
June 24, 1998 3-19

Chapter
3

Scientific Data Sets (SD API)

3.1 Chapter Overview

This chapter describes the scientific data model and the interface routines provided by HDF for
creating and accessing the data structures included in the model. This interface is known as the
SD interface or the SD API.

3.2 The Scientific Data Set Data Model

The scientific data set, or SDS, is a group of data structures used to store and describe multidimen-
sional arrays of scientific data. Refer to Figure 3a for a graphical overview of the SD data set.
Note that in this chapter the terms SDS, SD data set, and data set are used interchangeably; the
terms SDS array and array are also used interchangeably.

A scientific data set consists of required and optional components, which will be discussed in the
following subsections.

FIGURE 3a The Contents of a Scientific Data Set

Required Components Optional Components

SDS Array

Name

Data Type

Dimensions

Dimension Scales

Predefined Attributes

User-defined Attributes

SDS

3-20 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

3.2.1 Required SDS Components

Every SDS must contain the following components: an SDS array, a name, a data type, and the
dimensions of the SDS, which are actually the dimensions of the SDS array.

SDS Array

An SDS array is a multidimensional data structure that serves as the core structure of an SDS.
This is the primary data component of the SDS model and can be compressed (refer to
Section 3.5.2 on page 46 for a description of SDS compression) and/or stored in external files
(refer the Section 3.5.3.3 on page 52 for a description of external SDS storage). Users of netCDF
should note that SDS arrays are conceptually equivalent to variables in the netCDF data model1.

An SDS has an index and a reference number associated with it. The index is a non-negative inte-
ger that describes the relative position of the data set in the file. A valid index ranges from 0 to the
total number of data sets in the file minus 1. The reference number is a unique positive integer
assigned to the data set by the SD interface when the data set is created. Various SD interface rou-
tines can be used to obtain an SDS index or reference number depending on the available informa-
tion about the SDS. The index can also be determined if the sequence in which the data sets are
created in the file is known.

In the SD interface, an SDS identifier uniquely identifies a data set within the file. The identifier is
created by the SD interface access routines when a new SDS is created or an existing one is
selected. The identifier is then used by other SD interface routines to access the SDS until the
access to this SDS is terminated. For an existing data set, the index of the data set can be used to
obtain the identifier. Refer to Section 3.4.1 on page 26 for a description of the SD interface routine
that creates SDSs and assigns identifiers to them.

SDS Name

The name of an SDS can be provided by the calling program, or is set to "DataSet" by the HDF
library at the creation of the SDS. The name consists of case-sensitive alphanumeric characters, is
assigned only when the data set is created, and cannot be changed. SDS names do not have to be
unique within a file, but their uniqueness makes it easy to semantically distinguish among data
sets in the file.

Data Type

The data contained in an SDS array has a data type associated with it. The standard data types
supported by the SD interface include 32- and 64-bit floating-point numbers, 8-, 16- and 32-bit
signed integers, 8-, 16- and 32-bit unsigned integers, and 8-bit characters. The SD interface also
allows the creation of SD data sets consisting of data elements of non-standard lengths (1 to 32
bits). See Section 3.7.6 on page 71 for more information.

Dimensions

SDS dimensions specify the shape and size of an SDS array. The number of dimensions of an
array is referred to as the rank of the array. Each dimension has an index and an identifier
assigned to it. A dimension also has a size and may have a name associated with it.

A dimension identifier is a positive number uniquely assigned to the dimension by the library.
This dimension identifier can be retrieved via an SD interface routine. Refer to Section 3.8.1 on
page 72 for a description of how to obtain dimension identifiers.

1. netCDF-3 User’s Guide for C (June 5, 1997), Section 7, http://www.unidata.ucar.edu/pack-
ages/netcdf/guidec/.

June 24, 1998 3-21

HDF User’s Guide

A dimension index is a non-negative number that describes the ordinal location of a dimension
among others in a data set. In other words, when an SDS dimension is created, an index number is
associated with it and is one greater than the index associated with the last created dimension that
belongs to the same data set. The dimension index is convenient in a sequential search or when the
position of the dimension among other dimensions in the SDS is known.

Names can optionally be assigned to dimensions, however, dimension names are not treated in the
same way as SDS array names. For example, if a name assigned to a dimension was previously
assigned to another dimension the SD interface treats both dimensions as the same data compo-
nent and any changes made to one will be reflected in the other.

The size of a dimension is a positive integer. Also, one dimension of an SDS array can be assigned
the predefined size SD_UNLIMITED (or 0). This dimension is referred to as an unlimited dimension,
which, as the name suggests, can grow to any length. Refer to Section 3.5.1.3 on page 40 for more
information on unlimited dimensions.

3.2.2 Optional SDS Components

There are three types of optional SDS components: user-defined attributes, predefined attributes,
and dimension scales. These optional components are only created when specifically requested by
the calling program.

Attributes describe the nature and/or the intended usage of the file, data set, or dimension they are
attached to. Attributes have a name and value which contains one or more data entries of the same
data type. Thus, in addition to name and value, the data type and number of values are specified
when the attribute is created.

User-Defined Attributes

User-defined attributes are defined by the calling program and contain auxiliary information
about a file, SDS array, or dimension. They are more fully described in Section 3.9 on page 85.

Predefined Attributes

Predefined attributes have reserved names and, in some cases, predefined data types and/or num-
ber of data entries. Predefined attributes are useful because they establish conventions that appli-
cations can depend on. They are further described in Section 3.10 on page 95.

Dimension Scales

A dimension scale is a sequence of numbers placed along a dimension to demarcate intervals
along it. Dimension scales are described in Section 3.8.4 on page 74.

3.2.3 Annotations and the SD Data Model

In the past, annotations were supported in the SD interface to allow the HDF user to attach
descriptive information (called metadata) to a data set. With the expansion of the SD interface to
include user-defined attributes, the use of annotations to describe metadata should be eliminated.
Metadata once stored as an annotation is now more conveniently stored as an attribute. However,
to ensure backward compatibility with scientific data sets and applications relying on annotations,
the AN annotation interface, described in Chapter 10, Annotations (AN API) can be used to anno-
tate SDSs.

There is no cross-compatibility between attributes and annotations; creating one does not auto-
matically create the other.

3-22 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

3.3 The SD Interface

The SD interface provides routines that store, retrieve, and manipulate scientific data using the
SDS data model. The SD interface supports simultaneous access to more than one SDS in more
than one HDF file. In addition, the SD interface is designed to support a general scientific data
model which is very similar to the netCDF data model developed by the Unidata Program Center1.

For those users who have been using the DFSD interface, the SD interface provide a model com-
patible with that supported by the DFSD interface. It is recommended that DFSD users apply the
SD model and interface to their applications since the DFSD interface is less flexible and less
powerful than the SD interface and will eventually be removed from the HDF library.

This section specifies the header file to be used with the SD interface and lists all available SD
interface routines, each of which is accompanied by its purpose and the section where the routine
is discussed.

3.3.1 Header and Include Files Used by the SD Interface

The “mfhdf.h” header file must be included in programs that invoke SD interface routines. FOR-
TRAN-77 users should refer to Section 2.4.3 on page 16.

3.3.2 SD Interface Routines

All C routines in the SD interface begin with the prefix "SD". The equivalent FORTRAN-77 rou-
tines use the prefix "sf". These routines are categorized as follows:

• Access routines initialize and terminate access to HDF files and data sets.

• Read and write routines read and write data sets.

• General inquiry routines return information about the location, contents, and description of
the scientific data sets in an HDF file.

• Dimension routines access and define characteristics of dimensions within a data set.

• Dimension scale routines define and access dimension scales within a data set.

• User-defined attribute routines describe and access characteristics of an HDF file, data set
or dimension defined by the HDF user.

• Predefined attribute routines access previously-defined characteristics of an HDF file, data
set, or dimension.

• Compression routines compress SDS data.

• Chunking/tiling routines manage chunked data sets.

• Miscellaneous routines provide other operations such as external file, n-bit data set, and
compatibility operations.

The SD routines are listed in the following table and are discussed in the following sections of this
document.

1. netCDF-3 User’s Guide for C (June 5, 1997), Section 2, http://www.unidata.ucar.edu/pack-
ages/netcdf/guidec/.

June 24, 1998 3-23

HDF User’s Guide

TABLE 3A SD Interface Routines

Category
Routine Name

Description and Reference
C FORTRAN-77

 Access

SDstart sfstart
Opens the HDF file and initializes the SD interface (Section 3.4.1
on page 26)

SDcreate sfcreate Creates a new data set (Section 3.4.1 on page 26)

SDselect sfselect Selects an existing SDS using its index (Section 3.4.1 on page 26)

SDendaccess sfendacc Terminates access to an SDS (Section 3.4.2 on page 27)

SDend sfend
Terminates access to the SD interface and closes the file
(Section 3.4.2 on page 27)

Read and Write

SDreaddata
sfrdata/sfrc-

data
Reads data from a data set (Section 3.6 on page 55)

SDwritedata
sfwdata/

sfwcdata
Writes data to a data set (Section 3.5.1 on page 30)

General Inquiry

SDfileinfo sffinfo
Retrieves information about the contents of a file (Section 3.7.1 on
page 63)

SDgetinfo sfginfo Retrieves information about a data set (Section 3.7.2 on page 63)

SDidtoref sfid2ref
Returns the reference number of a data set (Section 3.7.5 on
page 67)

SDiscoordvar sfiscvar
Distinguishes data sets from dimension scales (Section 3.8.4.4 on
page 81)

SDisrecord sfisrcrd
Determines whether a data set is appendable (Section 3.5.1.4 on
page 41)

SDnametoindex sfn2index
Returns the index of a data set specified by its name (Section 3.7.3
on page 67)

SDreftoindex sfref2index
Returns the index of a data set specified by its reference number
(Section 3.7.4 on page 67)

Dimensions

SDdiminfo sfgdinfo Gets information about a dimension (Section 3.8.4.2 on page 75)

SDgetdimid sfdimid Returns the identifier of a dimension (Section 3.8.1 on page 72)

SDsetdimname sfsdimname Associates a name with a dimension (Section 3.8.2 on page 72)

Dimension Scales
SDgetdimscale sfgdscale

Retrieves the scale values for a dimension (Section 3.8.4.3 on
page 75)

SDsetdimscale sfsdscale Stores the scale values of a dimension (Section 3.8.4.1 on page 75)

User-defined
Attributes

SDattrinfo sfgainfo Gets information about an attribute (Section 3.9.2 on page 89)

SDfindattr sffattr
Returns the index of an attribute specified by its name
(Section 3.9.2 on page 89)

SDreadattr
sfrnatt/sfr-

catt

Reads the values of an attribute specified by its index (Section 3.9.3
on page 89)

SDsetattr
sfsnatt/sfs-

catt

Creates a new attribute and stores its values (Section 3.9.1 on
page 85)

3-24 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

3.3.3 Tags in the SD Interface

A complete list of SDS tags and their descriptions appears in Table D in Appendix A. Refer to
Section 2.2.2.1 on page 8 for a description of tags.

3.4 Programming Model for the SD Interface

This section describes the routines used to initialize the SD interface, create a new SDS or access
an existing one, terminate access to that SDS, and shut down the SD interface. Writing to existing
scientific data sets will be described in Section 3.5 on page 30.

