this capability is not available, the
may have to copy the declarations, definitions, and values needed from the “hdf.inc” file into
user application. If the capability is available, the file “hdf.inc” can be included in the Fortran
code. The file "hdf.inc" resides in the include directory after the library is installed on the us
system.

1.5.5 Data Type Specifications

When mixing machines, compilers, and languages, it is difficult to maintain consistent data
definitions. For instance, on some machines an integer is a 32-bit quantity and on others, a
quantity. In addition, the differences between FORTRAN-77 and C lead to difficulties in desc
ing the data types found in the argument lists of HDF routines. To maintain portability, the H
library expects assigned names for all data types used in HDF routines. (See TABLE 1A)

TABLE 1A Data Type Definitions

When using a FORTRAN-77 data type that is not supported, the general practice is to use a
data type of the same size. For example, an 8-bit signed integer can be used to store an 8-
unsigned integer variable unless the code relies on a sign-specific operation.

Definition Name Definition Value Description

DFNT_CHAR8 4 8-bit character type

DFNT_CHAR 4 Same as DFNT_CHAR8

DFNT_UCHAR8 3 8-bit unsigned character type

DFNT_UCHAR 3 Same as DFNT_UCHAR8

DFNT_INT8 20 8-bit integer type

DFNT_UINT8 21 8-bit unsigned integer type

DFNT_INT16 22 16-bit integer type

DFNT_UINT16 23 16-bit unsigned integer type

DFNT_INT32 24 32-bit integer type

DFNT_UINT32 25 32-bit unsigned integer type

DFNT_INT64 26 64-bit integer type

DFNT_UINT64 27 64-bit unsigned integer type

DFNT_FLOAT32 5 32-bit floating-point type

DFNT_FLOAT64 6 64-bit floating-point type

DFNT_NINT8 (DFNT_NATIVE | DFNT_INT8 8-bit native integer type

DFNT_NUINT8 (DFNT_NATIVE | DFNT_UINT8) 8-bit native unsigned integer type

DFNT_NINT16 (DFNT_NATIVE | DFNT_INT16) 16-bit native integer type

DFNT_NUINT16 (DFNT_NATIVE | DFNT_UINT16) 16-bit native unsigned integer type

DFNT_NINT32 (DFNT_NATIVE | DFNT_INT32) 32-bit native integer type

DFNT_NUINT32 (DFNT_NATIVE | DFNT_UINT32) 32-bit native unsigned integer type

DFNT_NINT64 (DFNT_NATIVE | DFNT_INT64) 64-bit native integer type

DFNT_NUINT64 (DFNT_NATIVE | DFNT_UINT64) 64-bit native unsigned integer type

DFNT_NFLOAT32 (DFNT_NATIVE | DFNT_FLOAT32) 32-bit native floating-point type

DFNT_NFLOAT64 (DFNT_NATIVE | DFNT_FLOAT64) 64-bit native floating-point type
1-6 March 17, 1998

n-

f
ld the

. It
um-

d

f For-
 Due
.

tly
1.5.6 Array Specifications

In the declarations contained in the headers of FORTRAN-77 functions, the following conve
tions are followed:

• character*(*) x means that x refers to an array that contains an indefinite number o
characters. It is the responsibility of the calling program to allocate enough space to ho
data to be stored in the array.

• real x(*) means that x refers to an array of reals of indefinite size and of indefinite rank
is the responsibility of the calling program to allocate an actual array with the correct n
ber of dimensions and dimension sizes.

• <valid numeric data type > x means that x may have one of the numeric data types liste
in the Description column of Table 1A.

1.5.7 FORTRAN-77, ANSI C and K&R C

As much as possible, we have conformed the HDF API routines to those implementations o
tran and C that are in most common use today, namely FORTRAN-77, ANSI C and K&R C.
to the increasing availability of ANSI C, future versions of HDF will no longer support K&R C

As Fortran-90 is a superset of FORTRAN-77, HDF programs should compile and run correc
when using a Fortran-90 compiler.

1.6 Error Codes

The error codes defined in the HDF library are listed in the following table.

TABLE 1B HDF Error Codes

Error Code Code Definition

DFE_NONE No error.

DFE_FNF File not found.

DFE_DENIED Access to file denied.

DFE_ALROPEN File already open.

DFE_TOOMANY Too many AID's or files open.

DFE_BADNAME Bad file name on open.

DFE_BADACC Bad file access mode.

DFE_BADOPEN Miscellaneous open error.

DFE_NOTOPEN File can't be closed because it hasn’t been opened.

DFE_CANTCLOSE fclose error

DFE_READERROR Read error.

DFE_WRITEERROR Write error.

DFE_SEEKERROR Seek error.

DFE_RDONLY File is read only.

DFE_BADSEEK Attempt to seek past end of element.

DFE_PUTELEM Hputelement error.

DFE_GETELEM Hgetelement error.

DFE_CANTLINK Cannot initialize link information.

DFE_CANTSYNC Cannot synchronize memory with file.
March 17, 1998 1-7

National Center for Supercomputing Applications
DFE_BADGROUP Error from DFdiread in opening a group.

DFE_GROUPSETUP Error from DFdisetup in opening a group.

DFE_PUTGROUP Error on putting a tag/reference number pair into a group.

DFE_GROUPWRITE Error when writing group contents.

DFE_DFNULL Data file reference is a null pointer.

DFE_ILLTYPE Data file contains an illegal type: internal error.

DFE_BADDDLIST The DD list is non-existent: internal error.

DFE_NOTDFFILE The current file is not an HDF file and it is not zero length.

DFE_SEEDTWICE The DD list already seeded: internal error.

DFE_NOSUCHTAG No such tag in the file: search failed.

DFE_NOFREEDD There are no free DD's left: internal error.

DFE_BADTAG Illegal WILDCARD tag.

DFE_BADREF Illegal WILDCARD reference number.

DFE_NOMATCH No DDs (or no more DDs) that match the specified tag/reference number pair.

DFE_NOTINSET Warning: Set contained unknown tag. Ignored.

DFE_BADOFFSET Illegal offset specified.

DFE_CORRUPT File is corrupted.

DFE_NOREF No more reference numbers are available.

DFE_DUPDD The new tag/reference number pair has been allocated.

DFE_CANTMOD Old element doesn’t exist. Cannot modify.

DFE_DIFFFILES Attempt to merge objects in different files.

DFE_BADAID An invalid AID was received.

DFE_OPENAID Active AIDs still exist.

DFE_CANTFLUSH Cannot flush DD back to file.

DFE_CANTUPDATE Cannot update the DD block.

DFE_CANTHASH Cannot add a DD to the hash table.

DFE_CANTDELDD Cannot delete a DD in the file.

DFE_CANTDELHASH Cannot delete a DD from the hash table.

DFE_CANTACCESS Cannot access specified tag/reference number pair.

DFE_CANTENDACCESS Cannot end access to data element.

DFE_TABLEFULL Access table is full.

DFE_NOTINTABLE Cannot find element in table.

DFE_UNSUPPORTED Feature not currently supported.

DFE_NOSPACE malloc failed.

DFE_BADCALL Routine calls were in the wrong order.

DFE_BADPTR NULL pointer argument was specified.

DFE_BADLEN Invalid length was specified.

DFE_NOTENOUGH Not enough space for the data.

DFE_NOVALS Values were not available.

DFE_ARGS Invalid arguments passed to the routine.

DFE_INTERNAL Serious internal error.

DFE_NORESET Too late to modify this value.

DFE_GENAPP Generic application level error.

DFE_UNINIT Interface was not initialized correctly.

DFE_CANTINIT Cannot initialize the interface the operation requires.

DFE_CANTSHUTDOWN Cannot shut down the interface the operation requires.

DFE_BADDIM Negative number of dimensions, or zero dimensions, was specified.

Error Code Code Definition
1-8 March 17, 1998

DFE_BADFP File contained an illegal floating point number.

DFE_BADDATATYPE Unknown or unavailable data type was specified.

DFE_BADMCTYPE Unknown or unavailable machine type was specified.

DFE_BADNUMTYPE Unknown or unavailable number type was specified.

DFE_BADORDER Unknown or illegal array order was specified.

DFE_RANGE Improper range for attempted access.

DFE_BADCONV Invalid data type conversion was specified.

DFE_BADTYPE Incompatible types were specified.

DFE_BADSCHEME Unknown compression scheme was specified.

DFE_BADMODEL Invalid compression model was specified.

DFE_BADCODER Invalid compression encoder was specified.

DFE_MODEL Error in the modeling layer of the compression operation.

DFE_CODER Error in the encoding layer of the compression operation.

DFE_CINIT Error in encoding initialization.

DFE_CDECODE Error in decoding compressed data.

DFE_CENCODE Error in encoding compressed data.

DFE_CTERM Error in encoding termination.

DFE_CSEEK Error seeking in an encoded dataset.

DFE_MINIT Error in modeling initialization.

DFE_COMPINFO Invalid compression header.

DFE_CANTCOMP Cannot compress an object.

DFE_CANTDECOMP Cannot decompress an object.

DFE_NODIM A dimension record was not associated with the image.

DFE_BADRIG Error processing a RIG.

DFE_RINOTFOUND Cannot find raster image.

DFE_BADATTR Invalid attribute.

DFE_BADTABLE The nsdg table has incorrect information.

DFE_BADSDG Error in processing an SDG.

DFE_BADNDG Error in processing an NDG.

DFE_VGSIZE Too many elements in the vgroup.

DFE_VTAB Element not in vtab[].

DFE_CANTADDELEM Cannot add the tag/reference number pair to the vgroup.

DFE_BADVGNAME Cannot set the vgroup name.

DFE_BADVGCLASS Cannot set the vgroup class.

DFE_BADFIELDS Invalid fields string passed to vset routine.

DFE_NOVS Cannot find the vset in the file.

DFE_SYMSIZE Too many symbols in the users table.

DFE_BADATTACH Cannot write to a previously attached vdata.

DFE_BADVSNAME Cannot set the vdata name.

DFE_BADVSCLASS Cannot set the vdata class.

DFE_VSWRITE Error writing to the vdata.

DFE_VSREAD Error reading from the vdata.

DFE_BADVH Error in the vdata header.

DFE_VSCANTCREATE Cannot create the vdata.

DFE_VGCANTCREATE Cannot create the vgroup.

DFE_CANTATTACH Cannot attach to a vdata or vset.

DFE_CANTDETACH Cannot detach a vdata or vset with write access.

Error Code Code Definition
March 17, 1998 1-9

National Center for Supercomputing Applications
DFE_BITREAD A bit read error occurred.

DFE_BITWRITE A bit write error occurred.

DFE_BITSEEK A bit seek error occurred.

DFE_TBBTINS Failed to insert the element into tree.

DFE_BVNEW Failed to create a bit vector.

DFE_BVSET Failed when setting a bit in a bit vector.

DFE_BVGET Failed when getting a bit in a bit vector.

DFE_BVFIND Failed when finding a bit in a bit vector.

Error Code Code Definition
1-10 March 17, 1998

Section
2

HDF Routine Reference
F ver-
e C
and

tion
the

r
2.1 Reference Section Overview

This section of the Reference Manual contains a listing of every routine contained in the HD
sion 4.1r2 library. For each interface the pages are organized alphabetically according to th
routine name. Each page addresses one C routine and the related FORTRAN-77 routines,
takes the following form:

Routine_Name

return_type function_name(type1 parameter1, type2 parameter2, ... , typeN parameterN)

parameter1 Definition of the first parameter
parameter2 Definition of the second parameter

. . .
parameterN Definition of the Nth parameter

Purpose Section containing the functionality of the routine.

Return value Section describing the return value, if any.

Description This optional section describes the proper use of the routine, the specifica
of the parameters, and any special circumstances surrounding the use of
routine. This section also identifies any prerequisite routines and provides
appropriate references.

FORTRAN This section provides a synopsis of the equivalent FORTRAN-77 routine o
routines.
March 17, 1998 2-1

2-2 March 17, 1998

ANannlen/afannlenNational Center for Supercomputing Applications

tion
ANannlen/afannlen

int32 ANannlen(int32 ann_id)

ann_id IN: Annotation identifier returned by ANcreate, ANcreatef, or
ANselect

Purpose Returns the length of an annotation.

Return value Returns the length of the annotation or FAIL (or -1) otherwise.

Description ANannlen returns the number of characters contained in the annota
specified by the parameter ann_id. This function is commonly used to
determine the size of a buffer to store the annotation upon reading.

FORTRAN integer function afannlen(ann_id)

integer ann_id
March 17, 1998 2-3

ANannlist/afannlist National Center for Supercomputing Applications

pe
d

ata

d

ANannlist/afannlist

intn ANannlist(int32 an_id, ann_type annot_type, uint16 obj_tag, uint16 obj_ref, int32 *ann_list)

an_id IN: AN interface identifier returned by ANstart

annot_type IN: Type of the annotation

obj_tag IN: Tag of the object

obj_ref IN: Reference number of the object

ann_list OUT: Buffer for the annotation identifiers

Purpose Retrieves the annotation identifiers of an object.

Return value Returns SUCCEED (or 0) or FAIL (or -1) otherwise.

Description ANannlist obtains a list of identifiers of the annotations that are of the ty
specified by the parameter annot_type and are attached to the object identifie
by its tag, obj_tag, and its reference number, obj_ref.

Since this routine is implemented only to obtain the identifiers of d
annotations and not file annotations, the valid values of annot_type are
AN_DATA_LABEL (or 0) and AN_DATA_DESC (or 1). To obtain file annotation
identifiers, use ANfileinfo to determine the number of file labels an
descriptions, and then use ANselect to obtain each file annotation identifier.

Sufficient space must be allocated for ann_list to hold the list of annotation
identifiers. This can be done by using ANnumann to obtain the number of
annotation identifiers to be retrieved, and then allocating memory for ann_list
using this number.

FORTRAN integer function afannlist(an_id, annot_type, obj_tag, obj_ref,
ann_list)

integer ann_list(*)

integer an_id, obj_tag, obj_ref, annot_type
2-4 March 17, 1998

ANatype2tag/afatypetagNational Center for Supercomputing Applications

ified
ANatype2tag/afatypetag

uint16 ANatype2tag(ann_type *annot_type)

annot_type IN: Type of the annotation

Purpose Returns the annotation tag corresponding to an annotation type.

Return value Returns the annotation tag (ann_tag) if successful, and DFTAG_NULL (or 0)
otherwise.

Description ANatype2tag returns the tag that corresponds to the annotation type spec
by the parameter annot_type.

The following table lists the valid values of annot_type in the left column and
the corresponding values for the returned annotation tag on the right.

Annotation Type Annotation Tag

AN_DATA_LABEL (or 0) DFTAG_DIL (or 104)

AN_DATA_DESC (or 1) DFTAG_DIA (or 105)

AN_FILE_LABEL (or 2) DFTAG_FID (or 100)

AN_FILE_DESC (or 3) DFTAG_FD (or 101)

FORTRAN integer function afatypetag(annot_type)

integer annot_type
March 17, 1998 2-5

ANcreate/afcreate National Center for Supercomputing Applications

.

ting
ns of
ANcreate/afcreate

int32 ANcreate(int32 an_id, uint16 obj_tag, uint16 obj_ref, ann_type annot_type)

an_id IN: AN interface identifier returned by ANstart

obj_tag IN: Tag of the object to be annotated

obj_ref IN: Reference number of the object to be annotated

annot_type IN: Type of the data annotation

Purpose Creates a data annotation for an object.

Return value Returns the data annotation identifier (ann_id) if successful and FAIL (or -1)
otherwise.

Description ANcreate creates a data annotation of type annot_type for the object specified
by its tag, obj_tag, and its reference number, obj_ref. The returned data
annotation identifier can represent either a data label or a data description

Valid values for annot_type are AN_DATA_LABEL (or 0) or AN_DATA_DESC (or 1).

Use ANcreatef to create a file annotation.

Currently, the user must write to a newly-created annotation before crea
another annotation of the same type. Creating two consecutive annotatio
the same type causes the second call to ANcreate to return FAIL (or -1).

FORTRAN integer function afcreate(an_id, obj_tag, obj_ref, annot_type)

integer an_id, obj_tag, obj_ref, annot_type
2-6 March 17, 1998

ANcreatef/affcreateNational Center for Supercomputing Applications

eter
file

ting
ns of
ANcreatef/affcreate

int32 ANcreatef(int32 an_id, ann_type annot_type)

an_id IN: AN interface identifier returned by ANstart

annot_type IN: Type of the file annotation

Purpose Creates a file annotation.

Return value Returns the file annotation identifier (ann_id) if successful and FAIL (or -1)
otherwise.

Description ANcreatef creates a file annotation of the type specified by the param
annot_type. The file annotation identifier returned can either represent a
label or a file description.

Valid values for annot_type are AN_FILE_LABEL (or 2) and AN_FILE_DESC (or 3).

Use ANcreate to create a data annotation.

Currently, the user must write to a newly-created annotation before crea
another annotation of the same type. Creating two consecutive annotatio
the same type causes the second call to ANcreate to return FAIL (or -1).

FORTRAN integer function affcreate(an_id, annot_type)

integer an_id, annot_type
March 17, 1998 2-7

ANend/afend National Center for Supercomputing Applications

o

ANend/afend

int32 ANend(int32 an_id)

an_id IN: AN interface identifier returned by ANstart

Purpose Terminates access to an AN interface.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description ANend terminates access to the AN interface identified by an_id, which is
previously initialized by a call to ANstart . Note that there must be one call t
ANend for each call to ANstart .

FORTRAN integer function afend(an_id)

integer an_id
2-8 March 17, 1998

ANendaccess/afendaccessNational Center for Supercomputing Applications

eter
ANendaccess/afendaccess

intn ANendaccess(int32 ann_id)

ann_id IN: Annotation identifier returned by ANcreate, ANcreatef or ANselect

Purpose Terminates access to an annotation.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description ANendaccess terminates access to the annotation identified by the param
ann_id. Note that there must be one call to ANendaccess for every call to
ANselect, ANcreate or ANcreatef.

FORTRAN integer function afendaccess(ann_id)

integer ann_id
March 17, 1998 2-9

ANfileinfo/affileinfo National Center for Supercomputing Applications

nd
 of all

mber
Use

 for
ANfileinfo/affileinfo

intn ANfileinfo(int32 an_id, int32 *n_file_labels, int32 *n_file_descs, int32 *n_data_labels, int32
*n_data_descs)

an_id IN: AN interface identifier returned by ANstart

n_file_labels OUT: Number of file labels

n_file_descs OUT: Number of file descriptions

n_data_labels OUT: Number of data labels

n_data_descs OUT: Number of data descriptions

Purpose Retrieves the number of annotations of each type in a file.

Return value Returns SUCCEED (or 0) if successful or FAIL (or -1) otherwise.

Description ANfileinfo retrieves the total number of the four kinds of annotations a
stores them in the appropriate parameters. The total number of data labels
data objects in the file is stored in n_data_labels. The total number of data
descriptions of all data objects in the file is stored in n_data_descs. The total
number of file labels is stored in n_file_labels and the total number of file
descriptions in n_file_descs.

Note that the numbers of data labels and descriptions refer to the total nu
of data labels and data descriptions in the file, not for a specific object.
ANnumann to determine these numbers for a specific object.

This routine is generally used to find the range of acceptable indices
ANselect calls.

FORTRAN integer function affileinfo(an_id, n_file_labels, n_file_descs,
n_data_labels, n_data_descs)

integer an_id, n_file_labels, n_file_descs

integer n_data_labels, n_data_descs
2-10 March 17, 1998

ANget_tagref/afgettagrefNational Center for Supercomputing Applications

 and

tion

ber
ANget_tagref/afgettagref

int32 ANget_tagref(int32 an_id, int32 index, ann_type annot_type, uint16 *ann_tag, uint16 *ann_ref)

an_id IN: AN interface identifier returned by ANstart

index IN: Index of the annotation

annot_type IN: Type of the annotation

ann_tag OUT: Tag of the annotation

ann_ref OUT: Reference number of the annotation

Purpose Retrieves the tag/reference number pair of an annotation given its index
type.

Return value Returns SUCCEED (or 0) if successful or FAIL (or -1) otherwise.

Description ANget_tagref retrieves the tag and reference number of the annota
identified by its index, the parameter index, and by its annotation type, the
parameter annot_type. The tag is stored in the parameter ann_tag and the
reference number is stored in the parameter ann_ref.

The parameter index is a nonnegative integer and is less than the total num
of annotations of type annot_type in the file. Use ANfileinfo to obtain the total
number of annotations of each type in the file.

The following table lists the valid values of the parameter annot_type in the left
column, and the corresponding values of the parameter ann_tag in the right
column.

Annotation Type Annotation Tag

AN_DATA_LABEL (or 0) DFTAG_DIL (or 104)

AN_DATA_DESC (or 1) DFTAG_DIA (or 105)

AN_FILE_LABEL (or 2) DFTAG_FID (or 100)

AN_FILE_DESC (or 3) DFTAG_FD (or 101)

FORTRAN integer function afgettagref(an_id, index, annot_type, ann_tag,
ann_ref)

integer an_id, index, annot_type

integer ann_tag, ann_ref
March 17, 1998 2-11

ANid2tagref/afidtagref National Center for Supercomputing Applications

r.

ion
ANid2tagref/afidtagref

int32 ANid2tagref(int32 ann_id, uint16 *ann_tag, uint16 *ann_ref)

ann_id IN: Annotation identifier returned by ANselect, ANcreate or ANcreatef

ann_tag OUT: Tag of the annotation

ann_ref OUT: Reference number of the annotation

Purpose Retrieves the tag/reference number pair of an annotation given its identifie

Return value Returns SUCCEED (or 0) if successful or FAIL (or -1) otherwise.

Description ANid2tagref retrieves the tag/reference number pair of the annotat
identified by the parameter ann_id. The tag is stored in the parameter ann_tag
and the reference number is stored in the parameter ann_ref.

Possible values returned in ann_tag are DFTAG_DIL (or 104) for a data label,
DFTAG_DIA (or 105) for a data description, DFTAG_FID (or 100) for a file label
and DFTAG_FD (or 101) for a file description.

FORTRAN integer function afidtagref(ann_id, ann_tag, ann_ref)

integer ann_id, ann_tag, ann_ref
2-12 March 17, 1998

ANnumann/afnumannNational Center for Supercomputing Applications

ata
ANnumann/afnumann

intn ANnumann(int32 an_id, ann_type annot_type, uint16 obj_tag, uint16 obj_ref)

an_id IN: AN interface identifier returned by ANstart

annot_type IN: Type of the annotation

obj_tag IN: Tag of the object

obj_ref IN: Reference number of the object

Purpose Returns the number of annotations of a given type attached to an object.

Return value Returns the number of annotations or FAIL (or -1) otherwise.

Description ANnumann returns the total number of annotations that are of type annot_type
and that are attached to the object identified by its tag, obj_tag, and its
reference number, obj_ref.

Since this routine is implemented only to obtain the total number of d
annotations and not file annotations, the valid values of annot_type are
AN_DATA_LABEL (or 0) and AN_DATA_DESC (or 1). To obtain the total number of
file annotations or all data annotations, use ANfileinfo .

FORTRAN integer function afnumann(an_id, annot_type, obj_tag, obj_ref)

integer an_id, obj_tag, obj_ref, annot_type
March 17, 1998 2-13

ANreadann/afreadann National Center for Supercomputing Applications

r

 this
ANreadann/afreadann

int32 ANreadann(int32 ann_id, char* ann_buf, int32 ann_length)

ann_id IN: Annotation identifier returned by ANcreate, ANcreatef or ANselect

ann_buf OUT: Buffer for the annotation

ann_length IN: Length of the buffer ann_buf

Purpose Reads an annotation.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description ANreadann reads the annotation identified by the parameter ann_id and stores
the annotation in the parameter ann_buf.

The parameter ann_length specifies the size of the buffer ann_buf. If the length
of the file or data label to be read is greater than or equal to ann_length, the
label will be truncated to ann_length - 1 characters. If the length of the file o
data description is greater than ann_length, the description will be truncated to
ann_length characters. The HDF library adds a NULL character to the retrieved
label but not to the retrieved description. The user must add a NULL character to
the retrieved description if the C library string functions are to operate on
description.

FORTRAN integer function afreadann(ann_id, ann_buf, ann_length)

integer ann_id, ann_length

character*(*) ann_buf
2-14 March 17, 1998

ANselect/afselectNational Center for Supercomputing Applications

ber
ANselect/afselect

int32 ANselect(int32 an_id, int32 index, ann_type annot_type)

an_id IN: AN interface identifier returned by ANstart

index IN: Location of the annotation in the file

annot_type IN: Type of the annotation

Purpose Obtains an existing annotation.

Return value Returns the annotation identifier (ann_id) if successful or FAIL (or -1)
otherwise.

Description ANselect obtains the identifier of the annotation specified by its index, index,
and by its annotation type, annot_type.

The parameter index is a nonnegative integer and is less than the total num
of annotations of type annot_type in the file. Use ANfileinfo to obtain the total
number of annotations of each type in the file.

Valid values of annot_type are AN_DATA_LABEL (or 0), AN_DATA_DESC (or 1),
AN_FILE_LABEL (or 2), and AN_FILE_DESC (or 3).

FORTRAN integer function afselect(an_id, index, annot_type)

integer an_id, index

integer annot_type
March 17, 1998 2-15

ANstart/afstart National Center for Supercomputing Applications

er
d.
ANstart/afstart

int32 ANstart(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Initializes the AN interface.

Return value Returns the AN interface identifier (an_id) if successful and FAIL (or -1)
otherwise.

Description ANstart initializes the AN interface for the file identified by the paramet
file_id. A call to ANstart is required before any AN functions can be invoke
ANstart is used with the ANend function to define the extent of AN interface
session. A call to ANend is required for each call to ANstart .

FORTRAN integer function afstart(file_id)

integer file_id
2-16 March 17, 1998

ANtag2atype/aftagatypeNational Center for Supercomputing Applications

 tag
ANtag2atype/aftagatype

ann_type ANtag2atype(uint16 ann_tag)

ann_tag IN: Tag of the annotation

Purpose Returns the annotation type corresponding to an annotation tag.

Return value Returns the annotation type if successful or AN_UNDEF (or -1) otherwise.

Description ANtag2atype returns the annotation type that corresponds to the annotation
specified by the parameter ann_tag.

The following table lists the valid values of ann_tag in the left column and the
corresponding values of the returned annotation type in the right column.

Annotation Tag Annotation Type

DFTAG_DIL (or 104) AN_DATA_LABEL (or 0)

DFTAG_DIA (or 105) AN_DATA_DESC (or 1)

DFTAG_FID (or 100) AN_FILE_LABEL (or 2)

DFTAG_FD (or 101) AN_FILE_DESC (or 3)

FORTRAN integer function aftagatype(ann_tag)

integer ann_tag
March 17, 1998 2-17

ANtagref2id/aftagrefid National Center for Supercomputing Applications

g,
ANtagref2id/aftagrefid

int32 ANtagref2id(int32 an_id, uint16 ann_tag, uint16 ann_ref)

an_id IN: AN interface identifier returned by ANstart

ann_tag IN: Tag of the annotation

ann_ref IN: Reference number of the annotation

Purpose Returns the identifier of an annotation given its tag/reference number pair.

Return value Returns the annotation identifier (ann_id) if successful and FAIL (or -1)
otherwise.

Description ANtagref2id returns the identifier of the annotation specified by its ta
ann_tag, and its reference number, ann_ref.

Valid values of ann_tag are DFTAG_DIL (or 104) for a data label, DFTAG_DIA (or
105) for a data description, DFTAG_FID (or 100) for a file label, and DFTAG_FD

(or 101) for a file description.

FORTRAN integer function aftagrefid(an_id, ann_tag, ann_ref)

integer an_id, ann_tag, ann_ref
2-18 March 17, 1998

ANwriteann/afwriteannNational Center for Supercomputing Applications
ANwriteann/afwriteann

int32 ANwriteann(int32 ann_id, char* ann, int32 ann_length)

ann_id IN: Annotation identifier returned by ANcreate, ANcreatef, or ANselect

ann IN: Text to be written to the annotation

ann_length IN: Length of the annotation text

Purpose Writes an annotation.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description ANwriteann writes the annotation text provided in the parameter ann to the
annotation specified by the parameter ann_id. The parameter ann_length
specifies the number of characters in the annotation text.

If the annotation has already been written with text, ANwriteann will
overwrite the current text.

FORTRAN integer function afwriteann(ann_id, ann, ann_length)

integer ann_id, ann_length

character*(*) ann
March 17, 1998 2-19

GRattrinfo/mgatinf National Center for Supercomputing Applications

the

e

 to
ined
n

GRattrinfo/mgatinf

intn GRattrinfo(int32 [obj]_id , int32 attr_index, char *name, int32 *data_type, int32 *count)

[obj]_id IN: Raster image identifier (ri_id), returned by GRcreate or GRselect,
or GR interface identifier (gr_id), returned by GRstart

attr_index IN: Index of the attribute

name OUT: Buffer for the name of the attribute

data_type OUT: Data type of the attribute

count OUT: Number of attribute values

Purpose Retrieves information about an attribute.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRattrinfo retrieves the name, data type, and number of values of
attribute, specified by its index, attr_index, for the data object identified by the
parameter obj_id. The name is stored in the parameter name, the data type is
stored in the parameter data_type, and the number of values is stored in th
parameter count. If the value of any of the output parameters is NULL, the
corresponding information will not be retrieved.

The value of the parameter attr_index can be obtained using GRfindattr ,
GRnametoindex or GRreftoindex, depending on available information. Valid
values of attr_index range from 0 to the total number of attributes attached
the object - 1. The total number of attributes attached to the file can be obta
using the routine GRfileinfo . The total number of attributes attached to a
image can be obtained using the routine GRgetiminfo .

FORTRAN integer function mgatinf([obj]_id, attr_index, name, data_type,
count)

integer [obj]_id, data_type, attr_index, count

character*(*) name
2-20 March 17, 1998

GRcreate/mgcreatNational Center for Supercomputing Applications

ters

ter

 be
orted

r

he

e, data
sible
 to it.
 then
GRcreate/mgcreat

int32 GRcreate(int32 gr_id, char *name, int32 ncomp, int32 data_type, int32 interlace_mode, int32
dim_sizes[2])

gr_id IN: GR interface identifier returned by GRstart

name IN: Name of the raster image

ncomp IN: Number of pixel components in the image

data_type IN: Type of the image data

interlace_mode IN: Interlace mode of the image data

dim_sizes IN: Size of each dimension of the image

Purpose Creates a new raster image.

Return value Returns a raster image identifier if successful and FAIL (or -1) otherwise.

Description GRcreate creates a raster image with the values provided in the parame
name, ncomp, data_type, interlace_mode and dim_sizes.

The parameter name specifies the name of the image and must not be NULL.
The length of the name should not be longer than MAX_GR_NAME (or 256).

The parameter ncomp specifies the number of pixel components in the ras
image and must have a value of at least 1.

The parameter data_type specifies the type of the raster image data and can
any of the data types supported by the HDF library. The data types supp
by HDF are listed in Table 1A in Section I of this manual.

The parameter interlace_mode specifies the interlacing in which the raste
image is to be written. The valid values of interlace_mode are:
MFGR_INTERLACE_PIXEL (or 0), MFGR_INTERLACE_LINE (or 1) and
MFGR_INTERLACE_COMPONENT (or 2).

The array dimsizes specifies the size of the two dimensions of the image. T
dimensions must be specified and their values must be greater than 0.

Once a raster image has been created, it is not possible to change its nam
type, dimension sizes or number of pixel components. However, it is pos
to create a raster image and close the file before writing any data values
Later, the values can be added to or modified in the raster image, which
can be obtained using GRselect.

FORTRAN integer function mgcreat(gr_id, name, ncomp, data_type,
interlace_mode, dim_sizes)
March 17, 1998 2-21

GRcreate/mgcreat National Center for Supercomputing Applications
integer gr_id, data_type, interlace_mode, ncomp, dim_sizes(2)

character*(*) name
2-22 March 17, 1998

GRend/mgendNational Center for Supercomputing Applications

n.
 call
GRend/mgend

intn GRend(int32 gr_id)

gr_id IN: GR interface identifier returned by GRstart

Purpose Terminates the GR interface session.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRend terminates the GR interface session identified by the parameter gr_id.

GRend, together with GRstart, defines the extent of a GR interface sessio
GRend disposes of the internal structures initialized by the corresponding
to GRstart. There must be a call to GRend for each call to GRstart; failing to
provide one may cause loss of data.

GRstart and GRend do not manage file access; use Hopen and Hclose to
open and close HDF files. Hopen must be called before GRstart and Hclose
must be called after GRend.

FORTRAN integer function mgend(gr_id)

integer gr_id
March 17, 1998 2-23

GRendaccess/mgendac National Center for Supercomputing Applications

eter
 by

.

GRendaccess/mgendac

intn GRendaccess(int32 ri_id)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

Purpose Terminates access to a raster image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRendaccess terminates access to the raster image identified by the param
ri_id and disposes of the raster image identifier. This access is initiated
either GRselect or GRcreate. There must be a call to GRendaccess for each
call to GRselect or GRcreate; failing to provide this will result in loss of data
Attempts to access a raster image identifier disposed of by GRendaccess will
result in an error condition.

FORTRAN integer function mgendac(ri_id)

integer ri_id
2-24 March 17, 1998

GRfileinfo/mgfinfoNational Center for Supercomputing Applications

es in

bal

 file
GRfileinfo/mgfinfo

intn GRfileinfo(int32 gr_id, int32 *n_images, int32 *n_file_attrs)

gr_id IN: GR interface identifier returned by GRstart

n_images OUT: Number of raster images in the file

n_file_attrs OUT: Number of global attributes in the file

Purpose Retrieves the number of raster images and the number of global attribut
the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRfileinfo retrieves the number of raster images and the number of glo
attributes for the GR interface identified by the parameter gr_id, and stores
them into the parameters n_images and n_file_attrs, respectively.

The term “global attributes” refers to attributes that are assigned to the
instead of individual raster images. These attributes are created by GRsetattr
with the object identifier parameter set to a GR interface identifier (gr_id)
rather than a raster image identifier (ri_id).

GRfileinfo is useful in finding the range of acceptable indices for GRselect
calls.

FORTRAN integer function mgfinfo(gr_id, n_images, n_file_attrs)

integer gr_id, n_images, n_file_attrs
March 17, 1998 2-25

GRfindattr/mgfndat National Center for Supercomputing Applications

 the
GRfindattr/mgfndat

int32 GRfindattr(int32 [obj]_id , char *attr_name)

[obj]_id IN: Raster image identifier (ri_id), returned by GRcreate or GRselect,
or GR interface identifier (gr_id), returned by GRstart

attr_name IN: Name of the attribute

Purpose Finds the index of a data object’s attribute given an attribute name.

Return value Returns the index of the attribute if successful and FAIL (or -1) otherwise.

Description GRfindattr returns the index of the attribute whose name is specified by
parameter attr_name for the object identified by the parameter obj_id.

FORTRAN integer function mgfndat([obj]_id, attr_name)

integer [obj]_id

character*(*) attr_name
2-26 March 17, 1998

GRgetattr/mggnatt/mggcattNational Center for Supercomputing Applications

ex,

.
e
ined
e

eric
GRgetattr/mggnatt/mggcatt

intn GRgetattr(int32 [obj]_id , int32 attr_index, VOIDP values)

[obj]_id IN: Raster image identifier (ri_id), returned by GRcreate or GRselect,
or GR interface identifier (gr_id), returned by GRstart

attr_index IN: Index of the attribute

values OUT: Buffer for the attribute values

Purpose Reads the values of an attribute for a data object.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRgetattr obtains all values of the attribute that is specified by its ind
attr_index, and is attached to the object identified by the parameter obj_id.
The values are stored in the buffer values.

The value of the parameter attr_index can be obtained by using GRfindattr ,
GRnametoindex, or GRreftoindex, depending on available information
Valid values of attr_index range from 0 to the total number of attributes of th
object - 1. The total number of attributes attached to the file can be obta
using the routine GRfileinfo . The total number of attributes attached to th
image can be obtained using the routine GRgetiminfo.

GRgetattr only reads all values assigned to the attribute and not a subset.

Note that there are two FORTRAN-77 versions of this routine; one for num
data (mggnatt) and the other for character data (mggcatt).

FORTRAN integer function mggnatt([obj]_id, attr_index, values)

integer [obj]_id, attr_index

<valid numeric data type> values(*)

integer function mggcatt([obj]_id, attr_index, values)

integer [obj]_id, attr_index

character*(*) values
March 17, 1998 2-27

GRgetchunkinfo/mggichnk National Center for Supercomputing Applications

ge

t
s the
of
GRgetchunkinfo/mggichnk

intn GRgetchunkinfo(int32 ri_id, HDF_CHUNK_DEF *cdef, int32 *flag)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

C only:

cdef OUT: Pointer to the chunk definition

flag OUT: Pointer to the compression flag

Fortran only:

dim_length OUT: Array of chunk dimensions

flag OUT: Compression flag

Purpose Retrieves chunking information for a raster image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRgetchunkinfo retrieves chunking information about the raster ima
identified by the parameter ri_id into the parameters cdef and flags in C, and
into the parameters dim_length and flag in Fortran. Note that only chunk
dimensions are retrieved, compression information is not available.

The value returned in the parameter flag indicates if the raster image is no
chunked, chunked, or chunked and compressed. The following table show
possible values of the parameter flag and the corresponding characteristics
the raster image.

Values of flag in C Values of flag in
Fortran

Raster Image
Characteristics

HDF_NONE -1 Not chunked

HDF_CHUNK 0 Chunked and not compressed

HDF_CHUNK | HDF_COMP 1

Chunked and compressed with
either the run-length encoding
(RLE), Skipping Huffman or
GZIP compression algorithms
2-28 March 17, 1998

GRgetchunkinfo/mggichnkNational Center for Supercomputing Applications

and

k

s

In C, if the raster image is chunked and not compressed, GRgetchunkinfo fills
the array chunk_lengths in the union cdef with the values of the
corresponding chunk dimensions. If the raster image is chunked
compressed, GRgetchunkinfo fills the array chunk_lengths in the structure
comp of the union cdef with the values of the corresponding chun
dimensions. Refer to the page on GRsetchunk in this manual for specific
information on the union HDF_CHUNK_DEF. In Fortran, chunk dimensions are
retrieved into the array dim_length . If the chunk length for each dimension i
not needed, NULL can be passed in as the value of the parameter cdef in C.

FORTRAN integer function mggichnk(ri_id, dim_length, flag)

integer ri_id, dim_length, flag
March 17, 1998 2-29

GRgetiminfo/mggiinf National Center for Supercomputing Applications

lace
tified

lace

 the
GRgetiminfo/mggiinf

intn GRgetiminfo(int32 ri_id, char *gr_name, int32 *ncomp, int32 *data_type, int32 *interlace_mode,
int32 dim_sizes[2], int32 *num_attrs)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

gr_name OUT: Buffer for the name of the raster image

ncomp OUT: Number of components in the raster image

data_type OUT: Data type of the raster image data

interlace_mode OUT: Interlace mode of the stored raster image data

dim_sizes OUT: Sizes of raster image dimension

num_attrs OUT: Number of attributes attached to the raster image

Purpose Retrieves general information about a raster image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRgetiminfo retrieves the name, number of components, data type, inter
mode, dimension sizes, and number of attributes of the raster image iden
by the parameter ri_id.

GRgetiminfo stores the name, number of components, data type, inter
mode and dimension sizes of the image in the parameters gr_name, ncomp,
data_type, interlace_mode, and dim_sizes, respectively. It also retrieves the
number of attributes attached to the image into the parameter num_attrs. If the
value of any of the output parameters are set to NULL in C, the corresponding
information will not be retrieved.

The buffer gr_name is assumed to have sufficient space allocated to store
entire name of the raster image.

The valid values of the parameter data_type are listed in Table 1A in Section I
of this manual.

FORTRAN integer function mggiinf(ri_id, gr_name, ncomp, data_type,
interlace_mode, dim_sizes, num_attrs)

integer ri_id, ncomp, data_type, interlace_mode, num_attrs

integer dim_sizes[2]

character*(*) gr_name
2-30 March 17, 1998

GRgetlutid/mggltidNational Center for Supercomputing Applications

age
,

s that
GRgetlutid/mggltid

int32 GRgetlutid(int32 ri_id, int32 pal_index)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

pal_index IN: Index of the palette

Purpose Gets the identifier of a palette given its index.

Return value Returns the palette identifier if successful and FAIL (or -1) otherwise.

Description GRgetlutid gets the identifier of the palette attached to the raster im
identified by the parameter ri_id. The palette is identified by its index
pal_index.

Currently, only one palette can be assigned to a raster image, which mean
pal_index should always be set to 0.

FORTRAN integer function mggltid(ri_id, pal_index)

integer ri_id, pal_index
March 17, 1998 2-31

GRgetlutinfo/mgglinf National Center for Supercomputing Applications

ace
 the
GRgetlutinfo/mgglinf

intn GRgetlutinfo(int32 pal_id, int32 *ncomp, int32 *data_type, int32 * interlace_mode, int32
*num_entries)

pal_id IN: Palette identifier returned by GRgetlutid

ncomp OUT: Number of components in the palette

data_type OUT: Data type of the palette

interlace_mode OUT: Interlace mode of the stored palette data

num_entries OUT: Number of color lookup table entries in the palette

Purpose Retrieves information about a palette.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRgetlutinfo retrieves the number of pixel components, data type, interl
mode, and number of color lookup table entries of the palette identified by
parameter pal_id. These values are stored in the parameters ncomp, data_type,
interlace_mode, and num_entries, respectively. In C if the value of any of the
output parameters are set to NULL, the corresponding information will not be
retrieved.

FORTRAN integer function mgglinf(pal_id, ncomp, data_type, interlace_mode,
num_entries)

integer pal_id, ncomp, data_type, interlace_mode, num_entries
2-32 March 17, 1998

GRidtoref/mgid2rfNational Center for Supercomputing Applications

 the

age
GRidtoref/mgid2rf

uint16 GRidtoref(int32 ri_id)

ri_id IN: Raster image identifier returned by GRselect or GRcreate

Purpose Maps a raster image identifier to a reference number.

Return value Returns the reference number of the raster image if successful and 0 otherwise.

Description GRidtoref returns the reference number of the raster image identified by
parameter ri_id.