To support multifile access, the SD interface relies on the calling program to initiate and terminate
access to files and data sets. The SD programming model for creating and accessing an SDS in an
HDF file is as follows:

Predefined
Attributes

SDgetcal sfgcal Retrieves calibration information (Section 3.10.6.2 on page 103)

SDgetdatastrs sfgdtstr
Returns the predefined-attribute strings of a data set
(Section 3.10.2.2 on page 98)

SDgetdimstrs sfgdmstr
Returns the predefined-attribute strings of a dimension
(Section 3.10.3.2 on page 99)

SDgetfillvalue
sfgfill/sfgc-

fill
Reads the fill value if it exists (Section 3.10.5.2 on page 101)

SDgetrange sfgrange
Retrieves the range of values in the specified data set
(Section 3.10.4.2 on page 100)

SDsetcal sfscal Defines the calibration information (Section 3.10.6.1 on page 102)

SDsetdatastrs sfsdtstr
Sets predefined attributes of the specified data set (Section 3.10.2.1
on page 97)

SDsetdimstrs sfsdmstr
Sets predefined attributes of the specified dimension
(Section 3.10.3.1 on page 98)

SDsetfillvalue
sfsfill/sfsc-

fill

Defines the fill value for the specified data set (Section 3.10.5.1 on
page 101)

SDsetfillmode sfsflmd
Sets the fill mode to be applied to all data sets in the specified file
(Section 3.10.5.3 on page 102)

SDsetrange sfsrange
Defines the maximum and minimum values of the specified data set
(Section 3.10.4.1 on page 99)

Compression

SDsetcompress sfscompress
Compresses a data set using a specified compression method
(Section 3.5.2 on page 46)

SDsetnbitdataset sfsnbit
Defines the non-standard bit length of the data set data
(Section 3.7.6 on page 71)

Chunking/
Tiling

SDgetchunkinfo sfgichnk
Obtains information about a chunked data set (Section 3.11.5 on
page 109)

SDreadchunk
sfrchnk/

sfrcchnk
Reads data from a chunked data set (Section 3.11.4 on page 109)

SDsetchunk sfschnk
Makes a non-chunked data set a chunked data set (Section 3.11.1
on page 104)

SDsetchunkcache sfcchnk Sets the size of the chunk cache (Section 3.11.2 on page 106)

SDwritechunk
sfwchnk/

sfwcchnk
Writes data to a chunked data set (Section 3.11.3 on page 107)

Miscellaneous

SDsetblocksize sfsblsz
Sets the block size used for storing data sets with unlimited dimen-
sion (Section 3.5.1.5 on page 41)

SDsetexternalfile sfsextf
Specifies that a data set is to be stored in an external file
(Section 3.5.3.3 on page 52)

SDisdimval_bwcomp sfisdmvc
Determines the current compatibility mode of a dimension
(Section 3.8.3.2 on page 74)

SDsetdimval_comp sfsdmvc
Sets the future compatibility mode of a dimension (Section 3.8.3.1
on page 73)

June 24, 1998 3-25

HDF User’s Guide

1. Open a file and initialize the SD interface.

2. Create a new data set or open an existing one using its index.

3. Perform desired operations on this data set.

4. Terminate access to the data set.

5. Terminate access to the SD interface and close the file.

To access a single SDS in an HDF file, the calling program must contain the following calls:

C: sd_id = SDstart(filename, access_mode);

sds_id = SDcreate(sd_id, sds_name, data_type, rank,

dim_sizes);

OR sds_id = SDselect(sd_id, sds_index);

<Optional operations>
status = SDendaccess(sds_id);
status = SDend(sd_id);

FORTRAN: sd_id = sfstart(filename, access_mode)

sds_id = sfcreate(sd_id, sds_name, data_type, rank, dim_sizes)

OR sds_id = sfselect(sd_id, sds_index)

<Optional operations>
status = sfendacc(sds_id)
status = sfend(sd_id)

To access several files at the same time, a program must obtain a separate SD file identifier
(sd_id) for each file to be opened. Likewise, to access more than one SDS, a calling program
must obtain a separate SDS identifier (sds_id) for each SDS. For example, to open two SDSs
stored in two files a program would execute the following series of function calls.

C: sd_id_1 = SDstart(filename_1, access_mode);

sds_id_1 = SDselect(sd_id_1, sds_index_1);
sd_id_2 = SDstart(filename_2, access_mode);
sds_id_2 = SDselect(sd_id_2, sds_index_2);
<Optional operations>
status = SDendaccess(sds_id_1);
status = SDend(sd_id_1);
status = SDendaccess(sds_id_2);
status = SDend(sd_id_2);

FORTRAN: sd_id_1 = sfstart(filename_1, access_mode)

sds_id_1 = sfselect(sd_id_1, sds_index_1)
sd_id_2 = sfstart(filename_2, access_mode)
sds_id_2 = sfselect(sd_id_2, sds_index_2)
<Optional operations>
status = sfendacc(sds_id_1)
status = sfend(sd_id_1)
status = sfendacc(sds_id_2)
status = sfend(sd_id_2)

3-26 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

3.4.1 Establishing Access to Files and Data Sets: SDstart, SDcreate, and
SDselect

In the SD interface, SDstart is used to open files rather than Hopen. SDstart takes two argu-
ments, filename and access_mode , and returns the SD interface identifier, sd_id . Note that the
SD interface identifier, sd_id , is not interchangeable with the file identifier, file_id , created by
Hopen and used in other HDF APIs.

The argument filename is the name of an HDF or netCDF file.

The argument access_mode specifies the type of access required for operations on the file. All the
valid values for access_mode are listed in Table 3B. If the file does not exist, specifying
DFACC_READ or DFACC_WRITE will cause SDstart to return a FAIL (or -1) . Specifying
DFACC_CREATE creates a new file with read and write access. If DFACC_CREATE is specified and the
file already exists, the contents of this file will be replaced.

TABLE 3B File Access Code Flags

The SD interface identifiers can be obtained and discarded in any order and all SD interface iden-
tifiers must be individually discarded, by SDend, before the termination of the calling program.

Although it is possible to open a file more than once, it is recommended that the appropriate
access mode be specified and SDstart called only once per file. Repeatedly calling SDstart on the
same file and with different access modes may cause unexpected results.

SDstart returns an SD identifier or a value of FAIL (or -1). The parameters of SDstart are defined
in Table 3C on page 27.

SDcreate defines a new SDS using the arguments sd_id , sds_name , data_type , rank , and
dim_sizes and returns the data set identifier, sds_id .

The parameter sds_name is a character string containing the name to be assigned to the SDS. The
SD interface will generate a default name, "Data Set", for the SDS, if one is not provided, i.e.,
when the parameter sds_name is set to NULL in C, or an empty string in FORTRAN-77. The max-
imum length of an SDS name is 64 characters and, if sds_name contains more than 64 characters,
the name will be truncated before being assigned.

The parameter data_type is a defined name, prefaced by DFNT, and specifies the type of the data
to be stored in the data set. The header file "hntdefs.h" contains the definitions of all valid data
types, which are described in Chapter 2, HDF Fundamentals, and listed in Table 2E on page 14.

The parameter rank is a positive integer specifying the number of dimensions of the SDS array.
The maximum rank of an SDS array is defined by MAX_VAR_DIMS (or 32), which is defined in the
header file "netcdf.h".

Each element of the one-dimensional array dim_sizes specifies the length of the corresponding
dimension of the SDS array. The size of dim_sizes must be the value of the parameter rank . To
create a data set with an unlimited dimension, assign the value of SD_UNLIMITED (or 0) to
dim_sizes[0] in C, and to dim_sizes(rank) in FORTRAN-77.

File Access Flag Flag Value Description

DFACC_READ 1 Read only access

DFACC_WRITE 2 Read and write access

DFACC_CREATE 4 Create with read and write access

June 24, 1998 3-27

HDF User’s Guide

Once an SDS is created, you cannot change its name, data type, size, or shape. However, it is pos-
sible to modify the data set data or to create an empty data set and later add values. To add data or
modify an existing data set, use SDselect to get the data set identifier instead of SDcreate.

Note that the SD interface retains no definitions about the size, contents, or rank of an SDS from
one SDS to the next, or from one file to the next.

SDselect initiates access to an existing data set. The routine takes two arguments: sd_id and
sds_index and returns the SDS identifier sds_id . The argument sd_id is the SD interface identi-
fier returned by SDstart, and sds_index is the position of the data set in the file. The argument
sds_index is zero-based, meaning that the index of first SDS in the file is 0.

Similar to SD interface identifiers, SDS identifiers can be obtained and discarded in any order as
long as they are discarded properly. Each SDS identifier must be individually disposed of, by
SDendaccess, before the disposal of the identifier of the interface in which the SDS is opened.

SDcreate and SDselect each returns an SDS identifier or a value of FAIL (or -1). The parameters
of SDstart, SDcreate, and SDselect are further described in Table 3C.

3.4.2 Terminating Access to Files and Data Sets: SDendaccess and SDend

SDendaccess terminates access to the data set and disposes of the data set identifier sds_id . The
calling program must make one SDendaccess call for every SDselect or SDcreate call made dur-
ing its execution. Failing to call SDendaccess for each call to SDselect or SDcreate may result in
a loss of data.

SDend terminates access to the file and the SD interface and disposes of the file identifier sd_id .
The calling program must make one SDend call for every SDstart call made during its execution.
Failing to call SDend for each SDstart may result in a loss of data.

SDendaccess and SDend each returns either a value of SUCCEED (or 0) or FAIL (or -1). The param-
eters of SDendaccess and SDend are further described in Table 3C.

TABLE 3C SDstart, SDcreate, SDselect, SDendaccess, and SDend Parameter Lists

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDstart
[int32]

(sfstart)

filename char * character*(*) Name of the HDF or netCDF file

access_mode int32 integer Type of access

SDcreate
[int32]

(sfcreate)

sd_id int32 integer SD interface identifier

sds_name char * character*(*) ASCII string containing the name of the data set

data_type int32 integer Data type of the data set

rank int32 integer Number of dimensions in the array

dim_sizes int32[] integer(*) Array defining the size of each dimension

SDselect
[int32]

(sfselect)

sd_id int32 integer SD interface identifier

sds_index int32 integer Position of the data set within the file

SDendaccess
[intn]

(sfendacc)
sds_id int32 integer Data set identifier

SDend
[intn]

(sfend)
sd_id int32 integer SD interface identifier

3-28 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

EXAMPLE 1. Creating an HDF file and an Empty SDS.

This example illustrates the use of SDstart/sfstart, SDcreate/sfcreate, SDendaccess/sfendacc,
and SDend/sfend to create the HDF file named SDS.hdf, and an empty data set with the name
SDStemplate in the file.

Note that the Fortran program uses a transformed array to reflect the difference between C and
Fortran internal data storages. When the actual data is written to the data set, SDS.hdf will contain
the same data regardless of the language being used.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define SDS_NAME "SDStemplate"
#define X_LENGTH 5
#define Y_LENGTH 16
#define RANK 2 /* Number of dimensions of the SDS */

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id; /* SD interface and data set identifiers */
 int32 dim_sizes[2]; /* sizes of the SDS dimensions */
 intn status; /* status returned by some routines; has value
 SUCCEED or FAIL */

 /********************* End of variable declaration ***********************/

 /*
 * Create the file and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_CREATE);

 /*
 * Define the dimensions of the array to be created.
 */
 dim_sizes[0] = Y_LENGTH;
 dim_sizes[1] = X_LENGTH;

 /*
 * Create the data set with the name defined in SDS_NAME. Note that
 * DFNT_INT32 indicates that the SDS data is of type int32. Refer to
 * Table 2E for definitions of other types.
 */
 sds_id = SDcreate (sd_id, SDS_NAME, DFNT_INT32, RANK, dim_sizes);

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

June 24, 1998 3-29

HDF User’s Guide

FORTRAN:
 program create_SDS
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 character*11 SDS_NAME
 integer X_LENGTH, Y_LENGTH, RANK
 parameter (FILE_NAME = ’SDS.hdf’,
 + SDS_NAME = ’SDStemplate’,
 + X_LENGTH = 5,
 + Y_LENGTH = 16,
 + RANK = 2)
 integer DFACC_CREATE, DFNT_INT32
 parameter (DFACC_CREATE = 4,
 + DFNT_INT32 = 24)
C
C Function declaration.
C
 integer sfstart, sfcreate, sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, dim_sizes(2)
 integer status
C
C**** End of variable declaration ************************************
C
C
C Create the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_CREATE)
C
C Define dimensions of the array to be created.
C
 dim_sizes(1) = X_LENGTH
 dim_sizes(2) = Y_LENGTH
C
C Create the array with the name defined in SDS_NAME.
C Note that DFNT_INT32 indicates that the SDS data is of type
C integer. Refer to Tables 2E and 2I for the definition of other types.
C
 sds_id = sfcreate(sd_id, SDS_NAME, DFNT_INT32, RANK,
 . dim_sizes)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

3-30 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

3.5 Writing Data to an SDS

An SDS can be written partially or entirely. Partial writing includes writing to a contiguous region
of the SDS and writing to selected locations in the SDS according to patterns defined by the user.
This section describes the routine SDwritedata and how it can write data to part of an SDS or to
an entire SDS. The section also illustrates the concepts of compressing SDSs and using external
files to store scientific data.