This routine is commonly used for the purpose of annotating the raster im
or including the raster image within a vgroup.

FORTRAN integer function mgid2rf(ri_id)

integer ri_id
March 17, 1998 2-33

GRluttoref/mglt2rf National Center for Supercomputing Applications

the

e or
GRluttoref/mglt2rf

uint16 GRluttoref(int32 pal_id)

pal_id IN: Palette identifier returned by GRgetlutid

Purpose Maps a palette identifier to a reference number.

Return value Returns the reference number of the palette if successful or 0 otherwise.

Description GRluttoref returns the reference number of the palette identified by
parameter pal_id.

This routine is commonly used for the purpose of annotating the palett
including the palette within a vgroup.

FORTRAN integer function mglt2rf(pal_id)

integer pal_id
2-34 March 17, 1998

GRnametoindex/mgn2ndxNational Center for Supercomputing Applications

ter
GRnametoindex/mgn2ndx

int32 GRnametoindex(int32 gr_id, char *gr_name)

gr_id IN: GR interface identifier returned by GRstart

ri_name IN: Name of the raster image

Purpose Maps the name of a raster image to an index.

Return value Returns the index of the raster image if successful and FAIL (or -1) otherwise.

Description GRnametoindex returns, for the GR interface identified by the parame
gr_id, the index (index) of the raster image named gr_name.

The value of index can be passed into GRselect to obtain the raster image
identifier (ri_id).

FORTRAN integer function mgn2ndx(gr_id, gr_name)

integer gr_id

character*(*) gr_name
March 17, 1998 2-35

GRreadimage/mgrdimg/mgrcimg National Center for Supercomputing Applications

ta

the
of

alid
g

 in

n,
For
e
third
 the

See

For

e

GRreadimage/mgrdimg/mgrcimg

intn GRreadimage(int32 ri_id, int32 start[2], int32 stride[2], int32 edge[2], VOIDP data)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

start IN: Array specifying the starting location from where raster image da
is read

stride IN: Array specifying the interval between the values that will be read
along each dimension

edge IN: Array specifying the number of values to be read along each
dimension

data OUT: Buffer for the image data

Purpose Reads a raster image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRreadimage reads the subsample of the raster image specified by
parameter ri_id into the buffer data. The subsample is defined by the values
the parameters start, stride and edge.

The array start specifies the starting location of the subsample to be read. V
values of each element in the array start are 0 to the size of the correspondin
raster image dimension - 1. The first element of the array start specifies an
offset from the beginning of the array data along the fastest-changing
dimension, which is the second dimension in C and the first dimension
Fortran. The second element of the array start specifies an offset from the
beginning of the array data along the second fastest-changing dimensio
which is the first dimension in C and the second dimension in Fortran.
example, if the first value of the array start is 2 and the second value is 3, th
starting location of the subsample to be read is at the fourth row and
column in C, and at the third row and fourth column in Fortran. Note that
correspondence between the elements in the array start and the array data
dimensions in the GR interface is different from that in the SD interface.
the Reference Manual page on SDreaddata for an example.

The array stride specifies the reading pattern along each dimension.
example, if one of the elements of the array stride is 1, then every element
along the corresponding dimension of the array data will be read. If one of the
elements of the array stride is 2, then every other element along th
corresponding dimension of the array data will be read, and so on. The
correspondence between elements of the array stride and the dimensions of the
array data is the same as described above for the array start.
2-36 March 17, 1998

GRreadimage/mgrdimg/mgrcimgNational Center for Supercomputing Applications

be
n the

eric
Each element of the array edges specifies the number of data elements to
read along the corresponding dimension. The correspondence betwee
elements of the array edges and the dimensions of the array data is the same as
described above for the array start.

Note that there are two FORTRAN-77 versions of this routine; one for num
data (mgrdimg) and the other for character data (mgrcimg).

FORTRAN integer function mgrdimg(ri_id, start, stride, edge, data)

integer ri_id, start(2), stride(2), edge(2)

<valid numeric data type> data(*)

integer function mgrcimg(ri_id, start, stride, edge, data)

integer ri_id, start(2), stride(2), edge(2)

character*(*) data
March 17, 1998 2-37

GRreadlut/mgrdlut/mgrclut National Center for Supercomputing Applications

eric
GRreadlut/mgrdlut/mgrclut

intn GRreadlut(int32 pal_id, VOIDP pal_data)

pal_id IN: Palette identifier returned by GRgetlutid

pal_data OUT: Buffer for the palette data

Purpose Reads a palette.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRreadlut reads the palette specified by the parameter pal_id into the buffer
pal_data.

Note that there are two FORTRAN-77 versions of this routine; one for num
data (mgrdlut) and the other for character data (mgrclut).

FORTRAN integer function mgrclut(pal_id, pal_data)

integer pal_id

<valid numeric data type> pal_data(*)

integer function mgrdlut(pal_id, pal_data)

integer pal_id

character*(*) pal_data
2-38 March 17, 1998

GRreftoindex/mgr2idxNational Center for Supercomputing Applications

eter
GRreftoindex/mgr2idx

int32 GRreftoindex(int32 gr_id, uint16 gr_ref)

gr_id IN: GR interface identifier returned by GRstart

gr_ref IN: Reference number of the raster image

Purpose Maps the reference number of a raster image to an index.

Return value Returns the index of the image if successful and FAIL (or -1) otherwise.

Description GRreftoindex returns the index of the raster image specified by the param
gr_ref.

FORTRAN integer function mgr2idx(gr_id, gr_ref)

integer gr_id, gr_ref
March 17, 1998 2-39

GRreqimageil/mgrimil National Center for Supercomputing Applications

 read

age
e

ta
eter

i.e.
 at

n. If

all to
GRreqimageil/mgrimil

intn GRreqimageil(int32 ri_id, intn interlace_mode)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

interlace_mode IN: Interlace mode

Purpose Specifies the interlace mode to be used in the subsequent raster image
operation(s).

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRreqimageil requests that the subsequent read operations on the im
identified by the parameter ri_id use the interlace mode specified by th
parameter interlace_mode.

The parameter interlace_mode specifies the interlace mode in which the da
will be stored in memory when being read. Valid values of the param
interlace_mode are MFGR_INTERLACE_PIXEL (or 0), MFGR_INTERLACE_LINE (or
1) and MFGR_INTERLACE_COMPONENT (or 2).

In the file, the image is always stored in pixel interlace mode,
MFGR_INTERLACE_PIXEL. The interlace mode of the raster image specified
creation time is stored in the file along with the raster image. If GRreqimageil
is not called prior to the call to GRreadimage, the raster image will be read
and stored in memory according to the interlace mode specified at creatio
GRreqimageil is called before GRreadimage, GRreadimage will read the
raster image and store it according to the interlace mode specified in the c
GRreqimageil.

FORTRAN integer function mgrimil(ri_id, interlace_mode)

integer ri_id, interlace_mode
2-40 March 17, 1998

GRreqlutil/mgrltilNational Center for Supercomputing Applications

s).

ached

ta
eter
GRreqlutil/mgrltil

intn GRreqlutil(int32 ri_id, intn interlace_mode)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

interlace_mode IN: Interlace mode

Purpose Specifies the interlace mode to be used in the next palette read operation(

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRreqlutil requests that the subsequent read operations on the palette att
to the image identified by the parameter ri_id, use the interlace mode
interlace_mode.

The parameter interlace_mode specifies the interlace mode in which the da
will be stored in memory when being read. Valid values of the param
interlace_mode are MFGR_INTERLACE_PIXEL (or 0), MFGR_INTERLACE_LINE (or
1) and MFGR_INTERLACE_COMPONENT (or 2).

FORTRAN integer function mgrltil(ri_id, interlace_mode)

integer ri_id, interlace_mode
March 17, 1998 2-41

GRselect/mgselct National Center for Supercomputing Applications

ex,

r
n be
GRselect/mgselct

int32 GRselect(int32 gr_id, int32 index)

gr_id IN: GR interface identifier returned by GRstart

index IN: Index of the raster image in the file

Purpose Selects the existing raster image.

Return value Returns the raster image identifier if successful or FAIL (or -1) otherwise.

Description GRselect obtains the identifier of the raster image specified by the its ind
index.

Valid values of the parameter index range from 0 to the total number of raste
images in the file - 1. The total number of the raster images in the file ca
obtained by using GRfileinfo .

FORTRAN integer function mgselct(gr_id, index)

integer gr_id, index
2-42 March 17, 1998

GRsetattr/mgsnatt/mgscattNational Center for Supercomputing Applications

eter

bel =

ster

F

ll
, data
nly

eric
GRsetattr/mgsnatt/mgscatt

intn GRsetattr(int32 [obj]_id , char *attr_name, int32 data_type, int32 count, VOIDP values)

[obj]_id IN: Raster image identifier (ri_id), returned by GRcreate or GRselect or
GR interface identifier (gr_id), returned by GRstart

attr_name IN: Name of the attribute

data_type IN: Data type of the attribute

count IN: Number of values in the attribute

values IN: Buffer for the attribute values

Purpose Assigns an attribute to a raster image or a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRsetattr attaches the attribute to the object specified by the param
obj_id. The attribute is defined by its name, attr_name, data type, data_type,
number of attribute values, count, and the attribute values, values. GRsetattr
provides a generic way for users to define metadata. It implements the la
value data abstraction.

If an GR interface identifier (gr_id) is specified as the parameter obj_id, a
global attribute is created which applies to all objects in the file. If a ra
image identifier (ri_id) is specified as the parameter obj_id, an attribute is
attached to the specified raster image.

The parameter attr_name can be any ASCII string.

The parameter data_type can contain any data type supported by the HD
library. These data types are listed in Table 1A in Section I of this manual.

Attribute values are passed in the parameter values. The number of attribute
values is defined by the parameter count . If more than one value is stored, a
values must have the same data type. If an attribute with the given name
type and number of values exists, it will be overwritten. Currently, the o
predefined attribute is the fill value, identified by the FILL_ATTR definition.

Note that there are two FORTRAN-77 versions of this routine; one for num
data (mgsnatt) and the other for character data (mgscatt).

FORTRAN integer function mgsnatt([obj]_id, attr_name, data_type, count,
values)

integer [obj]_id, data_type, count

character*(*) attr_name

<valid numeric data type> values(*)
March 17, 1998 2-43

GRsetattr/mgsnatt/mgscatt National Center for Supercomputing Applications
integer function mgscatt([obj]_id, attr_name, data_type, count,
values)

integer [obj]_id, data_type

integer count

character*(*) values, attr_name
2-44 March 17, 1998

GRsetcompress/mgscompressNational Center for Supercomputing Applications

aster

ins

eld

ld
GRsetcompress/mgscompress

intn GRsetcompress(int32 ri_id, int32 comp_type, comp_info *c_info)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

comp_type IN: Compression method for the image data

C only:

c_info IN: Pointer to the comp_info union

Fortran only:

comp_prm IN: Compression parameters array

Purpose Specifies if the raster image will be stored in a file as a compressed r
image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRsetcompress specifies if the raster image specified by the parameter ri_id
will be stored in the file in compressed format.

The compression method is specified by the parameter comp_type. Valid
values of the parameter comp_type are:

COMP_CODE_NONE (or 0) for no compression
COMP_CODE_RLE (or 1) for RLE run-length encoding
COMP_CODE_SKPHUFF (or 3) for Skipping Huffman compression
COMP_CODE_DEFLATE (or 4) for GZIP compression

The compression method parameters are specified by the parameter c_info in C
and the parameter comp_prm in Fortran. The parameter c_info has type
comp_info , which is described in the hcomp.h header file. It conta
algorithm-specific information for the library compression routines.

The skipping size for the Skipping Huffman algorithm is specified in the fi
c_info.skphuff.skp_size in C and in the parameter comp_prm(1) in
Fortran.

The deflate level for the GZIP algorithm is specified in the fie
c_info.deflate.level in C and in the parameter comp_prm(1) in the
Fortran.

FORTRAN integer mgscompress(ri_id, comp_type, comp_prm)

integer ri_id, comp_type, comp_prm(*)
March 17, 1998 2-45

GRsetchunk/mgschnk National Center for Supercomputing Applications

tion

s
GRsetchunk/mgschnk

intn GRsetchunk(int32 ri_id, HDF_CHUNK_DEF cdef, int32 flags)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

C only:

cdef IN: Chunk definition

flags IN: Compression flags

Fortran only:

dim_length IN: Chunk dimensions array

comp_type IN: Type of compression

comp_prm IN: Compression parameters array

Purpose Makes a raster image a chunked raster image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRsetchunk makes the raster image specified by the parameter ri_id a
chunked raster image according to the chunking and compression informa
provided in the parameters cdef and flags in C, or in the parameters comp_type
and comp_prm in Fortran.

C only:

The parameter cdef is a union of type HDF_CHUNK_DEF, which is defined a
follows:

typedef union hdf_chunk_def_u
 {
 int32 chunk_lengths[2]; /* chunk lengths along each dim */

 struct
 {
 int32 chunk_lengths[2];
 int32 comp_type; /* compression type */
 struct comp_info cinfo;
 } comp;

 struct
 {
 /* is not used in GR interface */
 } nbit;
 } HDF_CHUNK_DEF
2-46 March 17, 1998

GRsetchunk/mgschnkNational Center for Supercomputing Applications

ping

in

on
low.

he
one
n or
Valid values of the parameter flags are HDF_CHUNK for chunked and
uncompressed data and (HDF_CHUNK | HDF_COMP) for chunked and compressed
data. Data can be compressed using run-length encoding (RLE), Skip
Huffman or GZIP compression algorithms.

If the parameter flags has a value of HDF_CHUNK, the chunk dimensions must be
specified in the field cdef.chunk_lengths[] . If the parameter flags has a
value of (HDF_CHUNK | HDF_COMP), the following must be specified:

1) The chunk dimensions in the field cdef.comp.chunk_lengths[].
2) The compression type in the field cdef.comp.comp_type . Valid values

of compression type values are listed below.

COMP_CODE_NONE (or 0) for uncompressed data
COMP_CODE_RLE (or 1) for data compressed using the RLE compression

algorithm
COMP_CODE_SKPHUFF (or 3) for data compressed using the Skipping Huffman

compression algorithm
COMP_CODE_DEFLATE (or 4) for data compressed using the GZIP compression

algorithm

3) If using Skipping Huffman compression, the skipping size is specified
the field cdef.comp.cinfo.skphuff.skp_size . If using GZIP
compression, the deflate level is specified in the field
cdef.comp.cinfo.deflate.level . Valid deflate level values are
integers from 1 to 9 inclusive.

Refer to the SDsetcompress page in this manual for the definition of the
comp_info structure.

Fortran only:

The dim_length array specifies the chunk dimensions.

The parameter comp_type specifies the compression type. Valid compressi
types and their values used are defined in the hdf.inc file, and are listed be

COMP_CODE_NONE (or 0) for uncompressed data
COMP_CODE_RLE (or 1) for data compressed using the RLE compression

algorithm
COMP_CODE_SKPHUFF (or 3) for data compressed using the Skipping Huffman

compression algorithm
COMP_CODE_DEFLATE (or 4) for data compressed using the GZIP compression

algorithm.

The parameter comp_prm specifies the compression parameters for t
Skipping Huffman and GZIP compression methods. It contains only
element which is set to the skipping size for Skipping Huffman compressio
the deflate level for GZIP compression

FORTRAN integer function mgschnk(ri_id, dim_length, comp_type, comp_prm)
March 17, 1998 2-47

GRsetchunk/mgschnk National Center for Supercomputing Applications
integer ri_id, dim_length, comp_type, comp_prm
2-48 March 17, 1998

GRsetchunkcache/mgscchnkNational Center for Supercomputing Applications

the

e
sion.
GRsetchunkcache/mgscchnk

intn GRsetchunkcache(int32 ri_id, int32 maxcache, int32 flags)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

maxcache IN: Maximum number of chunks to cache

flags IN: Flags determining the behavior of the routine

Purpose Specifies the maximum number of chunks to cache.

Return value Returns the value of the parameter maxcache if successful and FAIL (or -1)
otherwise.

Description GRsetchunkcache sets the maximum number of chunks to be cached for
chunked raster image specified by the parameter ri_id. The maximum number
of the chunks is specified by the parameter maxcache.

Currently, the only valid value of the parameter flags is 0.

If GRsetchunkcache is not called, the maximum number of chunks in th
cache is set to the number of chunks along the fastest-changing dimen
Refer to the discussion of the GRsetchunkcache routine in the HDF User’s
Guide for more specific information on the routine’s behavior.

FORTRAN integer function mgscchnk(ri_id, maxcache, flags)

integer ri_id, maxcache, flags
March 17, 1998 2-49

GRsetexternalfile/mgsxfil National Center for Supercomputing Applications

ter

ser's
le.

file .
ease

ring
GRsetexternalfile/mgsxfil

intn GRsetexternalfile(int32 ri_id, char *filename, int32 offset)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

filename IN: Name of the external file

offset IN: Offset in bytes from the beginning of the external file to where the
data will be written

Purpose Specifies that the raster image will be written to an external file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRsetexternalfile specifies that the raster image identified by the parame
ri_id will be written to the external file specified by the parameter filename at
the offset specified by the parameter offset.

Data can only be moved once for any given raster image, and it is the u
responsibility to make sure the external data file is kept with the “original” fi

If the raster image already exists, its data will be moved to the external
Space occupied by the data in the primary file will not be released. To rel
the space in the primary file use the hdfpack command-line utility. If the
raster image does not exist, its data will be written to the external file du
the subsequent calls to GRwritedata.

See the Reference Manual entries for HXsetcreatedir and HXsetdir for more
information on the options available for accessing external files.

FORTRAN integer function mgsxfil(ri_id, filename, offset)

integer ri_id, offset

character*(*) filename
2-50 March 17, 1998

GRstart/mgstartNational Center for Supercomputing Applications

ter

GR
GRstart/mgstart

int32 GRstart(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Initializes the GR interface.

Return value Returns the GR interface identifier if successful and FAIL (or -1) otherwise.

Description GRstart initializes the GR interface for the file specified by the parame
file_id.

This routine is used with the GRend routine to define the extent of the GR
interface session. As with the start routines in the other interfaces, GRstart
initializes the internal interface structures needed for the remaining
routines. Use the general purpose routines Hopen and Hclose to manage file
access. The GR routines will not open and close HDF files.

FORTRAN integer function mgstart(file_id)

integer file_id
March 17, 1998 2-51

GRwriteimage/mgwrimg/mgwcimg National Center for Supercomputing Applications

 is

 the

en.

first

g
n in

urth
an.

ace.

or

he
GRwriteimage/mgwrimg/mgwcimg

intn GRwriteimage(int32 ri_id, int32 start[2], int32 stride[2], int32 edge[2], VOIDP data)

ri_id IN: Raster image identifier returned by GRcreate or GRselect

start IN: Array containing the two-dimensional coordinate of the initial
location for the write

stride IN: Array containing the number of data locations the current location
to be moved forward before each write

edge IN: Array containing the number of data elements that will be written
along each dimension

data IN: Buffer containing the image data

Purpose Writes a raster image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRwriteimage writes the subsample of the raster image data stored in
buffer data to the raster image specified by the parameter ri_id. The subsample
is defined by the values of the parameters start, stride and edge.

The array start specifies the starting location of the subsample to be writt
Valid values of each element in the array start are 0 to the size of the
corresponding raster image dimension - 1. The first element of the array start
specifies an offset from the beginning of the array data along the fastest-
changing dimension, which is the second dimension in C and the
dimension in Fortran. The second element of the array start specifies an offset
from the beginning of the array data along the second fastest-changin
dimension, which is the first dimension in C and the second dimensio
Fortran. For example, if the first value of the array start is 2 and the second
value is 3, the starting location of the subsample to be written is at the fo
row and third column in C, and at the third row and fourth column in Fortr
Note that the correspondence between elements in the array start and the raster
image dimensions in the GR interface is different from that in the SD interf
See the Reference Manual page on SDreaddata for an example of this.

The array stride specifies the writing pattern along each dimension. F
example, if one of the elements of the array stride is 1, then every element
along the corresponding dimension of the array data will be written. If one of
the elements of the stride array is 2, then every other element along t
corresponding dimension of the array data will be written, and so on. The
correspondence between elements of the array stride and the dimensions of
the array data is the same as described above for the array start.
2-52 March 17, 1998

GRwriteimage/mgwrimg/mgwcimgNational Center for Supercomputing Applications

be
n the

eric
Each element of the array edges specifies the number of data elements to
written along the corresponding dimension. The correspondence betwee
elements of the array edges and the dimensions of the array data is the same as
described above for the array start.

Note that there are two FORTRAN-77 versions of this routine; one for num
data (mgwrimg) and the other for character data (mgwcimg).

FORTRAN integer function mgwrimg(ri_id, start, stride, edge, data)

integer ri_id, start(2), stride(2), edge(2)

<valid numeric data type> data(*)

integer function mgwcimg(ri_id, start, stride, edge, data)

integer ri_id, start(2), stride(2), edge(2)

character*(*) data
March 17, 1998 2-53

GRwritelut/mgwrlut/mgwclut National Center for Supercomputing Applications

 by
he
ter
the

tte

any
d by

is

ll of

eric
GRwritelut/mgwrlut/mgwclut

intn GRwritetlut(int32 pal_id, int32 ncomp, int32 data_type, int32 interlace_mode, int32 num_entries,
VOIDP pal_data)

pal_id IN: Palette identifier returned by GRgetlutid

ncomp IN: Number of components in the palette

data_type IN: Data type of the palette data

interlace_mode IN: Interlace mode of the stored palette data

num_entries IN: Number of entries in the palette

pal_data IN: Buffer for the palette data to be written

Purpose Writes a palette.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRwritelut writes a palette with the number of pixel components specified
the parameter ncomp, the data type of the palette data specified by t
parameter data_type, the interlace mode specified by the parame
interlace_mode, and the number of entries in the palette specified by
parameter num_entries. The palette data itself is stored in the pal_data buffer.
Currently only “old-style” palettes are supported, i.e ncomp = 3,
num_entries = 256, data_type = uint8.

The parameter ncomp specifies the number of pixel components in the pale
and must have a value of at least 1.

The parameter data_type specifies the type of the palette data and can be
of the data types supported by the HDF library. The data types supporte
HDF are listed in Table 1A in Section I of this manual.

The parameter interlace_mode specifies the interlacing in which the palette
to be written. The valid values of interlace_mode are: MFGR_INTERLACE_PIXEL

(or 0), MFGR_INTERLACE_LINE (or 1) and MFGR_INTERLACE_COMPONENT (or 2).

The buffer pal_data is assumed to have sufficient space allocated to store a
the palette data.

Note that there are two FORTRAN-77 versions of this routine; one for num
data (mgwrlut) and the other for character data (mgwclut).

FORTRAN integer function mgwrlut(pal_id, ncomp, data_type, interlace_mode,
num_entries, pal_data)

integer pal_id, ncomp, data_type, interlace_mode, num_entries

<valid numeric data type> pal_data(*)
2-54 March 17, 1998

GRwritelut/mgwrlut/mgwclutNational Center for Supercomputing Applications
integer function mgwclut(pal_id, ncomp, data_type, interlace_mode,
num_entries, pal_data)

integer pal_id, ncomp, data_type, interlace_mode, num_entries

character*(*) pal_data
March 17, 1998 2-55

Hclose/hclose National Center for Supercomputing Applications

is

.
the
Hclose/hclose

intn Hclose(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Closes the access path to the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The file identifier file_id is validated before the file is closed. If the identifier
valid, the function closes the access path to the file.

If there are still access identifiers attached to the file, the error DFE_OPENAID is
placed on the error stack, FAIL (or -1) is returned, and the file remains open
This is a common error when developing new interfaces. Refer to
Reference Manual page on Hendaccess for a discussion of this problem.

FORTRAN integer function hclose(file_id)

integer file_id
2-56 March 17, 1998

Hgetfileversion/hgfilverNational Center for Supercomputing Applications

 file
Hgetfileversion/hgfilver

intn Hgetfileversion(int32 file_id, uint32 *major_v, uint32 *minor_v, uint32 *release, char string[])

file_id IN: File identifier returned by Hopen

major_v OUT: Major version number

minor_v OUT: Minor version number

release OUT: Release number

string OUT: Version number text string

Purpose Retrieves version information for an HDF file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description It is still an open question as to what exactly the version number of a
should mean, so we recommend that code not depend on this buffer. The string
argument is limited to a length of LIBVSTR_LEN (or 80) characters as defined
in hfile.h .

FORTRAN integer function hgfilver(file_id, major_v, minor_v, release,
string)

integer file_id, major_v, minor_v, release
character*(*) string
March 17, 1998 2-57

Hgetlibversion/hglibver National Center for Supercomputing Applications

ary
Hgetlibversion/hglibver

intn Hgetlibversion(uint32 *major_v, uint32 *minor_v, uint32 *release, char string[])

major_v OUT: Major version number

minor_v OUT: Minor version number

release OUT: Release number

string OUT: Version number text string

Purpose Retrieves the version information of the current HDF library.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The version information is compiled into the HDF library, so it is not necess
to have any open files for this function to execute. The string buffer is limited
to a length of LIBVSTR_LEN (or 80) characters as defined in hfile.h .

FORTRAN integer function hglibver(major_v, minor_v, release, string)

integer major_v, minor_v, release
character*(*) string
2-58 March 17, 1998

HishdfNational Center for Supercomputing Applications
Hishdf

intn Hishdf(char *filename)

filename IN: Complete path and filename of the file to be checked

Purpose Determines if a file is an HDF file.

Return value Returns TRUE (or 1) if the file is an HDF file and FALSE (or 0) otherwise.

Description The first four bytes of a file identify it as an HDF file. It is possible that Hishdf
will identify a file as an HDF file but Hopen will be unable to open the file; for
example, if the data descriptor list is corrupt.
March 17, 1998 2-59

Hopen/hopen National Center for Supercomputing Applications

locks

ame,

he

e.

ing

le for

ant
ciated
p.
Hopen/hopen

int32 Hopen(char *filename, intn access, int16 n_dds)

filename IN: Complete path and filename for the file to be opened

access IN: Access code definition (preceded by DFACC_)

n_dds IN: Number of data descriptors in a block if a new file is to be created

Purpose Provides an access path to an HDF file by reading all the data descriptor b
into memory.

Return value Returns the file identifier if successful and FAIL (or -1) otherwise.

Description If given a new file name, Hopen will create a new file using the specified
access type and number of data descriptors. If given an existing file n
Hopen will open the file using the specified access type and ignore the n_dds
argument.

If n_dds is set to 0, the number of data descriptors will be defined as t
machine default.

HDF provides several access code definitions:

DFACC_CREATE - If file exists, delete it, then open a new file for read/writ
DFACC_READ - Open for read only. If file does not exist, error.
DFACC_WRITE - Open for read/write. If file does not exist, create it.

If a file is opened and an attempt is made to reopen the file us
DFACC_CREATE, HDF will issue the error code DFE_ALROPEN. If the file is
opened with read-only access and an attempt is made to reopen the fi
write access using DFACC_RDWR or DFACC_WRITE, HDF will attempt to reopen
the file with read and write permissions.

Upon successful exit, the specified file is opened with the relev
permissions, the data descriptors are set up in memory, and the asso
file_id is returned. For new files, the appropriate file headers are also set u

FORTRAN integer function hopen(filename, access, n_dds)

character*(*) filename

integer access, n_dds
2-60 March 17, 1998

HDdont_atexit/hddontatexitNational Center for Supercomputing Applications

ry is
ion
ith
y,

he

ed,
HDdont_atexit/hddontatexit

intn HDdont_atexit(void)

Purpose Indicates to the library that an 'atexit()' routine is _not_ to be installed.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine indicates to the library that an atexit() cleanup routine
should not be installed. The purpose for this is in situations where the libra
dynamically linked into an application and is unlinked from the applicat
before exit() gets called. In those situations, a routine installed w
atexit() would jump to a routine which was no longer in memor
causing errors.

In order to be effective, this routine must be called before any other HDF
function calls, and must be called each time the library is loaded/linked into t
application (the first time and after it has been unloaded).

If this routine is used, certain memory buffers will not be deallocat
although in theory a user could call HPend on their own.

FORTRAN integer hddontatexit()
March 17, 1998 2-61

HEprint/heprnt National Center for Supercomputing Applications

put

he
e at
tion

cause
ts to
HEprint/heprnt

VOID HEprint(FILE *stream, int32 level)

stream IN: Stream to print error message to

level IN: Level of error stack to print

Purpose Prints information to the error stack.

Return value None.

Description If level is 0, all of the errors currently on the error stack are printed. Out
from this function is sent to the file pointed to by stream.

The following information is printed: the ASCII description of the error, t
reporting routine, the reporting routine as source file name, and the lin
which the error was reported. If the programmer has supplied extra informa
by means of HEreport , this information is printed as well.

The FORTRAN-77 routine uses one less parameter than the C routine be
it doesn't allow the user to specify the print stream. Instead, it always prin
stdout .

FORTRAN integer heprnt(level)

integer level
2-62 March 17, 1998

HEstringNational Center for Supercomputing Applications

ically

fault
HEstring

char *HEstring(int16 error_code)

error_code IN: HDF error code

Purpose Returns the error message associated with specified error code.

Return value Returns a pointer to a string associated with the error code if successful.

Description Returns a text description of the given error code. These strings are stat
declared and should not be deallocated from memory (using the free routine)
by the user. If a defined text description cannot be found a generic de
message is returned.
March 17, 1998 2-63

HXsetcreatedir/hxiscdir National Center for Supercomputing Applications

he

ment

d

able

 i.e.,
lute

 the
 are

the
HXsetcreatedir/hxiscdir

intn HXsetcreatedir(char *dir)

dir IN: Target directory of the external file to be written

Purpose Initializes the directory environment variable, identifying the location of t
external file to be written.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The contents of dir is copied into the private memory of the HDF library. If dir
is NULL, the directory variable is unset. If HXsetcreatedir encounters an error
condition, the directory variable is not changed. When a new external ele
is created (via the routines HXcreate or SDsetexternal), the HDF library
accesses the external file just like the open call by default. Refer to the
Reference Manual page on HXcreate for a description of when a new or an ol
file should be opened.

Users may override the default action by calling HXsetcreatedir or by
defining the environment variable $HDFEXTCREATEDIR. The HDF library will
access the external file in the directory according to the environment vari
setting. The precedence is HXsetcreatedir, then $HDXEXTDIR, in the manner of
open.

Note that the above override does not apply to absolute pathnames -
filenames starting with a forward slash. HDF will access the abso
pathname without change. Also note that HXsetcreatedir and
$HDFEXTCREATEDIR are not symmetrical to HXsetdir and $HDFEXTDIR. The
former pair permits only single directory values and is used to compose
filename for access. The later pair permits multiple directory values which
used for searching an existing file.

The dir_len parameter in the FORTRAN-77 routine specifies the length of
dir character string.

FORTRAN integer function hxiscdir(dir, dir_len)

character*(*) dir

integer dir_len
2-64 March 17, 1998

HXsetdir/hxisdirNational Center for Supercomputing Applications

he

 to
.g.,

F

 By

ser
y
hen

 i.e.,

upA/
 the

the
HXsetdir/hxisdir

intn HXsetdir(char *dir)

dir IN: Target directory of the external file to be located

Purpose Initializes the directory environment variable, identifying the location of t
external file to be located.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description HXsetdir sets the directory variable for locating an external file according
dir which may contain multiple directories separated by vertical bars (e
“dir1|dir2”). The content of dir is copied into the private memory of the HD
library. If dir is NULL, the directory variable is unset.

If HXsetdir encounters any error, the directory variable is not changed.
default, the HDF library locates the external file just like the open call. It also
searches for the external file in the directories specified by the u
environment variable $HDFEXTDIR, if defined, and the directory variable set b
HXsetdir. The searching precedence is directory variable, if set, t
$HDXEXTDIR, then in the manner of open.

The searching differs if the external filename is an absolute pathname -
starting with a forward slash. HDF will try open first. If open fails and if
$HDFEXTDIR is defined or the directory variable is set via HXsetdir, HDF will
remove all directory components of the absolute pathname (e.g., “/usr/gro
projectB/Data001” becomes “Data001”) and search for that filename with
strategy described in the previous paragraph.

The dir_len parameter in the FORTRAN-77 routine specifies the length of
dir character string.

FORTRAN integer function hxisdir(dir, dir_len)

character*(*) dir

integer dir_len
March 17, 1998 2-65

HXsetdir/hxisdir National Center for Supercomputing Applications
2-66 March 17, 1998

SDattrinfo/sfgainfoNational Center for Supercomputing Applications

bute
rs
d

I

SDattrinfo/sfgainfo

intn SDattrinfo(int32 obj_id, int32 attr_index, char *attr_name, int32 *data_type, int32 *count)

obj_id IN: Identifier of the object to which the attribute is attached to

attr_index IN: Index of the attribute

attr_name OUT: Name of the attribute

data_type OUT: Data type of the attribute values

count OUT: Total number of values in the attribute

Purpose Retrieves information about an attribute.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDattrinfo retrieves the name, data type, and number of values of the attri
specified by its index, attr_index, and stores them in the paramete
attr_name, data_type, and count, respectively. This routine should be use
before reading the values of an attribute with SDreadattr.

The parameter obj_id can be either an SD interface identifier (sd_id), returned
by SDstart, a data set identifier (sds_id), returned by SDselect, or a dimension
identifier (dim_id), returned by SDgetdimid.

Valid values of the parameter attr_index range from 0 to the number of
attributes attached to the object - 1.

Valid values of the parameter data_type can be found in Table 1A of Section
of this manual.

FORTRAN integer function sfgainfo(obj_id, attr_index, attr_name,
data_type, count)

character*(*) attr_name

integer obj_id, attr_index, data_type, count
March 17, 1998 2-67

SDcreate/sfcreate National Center for Supercomputing Applications

d

, data
e file
 at a

lt
 the
d

 of

DF

SDcreate/sfcreate

int32 SDcreate(int32 sd_id, char *name, int32 data_type, int32 rank, int32 dimsizes[])

sd_id IN: SD interface identifier returned by SDstart

name IN: Name of the data set

data_type IN: Data type for the values in the data set

rank IN: Number of the data set dimensions

dimsizes IN: Array containing the size of each dimension

Purpose Creates a new data set.

Return value Returns the data set identifier (sds_id) if successful and FAIL (or -1) otherwise.

Description SDcreate creates a data set with the name specified by the parameter name, the
values of the data type specified by parameter data_type, the number of
dimensions specified by the parameter rank, and the dimension sizes specifie
by the array dimsizes.

Once a data set has been created, it is not possible to change its name
type, or rank. However, it is possible to create a data set and close th
before writing any data values to it. The values can be added or modified
future time. To add data or modify an existing data set, use SDselect to get the
data set identifier instead of SDcreate.

If the parameter name is NULL in C or an empty string in Fortran, the defau
name “Data Set” will be generated. If the length of the name specified by
name parameter is longer than 64 characters, then the name will be truncate
to 64 characters.

The calling program must ensure that the length of the dimsizes array is the
value of the rank parameter, which is between 1 and MAX_VAR_DIMS (or 32).

To create a data set with unlimited dimensions, assign the value
SD_UNLIMITED (or 0) to the dimsizes[0] in C and to dimsizes[rank] in Fortran.

The data_type parameter can contain any data type supported by the H
library. These data types are listed in Table 1A in Section I of this manual.

FORTRAN integer function sfcreate(sd_id, name, data_type, rank,
dimsizes)

character*(*) name

integer sd_id, data_type, rank, dimsizes(*)
2-68 March 17, 1998

SDdiminfo/sfgdinfoNational Center for Supercomputing Applications

f the

 of

und
he

x]
SDdiminfo/sfgdinfo

intn SDdiminfo(int32 dim_id, char *name, int32 *size, int32 *data_type, int32 *num_attrs)

dim_id IN: Dimension identifier returned by SDgetdimid

name OUT: Name of the dimension

size OUT: Size of the dimension

data_type OUT: Data type of the dimension scale

num_attrs OUT: Number of attributes assigned to the dimension

Purpose Retrieves information about a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDdiminfo retrieves the name, size, data type, and number of values o
dimension specified by the parameter dim_id, and stores them in the
parameters name, size, data_type, and num_attrs, respectively.

If the output value of the parameter size is set to 0, then the dimension
specified by the dim_id parameter is unlimited. To get the number of records
an unlimited dimension, use SDgetinfo.

If scale information has been stored for this dimension via SDsetdimscale, the
data_type parameter will contain the data type. Valid data types can be fo
in Table 1A of Section I of this manual. If the dimension identified by t
dim_id parameter is a coordinate variable, the value returned in the data_type
parameter will be 0.

If the user has not named the dimension via SDsetdimname, a default
dimension name of “fakeDim[x]” will be generated by the library, where [
denotes the dimension index. If the name is not desired, the parameter name
can be set to NULL in C and an empty string in Fortran.

FORTRAN integer function sfgdinfo(dim_id, name, size, data_type,
num_attrs)

character*(*) name

integer dim_id, size, data_type, num_attrs
March 17, 1998 2-69

SDend/sfend National Center for Supercomputing Applications

SD
ing
o be
SDend/sfend

intn SDend(int32 sd_id)

sd_id IN: SD interface identifier returned by SDstart

Purpose Terminates access to an SD interface.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDend closes the file and frees memory allocated by the library when
interface activities are completed. If the calling program exits without invok
this routine, recent changes made to the in-core file data are likely not t
flushed to the file. Note that each SDstart must have a matching SDend.

FORTRAN integer function sfend(sd_id)

integer sd_id
2-70 March 17, 1998

SDendaccess/sfendaccNational Center for Supercomputing Applications

res

 are
each
SDendaccess/sfendacc

intn SDendaccess(int32 sds_id)

sds_id IN: Data set identifier returned by SDcreate or SDselect

Purpose Terminates access to a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDendaccess frees the memory taken up by the HDF library’s data structu
devoted to the data set identified by the parameter sds_id.

 Failing to call this routine after all operations on the specified data set
complete may result in loss of data. This routine must be called once for
call to SDcreate or SDselect.

FORTRAN integer function sfendacc(sds_id)

integer sds_id
March 17, 1998 2-71

SDfileinfo/sffinfo National Center for Supercomputing Applications

 file.

obal

inate
SDfileinfo/sffinfo

intn SDfileinfo(int32 sd_id, int32 *num_datasets, int32 *num_global_attrs)

sd_id IN: SD interface identifier returned by SDstart

num_datasets OUT: Number of data sets in the file

num_global_attrsOUT: Number of global attributes in the file

Purpose Retrieves the number of data sets and the number of global attributes in a

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDfileinfo returns the number of data sets in the parameter num_datasets and
the number of global attributes in the parameter num_global_attrs. The term
“global attributes” refers to attributes that are assigned to the file. The gl
attributes are created by SDsetattr using an SD interface identifier (sd_id)
rather than a data set identifier (sds_id).

The value returned by the parameter num_datasets includes the number of
coordinate variable data sets. To determine if the data set is a coord
variable, use SDiscoordvar.

FORTRAN integer function sffinfo(sd_id, num_datasets, num_global_attrs)

integer sd_id, num_datasets, num_global_attrs
2-72 March 17, 1998

SDfindattr/sffattrNational Center for Supercomputing Applications

fied
SDfindattr/sffattr

int32 SDfindattr(int32 obj_id, char *attr_name)

obj_id IN: Identifier of the object to which the attribute is attached

attr_name IN: Name of the attribute

Purpose Finds the index of an attribute given its name.

Return value Returns the index if successful and FAIL (or -1) otherwise.

Description SDfindattr retrieves the index of the object’s attribute with the name speci
by the parameter attr_name.

The attribute is attached to the object specified by the parameter obj_id. The
parameter obj_id can be either an SD interface identifier (sd_id), returned by
SDstart, a data set identifier (sds_id), returned by SDselect, or a dimension
identifier (dim_id), returned by SDgetdimid.

Wildcard characters are not allowed in the parameter attr_name. SDfindattr
searches for the name specified in the parameter attr_name in a case-sensitive
manner.

FORTRAN integer function sffattr(obj_id, attr_name)

integer obj_id

character*(*) attr_name
March 17, 1998 2-73

SDgetcal/sfgcal National Center for Supercomputing Applications

 the
g
he

d
ata
SDgetcal/sfgcal

intn SDgetcal(int32 sds_id, float64 *cal, float64 *cal_err, float64 *offset, float64 *offset_err, int32
*data_type)

sds_id IN: Data set identifier returned by SDcreate or SDselect

cal OUT: Calibration factor

cal_err OUT: Calibration error

offset OUT: Uncalibrated offset

offset_err OUT: Uncalibrated offset error

data_type OUT: Data type of uncalibrated data

Purpose Retrieves the calibration information associated with a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetcal reads the calibration record attached to the data set identified by
parameter sds_id. A calibration record is comprised of four 64-bit floatin
point values followed by a 32-bit integer. The information is listed in t
following table:

cal calibration factor

cal_err calibration error

offset uncalibrated offset

offset_err uncalibrated offset error

data_type data type of the uncalibrated data

The relationship between a calibrated value cal_value and the original value
orig_value is defined as orig_value = cal * (cal_value - offset) .

The variable offset_err contains a potential error of offset , and cal_err

contains a potential error of cal . Currently the calibration record is provide
for information only. The SD interface performs no operations on the d
based on the calibration tag.

FORTRAN integer function sfgcal(sds_id, cal, cal_err, offset, offset_err,
data_type)

integer sds_id, data_type

real*8 cal, cal_err, offset, offset_err
2-74 March 17, 1998

SDgetchunkinfo/sfgichnkNational Center for Supercomputing Applications

ed

the
 in

s is

he

SDgetchunkinfo/sfgichnk

intn SDgetchunkinfo(int32 sds_id, HDF_CHUNK_DEF *cdef, int32 *flag)

sds_id IN: Data set identifier returned by SDcreate or SDselect

C only:

cdef OUT: Pointer to the chunk definition

flag OUT: Compression flag

Fortran only:

dim_length OUT: Array of chunk dimensions

flag OUT: Compression flag

Purpose Retrieves chunking information for a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetchunkinfo retrieves chunking information about the data set identifi
by the parameter sds_id into the parameters cdef and flag in C, and to the
parameters dim_length and flag in Fortran.

Currently, only information about chunk dimensions is retrieved into
corresponding cdef structure element for each type of compression in C, and
the dim_length array in Fortran. No information on compression parameter
available in the comp structure of the HDF_CHUNK_DEF union. Refer to the page
on SDsetchunk in this manual for specific information on the HDF_CHUNK_DEF

union.

The value returned in the flag parameter indicates the data set type (i.e., if t
data set is not chunked, chunked, and chunked and compressed).

If the chunk length for each dimension is not needed, NULL can be passed in as
the value of the cdef parameter in C.

The following table shows the type of the data set, possible values of theflag
parameter, and the corresponding cdef structure element filled with the chunk’s
dimensions.

Type of Data Set Values of flag in C
(Fortran)

cdef Structure Element Filled
with the Chunk’s Dimensions

Not chunked HDF_NONE (-1) None

Chunked HDF_CHUNK (0) cdef.chunk_lengths[]
March 17, 1998 2-75

SDgetchunkinfo/sfgichnk National Center for Supercomputing Applications
Chunked and compressed
with either the run-length
encoding (RLE), Skipping
Huffman or GZIP compres-
sion algorithms

HDF_CHUNK |
HDF_COMP (1) cdef.comp.chunk_lengths[]

Chunked and compressed
with NBIT compression

HDF_CHUNK |
HDF_NBIT (2) cdef.nbit.chunk_lengths[]

FORTRAN integer function sfgichnk(sds_id, dim_length, flag)

integer sds_id, dim_length, flag

Type of Data Set Values of flag in C
(Fortran)

cdef Structure Element Filled
with the Chunk’s Dimensions
2-76 March 17, 1998

SDgetdatastrs/sfgdtstrNational Center for Supercomputing Applications

 by
nd

for

ding
to
SDgetdatastrs/sfgdtstr

intn SDgetdatastrs(int32 sds_id, char *label, char *unit, char *format, char *coordsys, intn length)

sds_id IN: Data set identifier returned by SDcreate or SDselect

label OUT: Label (predefined attribute)

unit OUT: Unit (predefined attribute)

format OUT: Format (predefined attribute)

coordsys OUT: Coordinate system (predefined attribute)

length IN: Maximum length of the above predefined attributes

Purpose Retrieves the predefined attributes of a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetdatastrs retrieves the predefined attributes for the data set specified
the parameter sds_id. The predefined attributes are label, unit, format, a
coordinate system. They are then stored in the parameters label, unit, format,
and coordsys, respectively. Refer to Section 3.10 of the HDF User’s Guide
more information on predefined attributes.

If a particular data string is not stored the first character of the correspon
SDgetdatastrs parameter is '\0 '. Each string buffer must include the space
hold the null termination character. If a user does not want a string back, NULL

can be passed in for that string. Data strings are set by the SDsetdatastrs
routine.

FORTRAN integer function sfgdtstr(sds_id, label, unit, format, coordsys,
length)

integer sds_id, length

character*(*) label, unit, format, coordsys
March 17, 1998 2-77

SDgetdimid/sfdimid National Center for Supercomputing Applications

he

ber
SDgetdimid/sfdimid

int32 SDgetdimid(int32 sds_id, intn dim_index)

sds_id IN: Data set identifier returned by SDcreate or SDselect

dim_index IN: Index of the dimension

Purpose Returns the identifier of a dimension given its index.

Return value Returns the dimension identifier (dim_id) if successful and FAIL (or -1)
otherwise.

Description SDgetdimid returns the identifier of the dimension specified by its index, t
parameter dim_index.

The dimension index is a nonnegative integer and is less than the total num
of data set dimensions returned by SDgetinfo.

FORTRAN integer function sfdimid(sds_id, dim_index)

integer sds_id, dim_index
2-78 March 17, 1998

SDgetdimscale/sfgdscaleNational Center for Supercomputing Applications

the

nd to
lling
SDgetdimscale/sfgdscale

intn SDgetdimscale(int32 dim_id, VOIDP scale_buf)

dim_id IN: Dimension identifier returned by SDgetdimid

scale_buf OUT: Buffer for the scale values

Purpose Retrieves the scale values for a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetdimscale retrieves the scale values of the dimension identified by
parameter dim_id and stores the values in the buffer scale_buf.

SDdiminfo should be used to check if a scale has been set for the dimension a
obtain the number of scale values for space allocation before ca
SDgetdimscale.

It is not possible to read a subset of the scale values. SDgetdimscale returns all
of the scale values stored with the given dimension.

FORTRAN integer function sfgdscale(dim_id, scale_buf)

integer dim_id

<valid numeric data type> scale_buf(*)
March 17, 1998 2-79

SDgetdimstrs/sfgdmstr National Center for Supercomputing Applications

sion
it,

ide

the

tring
SDgetdimstrs/sfgdmstr

intn SDgetdimstrs(int32 dim_id, char *label, char *unit, char *format, intn length)

dim_id IN: Dimension identifier returned by SDgetdimid

label OUT: Label (predefined attribute)

unit OUT: Unit (predefined attribute)

format OUT: Format (predefined attribute)

length IN: Maximum length of the above predefined attributes

Purpose Retrieves the predefined attributes of a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetdimstrs retrieves the predefined attributes associated with the dimen
identified by the parameter dim_id. The predefined attributes are label, un
and format. These predefined attributes are stored in the parameters label,
unit, and format, respectively. Refer to Section 3.10 of the HDF User’s Gu
for more information on predefined attributes.

If a particular data string was not stored, the first character of
corresponding SDgetdimstrs parameter is '\0 '. Each string buffer must include
space for the null termination character. If a user does not want a s
returned, the corresponding parameter can be set to NULL in C and an empty
string in Fortran. The predefined attributes are set by SDsetdimstrs.

FORTRAN integer function sfgdmstr(dim_id, label, unit, format, length)

integer dim_id, length

character*(*) label, unit, format
2-80 March 17, 1998

SDgetfillvalue/sfgfill/sfgcfillNational Center for Supercomputing Applications

ified
he
SDgetfillvalue/sfgfill/sfgcfill

intn SDgetfillvalue(int32 sds_id, VOIDP fill_value)

sds_id IN: Data set identifier returned by SDcreate or SDselect

fill_value OUT: Buffer for the returned fill value

Purpose Reads the fill value of a data set, if the value has been set.

Return value Returns SUCCEED (or 0) if a fill value is retrieved and FAIL (or -1) otherwise,
including when the fill value is not set.

Description SDgetfillvalue reads the fill value which has been set for the data set spec
by the parameter sds_id. It is assumed that the data type of the fill value is t
same as that of the data set.

Note that there are two FORTRAN-77 versions of this routine: sfgfill and
sfgcfill. The sfgfill routine reads numeric fill value data and sfgcfill reads
character fill value data.

FORTRAN integer function sfgfill(sds_id, fill_value)

integer sds_id

<valid numeric data type> fill_value

integer function sfgcfill(sds_id, fill_value)

integer sds_id

character*(*) fill_value
March 17, 1998 2-81

SDgetinfo/sfginfo National Center for Supercomputing Applications

ibutes

 data

et

ace,
g

 the
SDgetinfo/sfginfo

intn SDgetinfo(int32 sds_id, char *sds_name, int32 *rank, int32 dimsizes[], int32 *data_type, int32
*num_attrs)

sds_id IN: Data set identifier returned by SDcreate and SDselect

sds_name OUT: Name of the data set

rank OUT: Number of dimensions in the data set

dimsizes OUT: Array containing the size of each dimension in the data set

data_type OUT: Data type for the data stored in the data set

num_attrs OUT: Number of attributes for the data set

Purpose Retrieves the name, rank, dimension sizes, data type and number of attr
for a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetinfo retrieves the name, number of dimensions, sizes of dimensions,
type, and number of attributes of the data set identified by sds_id, and stores
them in the parameters sds_name, rank, dimsizes, data_type, and num_attrs,
respectively.

The buffer sds_name can have at most 64 characters. If the name of the data s
is not desired, then the parameter sds_name can be set to NULL in C and an
empty string in Fortran.

The maximum value of the rank parameter is MAX_VAR_DIMS (or 32).

If the data set is created with an unlimited dimension, then in the C interf
the first element of the dimsizes array (corresponding to the slowest-changin
dimension) contains the number of records in the unlimited dimension; in
FORTRAN-77 interface, the last element of the dimsizes array (corresponding
to the slowest-changing dimension) contains this information. Use SDisrecord
to determine if the data set has an unlimited dimension.

FORTRAN integer function sfginfo(sds_id, sds_name, rank, dimsizes,
data_type, num_attrs)

character*(*) sds_name

integer sds_id, rank, dimsizes(*)

integer data_type, num_attrs
2-82 March 17, 1998

SDgetrange/sfgrangeNational Center for Supercomputing Applications

lues
SDgetrange/sfgrange

intn SDgetrange(int32 sds_id, VOIDP max, VOIDP min)

sds_id IN: Data set identifier returned by SDcreate or SDselect

max OUT: Maximum value of the range

min OUT: Minimum value of the range

Purpose Retrieves the maximum and minimum values of the range.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDgetrange retrieves the maximum value of the range into the parameter max
and the minimum value into the parameter min. The maximum and minimum
values must be previously set via a call to SDsetrange.

It is assumed that the data type for the maximum and minimum range va
are the same as that of the data.

FORTRAN integer function sfgrange(sds_id, max, min)

integer sds_id

<valid numeric data type> max, min
March 17, 1998 2-83

SDidtoref/sfid2ref National Center for Supercomputing Applications

the
en
dd the
rface
SDidtoref/sfid2ref

int32 SDidtoref(int32 sds_id)

sds_id IN: Data set identifier returned by SDcreate or SDselect

Purpose Returns the reference number assigned to a data set.

Return value Returns the data set reference number if successful and FAIL (or -1) otherwise.

Description SDidtoref returns the reference number of the data set specified by
parameter sds_id. The reference number is assigned by the HDF library wh
the data set is created. The specified reference number can be used to a
data set to a vgroup as well as a means of using the HDF annotations inte
to annotate the data set.

FORTRAN integer function sfid2ref(sds_id)

integer sds_id
2-84 March 17, 1998

SDiscoordvar/sfiscvarNational Center for Supercomputing Applications

sions.
d as
SDiscoordvar/sfiscvar

intn SDiscoordvar(int32 sds_id)

sds_id IN: Data set identifier returned by SDcreate or SDselect

Purpose Determines if a data set is a coordinate variable.

Return value Returns TRUE (or 1) if the data set is a coordinate variable, and FALSE (or 0)
otherwise.

Description SDiscoordvar determines if the data set specified by the parameter sds_id is a
coordinate variable.

Coordinate variables are created to store metadata associated with dimen
To ensure compatibility with netCDF, coordinate variables are implemente
data sets.

FORTRAN integer function sfiscvar(sds_id)

integer sds_id
March 17, 1998 2-85

SDisdimval_bwcomp/sfisdmvc National Center for Supercomputing Applications

r

r
.0”
, the
SDisdimval_bwcomp/sfisdmvc

intn SDisdimval_bwcomp(int32 dim_id)

dim_id IN: Dimension identifier returned by SDgetdimid

Purpose Determines whether a dimension will have the old and new representations o
the new representation only.

Refer to the HDF User’s Guide, Chapter 3, titled SD Scientific Data Sets (SD
API), for information on old and new dimension representations.

Return value Returns SD_DIMVAL_BW_COMP (or 1) if backward compatible,
SD_DIMVAL_BW_INCOMP (or 0) if incompatible, FAIL (or -1) if error.

Description SDisdimval_bwcomp will flag the dimension specified by the paramete
dim_id as backward-compatible if a vdata with a class name of “DimVal0
does not exist in the vgroup for that dimension. If the vdata does exist
specified dimension will be identified by SDisdimval_bcomp as backward-
incompatible.

The compatibility mode can be changed by calls to SDsetdimval_comp at any
time between the calls to SDstart and SDend.

FORTRAN integer function sfisdmvc(dim_id)

integer dim_id
2-86 March 17, 1998

SDisrecord/sfisrcrdNational Center for Supercomputing Applications

lared
SDisrecord/sfisrcrd

int32 SDisrecord(int32 sds_id)

sds_id IN: Data set identifier returned by SDcreate or SDselect

Purpose Determines whether a data set is appendable.

Return value Returns TRUE (or 1) if the data set is appendable, and FALSE (or 0) otherwise.

Description SDisrecord will determine if the data set specified by the parameter sds_id is
appendable, which means that the slowest-changing dimension was dec
unlimited when the data set was created.

FORTRAN integer sfisrcrd(sd_id)

integer sd_id
March 17, 1998 2-87

SDnametoindex/sfn2index National Center for Supercomputing Applications

 by
ied
If there
index
SDnametoindex/sfn2index

int32 SDnametoindex(int32 sd_id, char *sds_name)

sd_id IN: SD interface identifier returned by SDstart

sds_name IN: Name of the data set

Purpose Determines the index of a data set given its name.

Return value Returns the index of the data set (sds_index) if the data set is found and FAIL

(or -1) otherwise.

Description SDnametoindex returns the index of the data set with the name specified
the parameter sds_name. The routine does not accept wildcards in the specif
data set name. It also searches on that name in a case-sensitive manner.
are more than one data set with the same name, the routine will return the
of the first one.

FORTRAN integer function sfn2index(sd_id, sds_name)

integer sd_id

character*(*) sds_name
2-88 March 17, 1998

SDreadattr/sfrnatt/sfrcattNational Center for Supercomputing Applications

eter

d
ad a

r of

be
SDreadattr/sfrnatt/sfrcatt

intn SDreadattr(int32 obj_id, int32 attr_index, VOIDP attr_buf)

obj_id IN: Identifier of the object the attribute is attached to

attr_index IN: Index of the attribute to be read

attr_buf OUT: Buffer for the attribute values

Purpose Reads the values of an attribute.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDreadattr reads the values of the attribute specified by the param
attr_index and stores the values in the buffer attr_buf. It is assumed that the
user has called SDattrinfo to retrieve the number of attribute values an
allocate sufficient space for the buffer. Note that the routine does not re
subset of attribute values.

The value of obj_id can be either an SD interface identifier (sd_id), returned by
SDstart, a data set identifier (sds_id), returned by SDselect, or a dimension
identifier (dim_id), returned by SDgetdimid.

The value of attr_index is a positive integer and is less than the total numbe
attributes. The index value can be obtained using the routines SDnametoindex
and SDreftoindex. The total number of attributes for the object can
obtained using the routines SDgetinfo, SDattrinfo , SDdiminfo and
SDfileinfo.

Note that this routine has two FORTRAN-77 versions: sfrnatt and sfrcatt. The
sfrnatt routine reads numeric attribute data and sfrcatt reads character
attribute data.

FORTRAN integer function sfrnatt(obj_id, attr_index, attr_buffer)

integer obj_id, attr_index

<valid numeric data> attr_buffer(*)

integer function sfrcatt(obj_id, attr_index, attr_buffer)

integer obj_id, attr_index

character*(*) attr_buffer
March 17, 1998 2-89

SDreadchunk/sfrchnk/sfrcchnk National Center for Supercomputing Applications

set

 in the

the

 a

eric
SDreadchunk/sfrchnk/sfrcchnk

intn SDreadchunk(int32 sds_id, int32 *origin, VOIDP datap)

sds_id IN: Data set identifier returned by SDcreate or SDselect

origin IN: Origin of the chunk to be read

datap OUT: Buffer for the chunk to be read

Purpose Reads a data chunk from a chunked data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDreadchunk reads the entire chunk of data from the chunked data
identified by the parameter sds_id, and stores the data in the buffer datap.
Reading starts at the location specified by the parameter origin. SDreadchunk
is used when an entire chunk of data is to be read. SDreaddata is used when
the read operation is to be done regardless of the chunking scheme used
data set.

The parameter origin specifies the coordinates of the chunk according to
chunk position in the chunked array. Refer to the Chapter 3 of the HDF User’s
Guide, titled Scientific Data Sets (SD API), for a description of the
organization of chunks in a data set.

SDreadchunk will return FAIL (or -1) when an attempt is made to read from
non-chunked data set.

Note that there are two FORTRAN-77 versions of this routine; one for num
data (sfrchnk) and one for character data (sfrcchnk).

FORTRAN integer sfrchnk(sds_id, origin, datap)

integer sds_id, origin(*)

<valid numeric data type> datap(*)

integer sfrcchnk(sds_id, origin, datap)

integer sds_id, origin(*)

character*(*) datap(*)
2-90 March 17, 1998

SDreaddata/sfrdata/sfrcdataNational Center for Supercomputing Applications

le

t or

 be

urned

 set

For

f the
e
fying

s in

n on
SDreaddata/sfrdata/sfrcdata

intn SDreaddata(int32 sds_id, int32 start[], int32 stride[], int32 edge[], VOIDP buffer)

sds_id IN: Data set identifier returned by SDcreate or SDselect

start IN: Array specifying the starting location from where data is read

stride IN: Array specifying the interval between the values that will be read
along each dimension

edge IN: Array specifying the number of values to be read along each
dimension

buffer OUT: Buffer to store the data read

Purpose Reads a subsample of data from a data set or coordinate variable.

Return value Returns SUCCEED (or 0) if successful or if the data set or coordinate variab
contains no data and FAIL (or -1) otherwise.

Description SDreaddata reads the specified subsample of data from the data se
coordinate variable identified by the parameter sds_id. The read data is stored
in the buffer buffer. The subsample is defined by the parameters start, stride
and edge.

The array start specifies the starting position from where the subsample will
read. Valid values of each element in the array start are from 0 to the size of the
corresponding dimension of the data set - 1. The dimension sizes are ret
by SDgetinfo.

The array edge specifies the number of values to read along each data
dimension.

The array stride specifies the reading pattern along each dimension.
example, if one of the elements of the array stride is 1, then every element
along the corresponding dimension of the data set will be read. If one o
elements of the array stride is 2, then every other element along th
corresponding dimension of the data set will be read, and so on. Speci
stride value of NULL in the C interface or setting all values of the array stride
to 1 in either interface specifies the contiguous reading of data. If all value
the array stride are set to 0, SDreaddata returns FAIL (or -1). No matter what
stride value is provided, data is always placed contiguously in the buffer.

When reading data from a “chunked” data set using SDreaddata,
consideration should be given to the issues presented in the sectio
chunking in Chapter 3 of the HDF User’s Manual, titled Scientific Data Sets
(SD API) and Chapter 13 of the HDF User’s Manual, titled HDF Performance
Issues.

Note that there are two FORTRAN-77 versions of this routine; sfrdata and
sfrcdata. The sfrdata routine reads numeric scientific data and sfrcdata reads
character scientific data.
March 17, 1998 2-91

SDreaddata/sfrdata/sfrcdata National Center for Supercomputing Applications
FORTRAN integer function sfrdata(sds_id, start, stride, edge, buffer)

integer sds_id, start(*), stride(*), edge(*)

<valid numeric data type> buffer(*)

integer function sfrcdata(sds_id, start, stride, edge, buffer)

integer sds_id, start(*), stride(*), edge(*)

character*(*) buffer
2-92 March 17, 1998

SDreftoindex/sfref2indexNational Center for Supercomputing Applications

ber,
SDreftoindex/sfref2index

int32 SDreftoindex(int32 sd_id, int32 sds_ref)

sd_id IN: SD interface identifier returned by SDstart

sds_ref IN: Reference number of the data set

Purpose Returns the index of a data set given the reference number.

Return value Returns the index of the data set (sds_index) if the data set is found and FAIL

(or -1) otherwise.

Description SDreftoindex returns the index of a data set identified by its reference num
sds_ref.

The value of sds_index returned by SDreftoindex can be passed to SDselect to
obtain a data set identifier (sds_id).

FORTRAN integer function sfref2index(sd_id, sds_ref)

integer sd_id, sds_ref
March 17, 1998 2-93

SDselect/sfselect National Center for Supercomputing Applications

ate

Users
 is

r of
ined
SDselect/sfselect

int32 SDselect(int32 sd_id, int32 sds_index)

sd_id IN: SD interface identifier returned by SDstart

sds_index IN: Index of the data set

Purpose Obtains the data set identifier (sds_id) of a data set.

Return value Returns the data set identifier (sds_id) if successful and FAIL (or -1)
otherwise.

Description SDselect obtains the data set identifier (sds_id) of the data set specified by its
index, sds_index.

The integration with netCDF has required that a dimension (or coordin
variable) is stored as a data set in the file. Therefore, the value of sds_index
may correspond to the coordinate variable instead of the actual data set.
should use the routine SDiscoordvar to determine whether the given data set
a coordinate variable.

The value of sds_index is greater than or equal to 0 and less than the numbe
data sets in the file. The total number of data sets in a file may be obta
from a call to SDfileinfo. The SDnametoindex routine can be used to find the
index of a data set if its name is known.

FORTRAN integer function sfselect(sd_id, sds_index)

integer sd_id, sds_index
2-94 March 17, 1998

SDsetattr/sfsnatt/sfscattNational Center for Supercomputing Applications

 data

 set
d

DF

all
, data
SDsetattr/sfsnatt/sfscatt

intn SDsetattr(int32 obj_id, char *attr_name, int32 data_type, int32 count, VOIDP values)

obj_id IN: Identifier of the object the attribute is to be attached to

attr_name IN: Name of the attribute

data_type IN: Data type of the values in the attribute

count IN: Total number of values to be stored in the attribute

values IN: Data values to be stored in the attribute

Purpose Attaches an attribute to an object.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetattr attaches the attribute to the object specified by the obj_id parameter.
The attribute is defined by its name, attr_name, data type, data_type, number
of attribute values, count, and the attribute values, values. SDsetattr provides a
generic way for users to define metadata. It implements the label = value
abstraction.

The value of obj_id can be an SD interface identifier (sd_id), returned by
SDcreate, a data set identifier (sds_id), returned by SDselect, or a dimension
identifier (dim_id), returned by SDgetdimid.

If an SD interface identifier (sd_id) is specified as the obj_id parameter, a
global attribute is created which applies to all objects in the file. If a data
identifier (sds_id) is specified as the obj_id parameter, an attribute is attache
to the specified data set. If a dimension identifier (dim_id) is specified as the
obj_id parameter, an attribute is attached to the specified dimension.

The attr_name argument can be any ASCII string.

The data_type parameter can contain any data type supported by the H
library. These data types are listed in Table 1A in Section I of this manual.

Attribute values are passed in the parameter values. The number of attribute
values is defined by the count parameter. If more than one value is stored,
values must have the same data type. If an attribute with the given name
type and number of values exists, it will be overwritten.

Note that there are two FORTRAN-77 versions of this routine; sfsnatt and
sfscatt. The sfsnatt routine writes numeric attribute data and sfscatt writes
character attribute data.

FORTRAN integer function sfsnatt(obj_id, attr_name, data_type, count,
values)

integer obj_id, data_type, count
March 17, 1998 2-95

SDsetattr/sfsnatt/sfscatt National Center for Supercomputing Applications
character*(*) attr_name

<valid numeric data type> values(*)

integer function sfscatt(obj_id, attr_name, data_type, count,
values)

integer obj_id, data_type, count

character*(*) attr_name, values
2-96 March 17, 1998

SDsetblocksize/sfsblszNational Center for Supercomputing Applications

ly;

ize.
SDsetblocksize/sfsblsz

intn SDsetblocksize(int32 sd_id, int32 block_size)

sd_id IN: SD interface identifier returned by SDstart

block_size IN: Size of the block in bytes

Purpose Sets the block size used for storing data sets with unlimited dimensions.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetblocksize sets the block size defined in the parameter block_size for all
data sets in the file. SDsetblocksize is used when creating new data sets on
it has no effect on pre-existing data sets.

SDsetblocksize must be used after calls to SDcreate or SDselect and before
the call to SDwritedata.

The block_size parameter should be set to a multiple of the desired buffer s

FORTRAN integer sfsblsz(sd_id, block_size)

integer sd_id, block_size
March 17, 1998 2-97

SDsetcal/sfscal National Center for Supercomputing Applications

tion

e

d
ata

at
SDsetcal/sfscal

intn SDsetcal(int32 sds_id, float64 cal, float64 cal_err, float64 offset, float64 offset_err, int32
data_type)

sds_id IN: Data set identifier returned by SDcreate or SDselect

cal IN: Calibration factor

cal_err IN: Calibration error

offset IN: Uncalibrated offset

offset_err IN: Uncalibrated offset error

data_type IN: Data type of uncalibrated data

Purpose Sets the calibration information.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetcal stores the calibration record associated with a data set. A calibra
record contains the following information:

cal Calibration factor

cal_err Calibration error

offset Uncalibrated offset

offset_err Uncalibrated offset error

data_type Data type of uncalibrated data

The relationship between a value cal_value stored in a data set and th
original value is defined as: orig_value = cal * (cal_value - offset).

The variable offset_err contains a potential error of offset , and cal_err

contains a potential error of cal . Currently the calibration record is provide
for information only. The SD interface performs no operations on the d
based on the calibration tag.

The calibration information is automatically cleared after a call to SDreaddata
or SDwritedata. Therefore, SDsetcal must be called once for each data set th
is to be read or written.

FORTRAN integer function sfscal(sds_id, cal, cal_err, offset, offset_err,
data_type)
2-98 March 17, 1998

SDsetcal/sfscalNational Center for Supercomputing Applications
integer sds_id, data_type

real*8 cal, cal_err, offset, offset_err
March 17, 1998 2-99

SDsetchunk/sfschnk National Center for Supercomputing Applications

d in

t is
an,

d
nd
SDsetchunk/sfschnk

intn SDsetchunk(int32 sds_id, HDF_CHUNK_DEF cdef, int32 flag)

sds_id IN: Data set identifier returned by SDcreate or SDselect

C only:

cdef IN: Pointer to the chunk definition

flag IN: Compression flag

Fortran only:

dim_length IN: Chunk dimensions array

comp_flag IN: Type of compression

comp_prm IN: Compression parameters array

Purpose Sets the chunk size and the compression method, if any, of a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetchunk makes the data set specified by the parameter sds_id a chunked
data set according to the chunking and compression information provide
the parameters cdef and flag in C, and in the parameters comp_type and
comp_prm in Fortran.

C only:

The parameter flag specifies the type of the data set, i.e., if the data se
chunked or chunked and compressed with either RLE, Skipping Huffm
GZIP or NBIT compression methods. Valid values of flag are HDF_CHUNK for a
chunked data set, HDF_CHUNK | HDF_COMP for a chunked data set compresse
with RLE, Skipping Huffman and GZIP compression methods, a
HDF_CHUNK | HDF_NBIT for a chunked NBIT-compressed data set.

Chunking and compression information is passed in the parameter cdef. The
parameter cdef has a type of HDF_CHUNK_DEF, defined in the HDF library as
follows:
2-100 March 17, 1998

SDsetchunk/sfschnkNational Center for Supercomputing Applications

ould
ded,

ZIP

.

d in

ld
s

typedef union hdf_chunk_def_u
 {
 int32 chunk_lengths[2]; /* chunk lengths along each dim */

 struct
 {
 int32 chunk_lengths[2];
 int32 comp_type; /* compression type */
 struct comp_info cinfo;
 } comp;

 struct
 {
 int32 chunk_lengths[2];
 intn start_bit;
 intn bit_len;
 intn sign_ext;
 intn fill_one;
 } nbit;
 } HDF_CHUNK_DEF

There are three pieces of chunking and compression information which sh
be specified: chunking dimensions, compression type, and, if nee
compression parameters.

If the data set is chunked, i.e., flag value is HDF_CHUNK, then chunk_lengths[]

elements of cdef union (cdef.chunk_lengths []) have to be initialized to the
chunk dimensions.

If data set is chunked and compressed using RLE, Skipping Huffman or G
methods (i.e., flag value is set up to HDF_CHUNK | HDF_COMP), then the
elements chunk_lengths[] of the structure comp in the union cdef
(cdef.comp.chunk_lengths []) have to be initialized to the chunk dimensions

If data set is chunked and NBIT compression is applied (i.e., flag values is set
up to HDF_CHUNK | HDF_NBIT), then the elements chunk_lengths[] of the
structure nbit in the union cdef (cdef.nbit.chunk_lengths []) have to be
initialized to the chunk dimensions.

Compression types are passed in the field comp_type of the structure cinfo ,
which is an element of the structure comp in the union cdef
(cdef.comp.cinfo.comp_type). Valid compression types are: COMP_CODE_RLE

for RLE, COMP_CODE_SKPHUFF for Skipping Huffman, COMP_CODE_DEFLATE for
GZIP compression.

For Skipping Huffman and GZIP compression parameters are passe
corresponding fields of the structure cinfo . Specify skipping size for Skipping
Huffman compression in the field cdef.comp.cinfo.skphuff.skp_size .
Specify deflate level for GZIP compression in the fie
cdef.comp.cinfo.deflate_level . Valid values of deflate levels are integer
between 1 and 9 inclusive.

Refer to the SDsetcompress page in this manual for the definition of the
structure comp_info .

NBIT compression parameters are specified in the fields start_bit , bit_len ,
sign_ext , and fill_one in the structure nbit of the union cdef.
March 17, 1998 2-101

SDsetchunk/sfschnk National Center for Supercomputing Applications

ion

ng
sion
Fortran only:

The dim_length array specifies the chunk dimensions.

The comp_type parameter specifies the compression type. Valid compress
types and their values are defined in the hdf.inc file, and are listed below.

COMP_CODE_NONE (or 0) for uncompressed data
COMP_CODE_RLE (or 1) for data compressed using the RLE compression
 algorithm
COMP_CODE_NBIT (or 2) for data compressed using the NBIT compression
 algorithm
COMP_CODE_SKPHUFF (or 3) for data compressed using the Skipping Huffman
 compression algorithm
COMP_CODE_DEFLATE (or 4) for data compressed using the GZIP compression
 algorithm

The comp_prm(1) parameter specifies the skipping size for the Skippi
Huffman compression method and the deflate level for the GZIP compres
method.

For NBIT compression, the four elements of the array comp_prm correspond
to the four NBIT compression parameters listed in the structure nbit . The
value of comp_prm(1) should be set to the value of start_bit , the value of
comp_prm(2) should be set to the value of bit_len , the value of comp_prm(3)
should be set to the value of sign_ext , and the value of comp_prm(4) should
be set to the value of fill_one . See the HDF_CHUNK_DEF union description and
the description of SDsetnbitdataset function for NBIT compression
parameters definitions.

FORTRAN integer sfschnk(sds_id, dim_length, comp_type, comp_prm)

integer sds_id, dim_length, comp_type, comp_prm(*)
2-102 March 17, 1998

SDsetchunkcache/sfscchnkNational Center for Supercomputing Applications

f the

the

t, the
ing

lue
 of
new
t

ng
 via
e

SDsetchunkcache/sfscchnk

intn SDsetchunkcache(int32 sds_id, int32 maxcache, int32 flag)

sds_id IN: Data set identifier returned by SDcreate or SDselect

maxcache IN: Maximum number of chunks in the cache

flag IN: Flag determining the behavior of the routine

Purpose Sets the size of the chunk cache.

Return value Returns the maximum number of chunks that can be cached (the value o
parameter maxcache) if successful and FAIL (or -1) otherwise.

Description SDsetchunkcache sets the size of the chunk cache to the value of
parameter maxcache.

Currently the only allowed value of the parameter flag is 0, which designates
default operation.

By default, when a generic data set is promoted to be a chunked data se
parameter maxcache is set to the number of chunks along the fastest chang
dimension and a cache for the chunks is created.

If the chunk cache is full and the value of the parameter maxcache is greater
then the current maxcache value, then the chunk cache is reset to the new va
of maxcache. Otherwise the chunk cache remains at the current value
maxcache. If the chunk cache is not full, then the chunk cache is set to the
value of maxcache only if the new maxcache value is greater than the curren
number of chunks in the cache.

Do not set the value of maxcache to be less than the number of chunks alo
the fastest-changing dimension of the biggest slab to be written or read
SDreaddata or SDwritedata. Doing this will cause internal thrashing. See th
section on chunking in Chapter 13 of the HDF User’s Guide, titled HDF
Performance Issues, for more information on this.

FORTRAN integer sfscchnk(sds_id, maxcache, flag)

integer sds_id, maxcache, flag
March 17, 1998 2-103

SDsetcompress/sfscompress National Center for Supercomputing Applications

e it

to
SDsetcompress/sfscompress

intn SDsetcompress(int32 sds_id, int32 comp_type, comp_info *c_info)

sds_id IN: Data set identifier returned by SDcreate or SDselect

comp_type IN: Compression method

C only:

c_info IN: Pointer to the comp_info union

Fortran only:

comp_prm IN: Compression parameters array

Purpose Sets the compression method for a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetcompress compresses the data set identified by the parameter sds_id
according to the compression method specified by the parameter comp_type and
the compression information specified by the parameter c_info in C and
comp_prm in Fortran. SDsetcompress compresses the data set data at the tim
is called, not during the next call to SDwritedata.

SDsetcompress is a simplified interface to the HCcreate routine and should be
used instead of HCcreate unless the user is familiar with working with the
lower-level routines.

The parameter comp_type is the compression type definition and is set
COMP_CODE_RLE (or 1) for run-length encoding (RLE), COMP_CODE_SKPHUFF (or
3) for Skipping Huffman, COMP_CODE_DEFLATE (or 4) for GZIP compression, or
COMP_CODE_NONE (or 0) for no compression.

The parameter c_info is a pointer to a union structure of type comp_info . This
union structure is defined as follows:
2-104 March 17, 1998

SDsetcompress/sfscompressNational Center for Supercomputing Applications

eld

e

typedef union tag_comp_info
{
struct
{

/* Not used by SDsetcompress */
} jpeg;

struct
{

/* Not used by SDsetcompress */
} nbit;

struct
{ /* struct to contain info about how to compress */

 /* size of the elements when skipping */
intn skp_size;

} skphuff;

struct
{ /* struct to contain info about how to compress */

 /* or decompress a gzip encoded dataset */
 /* how hard to work when compressing data */

intn level;
} deflate;

} comp_info;

The skipping size for the Skipping Huffman algorithm is specified in the fi
c_info.skphuff.skp_size in C and in the parameter comp_prm(1) in
Fortran.

The deflate level for the GZIP algorithm is specified in th
c_info.deflate.level field in C and in the parameter comp_prm(1) in the
Fortran.

FORTRAN integer sfscompress(sds_id, comp_type, comp_prm)

integer sds_id, comp_type, comp_prm(*)
March 17, 1998 2-105

SDsetdatastrs/sfsdtstr National Center for Supercomputing Applications

 by

ate
ding

 the
SDsetdatastrs/sfsdtstr

intn SDsetdatastrs(int32 sds_id, char *label, char *unit, char *format, char *coordsys)

sds_id IN: Data set identifier returned by SDcreate or SDselect

label IN: Label (predefined attribute)

unit IN: Unit (predefined attribute)

format IN: Format (predefined attribute)

coordsys IN: Coordinate system (predefined attribute)

Purpose Sets the predefined attributes for a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetdatastrs sets the predefined attributes of the data set, identified
sds_id, to the values specified in the parameters label, unit, format and
coordsys. The predefined attributes are label, unit, format, and coordin
system. If the user does not want a string returned, the correspon
parameter can be set to NULL in C and an empty string in Fortran.

For more information about predefined attributes, refer to Section 3.10 of
HDF User’s Guide.

FORTRAN integer function sfsdtstr(sds_id, label, unit, format, coordsys)

integer sds_id

character*(*) label, unit, format, coordsys
2-106 March 17, 1998

SDsetdimname/sfsdmnameNational Center for Supercomputing Applications

ter

]”

fer to
er. If
 will
SDsetdimname/sfsdmname

intn SDsetdimname(int32 dim_id, char *dim_name)

dim_id IN: Dimension identifier returned by SDgetdimid

dim_name IN: Name of the dimension

Purpose Assigns a name to a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetdimname sets the name of the dimension identified by the parame
dim_id to the value specified in the parameter dim_name. Dimensions that are
not explicitly named by the user will have the default name of “fakeDim[x
specified by the HDF library, where [x] denotes the dimension index.

If another dimension exists with the same name it is assumed that they re
the same dimension object and changes to one will be reflected in the oth
the dimension with the same name has a different size, an error condition
result.

Naming dimensions is optional but encouraged.

The length of the parameter dim_name can be at most 64 characters.

FORTRAN integer function sfsdmname(dim_id, dim_name)

integer dim_id

character*(*) dim_name
March 17, 1998 2-107

SDsetdimscale/sfsdscale National Center for Supercomputing Applications

he
es
SDsetdimscale/sfsdscale

intn SDsetdimscale(int32 dim_id, int32 count, int32 data_type, VOIDP data)

dim_id IN: Dimension identifier returned by SDgetdimid

count IN: Total number of values along the dimension

data_type IN: Data type of the values along the dimension

data IN: Value of each increment along the dimension

Purpose Stores the values of a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetdimscale stores scale information for the dimension identified by t
parameter dim_id. Note that it is possible to store dimension scale valu
without naming the dimension.

Even though it is redundant, the parameter count has been included for
backward compatibility.

Note that, due to the existence of the parameter data_type, the dimension
scales need not have the same data type as the data set.

FORTRAN integer function sfsdscale(dim_id, count, data_type, data)

integer dim_id, count, data_type

<valid data type> data(*)
2-108 March 17, 1998

SDsetdimstrs/sfsdmstrNational Center for Supercomputing Applications

 a

n
ore
DF
SDsetdimstrs/sfsdmstr

intn SDsetdimstrs(int32 dim_id, char *label, char *unit, char *format)

dim_id IN: Dimension identifier returned by SDgetdimid

label IN: Label (predefined attribute)

unit IN: Unit (predefined attribute)

format IN: Format (predefined attribute)

Purpose Sets the predefined attribute of a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetdimstrs sets the predefined attribute (label, unit, and format) for
dimension and its scale to the values specified in the parameters label, unit and
format. If a parameter is set to NULL in C and an empty string in Fortran, the
the attribute corresponding to that parameter will not be written. For m
information about predefined attributes, refer to Section 3.10 of the H
User’s Guide.

FORTRAN integer function sfsdmstr(dim_id, label, unit, format)

integer dim_id

character*(*) label, unit, format
March 17, 1998 2-109

SDsetdimval_comp/sfsdmvc National Center for Supercomputing Applications

r

ich
 file,
w

ore

le.
SDsetdimval_comp/sfsdmvc

intn SDsetdimval_comp(int32 dim_id, intn comp_mode)

dim_id IN: Dimension identifier returned by SDgetdimid

comp_mode IN: Compatibility mode to be set

Purpose Determines whether a dimension will have the old and new representations o
the new representation only.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetdimval_comp sets the compatibility mode specified by the comp_mode
parameter for the dimension identified by the dim_id parameter. The two
possible compatibility modes are: “backward-compatible” mode, wh
implies that the old and new dimension representations are written to the
and “backward-incompatible” mode, which implies that only the ne
dimension representation is written to the file.

Unlimited dimensions are always backward-compatible, theref
SDsetdimval_comp takes no action on unlimited dimensions.

As of HDF version 4.1r1, the default mode is backward-incompatib
Subsequent calls to SDsetdimval_comp will override the settings established
in previous calls to the routine.

The comp_mode parameter can be set to SD_DIMVAL_BW_COMP (or 1), which
specifies backward-compatible mode, or SD_DIMVAL_BW_INCOMP (or 0), which
specifies backward-incompatible mode.

FORTRAN integer function sfsdmvc(dim_id, comp_mode)

integer dim_id, comp_mode
2-110 March 17, 1998

SDsetexternalfile/sfsextfNational Center for Supercomputing Applications

he

not
e

nly

ser's
le.

pace
 the

uent
SDsetexternalfile/sfsextf

intn SDsetexternalfile(int32 sds_id, char *filename, int32 offset)

sds_id IN: Data set identifier returned by SDcreate or SDselect

filename IN: Name of the external file

offset IN: Number of bytes from the beginning of the external file to where t
data will be written

Purpose Stores data in an external file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetexternalfile allows users to move the actual data values (i.e.,
metadata) of a data set, sds_id, into the external data file named by th
parameter filename, and started at the offset specified by the parameter offset.
The metadata remains in the original file. Note that this routine works o
with HDF post-version 3.2 files.

Data can only be moved once for any given data set, and it is the u
responsibility to make sure the external data file is kept with the “original” fi

If the data set already exists, its data will be moved to the external file. S
occupied by the data in the primary file will not be released. To release
space in the primary file use the hdfpack command-line utility. If the data set
does not exist, its data will be written to the external file during the conseq
calls to SDwritedata.

See the Reference Manual entries for HXsetcreatedir and HXsetdir for more
information on the options available for accessing external files.

FORTRAN integer function sfsextf(sds_id, file_name, offset)

integer sds_id, offset

character*(*) file_name
March 17, 1998 2-111

SDsetfillmode/sfsflmd National Center for Supercomputing Applications

en

first
d
a
 last
ese

fill

tion

ed by
SDsetfillmode/sfsflmd

intn SDsetfillmode(int32 sd_id, intn fill_mode)

sd_id IN: SD interface identifier returned by SDstart

fill_mode IN: Fill mode

Purpose Sets the current fill mode of a file.

Return value Returns the fill mode value before it was reset if successful and FAIL (or -1)
otherwise.

Description SDsetfillmode applies the fill mode specified by the parameter fill_mode to all
data sets contained in the file identified by the parameter sd_id.

Possible values of fill_mode are SD_FILL (or 0) and SD_NOFILL (or 256).
SD_FILL is the default mode, and indicates that fill values will be written wh
the data set is created. SD_NOFILL indicates that fill values will not be written.

When a data set without unlimited dimensions is created, by default the
SDwritedata call will fill the entire data set with the default or user-define
fill value (set by SDsetfillvalue). In data sets with an unlimited dimension , if
new write operation takes place along the unlimited dimension beyond the
location of the previous write operation, the array locations between th
written areas will be initialized to the user-defined fill value, or the default
value if a user-defined fill value has not been specified.

If it is certain that all data set values will be written before any read opera
takes place, there is no need to write the fill values. Simply call SDsetfillmode
with fill_mode value set to SD_NOFILL, which will eliminate all fill value write
operations to the data set. For large data sets, this can improve the spe
almost 50%.