3.5.1 Writing Data to an SDS Array: SDwritedata

SDwritedata can completely or partially fill an SDS array or append data along the dimension
that is defined to be of unlimited length (see Section 3.5.1.3 on page 40 for a discussion of unlim-
ited-length dimensions). It can also skip a specified number of SDS array elements between write
operations along each dimension.

To write to an existing SDS, the calling program must contain the following sequence of routine
calls:

C: sds_id = SDselect(sd_id, sds_index);

status = SDwritedata(sds_id, start, stride, edges, data);

FORTRAN: sds_id = sfselect(sd_id, sds_index)

status = sfwdata(sds_id, start, stride, edges, data)

OR status = sfwcdata(sds_id, start, stride, edges, data)

To write to a new SDS, simply replace the call SDselect with the call SDcreate, which is
described in Section 3.4.1 on page 26.

SDwritedata takes five arguments: sds_id , start , stride , edges , and data . The argument
sds_id is the data set identifier returned by SDcreate or SDselect.

Before proceeding with the description of the remaining arguments, an explanation of the term
hyperslab (or slab, as it will be used in this chapter) is in order. A slab is a group of SDS array ele-
ments that are stored in consecutive locations. It can be of any size and dimensionality as long as
it is a subset of the array, which means that a single array element and the entire array can both be
considered slabs. A slab is defined by the multidimensional coordinate of its initial vertex and the
lengths of each dimension.

Given this description of the slab concept, the usage of the remaining arguments should become
apparent. The argument start is a one-dimensional array specifying the location in the SDS array
at which the write operation will begin. The values of each element of the array start are relative
to 0 in both the C and FORTRAN-77 interfaces. The size of start must be the same as the num-
ber of dimensions in the SDS array. In addition, each value in start must be smaller than its cor-
responding SDS array dimension unless the dimension is unlimited. Violating any of these
conditions causes SDwritedata to return FAIL .

The argument stride is a one-dimensional array specifying, for each dimension, the interval
between values to be written. For example, setting the first element of the array stride equal to 1
writes data to every location along the first dimension. Setting the first element of the array
stride to 2 writes data to every other location along the first dimension. Figure 3b illustrates this
example, where the shading elements are written and the white elements are skipped. If the argu-
ment stride is set to NULL in C (or either 0 or 1 in FORTRAN-77), SDwritedata operates as if
every element of stride contains a value of 1, and a contiguous write is performed. For better
performance, it is recommended that the value of stride be defined as NULL (i.e., 0 or 1 in FOR-
TRAN-77) rather than being set to 1.

June 24, 1998 3-31

HDF User’s Guide

The size of the array stride must be the same as the number of dimensions in the SDS array.
Also, each value in stride must be smaller than or equal to its corresponding SDS array dimen-
sion unless the dimension is unlimited. Violating any of these conditions causes SDwritedata to
return FAIL .

FIGURE 3b An Example of Access Pattern ("Strides")

The argument edges is a one-dimensional array specifying the length of each dimension of the
slab to be written. If the slab has fewer dimensions than the SDS data set has, the size of edges

must still be equal to the number of dimensions in the SDS array and all the elements correspond-
ing to the additional dimensions must be set to 1.

Each value in the array edges must not be larger than the length of the corresponding dimension in
the SDS data set unless the dimension is unlimited. Attempting to write slabs larger than the size
of the SDS data set will result in an error condition.

In addition, the sum of each value in the array edges and the corresponding value in the start

array must be smaller than or equal to its corresponding SDS array dimension unless the dimen-
sion is unlimited. Violating any of these conditions causes SDwritedata to return FAIL .

The parameter data contains the SDS data to be written. If the SDS array is smaller than the
buffer data , the amount of data written will be limited to the maximum size of the SDS array.

Be aware that the mapping between the dimensions of a slab and the order in which the slab val-
ues are stored in memory is different between C and FORTRAN-77. In C, the values are stored
with the assumption that the last dimension of the slab varies fastest (or "row-major order" stor-
age), but in FORTRAN-77 the first dimension varies fastest (or "column-major order" storage).
These storage order conventions can cause some confusion when data written by a C program is
read by a FORTRAN-77 program or vice versa.

There are two FORTRAN-77 versions of this routine: sfwdata and sfwcdata. The routine sfw-
data writes numeric scientific data and sfwcdata writes character scientific data.

SDwritedata returns either a value of SUCCEED (or 0) or FAIL (or -1). The parameters of this rou-
tine are described in Table 3D.

Array
Location

0 1 2 3 4 5 6 N

. . .

stride[0] = 2

3-32 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

TABLE 3D SDwritedata Parameter List

3.5.1.1 Filling an Entire Array

Filling an array is a simple slab operation where the slab begins at the origin of the SDS array and
fills every location in the array. SDwritedata fills an entire SDS array with data when all elements
of the array start are set to 0, the argument stride is set equal to NULL in C or each element of
the array stride is set to 1 in both C and FORTRAN-77, and each element of the array edges is
equal to the length of each dimension.

EXAMPLE 2. Writing to an SDS.

This example illustrates the use of the routines SDselect/sfselect and SDwritedata/sfwrite to
select the first SDS in the file SDS.hdf created in Example 1 and to write actual data to it.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define X_LENGTH 5
#define Y_LENGTH 16

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 start[2], edges[2];
 int32 data[Y_LENGTH][X_LENGTH];
 int i, j;

 /********************* End of variable declaration ***********************/

 /*
 * Data set data initialization.
 */
 for (j = 0; j < Y_LENGTH; j++) {
 for (i = 0; i < X_LENGTH; i++)
 data[j][i] = (i + j) + 1;
 }

 /*
 * Open the file and initialize the SD interface.
 */

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDwritedata
[intn]

(sfwdata/
sfwcdata)

sds_id int32 integer Data set identifier

start int32 [] integer(*)
Array containing the position at which the
write will start for each dimension

stride int32 [] integer(*)
Array specifying the interval between the val-
ues that will be read along each dimension

edges int32 [] integer(*)
Array containing the number of data elements
that will be written along each dimension

data VOIDP
<valid numeric data type>(*)/

character*(*)
Buffer for the data to be written

June 24, 1998 3-33

HDF User’s Guide

 sd_id = SDstart (FILE_NAME, DFACC_WRITE);

 /*
 * Attach to the first data set.
 */
 sds_index = 0;
 sds_id = SDselect (sd_id, sds_index);

 /*
 * Define the location and size of the data to be written to the data set.
 */
 start[0] = 0;
 start[1] = 0;
 edges[0] = Y_LENGTH;
 edges[1] = X_LENGTH;

 /*
 * Write the stored data to the data set. The third argument is set to NULL
 * to specify contiguous data elements. The last argument must
 * be explicitly cast to a generic pointer since SDwritedata is designed
 * to write generic data.
 */
 status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)data);

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

FORTRAN:
 program write_data
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 character*11 SDS_NAME
 integer X_LENGTH, Y_LENGTH, RANK
 parameter (FILE_NAME = ’SDS.hdf’,
 + SDS_NAME = ’SDStemplate’,
 + X_LENGTH = 5,
 + Y_LENGTH = 16,
 + RANK = 2)
 integer DFACC_WRITE, DFNT_INT32
 parameter (DFACC_WRITE = 2,
 + DFNT_INT32 = 24)
C
C Function declaration.
C

 integer sfstart, sfselect, sfwdata, sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index, status
 integer start(2), edges(2), stride(2)

3-34 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 integer i, j
 integer data(X_LENGTH, Y_LENGTH)
C
C**** End of variable declaration ************************************
C

C
C Data set data initialization.
C
 do 20 j = 1, Y_LENGTH
 do 10 i = 1, X_LENGTH
 data(i, j) = i + j - 1
10 continue
20 continue

C
C Open the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_WRITE)

C
C Attach to the first data set.
C
 sds_index = 0
 sds_id = sfselect(sd_id, sds_index)

C
C Define the location and size of the data to be written
C to the data set. Note that setting values of the array stride to 1
C specifies the contiguous writing of data.
C
 start(1) = 0
 start(2) = 0
 edges(1) = X_LENGTH
 edges(2) = Y_LENGTH
 stride(1) = 1
 stride(2) = 1
C
C Write the stored data to the data set named in SDS_NAME.
C Note that the routine sfwdata is used instead of sfwcdata
C to write the numeric data.
C
 status = sfwdata(sds_id, start, stride, edges, data)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

June 24, 1998 3-35

HDF User’s Guide

3.5.1.2 Writing Slabs to an SDS Array

To allow preexisting data to be modified, the HDF library does not prevent SDwritedata from
overwriting one slab with another. As a result, the calling program is responsible for managing
any overlap when writing slabs. The HDF library will issue an error if a slab extends past the valid
boundaries of the SDS array. However, appending data along an unlimited dimension is allowed.

EXAMPLE 3. Writing a Slab of Data to an SDS.

This example shows how to fill a 3-dimensional SDS array with data by writing series of 2-dimen-
sional slabs to it.