FORTRAN integer function sfsflmd(sd_id, fill_mode)

integer sd_id, fill_mode
2-112 March 17, 1998

SDsetfillvalue/sfsfillNational Center for Supercomputing Applications
SDsetfillvalue/sfsfill

intn SDsetfillvalue(int32 sds_id, VOIDP fill_value)

sds_id IN: Data set identifier returned by SDcreate or SDselect

fill_value IN: Fill value

Purpose Sets the fill value for a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetfillvalue sets the fill value specified by the fill_value parameter for the
data set identified by the sds_id parameter.

The fill value is assumed to have the same data type as the data set.

FORTRAN integer function sfsfill(sds_id, fill_value)

integer sds_id

<valid data type> fill_value
March 17, 1998 2-113

SDsetnbitdataset/sfsnbit National Center for Supercomputing Applications

 by
the

ve a
 data

ting

gth
ing

 bit
eeds
or
the

the
ata.
e bit
 be
SDsetnbitdataset/sfsnbit

intn SDsetnbitdataset(int32 sds_id, intn start_bit, intn bit_len, intn sign_ext, intn fill_one)

sds_id IN: Data set identifier returned by SDcreate or SDselect

start_bit IN: Leftmost bit of the field to be written

bit_len IN: Length of the bit field to be written

sign_ext IN: Sign extend specifier

fill_one IN: Background bit specifier

Purpose Specifies a non-standard bit length for the data set values.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDnbitdataset allows the HDF user to specify that the data set identified
the parameter sds_id contains data of a non-standard length defined by
parameters start_bit and bit_len. Additional information about the non-
standard bit length decoding are specified in the parameters sign_ext and
fill_one.

Any length between 1 and 32 bits can be specified. After SDnbitdataset has
been called for the data set array, any read or write operations will invol
conversion between the new data length of the data set array and the
length of the read or write buffer.

Bit lengths of all data types are counted from the right of the bit field star
with 0. In a bit field containing the values 01111011 , bits 2 and 7 are set to 0

and all the other bits are set to 1.

The start_bit parameter specifies the leftmost position of the variable-len
bit field to be written. For example, in the bit field described in the preced
paragraph a start_bit parameter set to 4 would correspond to the fourth bit
value of 1 from the right.

The bit_len parameter specifies the number of bits of the variable-length
field to be written. This number includes the starting bit and the count proc
toward the right end of the bit field - toward the lower-bit numbers. F
example, starting at bit 5 and writing 4 bits of the bit field described in
preceding paragraph would result in the bit field 1110 being written to the data
set. This would correspond to a start_bit value of 5 and a bit_len value of 4.

The sign_ext parameter specifies whether to use the leftmost bit of
variable-length bit field to sign-extend to the leftmost bit of the data set d
For example, if 9-bit signed integer data is extracted from bits 17-25 and th
in position 25 is 1, then when the data is read back from disk, bits 26-31 will
set to 1. Otherwise bit 25 will be 0 and bits 26-31 will be set to 0. The sign_ext
parameter can be set to TRUE (or 1) or FALSE (or 0) - specify TRUE to sign-
extend.
2-114 March 17, 1998

SDsetnbitdataset/sfsnbitNational Center for Supercomputing Applications

side
an
with
o

ple,
 to
The fill_one specifies whether to fill the “background” bits with the value 1 or
0. This parameter can also be set to TRUE or FALSE.

The “background” bits of a variable-length data set are the bits that fall out
of the variable-length bit field stored on disk. For example, if five bits of
unsigned 16-bit integer data set located in bits 5 to 9 are written to disk
the fill_one parameter set to TRUE (or 1), then when the data is reread int
memory bits 0 to 4 and 10 to 15 would be set to 1. If the same 5-bit data was
written with a fill_one value of FALSE (or 0), then bits 0 to 4 and 10 to 15 would
be set to 0.

This bit operation is performed before the sign-extend bit-filling. For exam
using the sign_ext example above, bits 0 to 16 and 26 to 31 will first be set
the “background” bit value, and then bits 26 to 31 will be set to 1 or 0 based on
the value of the 25th bit.

FORTRAN integer function sfsnbit(sds_id, start_bit, bit_len, sign_ext,
fill_one)

integer sds_id, start_bit, bit_len, sign_ext, fill_one
March 17, 1998 2-115

SDsetrange/sfsrange National Center for Supercomputing Applications

 set

lues

lues

s, it
ange
lues
SDsetrange/sfsrange

intn SDsetrange(int32 sds_id, VOIDP max, VOIDP min)

sds_id IN: Data set identifier returned by SDcreate or SDselect

max IN: Maximum value of the range

min IN: Minimum value of the range

Purpose Sets the maximum and minimum range values for a data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDsetrange sets the maximum and minimum range values of the data
identified by the parameter sds_id with the values of the parameters max and
min. The term “range” is used here to describe the range of numeric va
stored in a data set.

It is assumed that the data type for the maximum and minimum range va
are the same as the data type of the data.

This routine does not compute the maximum and minimum range value
only stores the values as given. As a result, the maximum and minimum r
values may not always reflect the actual maximum and minimum range va
in the data set data.

FORTRAN integer function sfsrange(sds_id, max, min)

integer sds_id

<valid numeric data type> max, min
2-116 March 17, 1998

SDstart/sfstartNational Center for Supercomputing Applications

y

e

ist,

xist,

ady
SDstart/sfstart

int32 SDstart(char *filename, int32 access_mode)

filename IN: Name of the HDF file

access_mode IN: The file access mode in effect during the current session

Purpose Opens an HDF file and initializes an SD interface.

Return value Returns an SD interface identifier if successful and FAIL (or -1) otherwise.

Description SDstart opens the file with the name specified by the parameter filename, with
the access mode specified by the parameter access_mode, and returns an SD
interface identifier (sd_id). This routine must be called for each file before an
other SD calls can be made on that file.

The type of identifier returned by SDstart is currently not the same as th
identifier returned by Hopen. As a result, the SD interface identifiers (sd_id)
returned by this routine are not understood by other HDF interfaces.

To mix SD API calls and other HDF API calls, use SDstart and Hopen on the
same file. SDstart must precede all SD calls, and Hopen must precede all
other HDF function calls. To terminate access to the file, use SDend to dispose
of the SD interface identifier, sd_id, and Hclose to dispose of the file identifier,
file_id.

The file identified by the parameter filename can be any one of the following:
an XDR-based netCDF file, “old-style” DFSD file or a “new-style” SD file.

The value of the parameter access_mode can be one of the following:

DFACC_READ - Open existing file for read-only access. If the file does not ex
specifying this mode will cause SDstart to return FAIL (or -1).
DFACC_WRITE - Open existing file for read and write access. If the file does not e
specifying this mode will cause SDstart to return FAIL (or -1).
DFACC_CREATE - Create a new file with read and write access. If the file has alre
existed, its contents will be replaced.

FORTRAN integer function sfstart(filename, access_mode)

character*(*) filename

integer access_mode
March 17, 1998 2-117

SDwritechunk/sfwchnk/sfwcchnk National Center for Supercomputing Applications

ta set.

o

the
DF

eric
SDwritechunk/sfwchnk/sfwcchnk

intn SDwritechunk(int32 sds_id, int32 *origin, VOIDP datap)

sds_id IN: Data set identifier returned by SDcreate or SDselect

origin IN: Origin of the chunk to be written

datap IN: Buffer for the chunk data to be written

Purpose Writes a data chunk to a chunked data set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDwritechunk writes the entire chunk of data stored in the buffer datap to the
chunked data set identified by the parameter sds_id. Writing starts at the
location specified by the parameter origin. SDwritechunk is used when an
entire chunk of data is to be written. SDwritedata is used when the write
operation is to be done regardless of the chunking scheme used in the da

SDwritechunk will return FAIL (or -1) when an attempt is made to use it t
write to a non-chunked data set.

The parameter origin specifies the coordinates of the chunk according to
chunk position in the overall chunk array. Refer to Chapter 3 of the H
User’s Guide, titled Scientific Data Sets (SD API), for a description of the
organization of chunks in a data set.

Note that there are two FORTRAN-77 versions of this routine; one for num
data (sfwchnk) and one for character data (sfwcchnk).

FORTRAN integer sfwchnk(sds_id, origin, datap)

integer sds_id, origin

<valid numeric data type> datap(*)

integer sfwcchnk(sds_id, origin, datap)

integer sds_id, origin

character*(*) datap(*)
2-118 March 17, 1998

SDwritedata/sfwdata/sfwcdataNational Center for Supercomputing Applications

ion

ll

re

 the

ing

 in

ter 3
SDwritedata/sfwdata/sfwcdata

intn SDwritedata(int32 sds_id, int32 start[], int32 stride[], int32 edge[], VOIDP buffer)

sds_id IN: Data set identifier returned by SDcreate or SDselect

start IN: Array specifying the starting location of the data to be written

stride IN: Array specifying the number of values to skip along each dimens

edge IN: Array specifying the number of values to be written along each
dimension

buffer IN: Buffer for the values to be written

Purpose Writes a subsample of data to a data set or to a coordinate variable.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDwritedata writes the specified subsample of data to the data set or
coordinate variable identified by the parameter sds_id. The data is written
from the buffer buffer. The subsample is defined by the parameters start, stride
and edge.

The array start specifies the starting position from where the subsample wi
be written. Valid values of each element in the array start are from 0 to the size
of the corresponding dimension of the data set - 1. The dimension sizes a
returned by SDgetinfo.

The array edge specifies the number of values to write along each data set
dimension.

The array stride specifies the writing pattern along each dimension. For
example, if one of the elements of the array stride is 1, then every element
along the corresponding dimension of the data set will be written. If one of
elements of the array stride is 2, then every other element along the
corresponding dimension of the data set will be written, and so on. Specify
stride value of NULL in the C interface or setting all values of the array stride
to 1 in either interface specifies the contiguous writing of data. If all values
the array stride are set to 0, SDwritedata returns FAIL (or -1).

When writing data to a chunked data set using SDwritedata, consideration
should be given to be issues presented in the section on chunking in Chap
of the HDF User’s Manual, titled Scientific Data Sets (SD API) and Chapter 13
of the HDF User’s Manual, titled HDF Performance Issues.

Note that there are two FORTRAN-77 versions of this routine; sfwdata and
sfwcdata. The sfwdata routine writes numeric data and sfwcdata writes
character scientific data.

FORTRAN integer function sfwdata(sds_id, start, stride, edge, buffer)
March 17, 1998 2-119

SDwritedata/sfwdata/sfwcdata National Center for Supercomputing Applications
integer sds_id

integer start(*), stride(*), edge(*)

<valid numeric data type> buffer(*)

integer function sfwcdata(sds_id, start, stride, edge, buffer)

integer sds_id

integer start(*), stride(*), edge(*)

character*(*) buffer(*)
2-120 March 17, 1998

Vaddtagref/vfadtrNational Center for Supercomputing Applications

mber
ique
Vaddtagref/vfadtr

int32 Vaddtagref(int32 vgroup_id, int32 tag, int32 ref)

vgroup_id IN: Vgroup identifier returned by Vattach

tag IN: Tag of the object

ref IN: Reference number of the object

Purpose Inserts an object into a vgroup.

Return value Returns the number of objects in the vgroup if successful and FAIL (or -1)
otherwise.

Description Vaddtagref inserts the object identified by the parameters tag and ref into the
vgroup identified by the parameter vgroup_id.

If an object to be inserted is a data set, duplication of the tag/reference nu
pair will be allowed. Otherwise, the tag/reference number pair must be un
among the elements within the vgroup or the routine will return FAIL (or -1).

FORTRAN integer function vfadtr(vgroup_id, tag, ref)

integer vgroup_id, tag, ref
March 17, 1998 2-121

Vattach/vfatch National Center for Supercomputing Applications

nce
all to
usly,
Each

er
Vattach/vfatch

int32 Vattach(int32 file_id, int32 vgroup_ref, char *access)

file_id IN: File identifier returned by Hopen

vgroup_ref IN: Reference number for the vgroup

access IN: Type of access

Purpose Initiates access to a new or existing vgroup.

Return value Returns the vgroup identifier (vgroup_id) if successful and FAIL (or -1)
otherwise.

Description Vattach opens a vgroup with access type specified by the parameter access in
the file identified by the parameter file_id. The vgroup is identified by the
reference number, vgroup_ref.

Vattach returns the vgroup identifier, vgroup_id, for the accessed vgroup. The
vgroup_id is used for all subsequent operations on this vgroup. O
operations are complete, the vgroup identifier must be disposed of via a c
Vdetach. Multiple attaches may be made to the same vgroup simultaneo
and several vgroup identifiers can be created for the same vgroup.
vgroup identifier must be disposed of independently.

The parameter file_id is the file identifier of an opened file. The paramet
vgroup_ref specifies which vgroup in the file to attach to. If vgroup_ref is set
to -1, a new vgroup will be created. If vgroup_ref is set to a positive number,
the vgroup with that as a reference number is attached.

Possible values for the parameter access are “r” for read access and “w” for
write access.

FORTRAN integer function vfatch(file_id, vgroup_ref, access)

integer file_id, vgroup_ref

character*1 access
2-122 March 17, 1998

Vattrinfo/vfainfoNational Center for Supercomputing Applications

ribute

of an

eters

 not

s
ined
Vattrinfo/vfainfo

intn Vattrinfo(int32 vgroup_id, intn attr_index, char *attr_name, int32 *data_type, int32 *count, int32
*size)

vgroup_id IN: Vgroup identifier returned by Vattach

attr_index IN: Index of the attribute

attr_name OUT: Name of the attribute

data_type OUT: Data type of the attribute

count OUT: Number of values in the attribute

size OUT: Size, in bytes, of the attribute values.

Purpose Retrieves the name, data type, number of values, and value size of an att
for a vgroup.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vattrinfo retrieves the name, datatype, number of values, and value size
attribute identified by its index, attr_index, in the vgroup, vgroup_id. Name,
data type, number of values and size are retrieved into the param
attr_name, data_type, count, and size, respectively.

If the attribute’s name, data type, number of values, or value size are
needed, the corresponding output parameters can be set to NULL.

The valid value attr_index range from 0 to the total number of attribute
attached to a vgroup - 1. The number of vgroup attributes can be obta
using Vnattrs .

FORTRAN integer function vfainfo(vgroup_id, attr_index, attr_name,
data_type, count, size)

integer vgroup_id, attr_index, data_type, count, size

character*(*) attr_name
March 17, 1998 2-123

Vdelete/vfdelete National Center for Supercomputing Applications

rom
Vdelete/vfdelete

int32 Vdelete(int32 file_id, int32 vgroup_id)

file_id IN: File identifier returned by Hopen

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Remove a vgroup from a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) if not successful.

Description Vdelete removes the vgroup identified by the parameter vgroup_id from the
file identified by the parameter file_id.

This routine will remove the vgroup from the internal data structures and f
the file.

FORTRAN integer function vfdelete(file_id, vgroup_id)

integer file_id, vgroup_id
2-124 March 17, 1998

Vdeletetagref/vfdtrNational Center for Supercomputing Applications

f

Vdeletetagref/vfdtr

int32 Vdeletetagref(int32 vgroup_id, int32 tag, int32 ref)

vgroup_id IN: Vgroup identifier returned by Vattach

tag IN: Tag of the object

ref IN: Reference number of the object

Purpose Deletes an object from a vgroup.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) if not successful or the
given tag/reference number pair is not found in the vgroup.

Description Vdeletetagref deletes the object specified by the parameters tag and ref from
the vgroup identified by the parameter vgroup_id. Vinqtagref should be used
to check if the tag/reference number pair exists before calling this routine.

If duplicate tag/reference number pairs are found in the vgroup, Vdeletetagref
deletes the first occurrence. Vinqtagref should be used to determine i
duplicate tag/reference number pairs exist in the vgroup.

FORTRAN integer function vfdtr(vgroup_id, tag, ref)

integer vgroup_id, tag, ref
March 17, 1998 2-125

Vdetach/vfdtch National Center for Supercomputing Applications

ed.
es

is
Vdetach/vfdtch

int32 Vdetach(int32 vgroup_id)

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Terminates access to a vgroup.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vdetach detaches the currently-attached vgroup identified by vgroup_id and
terminates access to that vgroup.

All space associated with the vgroup, vgroup_id, will be freed. Each attached
vgroup must be detached by calling this routine before the file is clos
Vdetach also updates the vgroup information in the HDF file if any chang
occur. The identifier vgroup_id should not be used after the vgroup
detached.

FORTRAN integer function vfdtch(vgroup_id)

integer vgroup_id
2-126 March 17, 1998

Vend/vfendNational Center for Supercomputing Applications

 by
Vend/vfend

intn Vend(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Terminates access to a vgroup and/or vdata interface.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vend terminates access to the vgroup and/or vdata interfaces initiated
Vstart and all internal data structures allocated by Vstart .

Vend must be called after all vdata and vgroup operations on the file file_id are
completed. Further attempts to use vdata or vgroup routines after calling Vend
will result in a FAIL (or -1) being returned.

FORTRAN integer function vfend(file_id)

integer file_id
March 17, 1998 2-127

Vfind/vfind National Center for Supercomputing Applications
Vfind/vfind

int32 Vfind(int32 file_id, char *vgroup_name)

file_id IN: File identifier returned by Hopen

vgroup_name IN: Name of the vgroup

Purpose Returns the reference number of a vgroup given its name.

Return value Returns the reference number of the vgroup if successful and 0 otherwise.

Description Vfind searches the file identified by the parameter file_id for a vgroup with the
name specified by the parameter vgroup_name, and returns the corresponding
reference number.

If more than one vgroup has the same name, Vfind will return the reference
number of the first one.

FORTRAN integer function vfind(file_id, vgroup_name)

integer file_id

character*(*) vgroup_name
2-128 March 17, 1998

Vfindattr/vffdattNational Center for Supercomputing Applications
Vfindattr/vffdatt

intn Vfindattr(int32 vgroup_id, char *attr_name)

vgroup_id IN: Vgroup identifier returned by Vattach

attr_name OUT: Name of the attribute

Purpose Returns the index of a vgroup attribute given its name.

Return value Returns the index of an attribute if successful and FAIL (or -1) otherwise.

Description Vfindattr searches the vgroup identified by the parameter vgroup_id for the
attribute with the name specified by the parameter attr_name, and returns the
index of that attribute.

If more than one attribute has the same name, Vfindattr will return the index
of the first one.

FORTRAN integer function vffdatt(vgroup_id, attr_name)

integer vgroup_id

character*(*) attr_name
March 17, 1998 2-129

Vfindclass/vfndcls National Center for Supercomputing Applications
Vfindclass/vfndcls

int32 Vfindclass(int32 file_id, char *vgroup_class)

file_id IN: File identifier returned by Hopen

vgroup_class IN: Class name of the vgroup

Purpose Returns the reference number of a vgroup specified by its class name.

Return value Returns the reference number of the vgroup if successful and 0 otherwise.

Description Vfindclass searches the file identified by the parameter file_id for the vgroup
with the class name specified by the parameter vgroup_class, and returns the
reference number of that vgroup.

If more than one vgroup has the same class name, Vfindclass will return the
reference number of the first one.

FORTRAN integer function vfndcls(file_id, vgroup_class)

integer file_id

character*(*) vgroup_class
2-130 March 17, 1998

Vflocate/vfflocNational Center for Supercomputing Applications
Vflocate/vffloc

int32 Vflocate(int32 vgroup_id, char *field_name)

vgroup_id IN: Vgroup identifier returned by Vattach

field_name_list IN: List of field names

Purpose Locates a vdata in a vgroup given a list of field names.

Return value Returns the reference number of the vdata if successful and FAIL (or -1)
otherwise.

Description Vflocate searches the vgroup identified by the parameter vgroup_id for a vdata
that contains all of the fields listed in the parameter field_name_list. If that
vdata is found, Vflocate will return its reference number.

FORTRAN integer function vffloc(vgroup_id, field_name)

integer vgroup_id

character*(*) field_name
March 17, 1998 2-131

Vgetattr/vfgnatt/vfgcatt National Center for Supercomputing Applications

r

r
sing
ute
ibute
Vgetattr/vfgnatt/vfgcatt

intn Vgetattr(int32 vgroup_id, intn attr_index, VOIDP attr_values)

vgroup_id IN: Vgroup identifier returned by Vattach

attr_index IN: Index of the attribute

attr_values OUT: Buffer for the attribute values

Purpose Retrieves the values of a vgroup attribute.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vgetattr retrieves the values of the attribute identified by its index, attr_index,
into the buffer attr_values for the vgroup identified by the paramete
vgroup_id.

The valid values of the parameter attr_index range from 0 to the total numbe
of vgroup attributes - 1. The total number of attributes can be obtained u
Vnattrs . To determine the amount of memory sufficient to hold the attrib
values, the user can obtain the number of attribute values and the attr
value size using Vattrinfo .

FORTRAN integer function vfgnatt(vgroup_id, attr_index, attr_values)

integer vgroup_id, attr_index

<valid numeric data type> attr_values

integer function vfgcatt(vgroup_id, attr_index, attr_values)

integer vgroup_id, attr_index

character*(*) attr_values
2-132 March 17, 1998

Vgetclass/vfgclsNational Center for Supercomputing Applications

eter
Vgetclass/vfgcls

int32 Vgetclass(int32 vgroup_id, char *vgroup_class)

vgroup_id IN: Vgroup identifier returned by Vattach

vgroup_class OUT: Class name of the vgroup

Purpose Retrieves the class name of a vgroup.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vgetclass retrieves the class name of the vgroup identified by the param
vgroup_id in the buffer vgroup_class.

The maximum length of the name is defined by VGNAMELENMAX (or 64) .

FORTRAN integer function vfgcls(vgroup_id, vgroup_class)

integer vgroup_id

character*(*) vgroup_class
March 17, 1998 2-133

Vgetid/vfgid National Center for Supercomputing Applications

 the

ing
Vgetid/vfgid

int32 Vgetid(int32 file_id, int32 vgroup_ref)

file_id IN: File identifier returned by Hopen

vgroup_ref IN: Reference number of the current vgroup

Purpose Returns the reference number of the next vgroup.

Return value Returns the reference number of the next vgroup if successful and FAIL (or -1)
otherwise.

Description Vgetid sequentially searches the file identified by the parameter file_id and
returns the reference number of the vgroup following the vgroup that has
reference number specified by the parameter vgroup_ref.

The search is initiated by calling this routine with a vgroup_ref value of -1 .
This will return the reference number of the first vgroup in the file. Search
past the last vgroup in the file will cause Vgetid to return FAIL (or -1).

FORTRAN integer function vfgid(file_id, vgroup_ref)

integer file_id, vgroup_ref
2-134 March 17, 1998

Vgetname/vfgnamNational Center for Supercomputing Applications

ter
s

Vgetname/vfgnam

int32 Vgetname(int32 vgroup_id, char *vgroup_name)

vgroup_id IN: Vgroup identifier returned by Vattach

vgroup_name OUT: Name of the vgroup

Purpose Retrieves the name of a vgroup.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vgetname retrieves the name of the vgroup identified by the parame
vgroup_id into the buffer vgroup_name. The maximum length of the name i
defined by VGNAMELENMAX (or 64).

FORTRAN integer function vfgnam(vgroup_id, vgroup_name)

integer vgroup_id

character*(*) vgroup_name
March 17, 1998 2-135

Vgetnext/vfgnxt National Center for Supercomputing Applications

of a
Vgetnext/vfgnxt

int32 Vgetnext(int32 vgroup_id, int32 v_ref)

vgroup_id IN: Vgroup identifier returned by Vattach

v_ref IN: Reference number of the vgroup or vdata

Purpose Gets the reference number of the next member (vgroup or vdata only)
vgroup.

Return value Returns the reference number of the vgroup or vdata if successful and FAIL (or
-1) otherwise.

Description Vgetnext searches in the vgroup identified by the parameter vgroup_id for the
object following the object specified by its reference number v_ref. Either of
the two objects can be a vgroup or a vdata. If v_ref is set to -1, the routine will
return the reference number of the first vgroup or vdata in the vgroup.

Note that this routine only gets a vgroup or a vdata in a vgroup. Vgettagrefs
gets any object in a vgroup.

FORTRAN integer function vfgnxt(vgroup_id, v_ref)

integer vgroup_id, v_ref
2-136 March 17, 1998

Vgettagref/vfgttrNational Center for Supercomputing Applications

in a

 by

e
sing

he
Vgettagref/vfgttr

intn Vgettagref(int32 vgroup_id, int32 index, int32 *tag, int32 *ref)

vgroup_id IN: Vgroup identifier returned by Vattach

index IN: Index of the object in the vgroup

tag OUT: Tag of the object

ref OUT: Reference number of the object

Purpose Retrieves the tag/reference number pair of an object given its index with
vgroup.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vgettagref retrieves the tag/reference number pair of the object specified
its index, index, within the vgroup identified by the parameter vgroup_id. Note
that this routine is different from Vgettagrefs, which retrieves the tag/
reference number pairs of a number of objects.

The valid values of index range from 0 to the total number of objects in th
vgroup - 1. The total number of objects in the vgroup can be obtained u
Vinquire .

The tag is stored in the buffer tag and the reference number is stored in t
buffer ref.

FORTRAN integer function vfgttr(vgroup_id, index, tag, ref)

integer vgroup_id, index

integer tag, ref
March 17, 1998 2-137

Vgettagrefs/vfgttrs National Center for Supercomputing Applications

 to a

up if

r
s

/

Vgettagrefs/vfgttrs

int32 Vgettagrefs(int32 vgroup_id, int32 tag_array[], int32 ref_array[], int32 num_of_pairs)

vgroup_id IN: Vgroup identifier returned by Vattach

tag_array OUT: Array of tags

ref_array OUT: Array of reference numbers

num_of_pairs IN: Number of tag/reference number pairs

Purpose Retrieves the tag/reference number pairs of the HDF objects belonging
vgroup.

Return value Returns the number of tag/reference number pairs obtained from a vgro
successful and FAIL (or -1) otherwise.

Description Vgettagrefs retrieves at most num_of_pairs number of tag/reference numbe
pairs belonging to the vgroup, vgroup_id, and stores them in the buffer
tag_array and ref_array.

The input parameter num_of_pairs specifies the maximum number of tag
reference number pairs to be returned. The size of the arrays, tag_array and
ref_array, must be at least num_of_pairs.

FORTRAN integer function vfgttrs(vgroup_id, tag_array, ref_array,
num_of_pairs)

integer vgroup_id, num_of_pairs

integer tag_array(*), ref_array(*)
2-138 March 17, 1998

Vgetversion/vfgverNational Center for Supercomputing Applications

he
s:

at

s to

at
Vgetversion/vfgver

int32 Vgetversion(int32 vgroup_id)

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Gets the version of a vgroup.

Return value Returns the vgroup version number if successful, and FAIL (or -1) otherwise.

Description Vgetversion returns the version number of the vgroup identified by t
parameter vgroup_id. There are three valid version number
VSET_OLD_VERSION (or 2), VSET_VERSION (or 3), and VSET_NEW_VERSION (or
4).

VSET_OLD_VERSION is returned when the vgroup is of a version th
corresponds to an HDF library version before version 3.2.

VSET_VERSION is returned when the vgroup is of a version that correspond
an HDF library version between versions 3.2 and 4.0 release 2.

VSET_NEW_VERSION is returned when the vgroup is of the version th
corresponds to an HDF library version of version 4.1 release 1 or higher.

FORTRAN integer function vfgver(vgroup_id)

integer vgroup_id
March 17, 1998 2-139

Vinqtagref/vfinqtr National Center for Supercomputing Applications
Vinqtagref/vfinqtr

intn Vinqtagref(int32 vgroup_id, int32 tag, int32 ref)

vgroup_id IN: Vgroup identifier returned by Vattach

tag IN: Tag of the object

ref IN: Reference number of the object

Purpose Checks whether an object belongs to a vgroup.

Return value Returns TRUE (or 1) if the object belongs to the vgroup, and FALSE (or 0)
otherwise.

Description Vinqtagref checks if the object identified by its tag, tag, and its reference
number, ref, belongs to the vgroup identified by the parameter vgroup_id.

FORTRAN integer function vfinqtr(vgroup_id, tag, ref)

integer vgroup_id, tag, ref
2-140 March 17, 1998

Vinquire/vfinqNational Center for Supercomputing Applications

oup
Vinquire/vfinq

intn Vinquire(int32 vgroup_id, int32 *n_entries, char *vgroup_name)

vgroup_id IN: Vgroup identifier returned by Vattach

n_entries OUT: Number of entries in a vgroup

vgroup_name OUT: Name of a vgroup

Purpose Retrieves the number of entries in a vgroup and its name.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vinquire retrieves the name of and the number of entries in the vgr
identified by the parameter vgroup_id into the buffer vgroup_name and the
parameter n_entries, respectively.

The maximum length of the vgroup name is defined by VGNAMELENMAX (or 64).

FORTRAN integer function vfinq(vgroup_id, n_entries, vgroup_name)

integer vgroup_id, n_entries

character*(*) vgroup_name
March 17, 1998 2-141

Vinsert/vfinsrt National Center for Supercomputing Applications

if

o a

e

Vinsert/vfinsrt

int32 Vinsert(int32 vgroup_id, int32 v_id)

vgroup_id IN: Vgroup identifier returned by Vattach

v_id IN: Identifier of the vdata or vgroup

Purpose Inserts a vdata or vgroup into a vgroup.

Return value Returns the position (index) of the inserted element within the vgroup
successful and FAIL (or -1) otherwise.

Description Vinsert inserts the vdata or vgroup identified by the parameter v_id into the
vgroup identified by the parameter vgroup_id.

Essentially, Vinsert only inserts a vgroup or vdata. To insert any objects int
vgroup, use Vaddtagref.

The returned value, index, is either 0 or a positive value, which indicates th
position of the inserted element in the vgroup.

FORTRAN integer function vfinsrt(vgroup_id, v_id)

integer vgroup_id, v_id
2-142 March 17, 1998

Visvg/vfisvgNational Center for Supercomputing Applications
Visvg/vfisvg

intn Visvg(int32 vgroup_id, int32 obj_ref)

vgroup_id IN: Vgroup identifier returned by Vattach

obj_ref IN: Reference number of the object

Purpose Determines if an element of a vgroup is a vgroup.

Return value Returns TRUE (or 1) if the object is a vgroup and FALSE (or 0) otherwise.

Description Visvg determines if the object specified by the reference number, obj_ref, is a
vgroup within the vgroup identified by the parameter vgroup_id.

FORTRAN integer function vfisvg(vgroup_id, obj_ref)

integer vgroup_id, obj_ref
March 17, 1998 2-143

Visvs/vfisvs National Center for Supercomputing Applications
Visvs/vfisvs

intn Visvs(int32 vgroup_id, int32 obj_ref)

vgroup_id IN: Vgroup identifier returned by Vattach

obj_ref IN: Reference number of the object

Purpose Determines if an object of a vgroup is a vdata.

Return value Returns TRUE (or 1) if the object is a vdata and FALSE (or 0) otherwise.

Description Visvs determines if the object specified by the reference number, obj_ref, is a
vdata within the vgroup identified by the parameter vgroup_id.

FORTRAN integer function vfisvs(vgroup_id, obj_ref)

integer vgroup_id, obj_ref
2-144 March 17, 1998

Vlone/vfloneNational Center for Supercomputing Applications

at the

 by

d

r
is to
Vlone/vflone

int32 Vlone(int32 file_id, int32 ref_array[], int32 max_refs)

file_id IN: File identifier returned by Hopen

ref_array OUT: Array of reference numbers

max_refs IN: Maximum number of lone vgroups to be retrieved

Purpose Retrieves the reference numbers of lone vgroups, i.e., vgroups that are
top of the grouping hierarchy, in a file.

Return value Returns the total number of lone vgroups if successful and FAIL (or -1)
otherwise.

Description Vlone retrieves the reference numbers of lone vgroups in the file identified
the parameter file_id. Although Vlone returns the total number of lone
vgroups in the file, only at most max_refs reference numbers are retrieved an
stored in the buffer ref_array. The array must have at least max_refs elements.

An array size of 65,000 integers for ref_array is more than adequate if the use
chooses to declare the array statically. However, the preferred method
dynamically allocate memory instead; first call Vlone with a value of 0 for
max_refs, and then use the returned value to allocate memory for ref_array
before calling Vlone again.

FORTRAN integer function vflone(file_id, ref_array, max_refs)

integer file_id, ref_array(*), max_refs
March 17, 1998 2-145

Vnattrs/vfnatts National Center for Supercomputing Applications

ps if

 the
Vnattrs/vfnatts

intn Vnattrs(int32 vgroup_id)

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Returns the number of attributes assigned to a vgroup.

Return value Returns the total number of attributes assigned to the specified vgrou
successful and FAIL (or -1) otherwise.

Description Vnattrs gets the number of attributes assigned to the vgroup identified by
parameter vgroup_id.

FORTRAN integer function vfnatts(vgroup_id)

integer vgroup_id
2-146 March 17, 1998

Vnrefs/vnrefsNational Center for Supercomputing Applications

the
Vnrefs/vnrefs

int32 Vnrefs(int32 vgroup_id, int32 tag_type)

vgroup_id IN: Vgroup identifier returned by Vattach

tag_type IN: Type of the tag

Purpose Returns the number of tags of a given tag type in a vgroup.

Return value Returns 0 or the total number of tags if successful and FAIL (or -1) otherwise.

Description Vnrefs returns 0 or the number of tags having the type specified by
parameter tag_type in the vgroup identified by the parameter vgroup_id.

FORTRAN integer function vnrefs(vgroup_id, tag_type)

integer vgroup_id, tag_type
March 17, 1998 2-147

Vntagrefs/vntrc National Center for Supercomputing Applications

ked

he
Vntagrefs/vntrc

int32 Vntagrefs(int32 vgroup_id)

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Returns the number of objects in a vgroup.

Return value Returns 0 or a positive number representing the number of HDF objects lin
to the vgroup or FAIL (or -1) otherwise.

Description Vntagrefs returns the number of objects in a vgroup identified by t
parameter vgroup_id.

Vntagrefs is used together with Vgettagrefs, or with Vgettagref to look at the
data objects linked to a given vgroup.

FORTRAN integer function vntrc(vgroup_id)

integer vgroup_id
2-148 March 17, 1998

Vsetattr/vfsnatt/vfscattNational Center for Supercomputing Applications

eter

nes,
been
Vsetattr/vfsnatt/vfscatt

intn Vsetattr(int32 vgroup_id, char *attr_name, int32 data_type, int32 count, VOIDP values)

vgroup_id IN: Vgroup identifier returned by Vattach

attr_name IN: Name of the attribute

data_type IN: Data type of the attribute

count IN: Number of values the attribute contains

values IN: Buffer containing the attribute values

Purpose Attaches an attribute to a vgroup.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vsetattr attaches an attribute to the vgroup identified by the param
vgroup_id. The attribute name is specified by the parameter attr_name and the
attribute data type is specified by the parameter data_type. The values of the
attribute are specified by the parameter values, and the number of values in the
attribute is specified by the parameter count. Refer to Table 1A in Section I of
this manual for a listing of all valid data types.

If the attribute already exists, the new values will replace the current o
provided the data type and the number of attribute values have not
changed. If either the data type or the order have been changed, Vsetattr will
return FAIL (or -1).

FORTRAN integer vfsnatt(vgroup_id, attr_name, data_type, count, values)

integer vgroup_id, data_type, count

<valid numeric data type> values(*)

character*(*) attr_name

integer vfscatt(vgroup_id, attr_name, data_type, count, values)

integer vgroup_id, data_type, count

character*(*) attr_name, values(*)
March 17, 1998 2-149

Vsetclass/vfscls National Center for Supercomputing Applications

re
trings.
Vsetclass/vfscls

int32 Vsetclass(int32 vgroup_id, char *vgroup_class)

vgroup_id IN: Vgroup identifier returned by Vattach

vgroup_class IN: Class name of a vgroup

Purpose Sets the class name of a vgroup.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vsetclass sets the class name specified by the parameter vgroup_class to the
vgroup identified by the parameter vgroup_id.

A vgroup initially has a class name of NULL. The class name may be set mo
than once. Class names, like vgroup names, can be of any character s
They exist solely as meaningful labels for user applications.

The class name is limited to VSNAMELENMAX (or 64) characters.

FORTRAN integer function vfscls(vgroup_id, vgroup_class)

integer vgroup_id

character*(*) vgroup_class
2-150 March 17, 1998

Vsetname/vfsnamNational Center for Supercomputing Applications

ce

ngful
th is
Vsetname/vfsnam

int32 Vsetname(int32 vgroup_id, char *vgroup_name)

vgroup_id IN: Vgroup identifier returned by Vattach

vgroup_name IN: Name of a vgroup

Purpose Sets the name of a vgroup.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vsetname sets the name specified by the parameter vgroup_name for the
vgroup identified by the parameter vgroup_id.

A vgroup initially has a name of NULL, and may be renamed more than on
during the scope of the vgroup identifier (vgroup_id). Note that the routine
does not check for uniqueness of vgroup names.

Vgroup names are optional, but recommended. They serve as meani
labels for user applications. If used, they should be unique. The name leng
limited to VSNAMELENMAX (or 64) characters.

FORTRAN integer function vfsnam(vgroup_id, vgroup_name)

integer vgroup_id

character*(*) vgroup_name
March 17, 1998 2-151

Vstart/vfstart National Center for Supercomputing Applications

by

n an
.

Vstart/vfstart

intn Vstart(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Initializes the vdata and/or vgroup interface.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Vstart initializes the vdata and/or vgroup interfaces for the file identified
the parameter file_id.

Vstart must be called before any vdata or vgroup operation is attempted o
HDF file. Vstart must be called once for each file involved in the operation

FORTRAN integer function vfstart(file_id)

integer file_id
2-152 March 17, 1998

VHmakegroup/vhfmkgpNational Center for Supercomputing Applications

eter

to be

data
ue.

,

VHmakegroup/vhfmkgp

int32 VHmakegroup(int32 file_id, int32 tag_array[], int32 ref_array[], int32 n_objects, char
*vgroup_name, char *vgroup_class)

file_id IN: File identifier returned by Hopen

tag_array IN: Array of tags

ref_array IN: Array of reference numbers

n_objects IN: Number of data objects to be stored

vgroup_name IN: Name of the vgroup

vgroup_class IN: Class of the vgroup

Purpose Creates a vgroup.

Return value Returns the reference number of the newly-created vgroup if successful, FAIL

(or -1) otherwise.

Description VHmakegroup creates a vgroup with the name specified by the param
vgroup_name and the class name specified by the parameter vgroup_class in
the file identified by the parameter file_id. The routine inserts n_objects
objects into the vgroup. The tag and reference numbers of the objects
inserted are specified in the arrays tag_array and ref_array.

Creating empty vgroups with VHmakegroup is allowed. VHmakegroup does
not check if the tag/reference number pair is valid, or if the corresponding
object exists. However, all of the tag/reference number pairs must be uniq

Vstart must precede any calls to VHmakegroup. It is not necessary, however
to call Vattach or Vdetach in conjunction with VHmakegroup.

The elements in the arrays tag_array and ref_array are the matching tag/
reference number pairs of the objects to be inserted, that means tag_array[0]
and ref_array[0] refer to one data object, and tag_array[1] and ref_array[1] to
another, etc.

FORTRAN integer function vhfmkgp(file_id, tag_array, ref_array, n_objects,
vgroup_name, vgroup_class)

integer file_id, n_objects

character*(*) vgroup_name, vgroup_class

integer tag_array(*), ref_array(*)
March 17, 1998 2-153

VQueryref/vqref National Center for Supercomputing Applications

the
VQueryref/vqref

int32 VQueryref(int32 vgroup_id)

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Returns the reference number of a vgroup.

Return value Returns the reference number if successful, and FAIL (or -1) otherwise.

Description VQueryref returns the reference number of the vgroup identified by
parameter vgroup_id.

FORTRAN integer function vqref(vgroup_id)

integer vgroup_id
2-154 March 17, 1998

VQuerytag/vqtagNational Center for Supercomputing Applications

ter
VQuerytag/vqtag

int32 VQuerytag(int32 vgroup_id)

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Returns the tag of a vgroup.

Return value Returns the tag if successful, and FAIL (or -1) otherwise.

Description VQuerytag returns the tag of the vgroup identified by the parame
vgroup_id.

FORTRAN integer function vqtag(vgroup_id)

integer vgroup_id
March 17, 1998 2-155

VFfieldesize/vffesiz National Center for Supercomputing Applications

 by

f

VFfieldesize/vffesiz

int32 VFfieldesize(int32 vdata_id, int32 field_index)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Vdata field index

Purpose Returns the size, as stored on disk, of a vdata field.

Return value Returns the vdata field size if successful and FAIL (or -1) otherwise.

Description VFfieldesize returns the size, as stored on disk, of a vdata field identified
the parameter field_index in the vdata identified by the parameter vdata_id.

The value of the parameter field_index ranges from 0 to the total number o
fields in the vdata - 1. The number of vdata fields is returned by VFnfields
function.

FORTRAN integer function vffesiz(vdata_id, field_index)

integer vdata_id, field_index
2-156 March 17, 1998

VFfieldisize/vffisizNational Center for Supercomputing Applications

 by

f

VFfieldisize/vffisiz

int32 VFfieldisize(int32 vdata_id, int32 field_index)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Vdata field index

Purpose Returns the size, as stored in memory, of a vdata field.

Return value Returns the vdata field size if successful and FAIL (or -1) otherwise.

Description VFfieldisize returns the size, as stored in memory, of a vdata field identified
the parameter field_index in the vdata identified by the parameter vdata_id.

The value of the parameter field_index ranges from 0 to the total number o
fields in the vdata - 1. The number of vdata fields is returned by VFnfields
function.

FORTRAN integer function vffisiz(vdata_id, field_index)

integer vdata_id, field_index
March 17, 1998 2-157

VFfieldname/vffname National Center for Supercomputing Applications

ter

f

VFfieldname/vffname

char *VFfieldname(int32 vdata_id, int32 field_index)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Vdata field index

Purpose Returns the name of a vdata field.

Return value Returns a pointer to the vdata field name if successful and NULL otherwise. The
FORTRAN-77 version of this routine, vffname, returns SUCCEED (or 0) or FAIL

(or -1).

Description VFfieldname returns the name of the vdata field identified by the parame
field_index in the vdata identified by the parameter vdata_id.

The value of the parameter field_index ranges from 0 to the total number o
fields in the vdata - 1. The number of vdata fields is returned by VFnfields
function.

The FORTRAN-77 version of this routine, vffname, returns the field name in
the parameter fname.