C:
#include "mfhdf.h"

#define FILE_NAME "SLABS.hdf"
#define SDS_NAME "FilledBySlabs"
#define X_LENGTH 4
#define Y_LENGTH 5
#define Z_LENGTH 6
#define RANK 3

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id;
 intn status;
 int32 dim_sizes[3], start[3], edges[3];
 int32 data[Z_LENGTH][Y_LENGTH][X_LENGTH];
 int32 zx_data[Z_LENGTH][X_LENGTH];
 int i, j, k;

 /********************* End of variable declaration ***********************/

 /*
 * Data initialization.
 */
 for (k = 0; k < Z_LENGTH; k++)
 for (j = 0; j < Y_LENGTH; j++)
 for (i = 0; i < X_LENGTH; i++)
 data[k][j][i] = (i + 1) + (j + 1) + (k + 1);

 /*
 * Create the file and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_CREATE);

 /*
 * Define dimensions of the array to be created.
 */
 dim_sizes[0] = Z_LENGTH;
 dim_sizes[1] = Y_LENGTH;
 dim_sizes[2] = X_LENGTH;

 /*
 * Create the array with the name defined in SDS_NAME.
 */
 sds_id = SDcreate (sd_id, SDS_NAME, DFNT_INT32, RANK, dim_sizes);

 /*

3-36 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 * Set the parameters start and edges to write
 * a 6x4 element slab of data to the data set; note
 * that edges[1] is set to 1 to define a 2-dimensional slab
 * parallel to the ZX plane.
 * start[1] (slab position in the array) is initialized inside
 * the for loop.
 */
 edges[0] = Z_LENGTH;
 edges[1] = 1;
 edges[2] = X_LENGTH;
 start[0] = start[2] = 0;
 for (j = 0; j < Y_LENGTH; j++)
 {
 start[1] = j;

 /*
 * Initialize zx_data buffer (data slab).
 */
 for (k = 0; k < Z_LENGTH; k++)
 {
 for (i = 0; i < X_LENGTH; i++)
 {
 zx_data[k][i] = data[k][j][i];
 }
 }

 /*
 * Write the data slab into the SDS array defined in SDS_NAME.
 * Note that the 3rd parameter is NULL which indicates that consecutive
 * slabs in the Y direction are written.
 */
 status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)zx_data);
 }

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

FORTRAN:
 program write_slab
 implicit none
C
C Parameter declaration.
C
 character*9 FILE_NAME
 character*13 SDS_NAME
 integer X_LENGTH, Y_LENGTH, Z_LENGTH, RANK
 parameter (FILE_NAME = ’SLABS.hdf’,
 + SDS_NAME = ’FilledBySlabs’,
 + X_LENGTH = 4,
 + Y_LENGTH = 5,
 + Z_LENGTH = 6,
 + RANK = 3)
 integer DFACC_CREATE, DFNT_INT32
 parameter (DFACC_CREATE = 4,

June 24, 1998 3-37

HDF User’s Guide

 + DFNT_INT32 = 24)
C
C Function declaration.
C
 integer sfstart, sfcreate, sfwdata, sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id
 integer dim_sizes(3), start(3), edges(3), stride(3)
 integer i, j, k, status
 integer data(X_LENGTH, Y_LENGTH, Z_LENGTH)
 integer xz_data(X_LENGTH, Z_LENGTH)
C
C**** End of variable declaration ************************************
C
C
C Data initialization.
C
 do 30 k = 1, Z_LENGTH
 do 20 j = 1, Y_LENGTH
 do 10 i = 1, X_LENGTH
 data(i, j, k) = i + j + k
10 continue
20 continue
30 continue
C
C Create the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_CREATE)
C
C Define dimensions of the array to be created.
C
 dim_sizes(1) = X_LENGTH
 dim_sizes(2) = Y_LENGTH
 dim_sizes(3) = Z_LENGTH
C
C Create the data set with the name defined in SDS_NAME.
C
 sds_id = sfcreate(sd_id, SDS_NAME, DFNT_INT32, RANK,
 . dim_sizes)
C
C Set the parameters start and edges to write
C a 4x6 element slab of data to the data set;
C note that edges(2) is set to 1 to define a 2 dimensional slab
C parallel to the XZ plane;
C start(2) (slab position in the array) is initialized inside the
C for loop.
C
 edges(1) = X_LENGTH
 edges(2) = 1
 edges(3) = Z_LENGTH
 start(1) = 0
 start(3) = 0
 stride(1) = 1
 stride(2) = 1
 stride(3) = 1

 do 60 j = 1, Y_LENGTH
 start(2) = j - 1
C
C Initialize the buffer xz_data (data slab).
C

3-38 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 do 50 k = 1, Z_LENGTH
 do 40 i = 1, X_LENGTH
 xz_data(i, k) = data(i, j, k)
40 continue
50 continue
C
C Write the data slab into SDS array defined in SDS_NAME.
C Note that the elements of array stride are set to 1 to
C specify that the consecutive slabs in the Y direction are written.
C
 status = sfwdata(sds_id, start, stride, edges, xz_data)
60 continue
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

EXAMPLE 4. Altering Values within an SDS Array.

This example demonstrates how the routine SDwritedata can be used to alter the values of the
elements in the 10th and 11th rows, at the 2nd column, in the SDS array created in the Example 1
and written in Example 2. FORTRAN-77 routine sfwdata is used to alter the elements in the 2nd
row, 10th and 11th columns, to reflect the difference between C and Fortran internal storage.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 start[2], edges[2];
 int32 new_data[2];
 int i, j;

 /********************* End of variable declaration ***********************/
 /*
 * Open the file and initialize the SD interface with write access.
 */
 sd_id = SDstart (FILE_NAME, DFACC_WRITE);

 /*
 * Select the first data set.
 */
 sds_index = 0;
 sds_id = SDselect (sd_id, sds_index);

 /*
 * Set up the start and edge parameters to write new element values
 * into 10th row, 2nd column place, and 11th row, 2nd column place.

June 24, 1998 3-39

HDF User’s Guide

 */
 start[0] = 9; /* starting at 10th row */
 start[1] = 1; /* starting at 2nd column */
 edges[0] = 2; /* rows 10th and 11th */
 edges[1] = 1; /* column 2nd only */

 /*
 * Initialize buffer with the new values to be written.
 */
 new_data[0] = new_data[1] = 1000;

 /*
 * Write the new values.
 */
 status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)new_data);

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

FORTRAN:
 program alter_data
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 integer DFACC_WRITE
 parameter (FILE_NAME = ’SDS.hdf’,
 + DFACC_WRITE = 2)
C
C Function declaration.
C
 integer sfstart, sfselect, sfwdata, sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index
 integer start(2), edges(2), stride(2)
 integer status
 integer new_data(2)
C
C**** End of variable declaration ************************************
C

C
C Open the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_WRITE)
C
C Select the first data set.
C
 sds_index = 0
 sds_id = sfselect(sd_id, sds_index)

3-40 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

C
C Initialize the start, edge, and stride parameters to write
C two elements into 2nd row, 10th column and 11th column places.
C
C Specify 2nd row.
C
 start(1) = 1
C
C Specify 10th column.
C
 start(2) = 9
 edges(1) = 1
C
C Two elements are written along 2nd row.
C
 edges(2) = 2
 stride(1) = 1
 stride(2) = 1
C
C Initialize the new values to be written.
C
 new_data(1) = 1000
 new_data(2) = 1000
C
C Write the new values.
C
 status = sfwdata(sds_id, start, stride, edges, new_data)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

3.5.1.3 Appending Data to an SDS Array along an Unlimited Dimension

An SDS array can be made appendable, however, only along one dimension. This dimension must
be specified as an appendable dimension when it is created.

In C, only the first element of the SDcreate parameter dim_sizes (i.e., the dimension of the low-
est rank or the slowest-changing dimension) can be assigned the value SD_UNLIMITED (or 0) to
make the first dimension unlimited. In FORTRAN-77, only the last dimension (i.e., the dimen-
sion of the highest rank or the slowest-changing dimension) can be unlimited. In other words, in
FORTRAN-77 dim_sizes(rank) must be set to the value SD_UNLIMITED to make the last dimen-
sion appendable.

To append data to a data set without overwriting previously-written data, the user must specify the
appropriate coordinates in the start parameter of the SDwritedata routine. For example, if 15
data elements have been written to an unlimited dimension, appending data to the array requires a
start coordinate of 15. Specifying a starting coordinate less than the current number of elements
written to the unlimited dimension will result in data being overwritten. In either case, all of the
coordinates in the array except the one corresponding to the unlimited dimension must be equal to
or less than the lengths of their corresponding dimensions.

Any time an unlimited dimension is appended to, the HDF library will automatically adjust the
dimension record to the new length. If the newly-appended data begins beyond the previous length

June 24, 1998 3-41

HDF User’s Guide

of the dimension, the locations between the old data and the beginning of the newly-appended
data are initialized to the assigned fill value if there is one defined by the user, or the default fill
value if none is defined. Refer to Section 3.10.5 on page 100 for a discussion of fill value.

3.5.1.4 Determining whether an SDS Array is Appendable: SDisrecord

SDisrecord determines whether the data set identified by the parameter sds_id is appendable,
which means that the slowest-changing dimension of the SDS array is declared unlimited when
the data set is created. The syntax of SDisrecord is as follows:

C: status = SDisrecord(sds_id);

FORTRAN: status = sfisrcrd(sds_id)

SDisrecord returns TRUE (or 1) when the data set specified by sds_id is appendable and FALSE (or
0) otherwise. The parameter of this routine is defined in Table 3E.

TABLE 3E SDisrecord Parameter List

3.5.1.5 Setting the Block Size: SDsetblocksize

SDsetblocksize sets the size of the blocks used for storing the data for unlimited dimension data
sets. This is used only when creating new data sets; it does not have any affect on existing data
sets. The syntax of this routine is as follows:

C: status = SDsetblocksize(sds_id, block_size);

FORTRAN: status = sfsblsz(sds_id, block_size)

SDsetblocksize must be called after SDcreate or SDselect and before SDwritedata. The parame-
ter block_size should be set to a multiple of the desired buffer size.

SDsetblocksize returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further
described in Table 3F.

TABLE 3F SDsetblocksize Parameter List

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDisrecord
[int32]

(sfisrcrd)
sds_id int32 integer Data set identifier

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDsetblocksize
[intn]

(sfsblsz)

sds_id int32 integer Data set identifier

block_size int32 integer Block size

3-42 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

EXAMPLE 5. Appending Data to an SDS Array with an Unlimited Dimension.

This example creates a 10x10 SDS array with one unlimited dimension and writes data to it. The
file is reopened and the routine SDisrecord/sfisrcrd is used to determine whether the selected
SDS array is appendable. Then new data is appended, starting at the 11th row.

C:
#include "mfhdf.h"

#define FILE_NAME "SDSUNLIMITED.hdf"
#define SDS_NAME "AppendableData"
#define X_LENGTH 10
#define Y_LENGTH 10
#define RANK 2

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 dim_sizes[2];
 int32 data[Y_LENGTH][X_LENGTH], append_data[X_LENGTH];
 int32 start[2], edges[2];
 int i, j;

 /********************* End of variable declaration ***********************/

 /*
 * Data initialization.
 */
 for (j = 0; j < Y_LENGTH; j++)
 {
 for (i = 0; i < X_LENGTH; i++)
 data[j][i] = (i + 1) + (j + 1);
 }

 /*
 * Create the file and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_CREATE);

 /*
 * Define dimensions of the array. Make the first dimension
 * appendable by defining its length to be unlimited.
 */
 dim_sizes[0] = SD_UNLIMITED;
 dim_sizes[1] = X_LENGTH;

 /*
 * Create the array data set.
 */
 sds_id = SDcreate (sd_id, SDS_NAME, DFNT_INT32, RANK, dim_sizes);

 /*
 * Define the location and the size of the data to be written
 * to the data set.
 */
 start[0] = start[1] = 0;
 edges[0] = Y_LENGTH;
 edges[1] = X_LENGTH;

June 24, 1998 3-43

HDF User’s Guide

 /*
 * Write the data.
 */
 status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)data);

 /*
 * Terminate access to the array data set, terminate access
 * to the SD interface, and close the file.
 */
 status = SDendaccess (sds_id);
 status = SDend (sd_id);

 /*
 * Store the array values to be appended to the data set.
 */
 for (i = 0; i < X_LENGTH; i++)
 append_data[i] = 1000 + i;

 /*
 * Reopen the file and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_WRITE);

 /*
 * Select the first data set.
 */
 sds_index = 0;
 sds_id = SDselect (sd_id, sds_index);

 /*
 * Check if selected SDS is unlimited. If it is not, then terminate access
 * to the SD interface and close the file.
 */
 if (SDisrecord (sds_id))
 {

 /*
 * Define the location of the append to start at the first column
 * of the 11th row of the data set and to stop at the end of the
 * eleventh row.
 */
 start[0] = Y_LENGTH;
 start[1] = 0;
 edges[0] = 1;
 edges[1] = X_LENGTH;

 /*
 * Append data to the data set.
 */
 status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)append_data);
 }

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

3-44 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

FORTRAN:
 program append_sds
 implicit none
C
C Parameter declaration.
C
 character*16 FILE_NAME
 character*14 SDS_NAME
 integer X_LENGTH, Y_LENGTH, RANK
 parameter (FILE_NAME = ’SDSUNLIMITED.hdf’,
 + SDS_NAME = ’AppendableData’,
 + X_LENGTH = 10,
 + Y_LENGTH = 10,
 + RANK = 2)
 integer DFACC_CREATE, DFACC_WRITE, SD_UNLIMITED,
 + DFNT_INT32
 parameter (DFACC_CREATE = 4,
 + DFACC_WRITE = 2,
 + SD_UNLIMITED = 0,
 + DFNT_INT32 = 24)
C
C Function declaration.
C
 integer sfstart, sfcreate, sfwdata, sfselect
 integer sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index, status
 integer dim_sizes(2)
 integer start(2), edges(2), stride(2)
 integer i, j
 integer data (X_LENGTH, Y_LENGTH), append_data(X_LENGTH)
C
C**** End of variable declaration ************************************
C
C
C Data initialization.
C
 do 20 j = 1, Y_LENGTH
 do 10 i = 1, X_LENGTH
 data(i, j) = i + j
10 continue
20 continue
C
C Create the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_CREATE)
C
C Define dimensions of the array. Make the
C last dimension appendable by defining its length as unlimited.
C
 dim_sizes(1) = X_LENGTH
 dim_sizes(2) = SD_UNLIMITED

C Create the array data set.
 sds_id = sfcreate(sd_id, SDS_NAME, DFNT_INT32, RANK,
 . dim_sizes)
C
C Define the location and the size of the data to be written
C to the data set. Note that the elements of array stride are
C set to 1 for contiguous writing.