FORTRAN integer function vffname(vdata_id, field_index, fname)

integer vdata_id, field_index

character*(*) fname
2-158 March 17, 1998

VFfieldorder/vffordrNational Center for Supercomputing Applications

x,

f

VFfieldorder/vffordr

int32 VFfieldorder(int32 vdata_id, int32 field_index)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Vdata field index

Purpose Returns the order of a vdata field.

Return value Returns the order of the field if successful and FAIL (or -1) otherwise.

Description VFfieldorder returns the order of the vdata field identified by its inde
field_index, in the vdata identified by the parameter vdata_id.

The value of the parameter field_index ranges from 0 to the total number o
fields in the vdata - 1. The number of vdata fields is returned by VFnfields
function.

FORTRAN integer function vffordr(vdata_id, field_index)

integer vdata_id, field_index
March 17, 1998 2-159

VFfieldtype/vfftype National Center for Supercomputing Applications

x,

f

VFfieldtype/vfftype

int32 VFfieldtype(int32 vdata_id, int32 field_index)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Vdata field index

Purpose Returns the data type of a vdata field.

Return value Returns the data type if successful and FAIL (or -1) otherwise.

Description VFfieldtype returns the data type of the vdata field identified by its inde
field_index, in the vdata identified by the parameter vdata_id.

The value of the parameter field_index ranges from 0 to the total number o
fields in the vdata - 1. The number of vdata fields is returned by VFnfields
function.

FORTRAN integer function vfftype(vdata_id, field_index)

integer vdata_id, field_index
2-160 March 17, 1998

VFnfields/vfnfldsNational Center for Supercomputing Applications

he
VFnfields/vfnflds

int32 VFnfields(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Returns the total number of fields in a vdata.

Return value Returns the total number of fields if successful and FAIL (or -1) otherwise.

Description VFnfields returns the total number of fields in the vdata identified by t
parameter vdata_id.

FORTRAN integer function vfnflds(vdata_id)

integer vdata_id
March 17, 1998 2-161

VHstoredata/vhfsd/vhfscd National Center for Supercomputing Applications

d by

ll

gle-

eric
VHstoredata/vhfsd/vhfscd

int32 VHstoredata(int32 file_id, char *fieldname, uint8 buf[], int32 n_records, int32 data_type, char
*vdata_name, char *vdata_class)

file_id IN: File identifier returned by Hopen

fieldname IN: Field name for the new vdata

buf IN: Buffer containing the records to be stored

n_records IN: Number of records to be stored

data_type IN: Type of data to be stored

vdata_name IN: Name of the vdata to be created

vdata_class IN Class of the vdata to be created

Purpose Creates and writes to a single-field vdata.

Return value Returns reference number of the newly-created vdata if successful, and FAIL

(or -1) otherwise.

Description VHstoredata creates a single-field vdata in the file, file_id, and stores data
from the buffer buf in it. Vdata name, class name and data type are specifie
the parameters vdata_name, vdata_class, and data_type, respectively. Number
of records in a vdata is specified by the parameter n_records. Field name is
specified by the parameter fieldname.

Vstart must precede VHstoredata. It is not necessary, however, to ca
VSattach or VSdetach in conjunction with VHstoredata.

This routine provides a high-level method for creating single-order, sin
field vdatas.

Note that there are two FORTRAN-77 versions of this routine; one for num
data (vhfsd) and the other for character data (vhfsdc).

FORTRAN integer function vhfsd(file_id, fieldname, buf, n_records,
data_type,

 vdata_name, vdata_class)

integer file_id, n_records, data_type

character*(*) vdata_name, vdata_class, fieldname

<valid numeric data type> buf(*)

integer function vhfscd(file_id, fieldname, buf, n_records,
data_type,
2-162 March 17, 1998

VHstoredata/vhfsd/vhfscdNational Center for Supercomputing Applications
 vdata_name, vdata_class)

integer file_id, n_records, data_type

character*(*) vdata_name, vdata_class, fieldname

character*(*) buf
March 17, 1998 2-163

VHstoredatam/vhfsdm/vhfscdm National Center for Supercomputing Applications

, and

eter

y
ed

ords

ll

eld

eric
VHstoredatam/vhfsdm/vhfscdm

int32 VHstoredatam(int32 file_id, char *fieldname, uint8 buf[], int32 n_records, int32 data_type, char
*vdata_name, char *vdata_class, int32 order),

file_id IN: File identifier returned by Hopen

fieldname IN: Field name

buf IN: Buffer containing the records to be stored

n_records IN: Number of records to be stored

data_type IN: Type of data to be stored

vdata_name IN: Name of the vdata to be created

vdata_class IN: Class of the vdata to be created

order IN: Field order

Purpose Creates and writes to a multi-order, single-field vdata.

Return value Returns the reference number of the newly created vdata if successful
FAIL (or -1) otherwise.

Description VHstoredatam creates a vdata with the name specified by the param
vdata_name and a class name specified by the parameter vdata_class in the file
identified by the parameter file_id. The data type of the vdata is specified b
the parameter data_type. The vdata contains one field with the name specifi
by the parameter fieldname. The order of the field, order, indicates the number
of vdata values stored per field. The vdata contains the number of rec
specified by the parameter n_records. The buf parameter should contain
n_records records that will be stored in the vdata.

Vstart must precede VHstoredatam. It is not necessary, however, to ca
VSattach or VSdetach in conjunction with VHstoredatam.

This routine provides a high-level method for creating multi-order, single-fi
vdatas.

Note that there are two FORTRAN-77 versions of this routine; one for num
data (vhfsdm) and the other for character data (vhfscdm).

FORTRAN integer function vhfsdm(file_id, fieldname, buf, n_records,

 data_type, vdata_name, vdata_class, order)

integer file_id, n_records, data_type, order

character*(*) vdata_name, vdata_class, fieldname
2-164 March 17, 1998

VHstoredatam/vhfsdm/vhfscdmNational Center for Supercomputing Applications
<valid numeric data type> buf(*)

integer function vhfscdm(file_id, fieldname, buf, n_records,

 data_type, vdata_name, vdata_class

 order)

integer file_id, n_records, data_type, order

character*(*) vdata_name, vdata_class, fieldname

character*(*) buf
March 17, 1998 2-165

VSappendable/vsapp (Obsolete) National Center for Supercomputing Applications

 this
VSappendable/vsapp (Obsolete)

int32 VSappendable(int32 vdata_id, int32 block_size)

vdata_id IN: Vdata identifier returned by VSattach

block_size IN: Standard block size of appended data

Purpose Makes it possible to append to a vdata.

Return value Retrieves SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The HDF library makes all vdatas appendable upon creation. Therefore,
routine has been made obsolete.

FORTRAN integer function vsapp(vdata_id, block_size)

integer vdata_id, block_size
2-166 March 17, 1998

VSattach/vsfatchNational Center for Supercomputing Applications

h

ith

w

n
(e.g.,

n

VSattach/vsfatch

int32 VSattach(int32 file_id, int32 vdata_ref, char *access)

file_id IN: File identifier returned by Hopen

vdata_ref IN: Reference number of the vdata

access IN: Access mode

Purpose Attaches to an existing vdata or creates a new vdata.

Return value Returns a vdata identifier if successful and FAIL (or -1) otherwise.

Description VSattach attaches to the vdata identified by the reference number, vdata_ref,
in the file identified by the parameter file_id. Access to the vdata is specified
by the parameter access. VSattach returns an identifier to the vdata, throug
which all further operations on that vdata are carried out.

An existing vdata may be multiply-attached for reads. Only one attach w
write access to a vdata is allowed.

The default interlace mode for a new vdata is FULL_INTERLACE (or 0). This may
be changed using VSsetinterlace.

The value of the parameter vdata_ref may be -1. This is used to create a ne
vdata.

Valid values for access are “r ” for read access and “w” for write access.

If access is “r ”, then vdata_ref must be the valid reference number of a
existing vdata returned from any of the vdata and vgroup search routines
Vgetnext or VSgetid). It is an error to attach to a vdata with a vdata_ref of -1
with “r ” access.

If access is “w”, then vdata_ref must be the valid reference number of a
existing vdata or -1. An existing vdata is generally attached with “w” access to
replace part of its data, or to append new data to it.

FORTRAN integer function vsfatch(file_id, vdata_ref, access)

integer file_id, vdata_ref

character*1 access
March 17, 1998 2-167

VSattrinfo/vsfainf National Center for Supercomputing Applications

e

r
e

VSattrinfo/vsfainf

intn VSattrinfo(int32 vdata_id, int32 field_index, intn attr_index, char *attr_name, int32 *data_type,
int32 *count, int32 *size)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Index of the field

attr_index IN: Index of the attribute

attr_name OUT: Name of the attribute

data_type OUT: Data type of the attribute

count OUT: Attribute value count

size OUT: Size of the attribute

Purpose Retrieves attribute information of a vdata or a vdata field.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSattrinfo gets information on the attribute attached to the vdata, vdata_id, or
to the vdata field. Vdata field is specified by its index, field_index. Attribute is
specified by its index, attr_index. The attribute name is returned into th
parameter attr_name, the data type is returned into the parameter data_type,
the number of values of the attribute is returned into the parameter count, and
the size of the attribute is returned into the parameter size.

The parameter field_index in VSattrinfo is the same as the paramete
field_index in VSsetattr. It can be set to either an integer field index for th
vdata field attribute, or _HDF_VDATA (or -1) to specify the vdata attribute.

In C the values of the parameters attr_name, data_type, count and size can be
set to NULL if the information returned by these parameters is not needed.

FORTRAN integer function vsfainf(vdata_id, field_index, attr_index,
attr_name, data_type, count, size)

integer vdata_id, field_index, attr_index

character*(*) attr_name

integer data_type, count, size
2-168 March 17, 1998

VSdelete/vsfdlteNational Center for Supercomputing Applications
VSdelete/vsfdlte

int32 VSdelete(int32 file_id, int32 vdata_id)

file_id IN: File identifier returned by Hopen

vdata_id IN: Vdata identifier returned by VSattach

Purpose Remove a vdata from a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) if not successful.

Description VSdelete removes the vdata identified by the parameter vdata_id from the file
identified by the parameter file_id.

FORTRAN integer function vsfdlte(file_id, vdata_id)

integer file_id, vdata_id
March 17, 1998 2-169

VSdetach/vsfdtch National Center for Supercomputing Applications

ory
VSdetach/vsfdtch

int32 VSdetach(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Detaches from the current vdata, terminating further access to that vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSdetach detaches from the vdata identified by the parameter vdata_id and
updates the vdata information in the file if there are any changes. All mem
used for that vdata is freed.

The vdata_id identifier should not be used after that vdata is detached.

FORTRAN integer function vsfdtch(vdata_id)

integer vdata_id
2-170 March 17, 1998

VSelts/vsfeltsNational Center for Supercomputing Applications
VSelts/vsfelts

int32 VSelts(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Determines the number of records in a vdata.

Return value Returns the number of records in the vdata if successful and FAIL (or -1)
otherwise.

Description VSelts returns the number of records in the vdata identified by vdata_id.

FORTRAN integer function vsfelts(vdata_id)

integer vdata_id
March 17, 1998 2-171

VSfdefine/vsffdef National Center for Supercomputing Applications

the

utine

 may

 list

mes
fies

bles
order
, as
VSfdefine/vsffdef

intn VSfdefine(int32 vdata_id, char *fieldname, int32 data_type, int32 order)

vdata_id IN: Vdata identifier returned by VSattach

fieldname IN: Name of the field to be defined

data_type IN: Data type of the field values

order IN: Order of the new field

Purpose Defines a new field for in a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSfdefine defines a field with the name specified by the parameter fieldname,
of the data type specified by the parameter data_type, of the order specified by
the parameter order, and within the vdata identified by the parameter vdata_id.

VSfdefine is only used to define fields in a new vdata; it does not set
format of a vdata. Note that defining a field using VSfdefine does not prepare
the storage format of the vdata. Once the fields have been defined, the ro
VSsetfields must be used to set the format. VSfdefine may only be used with a
new empty vdata. Once there is data in a vdata, definitions of vdata fields
not be modified or deleted.

There are certain field names the HDF library recognizes as predefined. A
of these predefined field types can be found in the HDF User’s Guide.

A field is defined by its name (fieldname), its type (data_type) and its order
(order). A fieldname is any sequence of characters. By convention, fieldna
are usually a mnemonic, e.g. “PRESSURE”. The type of a field speci
whether a field is float, integer, etc. Thus, data_type may be one of the data
types listed in Table 1A in Section I of this manual.

The order of a field is the number of components in that field. Single varia
like time or pressure have an order of 1. Compound variables have an
greater than 1. For example, the variable VELOCITY has an order of 3
velocity has three components.

FORTRAN integer function vsffdef(vdata_id, fieldname, data_type, order)

integer vdata_id, data_type, order

character*(*) fieldname
2-172 March 17, 1998

VSfexist/vsfexNational Center for Supercomputing Applications

ter

g.,
VSfexist/vsfex

intn VSfexist(int32 vdata_id, char *field_name_list)

vdata_id IN: Vdata identifier returned by VSattach

field_name_list IN: List of field names

Purpose Checks to see if certain fields exist in the current vdata.

Return value Returns a value of 1 if all field(s) exist and FAIL (or -1) otherwise.

Description VSfexist checks if all fields with the names specified in the parame
field_name_list exist in the vdata identified by the parameter vdata_id.

The parameter field_name_list is a string of comma-separated fieldnames (e.
“PX,PY,PZ” in C and ’PX,PY,PZ’ in Fortran).

FORTRAN integer function vsfex(vdata_id, field_name_list)

integer vdata_id

character*(*) field_name_list
March 17, 1998 2-173

VSfind/vsffnd National Center for Supercomputing Applications

d by
VSfind/vsffnd

int32 VSfind(int32 file_id, char *vdata_name)

file_id IN: File identifier returned by Hopen

vdata_name IN: Name of the vdata

Purpose Searches an HDF file for a vdata with a given name.

Return value Returns the vdata reference number if successful and 0 if the vdata is not found
or an error occurs.

Description VSfind returns the reference number of the vdata with the name specifie
the parameter vdata_name in the file specified by the parameter file_id. If there
is more than one vdata with the same name, VSfind will only find the
reference number of the first vdata in the file with that name.

FORTRAN integer function vsffnd(file_id, vdata_name)

integer file_id

character*(*) vdata_name
2-174 March 17, 1998

VSfindattr/vsffdatNational Center for Supercomputing Applications

the

f the

e

VSfindattr/vsffdat

intn VSfindattr(int32 vdata_id, int32 field_index, char *attr_name)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Field index

attr_name IN: Attribute name

Purpose Returns the index of an attribute of a vdata or vdata field.

Return value Returns the index of the attribute if successful and FAIL (or -1) otherwise.

Description VSfindattr returns the index of the attribute with the name specified by
parameter attr_name in the vdata identified by the parameter vdata_id.

To return the index of the attribute attached to the vdata , set the value o
parameter field_index to _HDF_VDATA (or -1). To return the index of the
attribute of a field in the vdata , set the value of the parameter field_index to the
field index. Valid values of field_index range from 0 to the total number of th
vdata fields - 1. The number of the vdata fields is returned by VFnfields.

FORTRAN integer function vsffdat(vdata_id, field_index, attr_name)

integer vdata_id, field_index

character*(*) attr_name
March 17, 1998 2-175

VSfindclass/vffcls National Center for Supercomputing Applications

me

ame
VSfindclass/vffcls

int32 VSfindclass(int32 file_id, char *vdata_class)

file_id IN: File identifier returned by Hopen

vdata_class IN: Class of the vdata

Purpose Returns the reference number of the first vdata with a given vdata class na

Return value Returns the reference number of the vdata if successful and 0 if the vdata is not
found or an error occurs.

Description VSfindclass returns the reference number of the vdata with the class n
specified by the parameter vdata_class in the file identified by the parameter
file_id.

FORTRAN integer function vffcls(vdata_id, vdata_class)

integer vdata_id

character*(*) vdata_class
2-176 March 17, 1998

VSfindex/vsffidxNational Center for Supercomputing Applications
VSfindex/vsffidx

intn VSfindex(int32 vdata_id, char *fieldname, int32 *field_index)

vdata_id IN: Vdata identifier returned by VSattach

fieldname IN: Name of the field

field_index OUT: Index of the field

Purpose Retrieves the index of a field within a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSfindex retrieves the index, field_index, of the field with a name specified by
the parameter fieldname, within the vdata identified by the parameter vdata_id.

FORTRAN integer function vsffidx(vdata_id, fieldname, field_index)

integer vdata_id, field_index

character*(*) fieldname
March 17, 1998 2-177

VSfnattrs/vsffnas National Center for Supercomputing Applications

hen

 the
ld,

e of
d

mber

f

VSfnattrs/vsffnas

int32 VSfnattrs (int32 vdata_id, int32 field_index)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Index of the field

Purpose Returns the number of attributes attached to a vdata or the number of attributes
attached to a vdata field.

Return value Returns the number of attributes assigned to this vdata or its fields w
successful, and FAIL (or -1) otherwise.

Description VSfnattrs returns the number of attributes attached to a vdata specified by
parameter vdata_id, or the number of attributes attached to a vdata fie
specified by the field index, field_index.

To return the number of attributes attached to the vdata , set the valu
field_index to _HDF_VDATA (or -1). To return the number of attributes of a fiel
in the vdata , set the value of field_index to the field index. Field index is a
nonnegative integer less than the total number of the vdata fields. The nu
of vdata fields is returned by VFnfields.

VSfnattrs is different from the VSnattrs routine, which returns the number o
attributes of the specified vdata and the fields contained in it.

FORTRAN integer function vsffnas(vdata_id, field_index)

integer vdata_id, field_index
2-178 March 17, 1998

VSfpack/vsfcpak/vsfnpakNational Center for Supercomputing Applications

d

d(s)

er

,
s in

 the
l

ield
VSfpack/vsfcpak/vsfnpak

intn VSfpack(int32 vdata_id, intn action, char *fields_in_buf, VOIDP buf, intn buf_size, intn n_records,
char *field_name_list, VOIDP bufptrs[])

vdata_id IN: Vdata identifier returned by VSattach

action IN: Action to be performed

fields_in_buf IN: Names of the fields in buf

buf IN/OUT: Buffer containing the values of the packed fields to write to or rea
from the vdata

buf_size IN: Buffer size in bytes

n_records IN: Number of records to pack or unpack

field_name_list IN: Names of the fields to be packed or unpacked

bufptrs IN/OUT: Array of pointers to the field buffers

Purpose Packs field data into a buffer or unpacks buffered field data into vdata fiel
for fully interlaced fields.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSfpack packs or unpacks the field(s) listed in the parameter field_name_list
to or from the buffer buf according to the specified action in the paramet
action.

Valid values for action are _HDF_VSPACK (or 0) which packs field values from
bufptrs (the field buffers) to buf, or _HDF_VSUNPACK (or 1) which unpacks vdata
field values from buf into bufptrs.

When VSfpack is called to pack field values into buf, fields_in_buf must list
all fields of the vdata. When VSfpack is called to unpack field values
fields_in_buf may be a subset of the vdata fields. To specify all vdata field
fields_in_buf, NULL can be used in C and a blank character (“ “) in Fortran.

The name(s) of the field(s) to be packed or unpacked are specified by
fields. In C, the names in the parameter field_name_list can be a subset of or al
field names listed in fields_in_buf. To specify all vdata fields, NULL can be used
in C.

The FORTRAN-77 versions of this routine can pack or unpack only one f
at a time. Therefore, field_name_list will contain the name of the field that will
be packed or unpacked.

The calling program must allocate sufficient space for buf to hold all of the
packed fields. The size of the buf buffer should be at least n_records * (the
total size of all fields specified in fields_in_buf).
March 17, 1998 2-179

VSfpack/vsfcpak/vsfnpak National Center for Supercomputing Applications

r

Note that there are two FORTRAN-77 versions of this routine: vsfnpak to
pack or unpack a numeric field and vsfcpak to pack or unpack a characte
field.

Refer to the HDF User's Guide for an example on how to use this routine.

FORTRAN integer function vsfnpak(vdata_id, action, fields_in_buf, buf,
buf_size, n_records, field_name_list,
bufptrs)

integer vdata_id, action, buf(*), buf_size, n_records
<valid numeric data type> bufptrs(*)

character*(*) fields_in_buf, field_name_list

integer function vsfcpak(vdata_id, action, fields_in_buf, buf,
buf_size, n_records, field_name_list,
bufptrs)

integer vdata_id, action, buf(*), buf_size, n_records

character*(*) fields_in_buf, field_name_list, bufptrs(*)
2-180 March 17, 1998

VSgetattr/vsfgnat/vsfgcatNational Center for Supercomputing Applications

eter

d
d
n the
 by

field
d

VSgetattr/vsfgnat/vsfgcat

intn VSgetattr(int32 vdata_id, intn field_index, int32 attr_index, VOIDP values)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Index of the field

attr_index IN: Index of the attribute

values OUT: Buffer for the attribute values

Purpose Retrieves the attribute values of a vdata or vdata field.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSgetattr retrieves the attribute values of the vdata identified by the param
vdata_id or the vdata field specified by the field index, field_index, into the
buffer values.

If field_index is set to _HDF_VDATA (or -1), the value of the attribute attache
to the vdata is returned. If field_index is set to the field index, attribute attache
to a vdata field is returned. Field index is a nonnegative integer less tha
total number of the vdata fields. The number of vdata fields is returned
VFnfields

Attribute to be retrieved is specified by its index, attr_index. Index is a
nonnegative integer less than the total number of the vdata or vdata
attributes. Use VSfnattrs to find the number of the vdata or vdata fiel
attributes.

FORTRAN integer function vsfgnat(vdata_id, field_index, attr_index,
values)

integer vdata_id, field_index, attr_index

<valid numeric data type> values(*)

integer function vsfgcat(vdata_id, field_index, attr_index,
values)

integer vdata_id, field_index, attr_index

character*(*) values
March 17, 1998 2-181

VSgetclass/vsfgcls National Center for Supercomputing Applications

eter

ed
VSgetclass/vsfgcls

int32 VSgetclass(int32 vdata_id, char *vdata_class)

vdata_id IN: Vdata identifier returned by VSattach

vdata_class OUT: Vdata class name

Purpose Retrieves the vdata class name, if any.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSgetclass retrieves the class name of the vdata identified by the param
vdata_id and places it in the buffer vdata_class.

Space for the buffer vdata_class must be allocated by the calling program
before VSgetclass is called. The maximum length of the class name is defin
by the macro VSNAMELENMAX (or 64) .

FORTRAN integer function vsfgcls(vdata_id, vdata_class)

 integer vdata_id

character*(*) vdata_class
2-182 March 17, 1998

VSgetfields/vsfgfldNational Center for Supercomputing Applications

the

-

VSgetfields/vsfgfld

int32 VSgetfields(int32 vdata_id, char *field_name_list)

vdata_id IN: Vdata identifier returned by VSattach

field_name_list OUT: Field name list

Purpose Retrieves the field names of all of the fields in a vdata.

Return value Returns the number of fields in the vdata if successful and FAIL (or -1)
otherwise.

Description VSgetfields retrieves the names of the fields in the vdata identified by
parameter vdata_id into the buffer field_name_list.

The parameter field_name_list is a character string containing a comma
separated list of names (e.g., “PX,PY,PZ” in C or ‘PX,PY,PZ’ in Fortran).

FORTRAN integer function vsfgfld(vdata_id, field_name_list)

integer vdata_id

character*(*) field_name_list
March 17, 1998 2-183

VSgetid/vsfgid National Center for Supercomputing Applications

t has
ly
n an

 file.
VSgetid/vsfgid

int32 VSgetid(int32 file_id, int32 vdata_ref)

file_id IN: File identifier returned by Hopen

vdata_ref IN: Vdata reference number

Purpose Sequentially searches through a file for vdatas.

Return value Returns the reference number for the next vdata if successful and FAIL (or -1)
otherwise.

Description VSgetid sequentially searches through a file identified by the parameter file_id
and returns the reference number of the next vdata after the vdata tha
reference number vdata_ref. This routine is generally used to sequential
search the file for vdatas. Searching past the last vdata in a file will result i
error condition.

To initiate a search, this routine must be called with the value of vdata_ref
equal to -1. Doing so returns the reference number of the first vdata in the

FORTRAN integer function vsfgid(file_id, vdata_ref)

integer file_id, vdata_ref
2-184 March 17, 1998

VSgetinterlace/vsfgintNational Center for Supercomputing Applications

he
VSgetinterlace/vsfgint

int32 VSgetinterlace(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Returns the interlace mode of a vdata.

Return value Returns FULL_INTERLACE (or 0) or NO_INTERLACE (or 1) if successful and FAIL

(or -1) otherwise.

Description VSgetinterlace returns the interlace mode of the vdata identified by t
parameter vdata_id.

FORTRAN integer function vsfgint(vdata_id)

integer vdata_id
March 17, 1998 2-185

VSgetname/vsfgnam National Center for Supercomputing Applications

ter

ned
is
VSgetname/vsfgnam

int32 VSgetname(int32 vdata_id, char *vdata_name)

vdata_id IN: Vdata identifier returned by VSattach

vdata_name OUT: Vdata name

Purpose Retrieves the name of a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSgetname retrieves the name of the vdata identified by the parame
vdata_id into the buffer vdata_name.

The user must allocate the memory space for the buffer vdata_name before
calling VSgetname. If the vdata does not have a name, a null string is retur
in the parameter vdata_name . The maximum length of a vdata name
defined by VSNAMELENMAX (or 64)

FORTRAN integer function vsfgnam(vdata_id, vdata_name)

integer vdata_id

character*(*) vdata_name
2-186 March 17, 1998

VSgetversion/vsgverNational Center for Supercomputing Applications

he

nds

o an

at
VSgetversion/vsgver

int32 VSgetversion(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Returns the version number of a vdata.

Return value Returns the version number if successful and FAIL (or -1) otherwise.

Description VSgetversion returns the version number of the vdata identified by t
parameter vdata_id. There are three valid version numbers: VSET_OLD_VERSION

(or 2), VSET_VERSION (or 3), and VSET_NEW_VERSION (or 4).

VSET_OLD_VERSION is returned when the vdata is of a version that correspo
to an HDF library version before version 3.2.

VSET_VERSION is returned when the vdata is of a version that corresponds t
HDF library version between versions 3.2 and 4.0 release 2.

VSET_NEW_VERSION is returned when the vdata is of the version th
corresponds to an HDF library version of version 4.1 release 1 or higher.

FORTRAN integer vsgver(vdata_id)

integer vdata_id
March 17, 1998 2-187

VSinquire/vsfinq National Center for Supercomputing Applications

, the

rs
he

ific

 of
and
VSinquire/vsfinq

intn VSinquire(int32 vdata_id, int32 *n_records, int32 *interlace_mode, char *field_name_list, int32
*vdata_size, char *vdata_name)

vdata_id IN: Vdata identifier returned by VSattach

n_records OUT: Number of records

interlace_mode OUT: Interlace mode of the data

field_name_list OUT: List of field names

vdata_size OUT: Size of a record

vdata_name OUT: Name of the vdata

Purpose Retrieves general information about a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) if it is unable to return
any of the requested information.

Description VSinquire retrieves the number of records, the interlace mode of the data
name of the fields, the size, and the name of the vdata, vdata_id, and stores
them in the parameters n_records, interlace_mode, field_name_list,
vdata_size, and vdata_name, respectively. In C, if any of the output paramete
are NULL, the corresponding information will not be retrieved. Refer to t
Reference Manual pages on VSelts, VSgetfields, VSgetinterlace, VSsizeof
and VSgetname for other routines that can be used to retrieve spec
information.

Possible returned values for interlace_mode are FULL_INTERLACE (or 0) and
NO_INTERLACE (or 1). The returned value of vdata_size is the number of bytes
in a record and is machine-dependent.

The parameter field_name_list is a character string that contains the names
all the vdata fields, separated by commas. (e.g., “PX,PY,PZ” in C
’PX,PY,PZ’ in Fortran).

FORTRAN integer function vsfinq(vdata_id, n_records, interlace,
field_name_list, vdata_size,
vdata_name)

integer vdata_id, n_records, interlace, vdata_size

character*(*) field_name_list, vdata_name
2-188 March 17, 1998

VSisattr/vsfisatNational Center for Supercomputing Applications

sting
d by
VSisattr/vsfisat

intn VSisattr(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Determines whether a vdata is an attribute.

Return value Returns TRUE (or 1) if the vdata is an attribute, and FALSE (or 0) otherwise.

Description VSisattr determines whether the vdata identified by the parameter vdata_id is
an attribute.

As attributes are stored by the HDF library as vdatas, a means of te
whether or not a particular vdata is an attribute is needed, and is provide
this routine.

FORTRAN integer function vsfisat(vdata_id)

integer vdata_id
March 17, 1998 2-189

VSlone/vsflone National Center for Supercomputing Applications

e not

fied
s
 in

r
is to

alue
VSlone/vsflone

int32 VSlone(int32 file_id, int32 ref_array[], int32 maxsize)

file_id IN: File identifier returned by Hopen

ref_array OUT: Array of reference numbers

max_refs IN: Maximum number of lone vdatas to be retrieved

Purpose Retrieves the reference numbers of all lone vdatas, i.e., vdatas that ar
grouped with other objects, in a file.

Return value Returns the total number of lone vdatas if successful and FAIL (or -1)
otherwise.

Description VSlone retrieves the reference numbers of lone vgroups in the file identi
by the parameter file_id. Although VSlone returns the number of lone vdata
in the file, only at most max_refs reference numbers are retrieved and stored
the buffer ref_array. The array must have at least max_refs elements.

An array size of 65,000 integers for ref_array is more than adequate if the use
chooses to declare the array statically. However, the preferred method
dynamically allocate memory instead; first call VSlone with a value of 0 for
max_refs to return the total number of lone vdatas, then use the returned v
to allocate memory for ref_array before calling VSlone again.

FORTRAN integer function vsflone(file_id, ref_array, max_refs)

integer file_id, ref_array(*), max_refs
2-190 March 17, 1998

VSnattrs/vsfnatsNational Center for Supercomputing Applications

f

VSnattrs/vsfnats

intn VSnattrs(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Returns the total number of attributes of a vdata and of its fields.

Return value Returns the total number of attributes if successful and FAIL (or -1) otherwise.

Description VSnattrs returns the total number of attributes of the vdata, vdata_id, and of
its fields.

VSnattrs is different from the VSfnattrs routine, which returns the number o
attributes of a specified vdata or of a field contained in a specified vdata.

FORTRAN integer function vsfnats(vdata_id)

integer vdata_id
March 17, 1998 2-191

VSread/vsfrd/vsfrdc/vsfread National Center for Supercomputing Applications

er

d by

 of
VSread/vsfrd/vsfrdc/vsfread

int32 VSread(int32 vdata_id, uint8 *databuf, int32 n_records, int32 interlace_mode)

vdata_id IN: Vdata identifier returned by VSattach

databuf OUT: Buffer to store the retrieved data

n_records IN: Number of records to be retrieved

interlace_mode IN: Interlace mode of the data to be stored in the buffer

Purpose Retrieves data from a vdata.

Return value Returns the total number of records read if successful and FAIL (or -1)
otherwise.

Description VSread reads n_records records from the vdata identified by the paramet
vdata_id and stores the data in the buffer databuf using the interlace mode
specified by the parameter interlace_mode.

The user can specify the fields and the order in which they are to be rea
calling VSsetfields prior to reading. VSread stores the requested fields in
databuf in the specified order.

Valid values for interlace_mode are FULL_INTERLACE (or 1) and NO_INTERLACE

(or 0). Selecting FULL_INTERLACE causes databuf to be filled by record and is
recommended for speed and efficiency. Specifying NO_INTERLACE causes
databuf to be filled by field, i.e., all values of a field in n_records records are
filled before moving to the next field. Note that the default interlace mode
the buffer is FULL_INTERLACE.

As the data is stored contiguously in the vdata, VSfpack should be used to
unpack the fields after reading. Refer to the discussion of VSfpack in the HDF
User’s Guide for more information.

Note that there are three FORTRAN-77 versions of this routine: vsfrd is for
buffered numeric data, vsfrdc is for buffered character data and vsfread is for
generic packed data.

FORTRAN integer function vsfrd(vdata_id, databuf, n_records,
interlace_mode)

integer vdata_id, n_records, interlace_mode

<valid numeric data type> databuf(*)

integer function vsfrdc(vdata_id, databuf, n_records,
interlace_mode)
2-192 March 17, 1998

VSread/vsfrd/vsfrdc/vsfreadNational Center for Supercomputing Applications
integer vdata_id, n_records, interlace_mode

character*(*) databuf

integer function vsfread(vdata_id, databuf, n_records,
interlace_mode)

integer vdata_id, n_records, interlace_mode

character*(*) databuf
March 17, 1998 2-193

VSseek/vsfseek National Center for Supercomputing Applications

ord
y
rd
VSseek/vsfseek

int32 VSseek(int32 vdata_id, int32 record_pos)

vdata_id IN: Vdata identifier returned by VSattach

record_pos IN: Position of the record

Purpose Provides a mechanism for random-access I/O within a vdata.

Return value Returns the record position (zero or a positive integer) if successful and FAIL

(or -1) otherwise.

Description VSseek moves the access pointer within the vdata identified by the parameter
vdata_id to the position of the record specified by the parameter record_pos.
The next call to VSread or VSwrite will read from or write to the record where
the access pointer has been moved to.

The value of record_pos is zero-based. For example, to seek to the third rec
in the vdata, set record_pos to 2. The first record position is specified b
specifying a record_pos value of 0. Each seek is constrained to a reco
boundary within the vdata.

FORTRAN integer function vsfseek(vdata_id, record_pos)

integer vdata_id, record_pos
2-194 March 17, 1998

VSsetattr/vsfsnat/vsfscatNational Center for Supercomputing Applications

eter

s
 a

 will
me as
in a

ta
 the

in
VSsetattr/vsfsnat/vsfscat

intn VSsetattr(int32 vdata_id, int32 field_index, char *attr_name, int32 data_type, int32 count, VOIDP
values)

vdata_id IN: Vdata identifier returned by VSattach

field_index IN: Index of the field

attr_name IN: Name of the attribute

data_type IN: Data type of the attribute

count IN: Number of attribute values

values IN: Buffer containing the attribute values

Purpose Sets an attribute of a vdata or a vdata field.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSsetattr defines an attribute that has the name specified by the param
attr_name, the data type specified by the parameter data_type, and the number
of values specified by the parameter count, and that contains the value
specified in the parameter values. The attribute is set for either the vdata or
vdata field depending on the value of the parameter field_index.

If the field already has an attribute with the same name, the current values
be replaced with the new values if the new data type and order are the sa
the current ones. Any changes in the field data type or order will result
value of FAIL (or -1) to be returned.

If field_index value is set to _HDF_VDATA (or -1), the attribute will be set for the
vdata. If field_index is set to the field index, attribute will be set for the vda
field. Field index is a nonnegative integer less than the total number of
vdata fields. The number of vdata fields can be obtained using VFnfields.

The value of the parameter data_type can be any one of the data types listed
Table 1A in Section I of this manual.

FORTRAN integer function vsfsnat(vdata_id, field_index, attr_name,
data_type, count, values)

integer vdata_id, field_index, data_type, count, values(*)

character*(*) attr_name

integer function vsfscat(vdata_id, field_index, attr_name,
data_type, count, values)
March 17, 1998 2-195

VSsetattr/vsfsnat/vsfscat National Center for Supercomputing Applications
integer vdata_id, field_index, data_type, count

character*(*) attr_name, values(*)
2-196 March 17, 1998

VSsetclass/vsfsclsNational Center for Supercomputing Applications

eter

t
string.
ed by
VSsetclass/vsfscls

int32 VSsetclass(int32 vdata_id, char *vdata_class)

vdata_id IN: Vdata identifier returned by VSattach

vdata_class IN: Name of the vdata class

Purpose Sets the class name of a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSsetclass sets the class name of the vdata identified by the param
vdata_id to the value of the parameter vdata_class.

At creation, the class name of a vdata is NULL. The class name may be rese
more than once. Class names, like vdata names, can be any character
They exist solely as meaningful labels to user applications and are not us
the HDF library in any way. Class names will be truncated to VSNAMELENMAX

(or 64) characters.

FORTRAN integer function vsfscls(vdata_id, vdata_class)

integer vdata_id

character*(*) vdata_class
March 17, 1998 2-197

VSsetexternalfile/vsfsextf National Center for Supercomputing Applications

 to

ain

long
VSsetexternalfile/vsfsextf

intn VSsetexternalfile(int32 vdata_id, char *filename, int32 offset)

vdata_id IN: Vdata identifier returned by VSattach

filename IN: Name of the external file

offset IN: Offset, in bytes, of the location in the external file the new data is
be written

Purpose Stores vdata information in an external file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSsetexternalfile writes data in the vdata identified by the parameter vdata_id
in the file named filename, at the byte offset specified by the parameter offset.

Only the data will be stored externally. Attributes and all metadata will rem
in the primary HDF file.

IMPORTANT: The user must ensure that the external files are relocated a
with the primary file.

Read the Reference Manual page on SDsetexternalfile for more information
on using the external file feature.

FORTRAN integer function vsfsextf(vdata_id, filename, offset)

integer vdata_id, offset

character*(*) filename
2-198 March 17, 1998

VSsetfields/vsfsfldNational Center for Supercomputing Applications

eter

e

s
us, to
ll the
 the

a-
n).

a is
y

VSsetfields/vsfsfld

intn VSsetfields(int32 vdata_id, char *field_name_list)

vdata_id IN: Vdata identifier returned by VSattach

field_name_list IN: List of the field names to be accessed

Purpose Specifies the fields to be accessed.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSsetfields specifies that the fields, whose names are listed in the param
field_name_list, of the vdata identified by the parameter vdata_id will be
accessed by the next call to VSread or VSwrite. VSsetfields must be called
before any call to VSread or VSwrite.

For reading from a vdata, a call to VSsetfields sets up the fields that are to b
retrieved from the records in the vdata. If the vdata is empty, VSsetfields will
return FAIL (or -1).

For writing to a vdata, VSsetfields can only be called once, to set up the field
in a vdata. Once the vdata fields are set, they may not be changed. Th
update some fields of a record after the first write, the user must read a
fields to a buffer, update the buffer, then write the entire record back to
vdata.

The parameter field_name_list is a character string that contains a comm
separated list of fieldnames (i.e., “PX,PY,PZ” in C and ’PX,PY,PZ’ in Fortra
The combined width of the fields in a vdata must be less than MAX_FIELD_SIZE

(or 65535) bytes. If an attempt to create a larger record is made, VSsetfields
will return FAIL (or -1).

If the vdata is attached with an “r ” access mode, the parameter field_name_list
must contain only the fields that already exist in the vdata. If the vdat
attached with a “w” access mode, field_name_list can contain the names of an
fields that have been defined by VSfdefine or any predefined fields.

FORTRAN integer function vsfsfld(vdata_id, field_name_list)

integer vdata_id

character*(*) field_name_list
March 17, 1998 2-199

VSsetinterlace/vsfsint National Center for Supercomputing Applications

g

of

 all
cord.
ld
, all

y a
VSsetinterlace/vsfsint

intn VSsetinterlace(int32 vdata_id, int32 interlace_mode)

vdata_id IN: Vdata identifier returned by VSattach

interlace_mode IN: Interlace mode of the data to be stored in the vdata

Purpose Sets the interlace mode of a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSsetinterlace sets the interlace mode of the vdata, vdata_id, to that specified
by the parameter interlace_mode. This routine can only be used when creatin
new vdatas with write access.

The value of interlace_mode may be either FULL_INTERLACE (or 0) or
NO_INTERLACE (or 1). If this routine is not called, the default interlace mode
the vdata is FULL_INTERLACE. The FULL_INTERLACE option is more efficient
than NO_INTERLACE although both require the same amount of disk space.

Specifying FULL_INTERLACE accesses the vdata by record; in other words,
values of all fields in a record are accessed before moving to the next re
Specifying NO_INTERLACE accesses the vdata by field; in other words, all fie
values are accessed before moving to the next field. Thus, for writing data
record data must be available before the write operation is invoked.

Note that the interlace mode of the data to be written is specified b
parameter of the VSwrite routine.

FORTRAN integer function vsfsint(vdata_id, interlace_mode)

integer vdata_id, interlace_mode
2-200 March 17, 1998

VSsetname/vsfsnamNational Center for Supercomputing Applications

n
 exist
HDF
VSsetname/vsfsnam

int32 VSsetname(int32 vdata_id, char *vdata_name)

vdata_id IN: Vdata identifier returned by VSattach

vdata_name IN: Name of the vdata

Purpose Assigns a name to a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSsetname sets the name of the vdata identified by the parameter vdata_id to
the value of the parameter vdata_name.

At creation, the name of the vdata is NULL. The name may be reset more tha
once. Vdata names, like class names, can be any character string. They
solely as a meaningful label for user applications and are not used by the
library in any way. Vdata names will be truncated to VSNAMELENMAX (or 64)
characters.

FORTRAN integer function vsfsnam(vdata_id, vdata_name)

integer vdata_id

character*(*) vdata_name
March 17, 1998 2-201

VSsizeof/vsfsiz National Center for Supercomputing Applications

-
ore
VSsizeof/vsfsiz

int32 VSsizeof(int32 vdata_id, char *field_name_list)

vdata_id IN: Vdata identifier returned by VSattach

field_name_list IN: Name(s) of the fields to check

Purpose Computes the size, in bytes, of the given field(s) for the local machine.

Return value Returns the fields size if successful and FAIL (or -1) otherwise.

Description VSsizeof computes the size, in bytes, of the fields specified in the parameter
field_name_list in the vdata identified by the parameter vdata_id.

The parameter field_name_list specifies a single field or several comma
separated fields. The field or fields should already exist in the vdata. If m
than one field is specified, VSsizeof will return the total sizes of all of the
fields.

FORTRAN integer function vsfsiz(vdata_id, field_name_list)

integer vdata_id

character*(*) field_name_list
2-202 March 17, 1998

VSwrite/vsfwrt/vsfwrtc/vsfwritNational Center for Supercomputing Applications

ing
is to
ffer,

er
fer
 last

ces,
 the
VSwrite/vsfwrt/vsfwrtc/vsfwrit

int32 VSwrite(int32 vdata_id, unsigned char *databuf, int32 n_records, int32 interlace_mode)

vdata_id IN: Vdata identifier returned by VSattach

databuf IN: Buffer of records to be written to the vdata

n_records IN: Number of records to be written

interlace_mode IN: Interlace mode of the buffer in memory

Purpose Writes data to a vdata.