June 24, 1998 3-45

HDF User’s Guide

C
 start(1) = 0
 start(2) = 0
 edges(1) = X_LENGTH
 edges(2) = Y_LENGTH
 stride(1) = 1
 stride(2) = 1
C
C Write the data.
C
 status = sfwdata(sds_id, start, stride, edges, data)
C
C Terminate access to the data set, terminate access
C to the SD interface, and close the file.
C
 status = sfendacc(sds_id)
 status = sfend(sd_id)
C
C Store the array values to be appended to the data set.
C
 do 30 i = 1, X_LENGTH
 append_data(i) = 1000 + i - 1
30 continue
C
C Reopen the file and initialize the SD.
C
 sd_id = sfstart(FILE_NAME, DFACC_WRITE)
C
C Select the first data set.
C
 sds_index = 0
 sds_id = sfselect(sd_id, sds_index)
C
C Define the location of the append to start at the 11th
C column of the 1st row and to stop at the end of the 10th row.
C
 start(1) = 0
 start(2) = Y_LENGTH
 edges(1) = X_LENGTH
 edges(2) = 1
C
C Append the data to the data set.
C
 status = sfwdata(sds_id, start, stride, edges, append_data)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

3-46 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

3.5.2 Compressing SDS Data: SDsetcompress

The SDsetcompress routine compresses an existing data set or creates a new compressed data set.
It is a simplified interface to the HCcreate routine, and should be used instead of HCcreate
unless the user is familiar with the lower-level routines.

The compression algorithms currently supported by SDsetcompress are:

• Adaptive Huffman

• GZIP "deflation" (Lempel/Ziv-77 dictionary coder)

• Run-length encoding

In the future, the following algorithms may be included: Lempel/Ziv-78 dictionary coding, an
arithmetic coder, and a faster Huffman algorithm.

The syntax of the routine SDsetcompress is as follows:

C: status = SDsetcompress(sds_id, comp_type, &c_info);

FORTRAN: status = sfscompress(sds_id, comp_type, comp_prm)

The parameter comp_type specifies the compression type definition and is set to COMP_CODE_RLE

(or 1) for run-length encoding (RLE), COMP_CODE_SKPHUFF (or 3) for Skipping Huffman,
COMP_CODE_DEFLATE (or 4) for GZIP compression, or COMP_CODE_NONE (or 0) for no compression.

Compression information is specified by the parameter c_info in C, and by the parameter
comp_prm in FORTRAN-77. The parameter c_info is a pointer to a union structure of type
comp_info. (Refer to the SDsetcompress entry in the HDF Reference Manual for the description
of the comp_info structure.) If comp_type is set to COMP_CODE_NONE or COMP_CODE_RLE, the param-
eters c_info and comp_prm are not used; c_info can be set to NULL and comp_prm can be unde-
fined. If comp_type is set to COMP_CODE_SKPHUFF, then the structure skphuff in the union
comp_info in C (comp_prm(1) in FORTRAN-77) must be provided with the size, in bytes, of the
data elements. If it is set to COMP_CODE_DEFLATE, the deflate structure in the union comp_info in C
(comp_prm(1) in FORTRAN-77) must be provided with the information about the compression
effort.

For example, to compress signed 16-bit integer data using the adaptive Huffman algorithm, the
following definition and SDsetcompress call are used.

C: comp_info c_info;

c_info.skphuff.skp_size = sizeof(int16);
status = SDsetcompress(sds_id, COMP_CODE_SKPHUFF, &c_info);

FORTRAN: comp_prm(1) = 2

COMP_CODE_SKPHUFF = 3
status = sfscompress(sds_id, COMP_CODE_SKPHUFF, comp_prm)

To compress a data set using the gzip deflation algorithm with the maximum effort specified, the
following definition and SDsetcompress call are used.

C: comp_info c_info;

c_info.deflate_level = 9;
status = SDsetcompress(sds_id, COMP_CODE_DEFLATE, &c_info);

FORTRAN: comp_prm(1) = 9

COMP_CODE_DEFLATE = 4
status = sfscompress(sds_id, COMP_CODE_DEFLATE, comp_prm)

June 24, 1998 3-47

HDF User’s Guide

SDsetcompress functionality is currently limited to the following:

• Write the compressed data, in its entirety, to the data set. The data set is built in-core then
written in a single write operation.

• Append to a compressed data set. The data of the data set is read into memory, appended
with data along the unlimited dimension, then compressed and written back to the data set.

The existing compression algorithms supported by HDF do not allow partial modification to a
compressed datastream. Overwriting the contents of existing data sets may be supported in the
future. Note also that SDsetcompress performs the compression of the data, not SDwritedata.

SDsetcompress returns a value of SUCCEED (or 0) or FAIL (or -1). The C version parameters are
further described in Table 3G and the FORTRAN-77 version parameters are further described in
Table 3H.

TABLE 3G SDsetcompress Parameter List

TABLE 3H sfscompress Parameter List

EXAMPLE 6. Compressing SDS Data.

This example uses the routine SDsetcompress/sfscompress to compress SDS data with the GZIP
compression method. See comments in the program regarding the use of the Skipping Huffman or
RLE compression methods.

C:
#include "mfhdf.h"

#define FILE_NAME "SDScompressed.hdf"
#define SDS_NAME "SDSgzip"
#define X_LENGTH 5
#define Y_LENGTH 16
#define RANK 2

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 comp_type; /* Compression flag */
 comp_info c_info; /* Compression structure */
 int32 start[2], edges[2], dim_sizes[2];

Routine Name
[Return Type]

Parameter
Parameter Type

Description
C

SDsetcompress
[intn]

sds_id int32 Data set identifier

comp_type int32 Compression method

c_info comp_info* Pointer to compression information structure

Routine Name
Parameter

Parameter Type
Description

FORTRAN-77

sfscompress
sds_id integer Data set identifier

comp_type integer Compression method

comp_prm integer(*) Compression parameters array

3-48 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 int32 data[Y_LENGTH][X_LENGTH];
 int i, j;

 /********************* End of variable declaration ***********************/

 /*
 * Buffer array data and define array dimensions.
 */
 for (j = 0; j < Y_LENGTH; j++)
 {

for (i = 0; i < X_LENGTH; i++)
data[j][i] = (i + j) + 1;

 }
 dim_sizes[0] = Y_LENGTH;
 dim_sizes[1] = X_LENGTH;

 /*
 * Create the file and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_CREATE);

 /*
 * Create the data set with the name defined in SDS_NAME.
 */
 sds_id = SDcreate (sd_id, SDS_NAME, DFNT_INT32, RANK, dim_sizes);

 /*
 * Ininitialize compression structure element and compression
 * flag for GZIP compression and call SDsetcompress.
 *
 * To use the Skipping Huffman compression method, initialize
 * comp_type = COMP_CODE_SKPHUFF
 * c_info.skphuff.skp_size = value
 *
 * To use the RLE compression method, initialize
 * comp_type = COMP_CODE_RLE
 * No structure element needs to be initialized.
 */
 comp_type = COMP_CODE_DEFLATE;
 c_info.deflate.level = 6;
 status = SDsetcompress (sds_id, comp_type, &c_info);

 /*
 * Define the location and size of the data set
 * to be written to the file.
 */
 start[0] = 0;
 start[1] = 0;
 edges[0] = Y_LENGTH;
 edges[1] = X_LENGTH;

 /*
 * Write the stored data to the data set. The last argument
 * must be explicitly cast to a generic pointer since SDwritedata
 * is designed to write generic data.
 */
 status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)data);

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

June 24, 1998 3-49

HDF User’s Guide

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);

}

FORTRAN:
 program write_compressed_data
 implicit none
C
C Parameter declaration.
C
 character*17 FILE_NAME
 character*7 SDS_NAME
 integer X_LENGTH, Y_LENGTH, RANK
 parameter (FILE_NAME = ’SDScompressed.hdf’,
 + SDS_NAME = ’SDSgzip’,
 + X_LENGTH = 5,
 + Y_LENGTH = 16,
 + RANK = 2)
 integer DFACC_CREATE, DFNT_INT32
 parameter (DFACC_CREATE = 4,
 + DFNT_INT32 = 24)
 integer COMP_CODE_DEFLATE
 parameter (COMP_CODE_DEFLATE = 4)
 integer DEFLATE_LEVEL
 parameter (DEFLATE_LEVEL = 6)
C To use Skipping Huffman compression method, declare
C integer COMP_CODE_SKPHUFF
C parameter(COMP_CODE_SKPHUFF = 3)
C To use RLE compression method, declare
C integer COMP_CODE_RLE
C parameter(COMP_CODE_RLE = 1)
C
C
C Function declaration.
C
 integer sfstart, sfcreate, sfwdata, sfendacc, sfend,
 + sfscompress
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, status
 integer start(2), edges(2), stride(2), dim_sizes(2)
 integer comp_type
 integer comp_prm(1)
 integer data(X_LENGTH, Y_LENGTH)
 integer i, j
C
C**** End of variable declaration ************************************
C
C
C Buffer array data and define array dimensions.
C
 do 20 j = 1, Y_LENGTH
 do 10 i = 1, X_LENGTH
 data(i, j) = i + j - 1
10 continue
20 continue
 dim_sizes(1) = X_LENGTH
 dim_sizes(2) = Y_LENGTH

3-50 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

C
C Open the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_CREATE)
C
C Create the data set with the name SDS_NAME.
C
 sds_id = sfcreate(sd_id, SDS_NAME, DFNT_INT32, RANK, dim_sizes)
C
C Initialize compression parameter (deflate level)
C and call sfscompress function
C For Skipping Huffman compression, comp_prm(1) should be set
C to skipping sizes value (skp_size).
C
 comp_type = COMP_CODE_DEFLATE
 comp_prm(1) = deflate_level
 status = sfscompress(sds_id, comp_type, comp_prm(1))
C
C Define the location and size of the data that will be written to
C the data set.
C
 start(1) = 0
 start(2) = 0
 edges(1) = X_LENGTH
 edges(2) = Y_LENGTH
 stride(1) = 1
 stride(2) = 1
C
C Write the stored data to the data set.
C
 status = sfwdata(sds_id, start, stride, edges, data)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

3.5.3 External File Operations

The HDF library provides routines to store SDS arrays in an external file that is separate from the
primary file containing the metadata for the array. Such an SDS array is called an external SDS
array. With external arrays, it is possible to link data sets in the same HDF file to multiple external
files or data sets in different HDF files to the same external file.