Return value Returns the total number of records written if successful and FAIL (or -1)
otherwise.

Description VSwrite writes the data stored in the buffer databuf into the vdata identified by
the parameter vdata_id. The parameter n_records specifies the number of
records to be written. The parameter interlace_mode defines the interlace
mode of the vdata fields stored in the buffer databuf.

Valid values for interlace_mode are FULL_INTERLACE (or 0) and NO_INTERLACE

(or 1). Selecting FULL_INTERLACE fills databuf by record and is recommended
for speed and efficiency. Specifying NO_INTERLACE causes databuf to be filled
by field, i.e., all values of a field in all records must be written before mov
to the next field. Thus, all data must be available before writing. If the data
be written to the vdata with an interlace mode different from that of the bu
VSsetinterlace must be called prior to VSwrite. Note that the default interlace
mode of a vdata is FULL_INTERLACE.

It is assumed that the data in databuf is organized as specified by the paramet
interlace_mode. The number and order of the fields organized in the buf
must correspond with the number and order of the fields specified in the
call to VSsetfields. Since VSwrite writes the data in databuf contiguously to
the vdata, VSfpack must be used to remove any “padding”, or non-data spa
used for vdata field alignment. This process is called packing. Refer to
discussion of VSfpack in the HDF User’s Guide for more information.

Before writing data to a newly-created vdata, VSdefine and VSsetfields must
be called to define the fields to be written.

Note that there are three FORTRAN-77 versions of this routine: vsfwrt is for
buffered numeric data, vsfwrtc is for buffered character data and vsfwrit is for
generic packed data.

FORTRAN integer function vsfwrt(vdata_id, databuf, n_records,
interlace_mode)

integer vdata_id, n_records, interlace_mode

<valid numeric data type> databuf(*)
March 17, 1998 2-203

VSwrite/vsfwrt/vsfwrtc/vsfwrit National Center for Supercomputing Applications
integer function vsfwrtc(vdata_id, databuf, n_records,
interlace_mode)

integer vdata_id, n_records, interlace_mode

character*(*) databuf

integer function vsfwrit(vdata_id, databuf, n_records,
interlace_mode)

integer vdata_id, n_records, interlace_mode

character*(*) databuf
2-204 March 17, 1998

VSQuerycount/vsqfneltNational Center for Supercomputing Applications

by
VSQuerycount/vsqfnelt

intn VSQuerycount(int32 vdata_id, int32 *n_records)

vdata_id IN: Vdata access identifier returned by VSattach

n_records OUT: Number of records in the vdata

Purpose Retrieves the number of records in a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSQuerycount retrieves the number of records in the vdata identified
vdata_id in the parameter n_records.

FORTRAN integer function vsqfnelt(vdata_id, n_records)

integer vdata_id, n_records
March 17, 1998 2-205

VSQueryfields/vsqfflds National Center for Supercomputing Applications

the

e

VSQueryfields/vsqfflds

intn VSQueryfields(int32 vdata_id, char *field_name_list)

vdata_id IN: Vdata access identifier returned by VSattach

field_name_list OUT: List of field names

Purpose Retrieves the names of the fields in a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSQueryfields retrieves the names of the fields in the vdata identified by
parameter vdata_id into the parameter field_name_list.

The parameter field_name_list is a comma-separated list of the fields in th
vdata. (i.e., “PX,PY,PZ” in C and ’PX,PY,PZ’ in Fortran).

FORTRAN integer function vsqfflds(vdata_id, field_name_list)

integer vdata_id

character*(*) field_name_list
2-206 March 17, 1998

VSQueryinterlace/vsqfintrNational Center for Supercomputing Applications

he
VSQueryinterlace/vsqfintr

intn VSQueryinterlace(int32 vdata_id, int32 *interlace_mode)

vdata_id IN: Vdata identifier returned by VSattach

interlace_mode OUT: Interlace mode

Purpose Retrieves the interlace mode of the vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSQueryinterlace retrieves the interlace mode of the vdata identified by t
parameter vdata_id into the parameter interlace_mode.

Valid values for interlace_mode are FULL_INTERLACE (or 0) and NO_INTERLACE

(or 1).

FORTRAN integer function vsqfintr(vdata_id, interlace_mode)

integer vdata_id, interlace_mode
March 17, 1998 2-207

VSQueryname/vsqfname National Center for Supercomputing Applications

ter
VSQueryname/vsqfname

intn VSQueryname(int32 vdata_id, char *vdata_name)

vdata_id IN: Vdata identifier returned by VSattach

vdata_name OUT: Name of the vdata

Purpose Retrieves the name of a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSQueryname retrieves the name of the vdata identified by the parame
vdata_id into the buffer vdata_name.

FORTRAN integer function vsqfname(vdata_id, vdata_name)

integer vdata_id

character*(*) vdata_name
2-208 March 17, 1998

VSQueryref/vsqrefNational Center for Supercomputing Applications

the
VSQueryref/vsqref

int32 VSQueryref(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Returns the reference number of a vdata.

Return value Returns the reference number of the vdata if successful and FAIL (or -1)
otherwise.

Description VSQueryref returns the reference number of the vdata identified by
parameter vdata_id.

FORTRAN integer function vsqref(vdata_id)

integer vdata_id
March 17, 1998 2-209

VSQuerytag/vsqtag National Center for Supercomputing Applications
VSQuerytag/vsqtag

int32 VSQuerytag(int32 vdata_id)

vdata_id IN: Vdata identifier returned by VSattach

Purpose Returns the tag of the specified vdata.

Return value Returns the tag of the vdata if successful and FAIL (or -1) otherwise.

Description Returns the tag of the vdata identified by the parameter vdata_id.

FORTRAN integer function vsqtag(vdata_id)

integer vdata_id
2-210 March 17, 1998

VSQueryvsize/vsqfvsizNational Center for Supercomputing Applications

 by
VSQueryvsize/vsqfvsiz

intn VSQueryvsize(int32 vdata_id, int32 *vdata_size)

vdata_id IN: Vdata identifier returned by VSattach

vdata_size OUT: Size of the vdata record

Purpose Retrieves the size of a record in a vdata.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description VSQueryvsize retrieves the size, in bytes, of a record in the vdata identified
the parameter vdata_id into the parameter vdata_size. The returned size value
is machine dependent.

FORTRAN integer function vsqfvsiz(vdata_id, vdata_size)

integer vdata_id, vdata_size
March 17, 1998 2-211

DF24addimage/d2aimg National Center for Supercomputing Applications

f

and
d in
ajor

er.
 way
ond
DF24addimage/d2aimg

intn DF24addimage(char *filename, VOIDP image, int32 width, int32 height)

filename IN: Name of the file

image IN: Pointer to the image array

width IN: Number of columns in the image

height IN Number of rows in the image

Purpose Writes a 24-bit image to the specified file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DF24addimage appends a 24-bit raster image set to the file. Array image is
assumed to be width x height x 3 bytes. In FORTRAN-77, the dimensions o
the array image must be the same as the dimensions of the image data.

The order in which dimensions are declared is different between C
FORTRAN-77. Ordering varies because FORTRAN-77 arrays are store
column-major order, while C arrays are stored in row-major order. (Row-m
order implies that the last coordinate varies fastest).

When DF24addimage writes an image to a file, it assumes row-major ord
The FORTRAN-77 declaration that causes an image to be stored in this
must have the width as its first dimension and the height as its sec
dimension. In other words, the image must be built “on its side”.

FORTRAN integer function d2aimg(filename, image, width, height)

character*(*) filename

<valid numeric data type> image

integer width, height
2-212 March 17, 1998

DF24getdims/d2gdimsNational Center for Supercomputing Applications

e is

 they

is no
s

u

r the
DF24getdims/d2gdims

intn DF24getdims (char *filename, int32 *width, int32 *height, intn *interlace_mode)

filename IN: Name of the file

width OUT: Width of the image

height OUT: Height of the image

interlace_mode OUT: File interlace mode of the image

Purpose Retrieves dimensions and interlace storage scheme of next image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DF24getdims retrieves the dimensions and interlace of the image. If the fil
being opened for the first time, DF24getdims returns information about the
first image in the file. If an image has already been read, DF24getdims finds
the next image. In this way, images are read in the same order in which
were written to the file.

If the dimensions and interlace of the image are known beforehand, there
need to call DF24getdims. Simply allocate arrays with the proper dimension
for the image and invoke DF24getimage to read the images. If, however, yo
do not know the values of width and height, you must call DF24getdims to get
them and then use them to determine the amount of memory to allocate fo
image buffer.

Successive calls to DF24getdims and DF24getimage retrieve all of the images
in the file in the sequence in which they were written.

The interlace mode codes are: 0 for pixel interlacing, 1 for scan-line interlacing
and 2 for scan-plane interlacing.

FORTRAN integer function d2gdims(filename, width, height, interlace_mode)

character*(*) filename

integer width, height, interlace_mode
March 17, 1998 2-213

DF24getimage/d2gimg National Center for Supercomputing Applications

at

 file,
DF24getimage/d2gimg

intn DF24getimage(char *filename, VOIDP image, int32 width, int32 height)

filename IN: Name of the HDF file

image OUT: Pointer to image buffer

width IN: Number of columns in the image

height IN: Number of rows in the image

Purpose Retrieves an image from the next 24-bit raster image set.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DF24getimage retrieves the image and stores it in an array. If DF24getdims
has not been called, DF24getimage finds the next image in the same way th
DF24getdims does.

The amount of space allocated for the image should be width x height x 3
bytes.

To specify that the next call to DF24getimage should read the raster image
using an interlace other than the interlace used to store the image in the
first call DF24reqil.

FORTRAN integer function d2gimg(filename, image, width, height)

character*(*) filename, image

integer width, height
2-214 March 17, 1998

DF24lastref/d2lrefNational Center for Supercomputing Applications

ster

and
f

DF24lastref/d2lref

uint16 DF24lastref()

Purpose Retrieves the last reference number written to or read from a 24-bit ra
image set.

Return value Returns the non-zero reference number if successful and FAIL (or -1)
otherwise.

Description This routine is primarily used for attaching annotations to 24-bit images
adding 24-bit images to vgroups. DF24lastref returns the reference number o
the last 24-bit raster image read or written.

FORTRAN integer function d2lref()
March 17, 1998 2-215

DF24nimages/d2nimg National Center for Supercomputing Applications
DF24nimages/d2nimg

intn DF24nimages(char *filename)

filename IN: Name of the file

Purpose Counts the number of 24-bit raster images contained in an HDF file.

Return value Returns the number of 24-bit images in the file if successful and FAIL (or -1)
otherwise.

Description DF24nimages counts the number of 24-bit images stored in the file.

FORTRAN integer function d2nimg(filename)

character*(*) filename
2-216 March 17, 1998

DF24putimage/d2pimgNational Center for Supercomputing Applications

age
DF24putimage/d2pimg

intn DF24putimage(char *filename, VOIDP image, int32 width, int32 height)

filename IN: Name of the file

image IN: Pointer to the image array

width IN: Number of columns in the image

height IN: Number of rows in the image

Purpose Writes a 24-bit image as the first image in the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The array image is assumed to be width x height x 3 bytes. DF24putimage
overwrites any information that exists in the HDF file. To append a new im
to a file instead of overwriting an existing file, use DF24addimage.

FORTRAN integer function d2pimg(filename, image, width, height)

character*(*) filename

<valid numeric data type> image

integer width, height
March 17, 1998 2-217

DF24readref/d2rref National Center for Supercomputing Applications

hen

rs. It
file.

 HDF
ex of
DF24readref/d2rref

intn DF24readref(char *filename, uint16 ref)

filename IN: Name of the file

ref IN: Reference number for the next call to DF24getimage

Purpose Specifies the reference number of the next image to be read w
DF24getimage is next called.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DF24readref is commonly used in conjunction with DFANlablist , which
returns a list of labels for a given tag together with their reference numbe
provides a means of non-sequentially accessing 24-bit raster images in a

There is no guarantee that reference numbers appear in sequence in an
file. Therefore, it is not safe to assume that a reference number is the ind
an image.

FORTRAN integer function d2rref(filename, ref)

character*(*) filename

integer ref
2-218 March 17, 1998

DF24reqil/d2reqilNational Center for Supercomputing Applications

to the

ta,
e in
DF24reqil/d2reqil

intn DF24reqil (intn il)

il IN Memory interlace of the next image read

Purpose Specifies the interlace mode for the next call to DF24getimage will use.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Regardless of what interlace scheme is used to store the image, DF24reqil
causes the image to be loaded into memory and be interlaced according
specification of il .

Because a call to DF24reqil may require a substantial reordering of the da
slower I/O performance could result than would be achieved if no chang
interlace were requested.

The interlace mode codes are: 0 for pixel interlacing,1 for scan-line interlacing
and 2 for scan-plane interlacing.

FORTRAN integer function d2reqil(il)

integer il
March 17, 1998 2-219

DF24restart/d2first National Center for Supercomputing Applications

ne
DF24restart/d2first

intn DF24restart()

Purpose Specifies that the next 24-bit image read from the file will be the first o
rather than the 24-bit image following the one most recently read.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

FORTRAN integer function d2first()
2-220 March 17, 1998

DF24setcompress/d2scompNational Center for Supercomputing Applications

ge.

itten.

ault.
ssy
ge.
 is

y

DF24setcompress/d2scomp

intn DF24setcompress(int32 type, comp_info *cinfo)

type IN: Type of compression

cinfo IN: Pointer to compression information structure

Purpose Set the type of compression to use when writing the next 24-bit raster ima

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routines provides a method for compressing the next raster image wr
The type can be one of the following values: COMP_NONE, COMP_JPEG,
COMP_RLE, COMP_IMCOMP, COMP_NONE is the default for storing images if this
routine is not called, therefore images are not compressed by def
COMP_JPEG compresses images with a JPEG algorithm, which is a lo
method. COMP_RLE uses lossless run-length encoding to store the ima
COMP_IMCOMP uses a lossy compression algorithm called IMCOMP, and
included for backward compatibility only.

The comp_info union contains algorithm-specific information for the librar
routines that perform the compression and is defined in the hcomp.h header
file as follows:

typedef union tag_comp_info
 {
 struct
 {
 intn quality;
 intn force_baseline;
 }
 jpeg;
 struct
 {
 int32 nt;
 intn sign_ext;
 intn fill_one;
 intn start_bit;
 intn bit_len;
 }
 nbit;
 struct
 {
 intn skp_size;
 }
 skphuff;
 struct
 {
 intn level;
 }
 deflate;
 }
comp_info
March 17, 1998 2-221

DF24setcompress/d2scomp National Center for Supercomputing Applications

 by

h
ed in

t be

me
r for
r

 to be

d later,
 for
This union is defined to provide future expansion, but is currently only used
the COMP_JPEG compression type. A pointer to a valid comp_info union is
required for all compression types other than COMP_JPEG, but the values in the
union are not used. The comp_info union is declared in the header file hdf.
and is shown here for informative purposes only, it should not be re-declar
a user program.

For COMP_JPEG compression, the quality member of the jpeg structure mus
set to the quality of the stored image. This number can vary from 100 , the best
quality, to 0, terrible quality. All images stored with COMP_JPEG compression
are stored in a lossy manner, even images stored with a quality of 100 . The
ratio of size to perceived image quality varies from image to image, so
experimentation may be required to determine an acceptable quality facto
a given application. The force_baseline parameter determines whethe
the quantization tables used during compression are forced to the range 0-255 .
The force_baseline parameter should normally be set to 1 (forcing
baseline results), unless special applications require non-baseline images
used.

If the compression type is JPEG, d2scomp defines the default JPEG
compression parameters to be used. If these parameters must be change
the d2sjpeg routine must be used. (See the Reference Manual entry
d2sjpeg)

FORTRAN integer function d2scomp(type)

integer type
2-222 March 17, 1998

d2scompNational Center for Supercomputing Applications

PEG
d2scomp

integer d2scomp(integer quality, integer baseline)

quality IN: JPEG quality specification

baseline IN: JPEG baseline specification

Purpose Fortran-specific routine that sets the parameters needed for the J
algorithm.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description d8sjpeg changes the JPEG compression parameter settings set in the d8scomp
routine.
March 17, 1998 2-223

d2sjpeg National Center for Supercomputing Applications

PEG
d2sjpeg

integer d2sjpeg(integer quality, integer baseline)

quality IN: JPEG quality specification

baseline IN: JPEG baseline specification

Purpose Fortran-specific routine that sets the parameters needed for the J
algorithm.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description d2sjpeg changes the JPEG compression parameter settings set in the d2scomp
routine.
2-224 March 17, 1998

DF24setdims/d2sdimsNational Center for Supercomputing Applications
DF24setdims/d2sdims

intn DF24setdims(int32 width, int32 height)

width IN: Number of columns in the image

height IN: Number or rows in the image

Purpose Set the dimensions of the next image to be written to a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

FORTRAN integer function d2sdims(width, height)

integer width, height
March 17, 1998 2-225

DF24setil/d2setil National Center for Supercomputing Applications

age
ta in
DF24setil/d2setil

intn DF24setil(intn il)

il IN: Interlace mode

Purpose Specifies the interlace mode to be used on subsequent writes.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DF24setil sets the interlace mode to be used when writing out the raster im
set for a 24-bit image by determining the interlace mode of the image da
memory. If DF24setil is not called, the interlace mode is assumed to be 0 .

The interlace mode codes are: 0 for pixel interlacing, 1 for scan-line
interlacing and 2 for scan-plane interlacing.

FORTRAN integer function d2setil(il)

integer il
2-226 March 17, 1998

DFR8addimage/d8aimgNational Center for Supercomputing Applications
DFR8addimage/d8aimg

intn DFR8addimage(char *filename, VOIDP image, int32 width, int32 height, uint16 compress)

filename IN: Name of the file

image IN: Array containing the image data

width IN: Number of columns in the image

height IN: Number of rows in the image

compress IN: Type of compression to use, if any

Purpose DFR8addimage appends the RIS8 for the image to the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFR8addimage is functionally equivalent to DFR8putimage, except that
DFR8putimage cannot append image data; it only overwrites.

FORTRAN integer function d8aimg(filename, image, width, height, compress)

character*(*) filename, image

integer width, height

integer compress
March 17, 1998 2-227

DFR8getdims/d8gdims National Center for Supercomputing Applications

, and

er a
d for
e

 file.

nsions
DFR8getdims/d8gdims

intn DFR8getdims(char *filename, int32 *width, int32 *height, intn *ispalette)

filename IN: Name of the HDF file

width OUT: Number of columns in the next image in the file

height OUT: Number of rows in the next image in the file

ispalette OUT: Indicator of the existence of a palette

Purpose Opens the file, finds the next image, retrieves the dimensions of the image
determines whether there is a palette associated with the image.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFR8getdims retrieves the dimensions of the image and indicates wheth
palette is associated and stored with the image. If the file is being opene
the first time, DFR8getdims returns information about the first image in th
file. If an image has already been read, DFR8getdims finds the next image.
Thus, images are read in the same order in which they were written to the

Normally, DFR8getdims is called before DFR8getimage so that if necessary,
space allocations for the image and palette can be checked, and the dime
can be verified. If this information is already known, DFR8getdims need not
be called.

Valid values of ispalette are: 1 if there is a palette, or 0 if not.

FORTRAN integer function d8gdims(filename, width, height, ispalette)

character*(*) filename

integer width, height

integer ispalette
2-228 March 17, 1998

DFR8getimage/d8gimgNational Center for Supercomputing Applications

 the

he
en if
sed,

at

s,
age.

and
d in
ajor

-77
width
 into
n its
DFR8getimage/d8gimg

intn DFR8getimage(char *filename, uint8 *image, int32 width, int32 height, uint8 *palette)

filename IN: Name of the file

image OUT: Buffer for the returned image

width IN: Width of the image data buffer

height IN: Height of the image data buffer

palette OUT: Palette data

Purpose To retrieve the image and its palette, if it is present, and store them in
specified arrays.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description In C, if palette is NULL, no palette is loaded, even if one is stored with t
image. In FORTRAN-77, an array must be allocated to store the palette, ev
no palette is expected to be stored. If the image in the file is compres
DFR8getimage automatically decompresses it. If DFR8getdims has not been
called, DFR8getimage finds the next image in the same way th
DFR8getdims does.

The width and height parameters specify the number of columns and row
respectively, in the array which you've allocated in memory to store the im
The image may be smaller than the allocated space.

The order in which you declare dimensions is different between C
FORTRAN-77. Ordering varies because FORTRAN-77 arrays are store
column-major order, while C arrays are stored in row-major order. (Row-m
order implies that the horizontal coordinate varies fastest). When d8gimg reads
an image from a file, it assumes row-major order. The FORTRAN
declaration that causes an image to be stored in this way must have the
as its first dimension and the height as its second dimension. To take this
account as you read image in your program, the image must be built “o
side”.

FORTRAN integer function d8gimg(filename, image, width, height, palette)

character*(*) filename, image, palette

integer width, height
March 17, 1998 2-229

DFR8getpalref National Center for Supercomputing Applications

mage
DFR8getpalref

intn DFR8getpalref(uint16 *pal_ref)

pal_ref OUT: Reference number of the palette

Purpose Retrieves the reference number of the palette associated with the last i
accessed.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Make certain that DFR8getdims is called before DFR8getpalref.
2-230 March 17, 1998

DFR8lastref/d8lrefNational Center for Supercomputing Applications

ding
er
DFR8lastref/d8lref

uint16 DFR8lastref()

Purpose Retrieves the last reference number written to or read from an RIS8.

Return value Returns a non-zero reference number if successful and FAIL (or -1) otherwise.

Description This routine is primarily used for attaching annotations to images and ad
images to vgroups. DFR8lastref returns the reference number of last rast
image set read or written.

FORTRAN integer function d8lref()
March 17, 1998 2-231

DFR8nimages/d8nims National Center for Supercomputing Applications
DFR8nimages/d8nims

intn DFR8nimages(char *filename)

filename IN: Name of the HDF file

Purpose Retrieves the number of 8-bit raster images stored in the specified file.

Return value Returns the number of raster images in the file if successful and FAIL (or -1)
otherwise.

FORTRAN integer function d8nims(filename)

character*(*) filename
2-232 March 17, 1998

DFR8putimage/d8pimgNational Center for Supercomputing Applications

ny

 the
e a

o
se

e

and
d in
ajor
en
he
must
n, the
your
”.
DFR8putimage/d8pimg

intn DFR8putimage(char *filename, VOIDP image, int32 width, int32 height, uint16 compress)

filename IN: Name of the file to store the raster image in

image IN: Array with image to put in file

width IN: Number of columns in the image

height IN: Number of rows in the image

compress IN: Type of compression used, if any

Purpose Writes the RIS8 for the image as the first image in the file, overwriting a
information previously in the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The compress parameter identifies the method to be used for compressing
data, if any. If IMCOMP compression is used, the image must includ
palette.

DFR8putimage overwrites any information that exists in the HDF file. T
write an image to a file by appending it, rather than overwriting it, u
DFR8addimage.

In FORTRAN-77, the dimensions of the image array must be the same as th
dimensions of the image itself.

The order in which dimensions are declared is different between C
FORTRAN-77. Ordering varies because FORTRAN-77 arrays are store
column-major order, while C arrays are stored in row-major order. (Row-m
order implies that the horizontal coordinate varies fastest). Wh
DFR8putimage writes an image to a file, it assumes row-major order. T
FORTRAN-77 declaration that causes an image to be stored in this way
have the width as its first dimension and the height as its second dimensio
reverse of the way it is done in C. To take this into account as you build
image in your FORTRAN-77 program, the image must be built “on its side

FORTRAN integer function d8pimg(filename, image, width, height, compress)

character*(*) filename, image

integer width, height, compress
March 17, 1998 2-233

DFR8readref/d8rref National Center for Supercomputing Applications

. It
e that

afe to
DFR8readref/d8rref

intn DFR8readref(char *filename, uint16 ref)

filename IN: Name of the file

ref IN: Reference number for next DFR8getimage

Purpose Specifies the reference number of the image to be read when DFR8getimage
is next called.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFR8readref is usually used in conjunction with DFANlablist , which returns
a list of labels for a given tag together with their reference numbers
provides, in a sense, a random access to images. There is no guarante
reference numbers appear in sequence in an HDF file; therefore, it is not s
assume that a reference number is the index of an image.

FORTRAN integer function d8rref(filename, ref)

character*(*) filename

integer ref
2-234 March 17, 1998

DFR8restart/d8firstNational Center for Supercomputing Applications

age
DFR8restart/d8first

intn DFR8restart()

Purpose DFR8restart causes the next get command to read from the first raster im
set in the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

FORTRAN integer function d8first()
March 17, 1998 2-235

DFR8setcompress/d8scomp National Center for Supercomputing Applications

age.

tten.

ault.
ssy
ge.
 is

y

DFR8setcompress/d8scomp

intn DFR8setcompress(int32 type, comp_info *cinfo)

type IN: Type of compression

cinfo IN: Pointer to compression information structure

Purpose Sets the compression type to be used when writing the next 8-bit raster im

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine provides a method for compressing the next raster image wri
The type can be one of the following values: COMP_NONE, COMP_JPEG,
COMP_RLE, COMP_IMCOMP. COMP_NONE is the default for storing images if this
routine is not called, therefore images are not compressed by def
COMP_JPEG compresses images with a JPEG algorithm, which is a lo
method. COMP_RLE uses lossless run-length encoding to store the ima
COMP_IMCOMP uses a lossy compression algorithm called IMCOMP, and
included for backward compatibility only.

The comp_info union contains algorithm-specific information for the librar
routines that perform the compression and is defined in the hcomp.h header
file as follows (refer to the header file for inline documentation):

typedef union tag_comp_info
 {
 struct
 {
 intn quality;
 intn force_baseline;
 }
 jpeg;
 struct
 {
 int32 nt;
 intn sign_ext;
 intn fill_one;
 intn start_bit;
 intn bit_len;
 }
 nbit;
 struct
 {
 intn skp_size;
 }
 skphuff;
 struct
 {
 intn level;
 }
 deflate;
 }
comp_info;
2-236 March 17, 1998

DFR8setcompress/d8scompNational Center for Supercomputing Applications

 by

h
ed in

t be

 The
me
r for
r the

al

d later,
 on
This union is defined to provide future expansion, but is currently only used
the COMP_JPEG compression type. A pointer to a valid comp_info union is
required for all compression types other than COMP_JPEG, but the values in the
union are not used. The comp_info union is declared in the header file hdf.
and is shown here for informative purposes only, it should not be re-declar
a user program.

For COMP_JPEG compression, the quality member of the jpeg structure mus
set to the quality of the stored image. This number can vary from 100 , the best
quality, to 0, terrible quality. All images stored with COMP_JPEG compression
are stored in a lossy manner, even images stored with a quality of 100.
ratio of size to perceived image quality varies from image to image, so
experimentation may be required to determine an acceptable quality facto
a given application. The force_baseline parameter determines whethe
quantization tables used during compression are forced to the range 0-255 . It
should normally be set to 1 (forcing baseline results), unless speci
applications require non-baseline images to be used.

If the compression type is JPEG, d8scomp defines the default JPEG
compression parameters to be used. If these parameters must be change
the d8sjpeg routine must be used. (Refer to the Reference Manual page
d8sjpeg).

FORTRAN integer function d8scomp(type)

integer type
March 17, 1998 2-237

d8scomp National Center for Supercomputing Applications

PEG
d8scomp

integer d8scomp(integer quality, integer baseline)

quality IN: JPEG quality specification

baseline IN: JPEG baseline specification

Purpose Fortran-specific routine that sets the parameters needed for the J
algorithm.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description d8sjpeg changes the JPEG compression parameter settings set in the d8scomp
routine.
2-238 March 17, 1998

d8sjpegNational Center for Supercomputing Applications

PEG
d8sjpeg

integer d8sjpeg(integer quality, integer baseline)

quality IN: JPEG quality specification

baseline IN: JPEG baseline specification

Purpose Fortran-specific routine that sets the parameters needed for the J
algorithm.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description d8sjpeg changes the JPEG compression parameter settings set in the d8scomp
routine.
March 17, 1998 2-239

DFR8setpalette/d8spal National Center for Supercomputing Applications

quent
DFR8setpalette/d8spal

intn DFR8setpalette(uint8 *palette)

palette IN: Palette data

Purpose Indicate which palette, if any, is to be used for subsequent image sets.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The specified palette remains the default palette until changed by a subse
call to DFR8setpalette.

FORTRAN integer function d8spal(palette)

character*(*) palette
2-240 March 17, 1998

DFR8writeref/d8wrefNational Center for Supercomputing Applications

hen

n.
 HDF

 of an
the
DFR8writeref/d8wref

intn DFR8writeref(char *filename, uint16 ref)

filename IN: Name of the HDF file

ref IN: Reference number for next call to DFR8putimage or
DFR8addimage

Purpose Specifies the reference number of the image to be written w
DFR8addimage or DFR8putimage is next called.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description It is unlikely that you will need this routine, but if you do, use it with cautio
There is no guarantee that reference numbers appear in sequence in an
file; therefore, it is not safe to assume that a reference number is the index
image. In addition, using an existing reference number will overwrite
existing 8-bit raster image data.

FORTRAN integer function d8wref(filename, ref)

character*(*) filename

integer ref
March 17, 1998 2-241

DFPaddpal/dpapal National Center for Supercomputing Applications

The
DFPaddpal/dpapal

intn DFPaddpal(char *filename, VOIDP palette)

filename IN: Name of the HDF file

palette IN: Buffer containing the palette to be written

Purpose Appends a palette to a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If the named file does not exist, it is created and the palette written to it.
palette buffer should beat least 768 bytes in length.

FORTRAN integer function dpapal(filename, palette)

character*(*) filename, palette
2-242 March 17, 1998

DFPgetpal/dpgpalNational Center for Supercomputing Applications

lls to
DFPgetpal/dpgpal

intn DFPgetpal(char *filename, VOIDP palette)

filename IN: Name of the HDF file

palette OUT: Buffer for the returned palette

Purpose Retrieves the next palette from file and stores it in the buffer palette.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The palette buffer is assumed to be at least 768 bytes long. Successive ca
DFPgetpal retrieve the palettes in the sequence they are stored in the file.

FORTRAN integer function dpgpal(filename, palette)

character*(*) filename. palette
March 17, 1998 2-243

DFPlastref/dplref National Center for Supercomputing Applications

by a
DFPlastref/dplref

uint16 DFPlastref(void)

Purpose Returns the value of the reference number most recently read or written
palette function call.

Return value Returns the reference number if successful and FAIL (or -1) otherwise.

FORTRAN integer function dplref()
2-244 March 17, 1998

DFPnpals/dpnpalsNational Center for Supercomputing Applications
DFPnpals/dpnpals

intn DFPnpals(char *filename)

filename IN: Name of the file

Purpose Indicates the number of palettes in the specified file.

Return value Returns the number of palettes if successful and FAIL (or -1) otherwise.

FORTRAN integer function dpnpals(filename)

character*(*) filename
March 17, 1998 2-245

DFPputpal/dpppal National Center for Supercomputing Applications

an

face.

o

DFPputpal/dpppal

intn DFPputpal (char *filename, VOIDP palette, intn overwrite, char *filemode)

filename IN: Name of the file

palette IN: Buffer containing the palette to be written

overwrite IN: Flag identifying the palette to be written

filemode IN: File access mode

Purpose Writes a palette to the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine provides more control of palette write operations th
DFPaddpal. Note that the combination filemode=”w” and overwrite=1 has no
meaning and will result in an error condition. To overwrite a palette, filename
must be the same filename as the last file accessed through the DFP inter

Valid values for overwrite are: 1 to overwrite last palette; 0 to write a new
palette.

Valid values for filemode are: “a” to append the palette to the file and “w” t
create a new file.

The palette buffer must be at least 768 bytes in length.

FORTRAN integer function dpppal(filename, palette, overwrite, filemode)

character*(*) filename, palette, filemode

integer overwrite
2-246 March 17, 1998

DFPreadref/dprrefNational Center for Supercomputing Applications

t by

sts
DFPreadref/dprref

intn DFPreadref(char *filename, uint16 ref)

filename IN: Name of the file

ref IN: Reference number to be used in next DFPgetpal call

Purpose Retrieves the reference number of the palette to be retrieved nex
DFPgetpal.

Return value Returns SUCCEED (or 0) if the palette with the specified reference number exi
and FAIL (or -1) otherwise.

Description Used to set the reference number of the next palette to be retrieved.

FORTRAN integer function dprref(filename, ref)

character*(*) filename

integer ref
March 17, 1998 2-247

DFPrestart/dprest National Center for Supercomputing Applications

e

DFPrestart/dprest

intn DFPrestart()

Purpose Specifies that DFPgetpal will read the first palette in the file, rather than th
next unread palette.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

FORTRAN integer function dprest()
2-248 March 17, 1998

DFPwriteref/dpwrefNational Center for Supercomputing Applications

file

e, is
DFPwriteref/dpwref

intn DFPwriteref(char *filename, uint16 ref)

filename IN: Name of the file

ref IN: Reference number to be assigned to the next palette written to a

Purpose Determines the reference number of the next palette to be written.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The file name is ignored. The next palette written, regardless of the filenam
assigned the reference number ref.

FORTRAN integer function dpwref(filename, ref)

character*(*) filename

integer ref
March 17, 1998 2-249

DFKNTsize National Center for Supercomputing Applications

2-250 March 17, 1998

DFKNTsize

int DFKNTsize(int32 data_type)

data_type IN: Data type

Purpose Determines the size of the specified data type.

Return value Returns the size, in bytes, of the specified data type if successful and FAIL (or -
1) otherwise.

DFUfptoimage/duf2imNational Center for Supercomputing Applications

the

that

pe,
DFUfptoimage/duf2im

int DFUfptoimage(int32 hdim, int32 vdim, float32 max, float32 min, float32 *hscale, float32 *vscale,
float32 *data, uint8 *palette, char *outfile, int ct_method, int32 hres, int32 vres,
int compress)

hdim IN: Horizontal dimension of the input data

vdim IN: Vertical dimension of the input data

max IN: Maximum value of the input data

min IN: Minimum value of the input data

hscale IN: Horizontal scale of the input data (optional)

vscale IN: Vertical scale of the input data (optional)

data IN: Buffer containing the input data

palette IN: Pointer to the palette data

outfile IN: Name of the file the image data will be stored in

ct_method IN: Color transformation method

hres IN: Horizontal resolution to be applied to the output image

vres IN: Vertical resolution to be applied to the output image

compress IN: Compression flag

Purpose Converts floating point data to 8-bit raster image format and stores
converted image data in the specified file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine is very similar to the utility fptohdf , which takes its input from
one or more files, rather than from internal memory. Another difference is
this routine allows compression (run-length encoding), whereas fptohdf does
not at present.

As this routine is meant to mimic many of the features of NCSA DataSco
much of the code has been taken directly from the DataScope source.

Valid values for ct_method are: 1 (or EXPAND) for expansion and 2 (or INTERP)

for interpolation.

Valid values for compress are: 0 for no compression and 1 for compression
enabled.
March 17, 1998 2-251

DFUfptoimage/duf2im National Center for Supercomputing Applications
FORTRAN integer function duf2im(hdim, vdim, max, min, hscale, vscale,
data, palette, outfile, ct_method,
hres, vres, compress)

integer hdim, vdim

real max, min, hscale, vscale, data

character*(*) palette, outfile

integer ctmethod, hres, vres, compress
2-252 March 17, 1998

DFANaddfds/daafdsNational Center for Supercomputing Applications

bject
SCII
utines
not
DFANaddfds/daafds

intn DFANaddfds(int32 file_id, char *description, int32 desc_len)

file_id IN: File identifier returned by Hopen

description IN: Sequence of ASCII characters (may include NULL or '\0 ')

desc_len IN: Length of the description

Purpose Adds a file description to a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description These annotations are associated with the file, not with any particular o
within the file. The parameter description can contain any sequence of A
characters. It does not have to be a string. Use the general purpose ro
Hopen and Hclose to manage file access as the file annotation routines will
open and close HDF files.

FORTRAN integer function daafds(file_id, description, desc_len)

integer file_id, desc_len

character*(*) description
March 17, 1998 2-253

DFANaddfid/daafid National Center for Supercomputing Applications

bject
ose
ion

e to
gths
s the
DFANaddfid/daafid

intn DFANaddfid(int32 file_id, char *label)

file_id IN: The file identifier returned by Hopen.

label IN: A null-terminated string.

Purpose Writes a file label to a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description These annotations are associated with the file, not with any particular o
within the file. The label must be a single string. Use the general purp
routines Hopen and Hclose to manage file access because the file annotat
routines will not open and close HDF files for you.

In the FORTRAN-77 version, the string length for the label should be clos
the actual expected string length, because in FORTRAN-77 string len
generally are assumed to be the declared length of the array that hold
string.

FORTRAN integer function daafid(file_id, label)

integer file_id

character*(*) label
2-254 March 17, 1998

DFANclear/daclearNational Center for Supercomputing Applications

tion

ther
DFANclear/daclear

intn DFANclear()

Purpose Resets all internal library structures and parameters of the DFAN annota
interface.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description When a file is regenerated in a single run by a library routine of ano
interface (such as DFSDputdata), DFANclear should be called to reset the
interface.

FORTRAN integer function daclear()
March 17, 1998 2-255

DFANgetdesc/dagdesc National Center for Supercomputing Applications

 and

ion.
ed
DFANgetdesc/dagdesc

intn DFANgetdesc(char *filename, uint16 tag, uint16 ref, char *desc_buf, int32 buf_len)

filename IN: Name of the file

tag IN: Tag of the data object assigned the description

ref IN: Reference number of the data object assigned the description

desc_buf OUT: Buffer allocated to hold the description

buf_len IN: Size of the buffer allocated to hold the description

Purpose Reads the description assigned to the data object with the given tag
reference number.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The parameter buf_len specifies the storage space available for the descript
The length of buf_len must account for the null termination character append
to the description.

FORTRAN integer function dagdesc(filename, tag, ref, desc_buf, buf_len)

character*(*) filename, desc_buf

integer tag, ref

integer buf_len
2-256 March 17, 1998

DFANgetdesclen/dagdlenNational Center for Supercomputing Applications

 and

 for a
DFANgetdesclen/dagdlen

int32 DFANgetdesclen(char *filename, uint16 tag, uint16 ref)

filename IN: Name of the file

tag IN: Tag of the data object assigned the description

ref IN: Reference number of the data object assigned the description

Purpose Retrieves the length of a description of the data object with the given tag
reference number.

Return value Returns the length of a description if successful and FAIL (or -1) otherwise.

Description This routine should be used to insure that there is enough space allocated
description before actually reading it.

FORTRAN integer function dagdlen(filename, tag, ref)

character*(*) filename

integer tag, ref
March 17, 1998 2-257

DFANgetfds/dagfds National Center for Supercomputing Applications

r
lls to
DFANgetfds/dagfds

int32 DFANgetfds(int32 file_id, char *desc_buf, int32 buf_len, intn isfirst)

file_id IN: File identifier returned by Hopen

desc_buf OUT: The buffer allocated to hold the description

buf_len IN: Size of the buffer allocated to hold the description

isfirst IN: Determines the description to be retrieved

Purpose Reads the next file description.

Return value Returns the length of the file description if successful and FAIL (or -1)
otherwise.

Description If isfirst is 0, DFANgetfds gets the next file description from an HDF file. Fo
example, if there are three file descriptions in a file, three successive ca
DFANgetfds will get all three descriptions. If isfirst is 1, DFANgetfds gets the
first file description.

Valid values for isfirst are: 1 to read the first description and 0 to read the next
description.

FORTRAN integer function dagfds(file_id, desc_buf, buf_len, isfirst)

integer file_id, buf_len, isfirst

character*(*) desc_buf
2-258 March 17, 1998

DFANgetfdslen/dagfdslNational Center for Supercomputing Applications

s

e
ns,
DFANgetfdslen/dagfdsl

int32 DFANgetfdslen(int32 file_id, intn isfirst)

file_id IN: File identifier returned by Hopen

isfirst IN: Determines the description the retrieved length information applie
to

Purpose Returns the length of a file description.

Return value Returns the length of the file description if successful and FAIL (or -1)
otherwise.

Description When DFANgetfdslen is first called for a given file, it returns the length of th
first file description. In order to get the lengths of successive file descriptio
you must call DFANgetfds between calls to DFANgetfdslen. Successive calls
to DFANgetfdslen without calling DFANgetfds between them will return the
length of the same file description.

Valid values for isfirst are: 1 to read the length of the first description and 0 to
read the length of the next description.

FORTRAN integer function dagfdsl(file_id, isfirst)

integer file_id, isfirst
March 17, 1998 2-259

DFANgetfid/dagfid National Center for Supercomputing Applications
DFANgetfid/dagfid

int32 DFANgetfid(int32 file_id, char *desc_buf, int32 buf_len, intn isfirst)

file_id IN: File identifier returned by Hopen

label_buf OUT: The buffer allocated to hold the label

buf_len IN: Size of the buffer allocated to hold the label

isfirst IN: Determines the file label to be retrieved

Purpose Reads a file label from a file.

Return value Returns the length of the file description if successful and FAIL (or -1)
otherwise.

Description If isfirst is 0, DFANgetfid gets the next file label from the file. If isfirst is 1,
DFANgetfid gets the first file label in the file. If buf_len is not large enough,
the label is truncated to buf_len-1 characters in the buffer label_buf.

Valid values of isfirst are: 1 to read the first label, 0 to read the next label

FORTRAN integer function dagfid(file_id, label_buf, buf_len, isfirst)

integer file_id, buf_len, isfirst

character*(*) label_buf
2-260 March 17, 1998

DFANgetfidlen/dagfidlNational Center for Supercomputing Applications

o

e
ls,

.

DFANgetfidlen/dagfidl

int32 DFANgetfidlen(int32 file_id, intn isfirst)

file_id IN: File identifier returned by Hopen

isfirst IN: Determines the file label the retrieved length information applies t

Purpose Returns the length of a file label.

Return value Returns the length of the file label if successful and FAIL (or -1) otherwise.