External arrays are functionally identical to arrays in the primary data file. The HDF library keeps
track of the beginning of the data set and adds data at the appropriate position in the external file.
When data is written or appended along a specified dimension, the HDF library writes along that
dimension in the external file and updates the appropriate dimension record in the primary file.

There are two methods for creating external SDS arrays. The user can create a new data set in an
external file or move data from an existing internal data set to an external file. In either case, only
the array values are stored externally, all metadata remains in the primary HDF file.

When an external array is created, a sufficient amount of space is reserved in the external file for
the entire data set. The data set will begin at the specified byte offset and extend the length of the

June 24, 1998 3-51

HDF User’s Guide

data set. The write operation will overwrite the target locations in the external file. The external
file may be of any format, provided the data types, byte ordering, and dimension ordering are sup-
ported by HDF. However, the primary file must be an HDF file.

Routines for manipulating external SDS arrays can only be used with HDF files. Unidata-format-
ted netCDF files are not supported by these routines.

3.5.3.1 Specifying the Directory Search Path of an External File: HXsetdir

There are three filesystem locations the HDF external file routines check when determining the
location of an external file. They are, in order of search precedence:

1. The directory path specified by the last call to the HXsetdir routine.

2. The directory path specified by the $HDFEXTDIR shell environment variable.

3. The file system locations searched by the standard open(3) routine.

The syntax of HXsetdir is as follows:

C: status = HXsetdir(dir_list);

FORTRAN: status = hxisdir(dir_list, dir_length)

HXsetdir has one argument, a string specifying the directory list to be searched. This list can con-
sist of one directory name or a set of directory names separated by colons. The FORTRAN-77 ver-
sion of this routine takes an additional argument, dir_length , which specifies the length of the
directory list string.

If an error condition is encountered, HXsetdir leaves the directory search path unchanged. The
directory search path specified by HXsetdir remains in effect throughout the scope of the calling
program.

HXsetdir returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of HXsetdir are
described in Table 3I on page 52.

3.5.3.2 Specifying the Location of the Next External File to be Created: HXsetcreatedir

HXsetcreatedir specifies the directory location of the next external file to be created. It overrides
the directory location specified by $HDFEXTCREATEDIR and the locations searched by the
open(3) call in the same manner as HXsetdir. Specifically, the search precedence is:

1. The directory specified by the last call to the HXsetcreatedir routine.

2. The directory specified by the $HDFEXTCREATEDIR shell environment variable.

3. The locations searched by the standard open(3) routine.

The syntax of HXsetcreatedir is as follows:

C: status = HXsetcreatedir(dir);

FORTRAN: status = hxiscdir(dir, dir_length)

HXsetcreatedir has one argument, the directory location of the next external file to be created.
The FORTRAN-77 version of this routine takes an additional argument, dir_length , which spec-
ifies the length of the directory list string. If an error is encountered, the directory location is left
unchanged.

HXsetcreatedir returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of HXsetcreate-
dir are described in Table 3I.

3-52 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

TABLE 3I HXsetdir and HXsetcreatedir Parameter Lists

3.5.3.3 Creating a Data Set with Data Stored in an External File: SDsetexternalfile

Creating a data set in an external file involves the following steps:

1. Create the data set.

2. Specify that an external data file is to be used.

3. Write data to the data set.

4. Terminate access to the data set.

To create a data set with data stored in an external file, the calling program must make the follow-
ing calls.

C: sds_id = SDcreate(sd_id, name, data_type, rank, dim_sizes);

status = SDsetexternalfile(sds_id, filename, offset);
status = SDwritedata(sds_id, start, stride, edges, data);
status = SDendaccess(sds_id);

FORTRAN: sds_id = sfcreate(sd_id, name, data_type, rank, dim_sizes)

status = sfsextf(sds_id, filename, offset)

status = sfwdata(sds_id, start, stride, edges, data)

OR status = sfwcdata(sds_id, start, stride, edges, data)

status = sfendacc(sds_id)

For a newly-created data set, SDsetexternalfile marks the SDS identified by sds_id as one whose
data is to be written to an external file. It does not actually write data to an external file; it marks
the data set as an external data set for all subsequent SDwritedata operations.

Note that data can only be moved once for any given data set, i.e., SDsetexternalfile can only be
called once after a data set has been created. It is the user's responsibility to make sure that the
external data file is kept with the primary HDF file.

The parameter filename is the name of the external data file and offset is the number of bytes
from the beginning of the external file to the location where the first byte of data should be writ-
ten. If a file with the name specified by filename exists in the current directory search path, HDF
will access it as the external file. If the file does not exist, HDF will create one in the directory
named in the last call to HXsetcreatefile. If an absolute pathname is specified, the external file
will be created at the location specified by the pathname, overriding the location specified by the
last call to HXsetcreatefile. Use caution when writing to existing external or primary files since
the HDF library starts the write operation at the specified offset without determining whether data
is being overwritten.

Once the name of an external file is established, it cannot be changed without breaking the associ-
ation between the data set’s metadata and the data it describes.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

HXsetdir
[intn]

(hxisdir)

dir_list char * character*(*) Directory list to be searched

dir_length Not applicable integer Length of the dir_list string

HXsetcreatedir
[intn]

(hxiscdir)

dir char * character*(*)
Directory location of the next external file to be cre-
ated

dir_length Not applicable integer Length of the dir string

June 24, 1998 3-53

HDF User’s Guide

SDsetexternalfile returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDsetex-
ternalfile are described in Table 3J.

TABLE 3J SDsetexternalfile Parameter List

3.5.3.4 Moving Existing Data to an External File

Data can be moved from a primary file to an external file. The following steps perform this task:

1. Select the data set.

2. Specify the external data file.

3. Terminate access to the data set.

To move data set data to an external file, the calling program must make the following calls:

C: sds_id = SDselect(sd_id, sds_index);

status = SDsetexternalfile(sds_id, filename, offset);
status = SDendaccess(sds_id);

FORTRAN: sds_id = sfselect(sd_id, sds_index)

status = sfsextf(sds_id, filename, offset)
status = sfendacc(sds_id)

For an existing data set, SDsetexternalfile moves the data to the external file. Any data in the
external file that occupies the space reserved for the external array will be overwritten as a result
of this operation. Data of an existing data set in the primary file can only be moved to the external
file once. During the operation, the data is written to the external file as a contiguous stream
regardless of how it is stored in the primary file. Because data is moved as is, any unwritten loca-
tions in the data set are preserved in the external file. Subsequent read and write operations per-
formed on the data set will access the external file.

EXAMPLE 7. Moving Data to the External File.

This example illustrates the use of the routine SDsetexternalfile/sfsextf to move the SDS data
written in Example 2 to the external file.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define EXT_FILE_NAME "ExternalSDS"
#define OFFSET 24

main()
{

 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index, offset;

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDsetexternalfile
[intn]

(sfsextf)

sds_id int32 integer Data set identifier

filename char * character*(*) Name of the file to contain the external data set

offset int32 integer
Offset in bytes from the beginning of the external file to
where the SDS data will be written

3-54 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 intn status;

 /********************* End of variable declaration ***********************/

 /*
 * Open the file and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_WRITE);

 /*
 * Select the first data set.
 */
 sds_index = 0;
 sds_id = SDselect (sd_id, sds_index);

 /*
 * Create a file with the name EXT_FILE_NAME and move the data set
 * values into it, starting at byte location OFFSET.
 */
 status = SDsetexternalfile (sds_id, EXT_FILE_NAME, OFFSET);

 /*
 * Terminate access to the data set, SD interface, and file.
 */
 status = SDendaccess (sds_id);
 status = SDend (sd_id);
}

FORTRAN:
 program write_extfile
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 character*11 EXT_FILE_NAME
 integer OFFSET
 integer DFACC_WRITE
 parameter (FILE_NAME = ’SDS.hdf’,
 + EXT_FILE_NAME = ’ExternalSDS’,
 + OFFSET = 24,
 + DFACC_WRITE = 2)

C
C Function declaration.
C
 integer sfstart, sfselect, sfsextf, sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index, offset
 integer status
C
C**** End of variable declaration ************************************
C
C
C Open the HDF file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_WRITE)
C
C Select the first data set.
C

June 24, 1998 3-55

HDF User’s Guide

 sds_index = 0
 sds_id = sfselect(sd_id, sds_index)
C
C Create a file with the name EXT_FILE_NAME and move the data set
C into it, starting at byte location OFFSET.
C
 status = sfsextf(sds_id, EXT_FILE_NAME, OFFSET)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

3.6 Reading Data from an SDS Array: SDreaddata

Data of an SDS array can be read as an entire array, a subset of the array, or a set of samples of the
array. SDS data is read from an external file in the same way that it is read from a primary file;
whether the SDS array is stored in an external file is transparent to the user. Reading data from an
SDS array involves the following steps:

1. Select the data set.

2. Define the portion of the data to be read.

3. Read data portion as defined.

To read data from an SDS array, the calling program must contain the following function calls:

C: sds_id = SDselect(sd_id, sds_index);

status = SDreaddata(sds_id, start, stride, edges, data);

FORTRAN: sds_id = sfselect(sd_id, sds_index)

status = sfrdata(sds_id, start, stride, edges, data)

OR status = sfrcdata(sds_id, start, stride, edges, data)

Note that step 2 is not illustrated in the function call syntax; it is carried out by assigning values to
the parameters start , stride , and edges before the routine SDreaddata is called in step 3.

SDreaddata reads the data according to the definition specified by the parameters start , stride ,
and edges and stores the data into the buffer provided, data . The argument sds_id is the SDS
identifier returned by SDcreate or SDselect. As with SDwritedata, the arguments start , stride ,
and edges describe the starting location, the number of elements to skip after each read, and the
number of elements to be read, respectively, for each dimension. For additional information on the
parameters start , stride , and edges , refer to Section 3.5.1 on page 30.

There are two FORTRAN-77 versions of this routine: sfrdata reads numeric data and sfrcdata
reads character data.

SDreaddata returns a value of SUCCEED (or 0), including the situation when the data set does not
contain data, or FAIL (or -1). The parameters of SDreaddata are further described in Table 3K.

3-56 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

TABLE 3K SDreaddata Parameter List

EXAMPLE 8. Reading from an SDS

This example uses the routine SDreaddata/sfrdata to read the data that has been written in
Example 2, modified in Example 4, and moved to the external file in the Example 7. Note that the
original file SDS.hdf that contains the SDS metadata and the external file ExternalSDS that con-
tains the SDS raw data should reside in the same directory. The fact that raw data is in the external
file is transparent to the user’s program.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define X_LENGTH 5
#define Y_LENGTH 16

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 start[2], edges[2];
 int32 data[Y_LENGTH][X_LENGTH];
 int i, j;

 /********************* End of variable declaration ***********************/

 /*
 * Open the file for reading and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_READ);

 /*
 * Select the first data set.
 */
 sds_index = 0;
 sds_id = SDselect (sd_id, sds_index);

 /*
 * Set elements of array start to 0, elements of array edges
 * to SDS dimensions,and use NULL for the argument stride in SDreaddata
 * to read the entire data.
 */

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDreaddata
[intn]

(sfrdata/
sfrcdata)

sds_id int32 integer Data set identifier

start int32[] integer(*)
Array containing the position at which the
read will start for each dimension

stride int32[] integer(*)
Array containing the number of data locations
the current location is to be moved forward
before the next read

edges int32[] integer(*)
Array containing the number of data elements
to be read along each dimension

data VOIDP
<valid numeric data type>(*)/

character*(*)
Buffer the data will be read into

June 24, 1998 3-57

HDF User’s Guide

 start[0] = 0;
 start[1] = 0;
 edges[0] = Y_LENGTH;
 edges[1] = X_LENGTH;

 /*
 * Read entire data into data array.
 */
 status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)data);

 /*
 * Print 10th row; the following numbers should be displayed.
 *
 * 10 1000 12 13 14
 */
 for (j = 0; j < X_LENGTH; j++) printf ("%d ", data[9][j]);
 printf ("\n");

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

 FORTRAN:
 program read_data
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 integer X_LENGTH, Y_LENGTH
 parameter (FILE_NAME = ’SDS.hdf’,
 + X_LENGTH = 5,
 + Y_LENGTH = 16)
 integer DFACC_READ, DFNT_INT32
 parameter (DFACC_READ = 1,
 + DFNT_INT32 = 24)

C
C Function declaration.
C
 integer sfstart, sfselect, sfrdata, sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index, status
 integer start(2), edges(2), stride(2)
 integer data(X_LENGTH, Y_LENGTH)
 integer j
C
C**** End of variable declaration ************************************
C
C
C Open the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_READ)

3-58 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

C
C Select the first data set.
C
 sds_index = 0
 sds_id = sfselect(sd_id, sds_index)

C
C Set elements of the array start to 0, elements of the array edges to
C SDS dimensions, and elements of the array stride to 1 to read the
C entire data.
C
 start(1) = 0
 start(2) = 0
 edges(1) = X_LENGTH
 edges(2) = Y_LENGTH
 stride(1) = 1
 stride(2) = 1
C
C Read entire data into data array. Note that sfrdata is used
C to read the numeric data.
C
 status = sfrdata(sds_id, start, stride, edges, data)

C
C Print 10th column; the following numbers are displayed:
C
C 10 1000 12 13 14
C
 write(*,*) (data(j,10), j = 1, X_LENGTH)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

EXAMPLE 9. Reading Subsets of an SDS.

This example shows how parameters start , stride , and edges of the routine SDreadata/sfrdata
can be used to read three subsets of an SDS array.

C:

For the first subset, the program reads every 3rd element of the 2nd column starting at the
4th row of the data set created in Example 2 and modified in Examples 4 and 7.

For the second subset the program reads the first 4 elements of the 10th row.

For the third subset, the program reads from the same data set every 6th element of each
column and 4th element of each row starting at 1st column, 3d row.

FORTRAN-77:

Fortran program reads transposed data to reflect the difference in C and Fortran internal
storage.

June 24, 1998 3-59

HDF User’s Guide

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define SUB1_LENGTH 5
#define SUB2_LENGTH 4
#define SUB3_LENGTH1 2
#define SUB3_LENGTH2 3

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 start[2], edges[2], stride[2];
 int32 sub1_data[SUB1_LENGTH];
 int32 sub2_data[SUB2_LENGTH];
 int32 sub3_data[SUB3_LENGTH2][SUB3_LENGTH1];
 int i, j;

 /********************* End of variable declaration ***********************/

 /*
 * Open the file for reading and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_READ);

 /*
 * Select the first data set.
 */
 sds_index = 0;
 sds_id = SDselect (sd_id, sds_index);
 /*
 * Reading the first subset.
 *
 * Set elements of start, edges, and stride arrays to read
 * every 3rd element in the 2nd column starting at 4th row.
 */
 start[0] = 3; /* 4th row */
 start[1] = 1; /* 2nd column */
 edges[0] = SUB1_LENGTH; /* SUB1_LENGTH elements are read along 2nd column*/
 edges[1] = 1;
 stride[0] = 3; /* every 3rd element is read along 2nd column */
 stride[1] = 1;

 /*
 * Read the data from the file into sub1_data array.
 */
 status = SDreaddata (sds_id, start, stride, edges, (VOIDP)sub1_data);

 /*
 * Print what we have just read; the following numbers should be displayed:
 *
 * 5 8 1000 14 17
 */
 for (j = 0; j < SUB1_LENGTH; j++) printf ("%d ", sub1_data[j]);
 printf ("\n");

 /*
 * Reading the second subset.
 *

3-60 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 * Set elements of start and edges arrays to read
 * first 4 elements of the 10th row.
 */
 start[0] = 9; /* 10th row */
 start[1] = 0; /* 1st column */
 edges[0] = 1;
 edges[1] = SUB2_LENGTH; /* SUB2_LENGTH elements are read along 10th row */

 /*
 * Read data from the file into sub2_data array. Note that the third
 * parameter is set to NULL for contiguous reading.
 */
 status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)sub2_data);

 /*
 * Print what we have just read; the following numbers should be displayed:
 *
 * 10 1000 12 13
 */
 for (j = 0; j < SUB2_LENGTH; j++) printf ("%d ", sub2_data[j]);
 printf ("\n");

 /*
 * Reading the third subset.
 *
 * Set elements of the arrays start, edges, and stride to read
 * every 6th element in the column and 4th element in the row
 * starting at 1st column, 3d row.
 */
 start[0] = 2; /* 3d row */
 start[1] = 0; /* 1st column */
 edges[0] = SUB3_LENGTH2; /* SUB3_LENGTH2 elements are read along
 each column */
 edges[1] = SUB3_LENGTH1; /* SUB3_LENGTH1 elements are read along
 each row */
 stride[0] = 6; /* read every 6th element along each column */
 stride[1] = 4; /* read every 4th element along each row */

 /*
 * Read the data from the file into sub3_data array.
 */
 status = SDreaddata (sds_id, start, stride, edges, (VOIDP)sub3_data);

 /*
 * Print what we have just read; the following numbers should be displayed:
 *
 * 3 7
 * 9 13
 * 15 19
 */
 for (j = 0; j < SUB3_LENGTH2; j++) {
 for (i = 0; i < SUB3_LENGTH1; i++) printf ("%d ", sub3_data[j][i]);
 printf ("\n");
 }
 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);

June 24, 1998 3-61

HDF User’s Guide

}

FORTRAN:
 program read_subsets
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 parameter (FILE_NAME = ’SDS.hdf’)
 integer DFACC_READ, DFNT_INT32
 parameter (DFACC_READ = 1,
 + DFNT_INT32 = 24)
 integer SUB1_LENGTH, SUB2_LENGTH, SUB3_LENGTH1,
 + SUB3_LENGTH2
 parameter (SUB1_LENGTH = 5,
 + SUB2_LENGTH = 4,
 + SUB3_LENGTH1 = 2,
 + SUB3_LENGTH2 = 3)

C
C Function declaration.
C
 integer sfstart, sfselect, sfrdata, sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index, status
 integer start(2), edges(2), stride(2)
 integer sub1_data(SUB1_LENGTH)
 integer sub2_data(SUB2_LENGTH)
 integer sub3_data(SUB3_LENGTH1,SUB3_LENGTH2)
 integer i, j
C
C**** End of variable declaration ************************************
C
C
C Open the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_READ)
C
C Select the first data set.
C
 sds_index = 0
 sds_id =sfselect(sd_id, sds_index)
C
C Reading the first subset.
C
C Set elements of start, stride, and edges arrays to read
C every 3d element in in the 2nd row starting in the 4th column.
C
 start(1) = 1
 start(2) = 3
 edges(1) = 1
 edges(2) = SUB1_LENGTH
 stride(1) = 1
 stride(2) = 3
C
C Read the data from sub1_data array.
C
 status = sfrdata(sds_id, start, stride, edges, sub1_data)

3-62 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

C
C Print what we have just read, the following numbers should be displayed:
C
C 5 8 1000 14 17
C
 write(*,*) (sub1_data(j), j = 1, SUB1_LENGTH)
C
C Reading the second subset.
C
C Set elements of start, stride, and edges arrays to read
C first 4 elements of 10th column.
C
 start(1) = 0
 start(2) = 9
 edges(1) = SUB2_LENGTH
 edges(2) = 1
 stride(1) = 1
 stride(2) = 1
C
C Read the data into sub2_data array.
C
 status = sfrdata(sds_id, start, stride, edges, sub2_data)

C
C Print what we have just read; the following numbers should be displayed:
C
C 10 1000 12 13
C
 write(*,*) (sub2_data(j), j = 1, SUB2_LENGTH)
C
C Reading the third subset.
C
C Set elements of start, stride and edges arrays to read
C every 6th element in the row and every 4th element in the column
C starting at 1st row, 3rd column.
C
 start(1) = 0
 start(2) = 2
 edges(1) = SUB3_LENGTH1
 edges(2) = SUB3_LENGTH2
 stride(1) = 4
 stride(2) = 6
C
C Read the data from the file into sub3_data array.
C
 status = sfrdata(sds_id, start, stride, edges, sub3_data)

C
C Print what we have just read; the following numbers should be displayed:
C
C 3 9 15
C 7 13 19
C
 do 50 i = 1, SUB3_LENGTH1
 write(*,*) (sub3_data(i,j), j = 1, SUB3_LENGTH2)
50 continue
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C

June 24, 1998 3-63

HDF User’s Guide

 status = sfend(sd_id)

 end

3.7 Obtaining Information about SD Data Sets

The routines covered in this section provide methods for obtaining information about all scientific
data sets in a file, for identifying the data sets that meet certain criteria, and for obtaining informa-
tion about specific data sets.

SDfileinfo obtains the numbers of data sets and file attributes, set by SD interface routines, in a
file. SDgetinfo provides information about an individual SDS. To retrieve information about all
data sets in a file, a calling program can use SDfileinfo to determine the number of data sets, fol-
lowed by repeated calls to SDgetinfo to obtain the information about a particular data set.

SDnametoindex or SDreftoindex can be used to obtain the index of an SDS in a file knowing its
name or reference number, respectively. Refer to Section 3.2.1 on page 20 for a description of the
data set index and reference number. SDidtoref is used when the reference number of an SDS is
required by another routine and the SDS identifier is available.

These routines are described individually in the following subsections.

3.7.1 Obtaining Information about the Contents of a File: SDfileinfo

SDfileinfo determines the number of scientific data sets and the number of file attributes con-
tained in a file. This information is often useful in index validation or sequential searches. The
syntax of SDfileinfo is as follows:

C: status = SDfileinfo(sd_id, &n_datasets, &n_file_attrs);

FORTRAN: status = sffinfo(sd_id, n_datasets, n_file_attrs)

SDfileinfo stores the numbers of scientific data sets and file attributes in the parameters
n_datasets and n_file_attrs , respectively. Note that the value returned by n_datasets will
include the number of SDS arrays and the number of dimension scales. Refer to Section 3.8.4 on
page 74 and Section 3.8.4.4 on page 81 for the description of dimension scales and its association
with SDS arrays as well as how to distinguish between SDS arrays and dimension scales. The file
attributes are those that are created by SDsetattr for an SD interface identifier instead of an SDS
identifier. Refer to Section 3.9.1 on page 85 for the discussion of SDsetattr.

SDfileinfo returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDfileinfo are
specified in Table 3L on page 64.