Description When DFANgetfidlen is first called for a given file, it returns the length of th
first file label. In order to retrieve the lengths of successive file labe
DFANgetfid must be called between calls to DFANgetfidlen. Otherwise,
successive calls to DFANgetfidlen will return the length of the same file label

Valid values of isfirst are: 1 to read the first label, and 0 to read the next label.

FORTRAN integer function dagfidl(file_id, isfirst)

integer file_id, isfirst
March 17, 1998 2-261

DFANgetlabel/daglab National Center for Supercomputing Applications

 and

he
 to
DFANgetlabel/daglab

intn DFANgetlabel(char *filename, uint16 tag, uint16 ref, char *label_buf, int32 buf_len)

filename IN: Name of the HDF file

tag IN: Tag of the data object assigned the label

ref IN: Reference number of the data object assigned the label

label_buf OUT: Buffer for the label

buf_len IN: Size of the buffer allocated for the label

Purpose Reads the label assigned to the data object identified by the given tag
reference number.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The parameter buf_len specifies the storage space available for the label. T
length of buf_len must account for the null termination character appended
the annotation.

FORTRAN integer function daglab(filename, tag, ref, label_buf, buf_len)

character*(*) filename, label_buf

integer tag, ref, buf_len
2-262 March 17, 1998

DFANgetlablen/dagllenNational Center for Supercomputing Applications

 and

 for a
DFANgetlablen/dagllen

int32 DFANgetlablen(char *filename, uint16 tag, uint16 ref)

filename IN: Name of the file

tag IN: Tag of the data object assigned the label

ref IN: Reference number the data object assigned the label

Purpose Returns the length of a label assigned to the object with a given tag
reference number.

Return value Returns the length of the label if successful and FAIL (or -1) otherwise.

Description This routine should be used to insure that there is enough space allocated
label before actually reading it.

FORTRAN integer function dagllen(filename, tag, ref)

character*(*) filename

integer tag, ref
March 17, 1998 2-263

DFANlablist/dallist National Center for Supercomputing Applications

iven

nce
l,

ts
If

 the
ence
 be

es a
DFANlablist/dallist

int DFANlablist(char *filename, uint16 tag, unit16 ref_list[], char *label_list, int list_len, intn
label_len, intn start_pos)

filename IN: Name of the file

tag IN: Tag to be queried

ref_list OUT: Buffer for the returned reference numbers

label_list OUT: Buffer for the returned labels

list_len IN: Size of the reference number list and the label list

label_len IN: Maximum length allowed for a label

start_pos IN: Starting position of the search

Purpose Returns a list of all reference numbers and labels (if labels exist) for a g
tag.

Return value Returns the number of reference numbers found if successful and FAIL (or -1)
otherwise.

Description Entries are returned from the start_pos entry up to the list_len entry.

The list_len determines the number of available entries in the refere
number and label lists, label_len is the maximum length allowed for a labe
and start_pos tells which label to start reading for the given tag. (If start_pos is
1, for instance, all labels will be read; if start_pos is 4, all but the first 3 labels
will be read.) The ref_list contains a list of reference numbers for all objec
with a given tag. The label_list contains a corresponding list of labels, if any.
there is no label stored for a given object, the corresponding entry in label_list
is an empty string.

Taken together, the ref_list and label_list constitute a directory of all objects
and their labels (where they exist) for a given tag. The label_list parameter can
display all of the labels for a given tag. Or it can be searched to find
reference number of a data object with a certain label. Once the refer
number for a given label is found, the corresponding data object can
accessed by invoking other HDF routines. Therefore, this routine provid
mechanism for the direct access to data objects in HDF files.

FORTRAN integer function dallist(filename, tag, ref_list, label_list,
list_len, label_len, start_pos)

character*(*) filename, label_list

integer ref_list(*)

integer list_len, label_len, start_pos
2-264 March 17, 1998

DFANlastref/dalrefNational Center for Supercomputing Applications
DFANlastref/dalref

uint16 DFANlastref()

Purpose Returns the reference number of the annotation last written or read.

Return value Returns the reference number if successful and FAIL (or -1) otherwise.

FORTRAN integer function dalref()
March 17, 1998 2-265

DFANputdesc/dapdesc National Center for Supercomputing Applications

nce

rs; it

ile.
DFANputdesc/dapdesc

int DFANputdesc(char *filename, uint16 tag, uint16 ref, char *description, int32 desc_len)

filename IN: Name of the file

tag IN: Tag of the data object to be assigned the description

ref IN: Reference number the data object to be assigned the description

description IN: Sequence of ASCII characters (may include NULL or '\0 ')

desc_len IN: Length of the description

Purpose Writes a description for the data object with the given tag and refere
number.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The parameter description can contain any sequence of ASCII characte
does not have to be a string. If DFANputdesc is called more than once for the
same tag/reference number pair, only the last description is stored in the f

FORTRAN integer function dapdesc(filename, tag, ref, description,
desc_len)

character*(*) filename, description

integer tag, ref, desc_len
2-266 March 17, 1998

DFANputlabel/daplabNational Center for Supercomputing Applications

r.
DFANputlabel/daplab

intn DFANputlabel(char *filename, uint16 tag, uint16 ref, char *label)

filename IN: Name of the file

tag IN: Tag of the data object to be assigned the label

ref IN: Reference number the data object to be assigned the label

label IN: Null-terminated label string

Purpose Assigns a label to the data object with the given tag/reference number pai

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

FORTRAN integer function daplab(filename, tag, ref, label)

character*(*) filename, label

integer tag, ref
March 17, 1998 2-267

DFSDadddata/dsadata National Center for Supercomputing Applications

file

ile,
t. It
alid

d

DFSDadddata/dsadata

intn DFSDadddata(char *filename, intn rank, int32 dimsizes[], VOIDP data);

filename IN: Name of the HDF file

rank IN: Number of dimensions in the data array to be written

dimsizes IN: Array containing the size of each dimension

data IN: Array containing the data to be stored

Purpose Appends a scientific dataset in its entirety to an existing HDF file if the
exists. If not, a new file is created.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description In addition to appending a multidimensional array of data to an HDF f
DFSDadddata automatically stores any information pertinent to the datase
will not overwrite existing data in the file. The array data can be of any v
type. However, if no data type has been set by DFSDsetNT, it is assumed that
the data is of type float32 .

Calling DFSDadddata will write the scientific dataset and all associate
information. That is, when DFSDadddata is called, any information set by a
DFSDset* call is written to the file, along with the data array itself.

FORTRAN integer function dsadata(filename, rank, dimsizes, data)

character*(*) filename

integer rank

integer dimsizes(*), data(*)
2-268 March 17, 1998

DFSDclear/dsclearNational Center for Supercomputing Applications
DFSDclear/dsclear

intn DFSDclear()

Purpose Clears all values set by DFSDset* routines.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description After a call to DFSDclear, values set by any DFSDset* call will not be written
unless they have been set again.

FORTRAN integer function dsclear()
March 17, 1998 2-269

DFSDendslab/dseslab National Center for Supercomputing Applications
DFSDendslab/dseslab

intn DFSDendslab()

Purpose Terminates a sequence of slab calls started by DFSDstartslab by closing the
file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

FORTRAN integer function dseslab()
2-270 March 17, 1998

DFSDendslice/dseslcNational Center for Supercomputing Applications

tific

ure
code.

usly
DFSDendslice/dseslc

intn DFSDendslice()

Purpose Terminates the write operation after storing a slice of data in a scien
dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDendslice must be called after all the slices are written. It checks to ens
that the entire dataset has been written, and if it has not, returns an error
DFSDendslice is obsolete in favor of DFSDendslab. DFSDendslab is the
recommended function call to use when terminating hyperslab (previo
known as data slices) operations. HDF will continue to support DFSDendslice
only to maintain backward compatibility with earlier versions of the library.

FORTRAN integer function dseslc()
March 17, 1998 2-271

DFSDgetcal/dsgcal National Center for Supercomputing Applications

aset.

 a

r
ased
DFSDgetcal/dsgcal

int32 DFSDgetcal(float64 *cal, float64 *cal_err, float64 *offset, float64 *offset_err, int32 *data_type)

cal OUT: Calibration factor

cal_err OUT: Calibration error

offset OUT: Uncalibrated offset

offset_err OUT: Uncalibrated offset error

data_type OUT: Data type of uncalibrated data

Purpose Retrieves the calibration record, if there is one, attached to a scientific dat

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description A calibration record contains four 64-bit floating point values followed by
32-bit integer.

The relationship between a value iy stored in a dataset and the actual valuey
is defined as:

y = cal * (iy - offset)

The variable offset_err contains a potential error of offset, and cal_err
contains a potential error of cal. Currently the calibration record is provided fo
information only. The SD interface performs no operations on the data b
on the calibration tag.

As an example, suppose the values in the calibrated dataset iy[] are the
following integers:

iy[6] = {2, 4, 5, 11, 26, 81}

By defining cal = 0.50 and offset = -200.0 and applying the calibration
formula, the calibrated dataset iy[] returns to its original form as a floating
point array:

y[6] = {1001.0, 1002.0, 1002.5, 1005.5, 1013.0,1040.5}

FORTRAN integer function dsgcal(cal, cal_err, offset, offset_err,
data_type)

real cal, cal_err, offset, offset_err

integer data_type
2-272 March 17, 1998

DFSDgetdata/dsgdataNational Center for Supercomputing Applications

for the
ow,

file.

ic
ead.
DFSDgetdata/dsgdata

intn DFSDgetdata(char *filename, intn rank, int32 dimsizes[], VOIDP data)

filename IN: Name of the file

rank IN: Number of dimensions

dimsizes IN: Dimensions of the data buffer

data OUT: Buffer for the data

Purpose Reads the next dataset in the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If the values of rank or dimsizes aren’t known, DFSDgetdims must be called
to retrieve them and then use them to determine the buffer space needed
array data. If the data type of the data in a scientific dataset isn’t kn
DFSDgetNT must be called to retrieve it. Subsequent calls to DFSDgetdata
(or to DFSDgetdims and DFSDgetdata)will sequentially read scientific
datasets from the file. For example, if DFSDgetdata is called three times in
succession, the third call reads data from the third scientific dataset in the

If DFSDgetdims or DFSDgetdata is called and there are no more scientif
datasets left in the file, an error code is returned and nothing is r
DFSDrestart can be used to override this convention.

FORTRAN integer function dsgdata(filename, rank, dimsizes, data)

character*(*) filename

integer rank

integer dimsizes(*), data(*)
March 17, 1998 2-273

DFSDgetdatalen/dsgdaln National Center for Supercomputing Applications

gs.

rings
count
DFSDgetdatalen/dsgdaln

intn DFSDgetdatalen(intn *label_len, intn *unit_len, intn *format_len, intn *coords_len)

label_len OUT: Maximum length of the label string

unit_len OUT: Maximum length of the unit string

format_len OUT: Maximum length of the format string

coords_len OUT: Maximum length of the coordinate system string

Purpose Retrieves the lengths of the label, unit, format, and coordinate system strin

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The space allocated for the label, unit, format, and coordinate system st
must be at least one byte larger than the actual length of the string to ac
for the null termination.

FORTRAN integer function dsgdaln(label_len, unit_len, format_len,
coords_len)

integer label_len, unit_len, format_len, coords_len
2-274 March 17, 1998

DFSDgetdatastrs/dsgdastNational Center for Supercomputing Applications

ngs

for
DFSDgetdatastrs/dsgdast

intn DFSDgetdatastrs(char *label, char *unit, char *format, char *coordsys)

label OUT: Label describing the data

unit OUT: Unit to be used with the data

format OUT: Format to be used in displaying data

coordsys OUT: Coordinate system

Purpose Retrieves information about the label, unit, and format attribute stri
associated with the data.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The parameter coordsys gives the coordinate system that is to be used
interpreting the dimension information.

FORTRAN integer function dsgdast(label, unit, format, coordsys)

character*(*) label, unit, format, coordsys
March 17, 1998 2-275

DFSDgetdimlen/dsgdiln National Center for Supercomputing Applications

iated

 least
null
DFSDgetdimlen/dsgdiln

intn DFSDgetdimlen (intn dim, intn *label_len, intn *unit_len, intn *format_len)

dim IN: Dimension the label, unit, and format refer to

label_len OUT: Length of the label

unit_len OUT: Length of the unit

format_len OUT: Length of the format

Purpose Retrieves the length of the label, unit, and format attribute strings assoc
with the specified dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The space allocated to hold the label, unit, and format strings must be at
one byte larger than the actual length of the string, to account for the
termination.

FORTRAN integer function dsgdiln(dim, label_len, unit_len, format_len)

integer dim, label_len, unit_len, format_len
2-276 March 17, 1998

DFSDgetdims/dsgdimsNational Center for Supercomputing Applications

e

d to

 the
e

DFSDgetdims/dsgdims

intn DFSDgetdims(char *filename, intn *rank, int32 dimsizes[], intn maxrank)

filename IN: Name of the HDF file

rank OUT: Number of dimensions

dimsizes OUT: Buffer for the returned dimensions

maxrank IN: Size of the storage buffer dimsizes

Purpose Retrieves the number of dimensions (rank) of the dataset and the sizes of th
dimensions (dimsizes) for the next scientific dataset in the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The maxrank parameter tells DFSDgetdims the size of the array that is
allocated for storing the dimsizes array. The value of rank must not exceed the
value of maxrank.

The allocation of a buffer for the scientific dataset data should correspon
the values retrieved by DFSDgetdims. The first value in the array dimsizes
should equal the first dimension of the array that is allocated to hold
dataset; the second value in dimsizes should equal the second dimension of th
dataset, and so forth.

FORTRAN integer function dsgdims(filename, rank, dimsizes, maxrank)

character*(*) filename

integer rank, maxrank

integer dimsizes(*)
March 17, 1998 2-277

DFSDgetdimscale/dsgdisc National Center for Supercomputing Applications

 type
 type
DFSDgetdimscale/dsgdisc

intn DFSDgetdimscale(intn dim, int32 size, VOIDP scale)

dim IN: Dimension this scale corresponds to

size IN: Size of the scale buffer

scale OUT: Array of values defining reference points along a specified
dimension

Purpose Gets the scale corresponding to the specified dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The DFSD interface requires the dimension scales to be of the same data
as the corresponding data. To store dimension scales of a different data
than the corresponding data, use the multifile SD interface.

FORTRAN integer function dsgdisc(dim, size, scale)

integer dim, size

integer scale(*)
2-278 March 17, 1998

DFSDgetdimstrs/dsgdistNational Center for Supercomputing Applications

 the

t one
n. If
e as
DFSDgetdimstrs/dsgdist

intn DFSDgetdimstrs(intn dim, char *label, char *unit, char *format)

dim IN: Dimension this label, unit and format refer to

label OUT: Label that describes this dimension

unit OUT: Unit to be used with this dimension

format OUT: Format to be used in displaying scale for this dimension

Purpose Retrieves the label, unit, and format attribute strings corresponding to
specified dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The space allocated for the label, unit, and format string must be at leas
byte larger than the length of the string to accommodate the null terminatio
the length is unknown when the program is written, declare the array siz
1+maxlen_label , maxlen_unit , or maxlen_format after they are set by
DFSDsetlengths. The maximum default string length is 255 .

FORTRAN integer function dsgdist(dim, label, unit, format)

integer dim

character*(*) label, unit, format
March 17, 1998 2-279

DFSDgetfillvalue/dsgfill National Center for Supercomputing Applications

n
s is
DFSDgetfillvalue/dsgfill

intn DFSDgetfillvalue(VOIDP fill_value)

fill_value OUT: Fill value

Purpose Retrieves the fill value of a DFSD scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The fill value is set by DFSDsetfillvalue and returned in the variable
fill_value . Note that DFSDgetfillvalue does not take a file name as a
argument. As a result, a DFSD call to initialize the file information structure
required before calling DFSDgetfillvalue. One such call is DFSDgetdims.

FORTRAN integer function dsgfill(fill_value)

character*(*) fill_value
2-280 March 17, 1998

DFSDgetNT/dsgntNational Center for Supercomputing Applications

lt, a
ing

e

DFSDgetNT/dsgnt

intn DFSDgetNT(int32 *data_type)

data_type OUT: Data type of data in the scientific dataset

Purpose Retrieves the data type of the next dataset to be read.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Note that DFSDgetNT does not take a file name as an argument. As a resu
DFSD call to initialize the file information structures is required before call
DFSDgetNT. One such call is DFSDgetdims.

Valid values for data_type are of the general form DFNT_. The following ar
valid symbolic names and their data types:

 32-bit float DFNT_FLOAT32 5

 64-bit float DFNT_FLOAT64 6

 8-bit signed int DFNT_INT8 20

 8-bit unsigned int DFNT_UINT8 21

 16-bit signed int DFNT_INT16 22

 16-bit unsigned int DFNT_UINT16 23

 32-bit signed int DFNT_INT32 24

 32-bit unsigned int DFNT_UINT32 25

 8-bit character DFNT_CHAR8 4

FORTRAN integer function dsgnt(num_type)

integer num_type
March 17, 1998 2-281

DFSDgetrange/dsgrang National Center for Supercomputing Applications

set.

hese
n the
le
s of

trieve
ays
ases

the
DFSDgetrange/dsgrang

intn DFSDgetrange(VOIDP max, VOIDP min)

max OUT: Maximum value stored with the scientific dataset

min OUT: Maximum value stored with the scientific dataset

Purpose Retrieves the maximum and minimum values stored with the scientific data

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The max and min values are set via a call to DFSDsetrange. They are not
automatically stored when a dataset is written to a file. The data type of t
values is the data type of the dataset array. One implication of this is that i
C version of DFSDgetrange the arguments are pointers, rather than simp
variables, whereas in the FORTRAN-77 version they are simple variable
the same type as the data array.

Neither DFSDgetrange nor DFSDgetdata compare the max and min values
stored with the dataset to the actual values in the dataset; they merely re
the data. As a result, the maximum and minimum values may not alw
reflect the actual maximum and minimum values in the dataset. In some c
the max and min values may actually lie outside the range of values in
dataset.

FORTRAN integer function dsgrang(max, min)

character*(*) max, min
2-282 March 17, 1998

DFSDgetslice/dsgslcNational Center for Supercomputing Applications

f
f
or

 x

 big
l

own

he
DFSDgetslice/dsgslc

intn DFSDgetslice(char *filename, int32 winst[], int32 windims[], VOIDP data, int32 dims[])

filename IN: Name of HDF file

winst IN: Array containing the coordinates for the start of the slice

windim IN: Array containing the dimensions of the slice

data OUT: Array for returning slice

dims OUT: Dimensions of array data

Purpose Reads part of a scientific dataset from a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDgetslice accesses the dataset last accessed by DFSDgetdims. If
DFSDgetdims has not been called for the named file, DFSDgetslice gets a
slice from the next dataset in the file. Array winst specifies the coordinates o
the start of the slice. Array windims gives the size of the slice. The number o
elements in winst and windims must be equal to the rank of the dataset. F
example, if the file contains a three-dimensional dataset, winst may contain the
values {2, 4, 3} , while windims contains the values {3, 1, 4} and the dims
should be at least {3, 1, 4} , the same size as the slice. This will extract a 3
4, two-dimensional slice, containing the elements between (2, 4, 3) and (4,

4, 6) from the original dataset.

The data array is the array into which the slice is read. It must be at least as
as the desired slice. The dims array is the array containing the actua
dimensions of the array data. The user assigns values to dims before calling
DFSDgetslice.

All parameters assume FORTRAN-77-style one-based arrays.

DFSDgetslice is obsolete in favor of DFSDreadslab. DFSDreadslab is the
recommended function call to use when reading hyperslabs (previously kn
as data slices). HDF will continue to support DFSDgetslice only to maintain
backward compatibility with HDF applications built on earlier versions of t
library.

FORTRAN integer function dsgslc(filename, winst, windims, data, dims)

character*(*) filename, data

integer winst(*), windims(*), dims(*)
March 17, 1998 2-283

DFSDlastref/dslref National Center for Supercomputing Applications
DFSDlastref/dslref

intn DFSDlastref()

Purpose Retrieves the most recent reference number used in writing or reading a
scientific dataset.

Return value Returns the reference number for the last accessed scientific dataset if
successful and FAIL (or -1) otherwise.

Description DFSDlastref returns the value of the last reference number of a scientific
dataset read from or written to the file.

FORTRAN integer function dslref()
2-284 March 17, 1998

DFSDndatasets/dsnumNational Center for Supercomputing Applications

ill
DFSDndatasets/dsnum

intn DFSDndatasets(char *filename)

filename IN: Name of the HDF file

Purpose Returns the number of scientific datasets in the file.

Return value Returns the number of datasets if successful and FAIL (or -1) otherwise.

Description In HDF version 3.3, DFSDndatasets replaced DFSDnumber. In order to
maintain backward compatibility with existing HDF applications, HDF w
continue to support DFSDnumber. However, it is recommended that all new
applications use DFSDndatasets instead of DFSDnumber.

FORTRAN integer function dsnum(filename)

character*(*) filename
March 17, 1998 2-285

DFSDpre32sdg/dsp32sd National Center for Supercomputing Applications

ated

3.2,

rray.
DFSDpre32sdg/dsp32sd

intn DFSDpre32sdg(char *filename, uint16 ref, intn *ispre32)

filename IN: The name of the HDF file containing the scientific dataset

ref IN: Reference number of SDG

ispre32 OUT: Pointer to results of the pre-HDF version 3.2 inquiry

Purpose Tests if the scientific dataset with the specified reference number was cre
by an HDF library earlier than version 3.2.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If the scientific dataset was created with a version of HDF prior to version
ispre32 will be set to 1 , otherwise it will be set to 0. Based on this information,
programmers can decide whether or not to transpose the corresponding a

FORTRAN integer function dsp32sd(filename, ref, ispre32)

character*(*) filename

integer ref, ispre32
2-286 March 17, 1998

DFSDputdata/dspdataNational Center for Supercomputing Applications

of
DFSDputdata/dspdata

intn DFSDputdata(char *filename, intn rank, int32 dimsizes[], VOIDP data)

filename IN: Name of the HDF file

rank IN: Number of dimensions of data array to be stored

dimsizes IN: Buffer for the dimension sizes

data IN: Buffer for the data to be stored

Purpose Writes a scientific data and related information to an HDF file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDputdata will write data to an existing file by destroying the contents
the original file. Use it with caution. If a new filename is used, DFSDputdata
functions exactly like DFSDadddata.

FORTRAN integer function dspdata(filename, rank, dimsizes, data)

character*(*) filename

<valid numeric data type> data

integer rank

integer dimsizes(*)
March 17, 1998 2-287

DFSDputslice/dspslc National Center for Supercomputing Applications

f the

e
are

wn
DFSDputslice/dspslc

intn DFSDputslice(int32 windims[], VOIDP source, int32 dims[])

windims IN: Window dimensions specifying the size of the slice to be written

source IN: Buffer for the slice

dims IN: Dimensions of the source array

Purpose Writes part of a scientific dataset to a file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDputslice read a subset of an array in memory and stores it as part o
scientific dataset array last specified by DFSDsetdims. Slices must be stored
contiguously.

Array windims (“window dimensions”) specifies the size of the slice to b
written. The windims array must contain as many elements as there
dimensions in the entire scientific dataset array. The source argument is an
array in memory containing the slice and dims is an array containing the
dimensions of the array source.

Notice that windims and dims need not be the same. The windims argument
could refer to a sub-array of source, in which case only a portion of source is
written to the scientific data array.

All parameters assume FORTRAN-77-style one-based arrays.

DFSDputslice is obsolete in favor of DFSDwriteslab. DFSDwriteslab is the
recommended function call to use when writing hyperslabs (previously kno
as data slices). HDF will continue to support DFSDputslice only to maintain
backward compatibility with earlier versions of the library.
2-288 March 17, 1998

DFSDreadref/dsrrefNational Center for Supercomputing Applications

t read

rs. It

 HDF
index
DFSDreadref/dsrref

intn DFSDreadref(char *filename, uint16 ref)

filename IN: Name of the HDF file

ref IN: Reference number for next DFSDgetdata call

Purpose Specifies the reference number for the dataset to be read during the nex
operation.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine is commonly used in conjunction with DFANgetlablist, which
returns a list of labels for a given tag together with their reference numbe
provides a sort of random access to scientific datasets.

There is no guarantee that reference numbers appear in sequence in an
file, so it is not generally safe to assume that a reference number is an
number of a scientific dataset.

FORTRAN integer function dsrref(filename, ref)

character*(*) filename

integer ref
March 17, 1998 2-289

DFSDreadslab/dsrslab National Center for Supercomputing Applications

ab

b

 if

ns

ently

o-
ning

s

DFSDreadslab/dsrslab

intn DFSDreadslab(char *filename, int32 start[], int32 slab_size[], int32 stride[], VOIDP buffer, int32
buffer_size[])

filename IN: Name of the HDF file

start IN: Buffer of size rank containing the coordinates for the start of the sl

slab_size IN: Buffer of size rank containing the size of each dimension in the sla

stride IN: Subsampling (not yet implemented)

buffer OUT: \Buffer for the returned slab

buffer_size OUT: Dimensions of the buffer parameter

Purpose Reads a slab of data from any scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDreadslab will access to the scientific dataset following the current one
DFSDgetdims or DFSDgetdata are not called earlier. The start array indices
are one-based. The rank of start must be the same as the number of dimensio
of the specified variable. The elements of slab_size must be no larger than the
dimensions of the scientific dataset in order. The stride feature is not curr
implemented. For now just pass the start array as the argument for stride where
it will be ignored.

To extract a slab of lower dimension than that of the dataset, enter 1 in the
slab_size array for each omitted dimension. For example, to extract a tw
dimensional slab from a three-dimensional dataset, specify the begin
coordinates in three dimensions and enter a 1 for the missing dimension in the
slab_size array. More specifically, to extract a 3 x 4 slab containing the
elements (6, 7, 8) through (8, 7, 11) specify the beginning coordinates a
{6, 7, 8} and the slab size as {3, 1, 4} .

FORTRAN integer function dsrslab(filename, start, slab_size, stride,
buffer, buffersize)

character*(*) filename, buffer

integer start(*), slab_size(*),

integer stride(*), buffer_size(*)
2-290 March 17, 1998

DFSDrestart/dsfirstNational Center for Supercomputing Applications

in the
ntly
DFSDrestart/dsfirst

intn DFSDrestart()

Purpose Causes the next read command to be read from the first scientific dataset
file, rather than the scientific dataset following the one that was most rece
read.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

FORTRAN integer function dsfirst()
March 17, 1998 2-291

DFSDsetcal/dsscal National Center for Supercomputing Applications

ation
, to

d
ata

et
DFSDsetcal/dsscal

intn DFSDsetcal(float64 cal, float64 cal_err, float64 offset, float64 offset_err, int32 data_type)

cal IN: Calibration factor

cal_err IN: Calibration error

offset IN: Uncalibrated offset

offset_err IN: Uncalibrated offset error

data_type IN: Data type of uncalibrated data

Purpose Sets the calibration information associated with data

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine sets the calibration record associated with a dataset. A calibr
record contains four 64-bit floating point values followed by a 32-bit integer
be interpreted as follows:

cal calibration factor
cal_err calibration error
offset uncalibrated offset
offset_err uncalibrated offset error
data_type data type of uncalibrated data

The relationship between a value iy stored in a dataset and the actual value y is
defined as:

y = cal * (iy - offset)

The variable offset_err contains a potential error of offset , and cal_err
contains a potential error of cal . Currently the calibration record is provide
for information only. The SD interface performs no operations on the d
based on the calibration tag.

DFSDsetcal works like other DFSDset* routines, with one exception: the
calibration information is automatically cleared after a call to DFSDputdata
or DFSDadddata. Hence, DFSDsetcal must be called again for each datas
that is to be written.

As an example, suppose the values in a dataset y[] are as follows:

y[6]={1001.0, 1002.0, 1002.5, 1005.5, 1013.0, 1040.5}
2-292 March 17, 1998

DFSDsetcal/dsscalNational Center for Supercomputing Applications
By defining cal = 0.50 and offset = -200.0 and applying the calibration
formula, the calibrated dataset iy[] becomes as follows:

iy[6]={2, 4, 5, 11, 26, 81}

The array iy[] can then be stored as integers.

FORTRAN integer function dsscal(cal, cal_err, offset, offset_err,
data_type)

real*8 cal, cal_err, offset, offset_err

integer data_type
March 17, 1998 2-293

DFSDsetdatastrs/dssdast National Center for Supercomputing Applications

ritten
DFSDsetdatastrs/dssdast

intn DFSDsetdatastrs(char *label, char *unit, char *format, char *coordsys)

label IN: Label describing the data

unit IN: Unit to be used with the data

format IN: Format to be used in displaying the data

coordsys IN: Coordinate system of the data

Purpose Sets the label, unit, format, and coordinate system for the next dataset w
to file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

FORTRAN integer function dssdast(label, unit, format, coordsys)

character*(*) label, unit, format, coordsys
2-294 March 17, 1998

DFSDsetdims/dssdimsNational Center for Supercomputing Applications

ritten

re

xcept
DFSDsetdims/dssdims

intn DFSDsetdims (intn rank, int32 dimsizes[])

rank IN: Number of dimensions

dimsizes IN: Dimensions of the scientific dataset

Purpose Sets the rank and dimension sizes for all subsequent scientific datasets w
to the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This routine must be called before calling either DFSDsetdimstrs or
DFSDsetdimscale. DFSDsetdims need not be called if other set routines a
not called and the correct dimensions are supplied in DFSDputdata or
DFSDadddata.

If the rank or dimension sizes change, all previous set calls are cleared, e
for the data type, which is set by calling DFSDsetNT.

FORTRAN integer function dssdims(rank, dimsizes)

integer rank

integer dimsizes(*)
March 17, 1998 2-295

DFSDsetdimscale/dssdisc National Center for Supercomputing Applications

oints
taset
nts of
DFSDsetdimscale/dssdisc

intn DFSDsetdimscale (intn dim, int32 dimsize, VOIDP scale)

dim IN: Dimension this scale corresponds to

dimsize IN: Size of the scale buffer

scale IN: Buffer for the scale values

Purpose Defines the scale for a dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description A scale is a one-dimensional array whose values describe reference p
along one dimension of the dataset. For example, a two-dimensional da
representing points on a map could have two scales, one representing poi
latitude, and the other points of longitude.

FORTRAN integer function dssdisc (dim, dimsize, scale)

integer dim

integer dimsize(*), scale(*)
2-296 March 17, 1998

DFSDsetdimstrs/dssdistNational Center for Supercomputing Applications

ified

ore
DFSDsetdimstrs/dssdist

intn DFSDsetdimstrs(intn dim, char *label, char *unit, char *format)

dim IN: Dimension this label, unit and format refer to

label IN: Label that describes this dimension

unit IN: Unit to be used with this dimension

format IN: Format to be used to display scale

Purpose Sets the label, unit, and format strings corresponding to the spec
dimension.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description In both FORTRAN-77 and C programs, dim = 1 for the first dimension, and
dim = 2 for the second dimension. If the user is not interested in one or m
strings, empty strings can be used as parameters for the DFSDsetdimstrs call.
For example, DFSDsetdimstrs(1, “vertical”, “ “, “ “) will set the label for the
first dimension to “vertical” and set the unit and format to empty strings.

FORTRAN integer function dssdist(dim, label, unit, format)

integer dim

character*(*) label, unit, format
March 17, 1998 2-297

DFSDsetfillvalue/dssfill National Center for Supercomputing Applications

ce the

e

e

DFSDsetfillvalue/dssfill

intn DFSDsetfillvalue(VOIDP fill_value)

fill_value IN: Fill value

Purpose Set the value used to fill in any unwritten location in a scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description It is assumed that the fill value has the same data type as the dataset. On
fill value is set for a particular SDS, it cannot be changed.

If DFSDsetfillvalue is called before the first call to DFSDstartslab,
DFSDstartslab will set the fill value tag attribute to the value specified in th
DFSDsetfillvalue call, but will not actually write out the fill value when
DFSDwriteslab is called. However, if DFSDsetfillvalue is called after the
first call the DFSDstartslab, the fill value tag attribute will be set by
DFSDsetfillvalue and the fill value will be written to the slab during th
DFSDwriteslab call.

FORTRAN integer function dssfill(fill_value)

character*(*) fill_value
2-298 March 17, 1998

DFSDsetlengths/dsslensNational Center for Supercomputing Applications

ats,

get
DFSDsetlengths/dsslens

intn DFSDsetlengths(intn label_len, intn unit_len, intn format_len, intn coords_len)

label_len IN: Maximum length of label strings

unit_len IN: Maximum length of unit strings

format_len IN: Maximum length of format strings

coords_len IN: Maximum length of coordinate system strings

Purpose Sets the maximum lengths for the strings that will hold labels, units, form
and the name of the coordinate system.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The lengths set by this routine are used by the routines DFSDgetdimstrs and
DFSDgetdatastrs to determine the maximum lengths of strings that they
from the file.

Normally, DFSDsetlengths is not needed. If it is not called, default maximum
lengths of 255 are used for all strings.

FORTRAN integer function dsslens(label_len, unit_len, format_len,
coords_len)

integer label_len, unit_len, format_len, coords_len
March 17, 1998 2-299

DFSDsetNT/dssnt National Center for Supercomputing Applications

be
DFSDsetNT/dssnt

intn DFSDsetNT(int32 data_type)

data_type IN: Data type

Purpose Sets the data type of the data to be written in the next write operation.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDsetNT must be called if a data type other than float32 is to be stored.
DFSDsetNT and DFSDsetdims can be called in any order, but they should
called before any other DFSDset* functions and before DFSDputdata or
DFSDadddata.

The following symbolic names can be used as the value of data_type:

 32-bit float DFNT_FLOAT32 5

 64-bit float DFNT_FLOAT64 6

 8-bit signed int DFNT_INT8 20

 8-bit unsigned int DFNT_UINT8 21

 16-bit signed int DFNT_INT16 22

 16-bit unsigned int DFNT_UINT16 23

 32-bit signed int DFNT_INT32 24

 32-bit unsigned int DFNT_UINT32 25

 8-bit character DFNT_CHAR8 4

FORTRAN integer function dssnt(num_type)

integer num_type
2-300 March 17, 1998

DFSDsetrange/dssrangNational Center for Supercomputing Applications

e

 the
 data

rely
lues
data

DF
 that
DFSDsetrange/dssrang

intn DFSDsetrange(VOIDP max, VOIDP min)

max IN: Highest value in the range

min IN: Lowest value in the range

Purpose Stores the specified maximum and minimum data values.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description It is assumed that the data type of max and min is the same as the type of th
data. One implication of this is that in the C version of DFSDsetrange the
arguments are pointers, rather than simple variables, whereas in
FORTRAN-77 version they are simple variables of the same type as the
array.

This routine does not compute the maximum and minimum values; it me
stores the values it is given. As a result, the maximum and minimum va
may not always reflect the actual maximum and minimum values in the
array.

When the maximum and minimum values are written to a file, the H
element that holds these values is cleared, because it is assumed
subsequent datasets will have different values for max and min.

FORTRAN integer function dssrang(max, min)

character*(*) max, min
March 17, 1998 2-301

DFSDstartslab/dssslab National Center for Supercomputing Applications
DFSDstartslab/dssslab

intn DFSDstartslab(char *filename)

filename IN: Name of the HDF file

Purpose Prepares the DFSD interface to write a slab of data to a scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description DFSDsetdims must be called before calling DFSDstartslab. No call which
involves a file open may be made after a DFSDstartslab call until
DFSDendslab is called. This routine will write out the fill values if
DFSDsetfillvalue is called before this routine.

FORTRAN integer function dssslab(filename)

character*(*) filename
2-302 March 17, 1998

DFSDstartslice/dssslcNational Center for Supercomputing Applications

HDF
DFSDstartslice/dssslc

intn DFSDstartslice(char *filename)

filename IN: Name of the HDF file

Purpose Prepares the interface to write a data slice to the specified file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Before calling DFSDstartslice, DFSDsetdims must be called to specify the
dimensions of the dataset to be written to the file. DFSDstartslice always
appends a new dataset to an existing file.

Also, DFSDstartslice must be called before DFSDputslice or DFSDendslice.

DFSDstartslice is obsolete in favor of DFSDstartslab. DFSDstartslab is the
recommended function call to use when beginning hyperslab operations.
will continue to support DFSDstartslice only to maintain backward
compatibility earlier versions of the library.

FORTRAN integer function dssslc(filename)

character*(*) filename
March 17, 1998 2-303

DFSDwriteref/dswref National Center for Supercomputing Applications

itten

ed.
DFSDwriteref/dswref

intn DFSDwriteref(char *filename, uint16 ref)

filename IN: Name of the HDF file

ref IN: Reference number for next add or put operation

Purpose DFSDwriteref determines the reference number of the dataset to overwr
next by DFSDputdata or DFSDadddata, after checking for its existence.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If a non-existent reference number is specified, an error code will be return

As this routine alters data in a destructive manner, DFSDwriteref should be
used with caution.

FORTRAN integer function dswref(filename, ref)

character*(*) filename

integer ref
2-304 March 17, 1998

DFSDwriteslab/dswslabNational Center for Supercomputing Applications

e

re is

the
c
into
data
piler
DFSDwriteslab/dswslab

intn DFSDwriteslab(int32 start[], int32 stride[], int32 count[], VOIDP data)

start IN: Array containing the starting coordinates of the slab

stride IN: Array containing the dimensions for subsampling

count IN: Array containing the size of the slab

data IN: Array to hold the floating point data to be written

Purpose Writes a slab of data to a scientific dataset.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The start indices are relative to 1. The rank of start must be the same as th
number of dimensions of the specified variable. The elements of start must be
no larger than the scientific dataset's dimensions in order. The stride featu
not currently implemented. For now just pass the start array as the argument
for the stride parameter, where it will be ignored.

The rank of count must be the same as the number of dimensions of
specified variable. The elements of count must be no larger than the scientifi
dataset's dimensions in order. The order in which the data will be written
the specified hyperslab is with the last dimension varying fastest. The
should be of the appropriate type for the dataset. Note that neither the com
nor HDF software can detect if the wrong type of data is used.

FORTRAN integer function dswslab(start, stride, count, data)

integer start(*), stride(*), count(*)

character*(*) data
March 17, 1998 2-305

DFSDwriteslab/dswslab National Center for Supercomputing Applications
2-306 March 17, 1998

HappendableNational Center for Supercomputing Applications
Happendable

intn Happendable(int32 h_id)

h_id IN: Access identifier returned by Hstartwrite

Purpose Specifies that the specified element can be appended to

Return value Returns SUCCEED (or 0) if data element can be appended and FAIL (or -1)
otherwise.

Description If a data element is at the end of a file Happendable allows Hwrite to append
data to it, converting it to linked-block element only when necessary.
March 17, 1998 2-307

Hcache National Center for Supercomputing Applications
Hcache

intn Hcache(int32 file_id, intn cache_switch)

file_id IN: File identifier returned by Hopen

cache_switch IN: Flag to enable or disable caching

Purpose Enables low-level caching for the specified file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If file_id is set to CACHE_ALL_FILES, then the value of cache_switch is used to
modify the default file cache setting.

Valid values for cache_switch are: TRUE (or 1) to enable caching and FALSE (or
0) to disable caching.
2-308 March 17, 1998

HdelddNational Center for Supercomputing Applications

omes
 HDF

data
mber
mber
 and
 is
Hdeldd

intn Hdeldd(int32 file_id, uint16 tag, uint16 ref)

file_id IN: File identifier returned by Hopen

tag IN: Tag of data descriptor to be deleted

ref IN: Reference number of data descriptor to be deleted

Purpose Deletes a tag and reference number from the data descriptor list.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Once the data descriptor is removed, the data in the data object bec
inaccessible and is marked as such. To remove inaccessible data from an
file, use the utility hdfpack .

Hdeldd only deletes the specified tag and reference number from the
descriptor list. Data objects containing the deleted tag and reference nu
are not automatically updated. For example, if the tag and reference nu
deleted from the descriptor list referenced an object in a vgroup, the tag
reference number will still exist in the vgroup even though the data
inaccessible.
March 17, 1998 2-309

Hendaccess National Center for Supercomputing Applications

all

ling

ive

ary
As a
ifiers
Hendaccess

intn Hendaccess(int32 h_id)

h_id IN: Access identifier returned by Hstartread, Hstartwrite , or
Hnextread

Purpose Terminates access to a data object by disposing of the access identifier.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The number of active access identifiers is limited to MAX_ACC as defined in the
hlimits.h header file. Because of this restriction, it is very important to c
Hendaccess immediately following the last operation on a data element.

When developing new interfaces, a common mistake is to omit cal
Hendaccess for all of the elements accessed. When this happens, Hclose will
return FAIL , and a dump of the error stack will report the number of act
access identifiers. Refer to the Reference Manual page on HEprint .

This is a difficult problem to debug because the low levels of the HDF libr
cannot determine who and where an access identifier was originated.
result, there is no automated method of determining which access ident
have yet to be released.
2-310 March 17, 1998

HendbitaccessNational Center for Supercomputing Applications

ber

-1
Hendbitaccess

intn Hendbitaccess(int32 h_id, intn flushbit)

h_id IN: Identifier of the bit-access element to be disposed of

flushbit IN: Specifies how the leftover bits are to be flushed

Purpose Disposes of the specified bit-access file element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If called after a bit-write operation, Hendbitaccess flushes all buffered bits to
the dataset, then calls Hendaccess.

“Leftover bits” are bits that have been buffered, but are fewer than the num
of bits defined by BITNUM, which is usually set to 8.

Valid codes for flushbit are: 0 for flush with zeros, 1 for flush with ones and
for dispose of leftover bits
March 17, 1998 2-311

Hexist National Center for Supercomputing Applications

air
Hexist

intn Hexist(int32 h_id, uint16 search_tag, uint16 search_ref)

h_id IN: Access identifier returned by Hstartread, Hstartwrite , or
Hnextread

search_tag IN: Tag of the object to be searched for

search_ref IN: Reference number of the object to be searched for

Purpose Locates an object in an HDF file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Simple interface to Hfind that determines if a given tag/reference number p
exists in a file. Wildcards apply.

Hfind performs all validity checking; this is just a very simple wrapper around
it.
2-312 March 17, 1998

HfidinquireNational Center for Supercomputing Applications

ntifiers
er

ust
Hfidinquire

intn Hfidinquire(int32 file_id, char *filename, intn *access, intn *attach)

file_id IN: File identifier returned by Hopen

filename OUT: Complete path and filename for the file

access OUT: Access mode file is opened with

attach OUT: Number of access identifiers attached to the file

Purpose Returns file information through a reference of its file identifier.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Gets the complete path name, access mode, and number of access ide
associated with a file. The filename parameter is a pointer to a character point
which will be modified when the function returns. Upon completion, filename
is set to point to the file name in internal storage. All output parameters m
be non-null pointers.
March 17, 1998 2-313

Hfind National Center for Supercomputing Applications

e

e

t

g and

n is
Hfind

intn Hfind(int32 file_id, uint16 search_tag, uint16 search_ref, uint16 *find_tag, uint16 *find_ref, int32
* find_offset, int32 *find_length, intn direction)

file_id IN: File identifier returned by Hopen

search_tag IN: The tag to search for or DFTAG_WILDCARD

search_ref IN: Reference number to search for or DFREF_WILDCARD

find_tag IN/OUT: If (* find_tag == 0) and (*find_ref == 0) then start the search from
either the beginning or the end of the file. If the object is found, th
tags of the object will be returned here.

find_ref IN/OUT: If (* find_tag == 0) and (*find_ref == 0) then start the search from
either the beginning or the end of the file. If the object is found, th
reference numbers of the object will be returned here.

find_offset OUT: Offset of the data element found

find_length OUT: Length of the data element found

direction IN: Direction to search in DF_FORWARD searches forward from the curren
location, and DF_BACKWARD searches backward from the current
location

Purpose Locates the next object to be searched for in an HDF file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Hfind searches for the next data element that matches the specified ta
reference number. Wildcards apply. If direction is DF_FORWARD, searching is
forward from the current position in the file, otherwise DF_BACKWARD specifies
backward searches from the current position in the file.

If find_tag and find_ref are both set to 0, this indicates the beginning of a
search, and the search will start from the beginning of the file if the directio
DF_FORWARD and from the end of the file if the direction is DF_BACKWARD.
2-314 March 17, 1998

HgetbitNational Center for Supercomputing Applications
Hgetbit

intn Hgetbit(int32 h_id)

h_id IN: Bit-access element identifier

Purpose Reads one bit from the specified bit-access element.

Return value Returns the bit read (or 0 or 1) if successful and FAIL (or -1) otherwise.

Description This function is a wrapper for Hbitread .
March 17, 1998 2-315

Hgetelement National Center for Supercomputing Applications

rites it

ld the
Hgetelement

int32 Hgetelement(int32 file_id, uint16 tag, uint16 ref, uint8 *data)

file_id IN: File identifier returned by Hopen

tag IN: Tag of the data element to be read

ref IN: Reference number of the data element to be read

data OUT: Buffer the element will be read into

Purpose Reads the data element for the specified tag and reference number and w
to the data buffer.

Return value Returns the number of bytes read if successful and FAIL (or -1) otherwise.

Description It is assumed that the space allocated for the buffer is large enough to ho
data.
2-316 March 17, 1998

HinquireNational Center for Supercomputing Applications

nt

 set

id
Hinquire

intn Hinquire(int32 h_id, int32 *file_id, uint16 *tag, uint16 *ref, int32 *length, int32 *offset, int32
*position, int16 *access, int16 *special)

h_id IN: Access identifier returned by Hstartread, Hstartwrite , or
Hnextread

file_id OUT: File identifier returned by Hopen

tag OUT: Tag of the element pointed to

ref OUT: Reference number of the element pointed to

length OUT: Length of the element pointed to

offset OUT: Offset of the element in the file

position OUT: Current position within the data element

access OUT: The access type for this data element

special OUT: Special code

Purpose Returns access information about a data element.

Return value Returns SUCCEED (or 0) if the access identifier points to a valid data eleme
and FAIL (or -1) otherwise.

Description If h_id is a valid access identifier the access type (read or write) is
regardless of whether or not the return value is FAIL (or -1). If h_id is invalid,
the function returns FAIL (or -1) and the access type is set to zero. To avo
excess information, pass NULL for any unnecessary pointer.
March 17, 1998 2-317

Hlength National Center for Supercomputing Applications

ber.

ver
ored
Hlength

int32 Hlength(int32 file_id, uint16 tag, uint16 ref)

file_id IN: File identifier returned by Hopen

tag IN: Tag of the data element

ref IN: Reference number of the data element

Purpose Returns the length of a data object specified by the tag and reference num

Return value Returns the length of data element if found and FAIL (or -1) otherwise.

Description Hlength calls Hstartread, HQuerylength, and Hendaccess to determine the
length of a data element. Hlength uses Hstartread to obtain an access
identifier for the specified data object.

Hlength will return the correct data length for linked-block elements, howe
it is important to remember that the data in linked-block elements is not st
contiguously.
2-318 March 17, 1998

HnewrefNational Center for Supercomputing Applications

nique

at
 been
Hnewref

uint16 Hnewref(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Returns a reference number that can be used with any tag to produce a u
tag /reference number pair.

Return value Returns the reference number if successful and 0 otherwise.

Description Successive calls to Hnewref will generate reference number values th
increase by one each time until the highest possible reference number has
returned. At this point, additional calls to Hnewref will return an increasing
sequence of unused reference number values starting from 1.
March 17, 1998 2-319

Hnextread National Center for Supercomputing Applications

 and

f

ist is

ment,
Hnextread

intn Hnextread(int32 h_id, uint16 tag, uint16 ref, int origin)

h_id IN: Access identifier returned by Hstartread or previous Hnextread

tag IN: Tag to search for

ref IN: Reference number to search for

origin IN: Position to begin search: DF_START or DF_CURRENT

Purpose Searches for the next data descriptor that matches the specified tag
reference number.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Wildcards apply. If origin is DF_START, the search will start at the beginning o
the data descriptor list. If origin is DF_CURRENT, the search will begin at the
current position. Searching backwards from the end of a data descriptor l
not yet implemented.

If the search is successful, the access identifier reflects the new data ele
otherwise it is not modified.
2-320 March 17, 1998

Hnumber/hnumberNational Center for Supercomputing Applications

. To
Hnumber/hnumber

int32 Hnumber(int32 file_id, uint16 tag)

file_id IN: File identifier returned by Hopen

tag IN: Tag to be counted

Purpose Returns the number of instances of a tag in a file.

Return value Returns the number of instances of a tag in a file if successful, and FAIL (or -1)
otherwise.

Description Hnumber determines how many objects with the specified tag are in a file
determine the total number of objects in a file, set the tag argument to
DFTAG_WILDCARD. Note that a return value of zero is not a fail condition.

FORTRAN integer function hnumber(file_id, tag)

integer file_id, tag
March 17, 1998 2-321

Hoffset National Center for Supercomputing Applications

 is
ored

t. In
Hoffset

int32 Hoffset(int32 file_id, uint16 tag, uint16 ref)

file_id IN: File identifier returned by Hopen

tag IN: Tag of the data element

ref IN: Reference number of the data element

Purpose Returns the offset of a data element in the file.

Return value Returns the offset of the data element if the data element exists and FAIL (or -
1) otherwise.

Description Hoffset calls Hstartread, HQueryoffset, and Hendaccess to determine the
length of a data element. Hoffset uses Hstartread to obtain an access
identifier for the specified data object.

Hoffset will return the correct offset for a linked-block element, however it
important to remember that the data in linked-block elements is not st
contiguously. The offset returned by Hoffset only reflects the position of the
first data block.

Hoffset should not be used to determine the offset of an external elemen
this case, Hoffset returns zero, an invalid offset for HDF files.
2-322 March 17, 1998

HputbitNational Center for Supercomputing Applications
Hputbit

intn Hputbit(int32 h_id, intn bit)

h_id IN: Bit-access element identifier

bit IN: Bit to be written

Purpose Writes one bit to the specified bit-access element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This function is a wrapper for Hbitwrite .
March 17, 1998 2-323

Hputelement National Center for Supercomputing Applications
Hputelement

int32 Hputelement(int32 file_id, uint16 tag, uint16 ref, uint8 *data, int32 length)

file_id IN: File identifier returned by Hopen

tag IN: Tag of the data element to add or replace

ref IN: Reference number of the data element to add or replace

data IN: Pointer to data buffer

length IN: Length of data to write

Purpose Writes a data element or replaces an existing data element in a HDF file.

Return value Returns the number of bytes written if successful and FAIL (or -1) otherwise.
2-324 March 17, 1998

HreadNational Center for Supercomputing Applications

er of

tifier

t the
ough
rlace
ta is
Hread

int32 Hread(int32 h_id, int32 length, VOIDP data)

h_id IN: Access identifier returned by Hstartread, Hstartwrite , or
Hnextread

length IN: Length of segment to be read

data OUT: Pointer to the data array to be read

Purpose Reads the next segment in a data element.

Return value Returns the length of segment actually read if successful and FAIL (or -1)
otherwise.

Description Hread begins reading at the current file position, reads the specified numb
bytes, and increments the current file position by one. Calling Hread with the
length = 0 reads the entire data element. To reposition an access iden
before writing data, use Hseek.

If length is longer than the data element, the read operation is terminated a
end of the data element, and the number of read bytes is returned. Alth
only one access identifier is allowed per data element, it is possible to inte
reads from multiple data elements in the same file. It is assumed that da
large enough to hold the specified data length.
March 17, 1998 2-325

Hseek National Center for Supercomputing Applications

t. If
e

Hseek

intn Hseek(int32 h_id, int32 offset, intn origin)

h_id IN: Access identifier returned by Hstartread, Hstartwrite , or
Hnextread

offset IN: Number of bytes to seek to from the origin

origin IN: Position of the offset origin

Purpose Sets the access pointer to an offset within a data element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Sets the seek position for the next Hread or Hwrite operation by moving an
access identifier to the specified position in a data element. The origin and the
offset arguments determine the byte location for the access identifier. If origin
is set to DF_START, the offset is added to the beginning of the data elemen
origin is set to DF_CURRENT, the offset is added to the current position of th
access identifier.

Valid values for origin are: DF_START (the beginning of the file) or DF_CURRENT

(the current position in the file).

This routine fails if the access identifier if h_id is invalid or if the seek position
is outside the range of the data element.
2-326 March 17, 1998

HsetlengthNational Center for Supercomputing Applications
Hsetlength

int32 Hsetlength(int32 file_id, int32 length)

file_id IN: File identifier returned by Hopen

length IN: Length of the new element

Purpose Specifies the length of a new HDF element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This function can only be used when called after Hstartaccess on a new data
element and before any data is written to that element.
March 17, 1998 2-327

Hshutdown National Center for Supercomputing Applications
Hshutdown

int32 Hshutdown()

Purpose Deallocates buffers previously allocated in other H routines.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Should only be called by the function HDFend.
2-328 March 17, 1998

HtagnewrefNational Center for Supercomputing Applications

will

ce
been

Htagnewref

int32 Htagnewref(int32 file_id, uint16 tag)

file_id IN: Access identifier returned by Hstartread or Hnextread

tag IN: Tag to be identified with the returned reference number

Purpose Returns a reference number that is unique for the specified file that
correspond to the specified tag. Creates a new tag/reference number pair.

Return value Returns the reference number if successful and 0 otherwise.

Description Successive calls to Hnewref will generate a increasing sequence of referen
number values until the highest possible reference number value has
returned. It will then return unused reference number values starting from1 in
increasing order.
March 17, 1998 2-329

Htrunc National Center for Supercomputing Applications
Htrunc

int32 Htrunc(int32 h_id, int32 trunc_len)

h_id IN: Access identifier returned by Hstartread or Hnextread

trunc_len IN: Length to truncate element

Purpose Truncates the data object specified by the h_id to the length trunc_len.

Return value Returns the length of a data element if found and FAIL (or -1) otherwise.

Description Htrunc does not handle special elements.
2-330 March 17, 1998

HwriteNational Center for Supercomputing Applications

 the
ition

ting

a, the
cess
ore
Hwrite

int32 Hwrite(int32 h_id, int32 length, VOIDP data)

h_id IN: Access identifier returned by Hstartwrite

len IN: Length of segment to be written

data IN: Pointer to the data to be written

Purpose Writes the next data segment to a specified data element.

Return value Returns the length of the segment actually written if successful and FAIL (or -
1) otherwise.

Description Hwrite begins writing at the current position of the access identifier, writes
specified number of bytes, then moves the access identifier to the pos
immediately following the last accessed byte. Calling Hwrite with length = 0
results in an error condition. To reposition an access identifier before wri
data, use Hseek.

If the space allocated in the data element is smaller than the length of dat
data is truncated to the length of the data element. Although only one ac
identifier is allowed per data element, it is possible to interlace writes to m
than one data element in a file.
March 17, 1998 2-331

HDFclose/hdfclose National Center for Supercomputing Applications

is

ode
on
HDFclose/hdfclose

intn HDFclose(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Closes the access path to the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The file identifier file_id is validated before the file is closed. If the identifier
valid, the function closes the access path to the file.

If there are still access identifiers attached to the file, the error c
DFE_OPENAID is returned and the file is not closed. This is a comm
occurrence when developing new interfaces. See Hendaccess for further
discussion of this problem.

FORTRAN integer function hdfclose(file_id)

integer file_id
2-332 March 17, 1998

HDFopen/hdfopenNational Center for Supercomputing Applications

locks

ame,
the

n

te.

ing

ccess

ions,
HDFopen/hdfopen

int32 HDFopen(char *filename, intn access, int16 n_dds)

filename IN: Complete path and filename for the file to be opened

access IN: File access code

n_dds IN: Number of data descriptors in a block if a new file is to be created

Purpose Provides an access path to an HDF file by reading all the data descriptor b
into memory.

Return value Returns the file identifier if successful and FAIL (or -1) otherwise.

Description If given a new file name, HDFopen will create a new file using the specified
access type and number of data descriptors. If given an existing file n
HDFopen will open the file using the specified access type and ignore
n_dds argument.

HDF provides several file access code definitions:

DFACC_READ - Open for read only. If file does not exist, an error conditio
results.
DFACC_CREATE - If file exists, delete it, then open a new file for read/wri
DFACC_WRITE - Open for read/write. If file does not exist, create it.

If a file is opened and an attempt is made to reopen the file us
DFACC_CREATE, HDF will issue the error DFE_ALROPEN. If the file is opened with
read only access and an attempt is made to reopen the file for write a
using DFACC_RDWR, DFACC_WRITE, or DFACC_ALL, HDF will attempt to reopen
the file with read and write permissions.

Upon successful exit, the named file is opened with the relevant permiss
the data descriptors are set up in memory, and the associated file_id is returned.
For new files, the appropriate file headers are also set up.

FORTRAN integer function hdfopen(filename, access, n_dds)

character*(*) filename

integer access, n_dds
March 17, 1998 2-333

HEclear National Center for Supercomputing Applications

r

HEclear

VOID HEclear()

Purpose Clears all information on reported errors from the error stack.

Return value None.

Description HEpush creates an error stack. HEclear is then used to clear this stack afte
any errors are processed.
2-334 March 17, 1998

HEpushNational Center for Supercomputing Applications

eric

r
ly
HEpush

VOID HEpush(int16 error_code, char *funct_name, char *file_name, intn line)

error_code IN: HDF error code corresponding to the error

funct_name IN: Name of function in which the error occurred

file_name IN: Name of file in which the error occurred

line IN: Line number in the file that error occurred

Purpose Pushes a new error onto the error stack.

Return value None.

Description HEpush pushes the file name, function name, line number, and gen
description of the error onto the error stack. HEreport can then be used to give
a more case-specific description of the error.

If the stack is full, the error is ignored. HEpush assumes that the characte
strings funct_name and file_name are in semi-permanent storage, so on
pointers to the strings are saved.
March 17, 1998 2-335

HEreport National Center for Supercomputing Applications

nly

ber,

tion

s of
HEreport

VOID HEreport(char *format, ...)

format IN: Output string specification

Purpose Adds a text string to the description of the most-recently-reported error (o
one text string per error).

Return value None

Description HEpush places on the error stack the file name, function name, line num
and a generic description of the error type. HEreport can then be used to give
a more case-specific description of the error. Only one additional annota
can be attached to each error report.

The format argument must conform to the string specification requirement
printf .
2-336 March 17, 1998

HEvalueNational Center for Supercomputing Applications
HEvalue

int16 HEvalue(int32 level)

level IN: Level of the error stack to be returned

Purpose Returns an error from the specified level of the error stack.

Return value The error code if successful for DFE_NONE otherwise.
March 17, 1998 2-337

HEvalue National Center for Supercomputing Applications
2-338 March 17, 1998

Section
3

HDF Definition List
ines.
er-

not
licitly
3.1 Definition List Overview

This section of the Reference Manual contains a listing of all definitions used with HDF rout
The definitions are categorized by their name prefix (the portion of the name before the und
score) into tables. The tables themselves are alphebetized by name.

This section is primarily intended to be of use to Fortran programmers whose compilers do
support include files, and need to know the values of the definitions so that they can be exp
defined in their programs.

TABLE 3A *_INTERLACE - Interlace Mode Codes

TABLE 3B *_WILDCARD - Wildcard Code

TABLE 3C AN_* - Multifile Annotation Codes

Definition Name Definition Value

FULL_INTERLACE 0

NO_INTERLACE 1

Definition Name Definition Value

DFREF_WILDCARD 0

Definition Name Definition Value

AN_DATA_LABEL 0

AN_DATA_DESC 1

AN_FILE_LABEL 2

AN_FILE_DESC 3
March 17, 1998 3-1

TABLE 3D COMP_* - Raster Image Compression Codes

TABLE 3E COMP_CODE_* - General Compression Codes

TABLE 3F DF_* - Maximum Length Codes

TABLE 3G DFACC_* - File Access Codes

TABLE 3H DFE_* - Error Codes

Definition Name Definition Value

COMP_NONE 0

COMP_RLE 11

COMP_IMCOMP 12

COMP_JPEG 2

Definition Name Definition Value

COMP_CODE_NONE 0

COMP_CODE_RLE 1

COMP_CODE_NBIT 2

COMP_CODE_SKPHUFF 3

COMP_CODE_DEFLATE 4

COMP_CODE_INVALID 5

Definition Name Definition Value

DF_MAXFNLEN 256

Definition Name Definition Value

DFACC_READ 1

DFACC_WRITE 2

DFACC_CREATE 4

DFACC_ALL 7

DFACC_RDONLY 1

DFACC_RDWR 3

Definition Name Definition Value
3-2 March 17, 1998

National Center for Supercomputing Applications
DFE_NOERROR 0

DFE_NONE 0

DFE_FNF 1

DFE_DENIED 2

DFE_ALROPEN 3

DFE_TOOMANY 4

DFE_BADNAME 5

DFE_BADACC 6

DFE_BADOPEN 7

DFE_NOTOPEN 8

DFE_CANTCLOSE 9

DFE_READERROR 10

DFE_WRITEERROR 11

DFE_SEEKERROR 12

DFE_RDONLY 13

DFE_BADSEEK 14

DFE_PUTELEM 15

DFE_GETELEM 16

DFE_CANTLINK 17

DFE_CANTSYNC 18

DFE_BADGROUP 19

DFE_GROUPSETUP 20

DFE_PUTGROUP 21

DFE_GROUPWRITE 22

DFE_DFNULL 23

DFE_ILLTYPE 24

DFE_BADDDLIST 25

DFE_NOTDFFILE 26

DFE_SEEDTWICE 27

DFE_NOSUCHTAG 28

DFE_NOFREEDD 29

DFE_BADTAG 30

DFE_BADREF 31

DFE_NOMATCH 32

DFE_NOTINSET 33

DFE_BADOFFSET 34

DFE_CORRUPT 35

DFE_NOREF 36
March 17, 1998 3-3

DFE_DUPDD 37

DFE_CANTMOD 38

DFE_DIFFFILES 39

DFE_BADAID 40

DFE_OPENAID 41

DFE_CANTFLUSH 42

DFE_CANTUPDATE 43

DFE_CANTHASH 44

DFE_CANTDELDD 45

DFE_CANTDELHASH 46

DFE_CANTACCESS 47

DFE_CANTENDACCESS 48

DFE_TABLEFULL 49

DFE_NOTINTABLE 50

DFE_UNSUPPORTED 51

DFE_NOSPACE 52

DFE_BADCALL 53

DFE_BADPTR 54

DFE_BADLEN 55

DFE_NOTENOUGH 56

DFE_NOVALS 57

DFE_ARGS 58

DFE_INTERNAL 59

DFE_NORESET 60

DFE_GENAPP 61

DFE_UNINIT 62

DFE_CANTINIT 63

DFE_CANTSHUTDOWN 64

DFE_BADDIM 65

DFE_BADFP 66

DFE_BADDATATYPE 67

DFE_BADMCTYPE 68

DFE_BADNUMTYPE 69

DFE_BADORDER 70

DFE_RANGE 71

DFE_BADCONV 72

DFE_BADTYPE 73

DFE_BADSCHEME 74
3-4 March 17, 1998

National Center for Supercomputing Applications
DFE_BADMODEL 75

DFE_BADCODER 76

DFE_MODEL 77

DFE_CODER 78

DFE_CINIT 79

DFE_CDECODE 80

DFE_CENCODE 81

DFE_CTERM 82

DFE_CSEEK 83

DFE_MINIT 84

DFE_COMPINFO 85

DFE_CANTCOMP 86

DFE_CANTDECOMP 87

DFE_NODIM 88

DFE_BADRIG 89

DFE_RINOTFOUND 90

DFE_BADATTR 91

DFE_BADTABLE 92

DFE_BADSDG 93

DFE_BADNDG 94

DFE_VGSIZE 95

DFE_VTAB 96

DFE_CANTADDELEM 97

DFE_BADVGNAME 98

DFE_BADVGCLASS 99

DFE_BADFIELDS 100

DFE_NOVS 101

DFE_SYMSIZE 102

DFE_BADATTACH 102

DFE_BADVSNAME 103

DFE_BADVSCLASS 104

DFE_VSWRITE 105

DFE_VSREAD 106

DFE_BADVH 107

DFE_VSCANTCREATE 108

DFE_VGCANTCREATE 109

DFE_CANTATTACH 110

DFE_CANTDETACH 111
March 17, 1998 3-5

TABLE 3I DFNT_* - Machine Word Representation and Data Type Codes

DFE_BITREAD 112

DFE_BITWRITE 113

DFE_BITSEEK 114

DFE_TBBTINS 115

DFE_BVNEW 116

DFE_BVSET 117

DFE_BVGET 118

DFE_BVFIND 119

Definition Name Definition Value

DFNT_HDF 0

DFNT_NATIVE 4096

DFNT_CUSTOM 8192

DFNT_LITEND 16384

DFNT_NONE 0

DFNT_QUERY 0

DFNT_VERSION 1

DFNT_FLOAT32 5

DFNT_FLOAT 5

DFNT_FLOAT64 6

DFNT_DOUBLE 6

DFNT_FLOAT128 7

DFNT_INT8 20

DFNT_UINT8 21

DFNT_INT16 22

DFNT_UINT16 23

DFNT_INT32 24

DFNT_UINT32 25

DFNT_INT64 26

DFNT_UINT64 27

DFNT_INT128 28

DFNT_UINT128 29

DFNT_UCHAR8 3

DFNT_UCHAR 3

DFNT_CHAR8 4
3-6 March 17, 1998

National Center for Supercomputing Applications
DFNT_CHAR 4

DFNT_CHAR16 42

DFNT_UCHAR16 43

DFNT_NFLOAT32 4101

DFNT_NFLOAT 4101

DFNT_NFLOAT64 4102

DFNT_NDOUBLE 4102

DFNT_NFLOAT128 4103

DFNT_NINT8 4116

DFNT_NUINT8 4117

DFNT_NINT16 4118

DFNT_NUINT16 4119

DFNT_NINT32 4120

DFNT_NUINT32 4121

DFNT_NINT64 4122

DFNT_NUINT64 4123

DFNT_NINT128 4124

DFNT_NUINT128 4125

DFNT_NUCHAR8 4099

DFNT_NUCHAR 4099

DFNT_NCHAR8 4100

DFNT_NCHAR 4100

DFNT_NCHAR16 4138

DFNT_NUCHAR16 4139

DFNT_LFLOAT32 16389

DFNT_LFLOAT 16389

DFNT_LFLOAT64 16390

DFNT_LDOUBLE 16390

DFNT_LFLOAT128 16391

DFNT_LINT8 16404

DFNT_LUINT8 16405

DFNT_LINT16 16406

DFNT_LUINT16 16407

DFNT_LINT32 16408

DFNT_LUINT32 16409

DFNT_LINT64 16410

DFNT_LUINT64 16411

DFNT_LINT128 16412
March 17, 1998 3-7

TABLE 3J DFNTF_* - Floating-point Format Codes

TABLE 3K DFTAG_* - Object Tags

DFNT_LUINT128 16413

DFNT_LUCHAR8 16387

DFNT_LUCHAR 16387

DFNT_LCHAR8 16388

DFNT_LCHAR 16388

DFNT_LCHAR16 16426

DFNT_LUCHAR16 16427

Definition Name Definition Value

DFNTF_NONE 0

DFNTF_HDFDEFAULT 1

DFNTF_IEEE 1

DFNTF_VAX 2

DFNTF_CRAY 3

DFNTF_PC 4

DFNTF_CONVEX 5

DFNTF_VP 6

Definition Name Definition Value

DFTAG_WILDCARD 0

DFTAG_NULL 1

DFTAG_LINKED 20

DFTAG_VERSION 30

DFTAG_COMPRESSED 40

 DFTAG_VLINKED 50

 DFTAG_VLINKED_DATA 51

DFTAG_CHUNKED 60

DFTAG_CHUNK 61

DFTAG_FID 100

DFTAG_FD 101

DFTAG_TID 102

DFTAG_TD 103

DFTAG_DIL 104
3-8 March 17, 1998

National Center for Supercomputing Applications
DFTAG_DIA 105

DFTAG_NT 106

DFTAG_MT 107

DFTAG_ID8 200

DFTAG_IP8 201

DFTAG_RI8 202

DFTAG_CI8 203

DFTAG_II8 204

DFTAG_ID 300

DFTAG_LUT 301

DFTAG_RI 302

DFTAG_CI 303

DFTAG_RIG 306

DFTAG_LD 307

DFTAG_MD 308

DFTAG_MA 309

DFTAG_CCN 310

DFTAG_CFM 311

DFTAG_AR 312

DFTAG_DRAW 400

DFTAG_RUN 401

DFTAG_XYP 500

DFTAG_MTO 501

DFTAG_T14 602

DFTAG_T105 603

DFTAG_SDG 700

DFTAG_SDD 701

DFTAG_SD 702

DFTAG_SDS 703

DFTAG_SDL 704

DFTAG_SDU 705

DFTAG_SDF 706

DFTAG_SDM 707

DFTAG_SDC 708

DFTAG_SDT 709

DFTAG_SDLNK 710

DFTAG_NDG 720

DFTAG_CAL 731
March 17, 1998 3-9

TABLE 3L HDF_* - Vdata Interface, Linked-block Element, and Vset Packing Mode Codes

TABLE 3M MFGR_* - Interlace Mode Codes

TABLE 3N SD_* - Scientific Data Set Configuration Codes

DFTAG_FV 732

DFTAG_BREQ 799

DFTAG_EREQ 780

DFTAG_SDRAG 781

DFTAG_VG 1965

DFTAG_VH 1962

DFTAG_VS 1963

DFTAG_RLE 11

DFTAG_IMC 12

DFTAG_IMCOMP 12

DFTAG_JPEG 13

DFTAG_GREYJPEG 14

DFTAG_JPEG5 15

DFTAG_GREYJPEG5 16

Definition Name Definition Value

_HDF_VDATA -1

_HDF_VSPACK 0

_HDF_VSUNPACK 1

_HDF_ENTIRE_VDATA -1

HDF_APPENDABLE_BLOCK_LEN 4096

HDF_APPENDABLE_BLOCK_NUM 16

Definition Name Definition Value

MFGR_INTERLACE_PIXEL 0

MFGR_INTERLACE_LINE 1

MFGR_INTERLACE_COMPONENT 2

Definition Name Definition Value

SD_UNLIMITED 0
3-10 March 17, 1998

National Center for Supercomputing Applications
TABLE 3O SPECIAL_* - Special Element Identifier Codes

TABLE 3P SUCCEED/FAIL - Routine Return Status Codes

SD_DIMVAL_BW_COMP 1

SD_DIMVAL_BW_INCOMP 0

SD_FILL 0

SD_NOFILL 256

SD_RAGGED -1

Definition Name Definition Value

SPECIAL_LINKED 1

SPECIAL_EXT 2

SPECIAL_COMP 3

SPECIAL_VLINKED 4

SPECIAL_CHUNKED 5

Definition Name Definition Value

SUCCEED 0

FAIL -1
March 17, 1998 3-11

3-12 March 17, 1998

	HDF Reference Manual
	Disclaimer
	Trademarks
	Authors
	NCSA Contacts
	Hardcopy Source
	Internet Access

	Table of Contents
	Introduction to the HDF APIs

	1.1 Overview of the HDF Interfaces
	FIGURE 1a Three Levels of Interaction with the HDF File Format

	1.2 Low-Level Interface
	1.3 Multifile Application Interfaces
	1.3.1 Scientific Data Sets: SD Interface
	1.3.2 Annotations: AN Interface
	1.3.3 General Raster Images: GR Interface
	1.3.4 Scientific Data Sets: netCDF Interface
	1.3.5 Vdata: The VS Interface
	1.3.6 Vdata Query: VSQ Interface
	1.3.7 Vdata Fields: VF Interface
	1.3.8 Vgroups: V Interface
	1.3.9 Vdata/Vgroups: VH Interface
	1.3.10 Vgroup Inquiry: VQ Interface

	1.4 Single-File Application Interfaces
	1.4.1 24-bit Raster Image Sets: DF24 Interface
	1.4.2 8-bit Raster Image Sets: DFR8 Interface
	1.4.3 Palettes: DFP Interface
	1.4.4 Scientific Data Sets: DFSD Interface
	1.4.5 Annotations: DFAN Interface

	1.5 FORTRAN-77 and C Language Issues
	1.5.1 FORTRAN-77-to-C Translation
	FIGURE 2b Use of a Function Call Converter to Route FORTRAN-77 HDF Calls to the C Library

	1.5.2 Case Sensitivity
	1.5.3 Name Length
	1.5.4 Header Files
	1.5.5 Data Type Specifications
	TABLE 1A Data Type Definitions

	1.5.6 Array Specifications
	1.5.7 FORTRAN-77, ANSI C and K&R C

	1.6 Error Codes
	TABLE 1B HDF Error Codes
	HDF Routine Reference
	2.1 Reference Section Overview

	ANannlen/afannlen
	ANannlist/afannlist
	ANatype2tag/afatypetag
	ANcreate/afcreate
	ANcreatef/affcreate
	ANend/afend
	ANendaccess/afendaccess
	ANfileinfo/affileinfo
	ANget_tagref/afgettagref
	ANid2tagref/afidtagref
	ANnumann/afnumann
	ANreadann/afreadann
	ANselect/afselect
	ANstart/afstart
	ANtag2atype/aftagatype
	ANtagref2id/aftagrefid
	ANwriteann/afwriteann
	GRattrinfo/mgatinf
	GRcreate/mgcreat
	GRend/mgend
	GRendaccess/mgendac
	GRfileinfo/mgfinfo
	GRfindattr/mgfndat
	GRgetattr/mggnatt/mggcatt
	GRgetchunkinfo/mggichnk
	GRgetiminfo/mggiinf
	GRgetlutid/mggltid
	GRgetlutinfo/mgglinf
	GRidtoref/mgid2rf
	GRluttoref/mglt2rf
	GRnametoindex/mgn2ndx
	GRreadimage/mgrdimg/mgrcimg
	GRreadlut/mgrdlut/mgrclut
	GRreftoindex/mgr2idx
	GRreqimageil/mgrimil
	GRreqlutil/mgrltil
	GRselect/mgselct
	GRsetattr/mgsnatt/mgscatt
	GRsetcompress/mgscompress
	GRsetchunk/mgschnk
	GRsetchunkcache/mgscchnk
	GRsetexternalfile/mgsxfil
	GRstart/mgstart
	GRwriteimage/mgwrimg/mgwcimg
	GRwritelut/mgwrlut/mgwclut
	Hclose/hclose
	Hgetfileversion/hgfilver
	Hgetlibversion/hglibver
	Hishdf
	Hopen/hopen
	HDdont_atexit/hddontatexit
	HEprint/heprnt
	HEstring
	HXsetcreatedir/hxiscdir
	HXsetdir/hxisdir
	SDattrinfo/sfgainfo
	SDcreate/sfcreate
	SDdiminfo/sfgdinfo
	SDend/sfend
	SDendaccess/sfendacc
	SDfileinfo/sffinfo
	SDfindattr/sffattr
	SDgetcal/sfgcal
	SDgetchunkinfo/sfgichnk
	SDgetdatastrs/sfgdtstr
	SDgetdimid/sfdimid
	SDgetdimscale/sfgdscale
	SDgetdimstrs/sfgdmstr
	SDgetfillvalue/sfgfill/sfgcfill
	SDgetinfo/sfginfo
	SDgetrange/sfgrange
	SDidtoref/sfid2ref
	SDiscoordvar/sfiscvar
	SDisdimval_bwcomp/sfisdmvc
	SDisrecord/sfisrcrd
	SDnametoindex/sfn2index
	SDreadattr/sfrnatt/sfrcatt
	SDreadchunk/sfrchnk/sfrcchnk
	SDreaddata/sfrdata/sfrcdata
	SDreftoindex/sfref2index
	SDselect/sfselect
	SDsetattr/sfsnatt/sfscatt
	SDsetblocksize/sfsblsz
	SDsetcal/sfscal
	SDsetchunk/sfschnk
	SDsetchunkcache/sfscchnk
	SDsetcompress/sfscompress
	SDsetdatastrs/sfsdtstr
	SDsetdimname/sfsdmname
	SDsetdimscale/sfsdscale
	SDsetdimstrs/sfsdmstr
	SDsetdimval_comp/sfsdmvc
	SDsetexternalfile/sfsextf
	SDsetfillmode/sfsflmd
	SDsetfillvalue/sfsfill
	SDsetnbitdataset/sfsnbit
	SDsetrange/sfsrange
	SDstart/sfstart
	SDwritechunk/sfwchnk/sfwcchnk
	SDwritedata/sfwdata/sfwcdata
	Vaddtagref/vfadtr
	Vattach/vfatch
	Vattrinfo/vfainfo
	Vdelete/vfdelete
	Vdeletetagref/vfdtr
	Vdetach/vfdtch
	Vend/vfend
	Vfind/vfind
	Vfindattr/vffdatt
	Vfindclass/vfndcls
	Vflocate/vffloc
	Vgetattr/vfgnatt/vfgcatt
	Vgetclass/vfgcls
	Vgetid/vfgid
	Vgetname/vfgnam
	Vgetnext/vfgnxt
	Vgettagref/vfgttr
	Vgettagrefs/vfgttrs
	Vgetversion/vfgver
	Vinqtagref/vfinqtr
	Vinquire/vfinq
	Vinsert/vfinsrt
	Visvg/vfisvg
	Visvs/vfisvs
	Vlone/vflone
	Vnattrs/vfnatts
	Vnrefs/vnrefs
	Vntagrefs/vntrc
	Vsetattr/vfsnatt/vfscatt
	Vsetclass/vfscls
	Vsetname/vfsnam
	Vstart/vfstart
	VHmakegroup/vhfmkgp
	VQueryref/vqref
	VQuerytag/vqtag
	VFfieldesize/vffesiz
	VFfieldisize/vffisiz
	VFfieldname/vffname
	VFfieldorder/vffordr
	VFfieldtype/vfftype
	VFnfields/vfnflds
	VHstoredata/vhfsd/vhfscd
	VHstoredatam/vhfsdm/vhfscdm
	VSappendable/vsapp (Obsolete)
	VSattach/vsfatch
	VSattrinfo/vsfainf
	VSdelete/vsfdlte
	VSdetach/vsfdtch
	VSelts/vsfelts
	VSfdefine/vsffdef
	VSfexist/vsfex
	VSfind/vsffnd
	VSfindattr/vsffdat
	VSfindclass/vffcls
	VSfindex/vsffidx
	VSfnattrs/vsffnas
	VSfpack/vsfcpak/vsfnpak
	VSgetattr/vsfgnat/vsfgcat
	VSgetclass/vsfgcls
	VSgetfields/vsfgfld
	VSgetid/vsfgid
	VSgetinterlace/vsfgint
	VSgetname/vsfgnam
	VSgetversion/vsgver
	VSinquire/vsfinq
	VSisattr/vsfisat
	VSlone/vsflone
	VSnattrs/vsfnats
	VSread/vsfrd/vsfrdc/vsfread
	VSseek/vsfseek
	VSsetattr/vsfsnat/vsfscat
	VSsetclass/vsfscls
	VSsetexternalfile/vsfsextf
	VSsetfields/vsfsfld
	VSsetinterlace/vsfsint
	VSsetname/vsfsnam
	VSsizeof/vsfsiz
	VSwrite/vsfwrt/vsfwrtc/vsfwrit
	VSQuerycount/vsqfnelt
	VSQueryfields/vsqfflds
	VSQueryinterlace/vsqfintr
	VSQueryname/vsqfname
	VSQueryref/vsqref
	VSQuerytag/vsqtag
	VSQueryvsize/vsqfvsiz
	DF24addimage/d2aimg
	DF24getdims/d2gdims
	DF24getimage/d2gimg
	DF24lastref/d2lref
	DF24nimages/d2nimg
	DF24putimage/d2pimg
	DF24readref/d2rref
	DF24reqil/d2reqil
	DF24restart/d2first
	DF24setcompress/d2scomp
	d2scomp
	d2sjpeg
	DF24setdims/d2sdims
	DF24setil/d2setil
	DFR8addimage/d8aimg
	DFR8getdims/d8gdims
	DFR8getimage/d8gimg
	DFR8getpalref
	DFR8lastref/d8lref
	DFR8nimages/d8nims
	DFR8putimage/d8pimg
	DFR8readref/d8rref
	DFR8restart/d8first
	DFR8setcompress/d8scomp
	d8scomp
	d8sjpeg
	DFR8setpalette/d8spal
	DFR8writeref/d8wref
	DFPaddpal/dpapal
	DFPgetpal/dpgpal
	DFPlastref/dplref
	DFPnpals/dpnpals
	DFPputpal/dpppal
	DFPreadref/dprref
	DFPrestart/dprest
	DFPwriteref/dpwref
	DFKNTsize
	DFUfptoimage/duf2im
	DFANaddfds/daafds
	DFANaddfid/daafid
	DFANclear/daclear
	DFANgetdesc/dagdesc
	DFANgetdesclen/dagdlen
	DFANgetfds/dagfds
	DFANgetfdslen/dagfdsl
	DFANgetfid/dagfid
	DFANgetfidlen/dagfidl
	DFANgetlabel/daglab
	DFANgetlablen/dagllen
	DFANlablist/dallist
	DFANlastref/dalref
	DFANputdesc/dapdesc
	DFANputlabel/daplab
	DFSDadddata/dsadata
	DFSDclear/dsclear
	DFSDendslab/dseslab
	DFSDendslice/dseslc
	DFSDgetcal/dsgcal
	DFSDgetdata/dsgdata
	DFSDgetdatalen/dsgdaln
	DFSDgetdatastrs/dsgdast
	DFSDgetdimlen/dsgdiln
	DFSDgetdims/dsgdims
	DFSDgetdimscale/dsgdisc
	DFSDgetdimstrs/dsgdist
	DFSDgetfillvalue/dsgfill
	DFSDgetNT/dsgnt
	DFSDgetrange/dsgrang
	DFSDgetslice/dsgslc
	DFSDlastref/dslref
	DFSDndatasets/dsnum
	DFSDpre32sdg/dsp32sd
	DFSDputdata/dspdata
	DFSDputslice/dspslc
	DFSDreadref/dsrref
	DFSDreadslab/dsrslab
	DFSDrestart/dsfirst
	DFSDsetcal/dsscal
	DFSDsetdatastrs/dssdast
	DFSDsetdims/dssdims
	DFSDsetdimscale/dssdisc
	DFSDsetdimstrs/dssdist
	DFSDsetfillvalue/dssfill
	DFSDsetlengths/dsslens
	DFSDsetNT/dssnt
	DFSDsetrange/dssrang
	DFSDstartslab/dssslab
	DFSDstartslice/dssslc
	DFSDwriteref/dswref
	DFSDwriteslab/dswslab
	Happendable
	Hcache
	Hdeldd
	Hendaccess
	Hendbitaccess
	Hexist
	Hfidinquire
	Hfind
	Hgetbit
	Hgetelement
	Hinquire
	Hlength
	Hnewref
	Hnextread
	Hnumber/hnumber
	Hoffset
	Hputbit
	Hputelement
	Hread
	Hseek
	Hsetlength
	Hshutdown
	Htagnewref
	Htrunc
	Hwrite
	HDFclose/hdfclose
	HDFopen/hdfopen
	HEclear
	HEpush
	HEreport
	HEvalue
	HDF Definition List
	3.1 Definition List Overview
	TABLE 3A *_INTERLACE - Interlace Mode Codes
	TABLE 3B *_WILDCARD - Wildcard Code
	TABLE 3C AN_* - Multifile Annotation Codes
	TABLE 3D COMP_* - Raster Image Compression Codes
	TABLE 3E COMP_CODE_* - General Compression Codes
	TABLE 3F DF_* - Maximum Length Codes
	TABLE 3G DFACC_* - File Access Codes
	TABLE 3H DFE_* - Error Codes
	TABLE 3I DFNT_* - Machine Word Representation and Data Type Codes
	TABLE 3J DFNTF_* - Floating-point Format Codes
	TABLE 3K DFTAG_* - Object Tags
	TABLE 3L HDF_* - Vdata Interface, Linked-block Element, and Vset Packing Mode Codes
	TABLE 3M MFGR_* - Interlace Mode Codes
	TABLE 3N SD_* - Scientific Data Set Configuration Codes
	TABLE 3O SPECIAL_* - Special Element Identifier Codes
	TABLE 3P SUCCEED/FAIL - Routine Return Status Codes