3.7.2 Obtaining Information about a Specific SDS: SDgetinfo

SDgetinfo provides basic information about an SDS array. Often information about an SDS array
is needed before reading and working with the array. For instance, the rank, dimension sizes, and/
or data type of an array are needed to allocate the proper amount of memory to work with the
array. SDgetinfo takes an SDS identifier as input, and retrieves the name, rank, dimension sizes,
data type, and number of attributes for the corresponding SDS. The syntax of this routine is as fol-
lows:

3-64 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

C: status = SDgetinfo(sds_id, sds_name, &rank, dim_sizes,

&data_type, &n_attrs);

FORTRAN: status = sfginfo(sds_id, sds_name, rank, dim_sizes, data_type,

n_attrs)

SDgetinfo stores the name, rank, dimension sizes, data type, and number of attributes of the spec-
ified data set into the parameters sds_name , rank , dim_sizes , data_type , and n_attrs , respec-
tively. The parameter sds_name is a character string. Note that the name of the SDS is limited to
64 characters.

If the data set is created with an unlimited dimension, then in the C interface, the first element of
the dim_sizes array (corresponding to the slowest-changing dimension) contains the number of
records in the unlimited dimension; in the FORTRAN-77 interface, the last element of the array
dim_sizes (corresponding to the slowest-changing dimension) contains this information.

The parameter data_type contains any type that HDF supports for the scientific data. Refer to
Table 2E on page 14, for the list of supported data types and their corresponding defined values.
The parameter n_attrs only reflects the number of attributes assigned to the data set specified by
sds_id ; file attributes are not included. Use SDfileinfo to get the number of file attributes.

SDgetinfo returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDgetinfo are
specified in Table 3L.

TABLE 3L SDfileinfo and SDgetinfo Parameter Lists

EXAMPLE 10. Getting Information about a File and an SDSs.

This example illustrates the use of the routine SDfileinfo/sffinfo to obtain the number of data sets
in the file SDS.hdf and the routine SDgetinfo/sfginfo to retrieve the name, rank, dimension sizes,
data type and number of attributes of the selected data set.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id;
 intn status;

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDfileinfo
[intn]

(sffinfo)

sd_id int32 integer SD interface identifier

n_datasets int32 * integer Number of data sets in the file

n_file_attrs int32 * integer Number of global attributes in the file

SDgetinfo
[intn]

(sfginfo)

sds_id int32 integer Data set identifier

sds_name char* character*(*) Name of the data set

rank int32 * integer Number of dimensions in the data set

dim_sizes int32 [] integer (*) Size of each dimension in the data set

data_type int32 * integer Data type of the data in the data set

n_attrs int32 * integer Number of attributes in the data set

June 24, 1998 3-65

HDF User’s Guide

 int32 n_datasets, n_file_attrs, index;
 int32 dim_sizes[MAX_VAR_DIMS];
 int32 rank, data_type, n_attrs;
 char name[MAX_NC_NAME];
 int i;

 /********************* End of variable declaration ***********************/

 /*
 * Open the file and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_READ);

 /*
 * Determine the number of data sets in the file and the number
 * of file attributes.
 */
 status = SDfileinfo (sd_id, &n_datasets, &n_file_attrs);

 /*
 * Access every data set and print its name, rank, dimension sizes,
 * data type, and number of attributes.
 * The following information should be displayed:
 *
 * name = SDStemplate
 * rank = 2
 * dimension sizes are : 16 5
 * data type is 24
 * number of attributes is 0
 */
 for (index = 0; index < n_datasets; index++)
 {
 sds_id = SDselect (sd_id, index);
 status = SDgetinfo (sds_id, name, &rank, dim_sizes,
 &data_type, &n_attrs);

 printf ("name = %s\n", name);
 printf ("rank = %d\n", rank);
 printf ("dimension sizes are : ");
 for (i=0; i< rank; i++) printf ("%d ", dim_sizes[i]);
 printf ("\n");
 printf ("data type is %d\n", data_type);
 printf ("number of attributes is %d\n", n_attrs);

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);
 }

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

FORTRAN:
 program get_data_set_info
 implicit none
C
C Parameter declaration.

3-66 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

C
 character*7 FILE_NAME
 parameter (FILE_NAME = ’SDS.hdf’)
 integer DFACC_READ, DFNT_INT32
 parameter (DFACC_READ = 1,
 + DFNT_INT32 = 24)
 integer MAX_NC_NAME, MAX_VAR_DIMS
 parameter (MAX_NC_NAME = 256,
 + MAX_VAR_DIMS = 32)
C
C Function declaration.
C
 integer sfstart, sffinfo, sfselect, sfginfo
 integer sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id
 integer n_datasets, n_file_attrs, index
 integer status, n_attrs
 integer rank, data_type
 integer dim_sizes(MAX_VAR_DIMS)
 character name *(MAX_NC_NAME)
 integer i
C
C**** End of variable declaration ************************************
C
C
C Open the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_READ)
C
C Determine the number of data sets in the file and the number of
C file attributes.
C
 status = sffinfo(sd_id, n_datasets, n_file_attrs)
C
C Access every data set in the file and print its name, rank,
C dimension sizes, data type, and number of attributes.
C The following information should be displayed:
C
C name = SDStemplate
C rank = 2
C dimension sizes are : 5 16
C data type is 24
C number of attributes is 0
C
 do 10 index = 0, n_datasets - 1
 sds_id = sfselect(sd_id, index)
 status = sfginfo(sds_id, name, rank, dim_sizes, data_type,
 . n_attrs)
 write(*,*) "name = ", name(1:15)
 write(*,*) "rank = ", rank
 write(*,*) "dimension sizes are : ", (dim_sizes(i), i=1, rank)
 write(*,*) "data type is ", data_type
 write(*,*) "number of attributes is ", n_attrs
C
C Terminate access to the current data set.
C
 status = sfendacc(sds_id)
10 continue
C
C Terminate access to the SD interface and close the file.

June 24, 1998 3-67

HDF User’s Guide

C
 status = sfend(sd_id)

 end

3.7.3 Locating an SDS by Name: SDnametoindex

SDnametoindex determines and returns the index of a data set in a file given the data set’s name.
The syntax of this routine is as follows:

C: sds_index = SDnametoindex(sd_id, sds_name);

FORTRAN: sds_index = sfn2index(sd_id, sds_name)

The parameter sds_name is a character string with the maximum length of 64 characters. If more
than one data set has the name specified by sds_name , SDnametoindex will return the index of
the first data set. The index can then be used by SDselect to obtain an SDS identifier for the spec-
ified data set.

The SDnametoindex routine is case-sensitive to the name specified by sds_name and does not
accept wildcards as part of that name. The name must exactly match the name of the SDS being
searched for.

SDnametoindex returns the index of a data set or FAIL (or -1). The parameters of SDnametoin-
dex are specified in Table 3M.

3.7.4 Locating an SDS by Reference Number: SDreftoindex

SDreftoindex determines and returns the index of a data set in a file given the data set’s reference
number. The syntax of this routine is as follows:

C: sds_index = SDreftoindex(sd_id, ref);

FORTRAN: sds_index = sfref2index(sd_id, ref)

The reference number can be obtained using SDidtoref if the SDS identifier is available. Remem-
ber that reference numbers do not necessarily adhere to any ordering scheme.

SDreftoindex returns either the index of an SDS or FAIL (or -1). The parameters of this routine
are specified in Table 3M.

3.7.5 Obtaining the Reference Number Assigned to the Specified SDS:
SDidtoref

SDidtoref returns the reference number of the data set identified by the parameter sds_id if the
data set is found, or FAIL (or -1) otherwise. The syntax of this routine is as follows:

C: sds_ref = SDidtoref(sds_id);

FORTRAN: sds_ref = sfid2ref(sds_id)

This reference number is often used by Vaddtagref to add the data set to a vgroup. Refer to Chap-
ter 5, Vgroups (V API), for more information.

The parameter of SDidtoref is specified in Table 3M.

3-68 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

TABLE 3M SDnametoindex, SDreftoindex, and SDidtoref Parameter Lists

EXAMPLE 11. Locating an SDS by Its Name.

This example uses the routine SDnametoindex/sfn2index to locate the SDS with the specified
name and then reads the data from it.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define SDS_NAME "SDStemplate"
#define WRONG_NAME "WrongName"
#define X_LENGTH 5
#define Y_LENGTH 16

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 start[2], edges[2];
 int32 data[Y_LENGTH][X_LENGTH];
 int i, j;

 /********************* End of variable declaration ***********************/

 /*
 * Open the file for reading and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_READ);

 /*
 * Find index of the data set with the name specified in WRONG_NAME.
 * Error condition occurs, since the data set with that name does not exist
 * in the file.
 */
 sds_index = SDnametoindex (sd_id, WRONG_NAME);
 if (sds_index == FAIL)
 printf ("Data set with the name \"WrongName\" does not exist\n");

 /*
 * Find index of the data set with the name specified in SDS_NAME and use
 * the index to select the data set.
 */
 sds_index = SDnametoindex (sd_id, SDS_NAME);

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDnametoindex
[int32]

(sfn2index)

sd_id int32 integer SD interface identifier

sds_name char * character*(*) Name of the data set

SDreftoindex
[int32]

(sfref2index)

sd_id int32 integer SD interface identifier

ref int32 integer Reference number of the specified data set

SDidtoref
[int32]

(sfid2ref)
sds_id int32 integer Data set identifier

June 24, 1998 3-69

HDF User’s Guide

 sds_id = SDselect (sd_id, sds_index);

 /*
 * Set elements of the array start to 0, elements of the array edges to
 * SDS dimensions, and use NULL for stride argument in SDreaddata to read
 * the entire data.
 */
 start[0] = 0;
 start[1] = 0;
 edges[0] = Y_LENGTH;
 edges[1] = X_LENGTH;

 /*
 * Read the entire data into the buffer named data.
 */
 status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)data);

 /*
 * Print 10th row; the following numbers should be displayed:
 *
 * 10 1000 12 13 14
 */
 for (j = 0; j < X_LENGTH; j++) printf ("%d ", data[9][j]);
 printf ("\n");

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

FORTRAN:
 program locate_by_name
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 character*11 SDS_NAME
 character*9 WRONG_NAME
 integer X_LENGTH, Y_LENGTH
 parameter (FILE_NAME = ’SDS.hdf’,
 + SDS_NAME = ’SDStemplate’,
 + WRONG_NAME = ’WrongName’,
 + X_LENGTH = 5,
 + Y_LENGTH = 16)
 integer DFACC_READ, DFNT_INT32
 parameter (DFACC_READ = 1,
 + DFNT_INT32 = 24)

C
C Function declaration.
C
 integer sfstart, sfn2index, sfselect, sfrdata, sfendacc, sfend
C
C**** Variable declaration ***
C

3-70 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 integer sd_id, sds_id, sds_index, status
 integer start(2), edges(2), stride(2)
 integer data(X_LENGTH, Y_LENGTH)
 integer j
C
C**** End of variable declaration ************************************
C
C
C Open the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_READ)
C
C Find index of the data set with the name specified in WRONG_NAME.
C Error condition occurs, since a data set with this name
C does not exist in the file.
C
 sds_index = sfn2index(sd_id, WRONG_NAME)
 if (sds_index .eq. -1) then
 write(*,*) "Data set with the name ", WRONG_NAME,
 + " does not exist"
 endif
C
C Find index of the data set with the name specified in SDS_NAME
C and use the index to attach to the data set.
C
 sds_index = sfn2index(sd_id, SDS_NAME)
 sds_id = sfselect(sd_id, sds_index)
C
C Set elements of start array to 0, elements of edges array
C to SDS dimensions, and elements of stride array to 1 to read entire data.
C
 start(1) = 0
 start(2) = 0
 edges(1) = X_LENGTH
 edges(2) = Y_LENGTH
 stride(1) = 1
 stride(2) = 1
C
C Read entire data into array named data.
C
 status = sfrdata(sds_id, start, stride, edges, data)
C
C Print 10th column; the following numbers should be displayed:
C
C 10 1000 12 13 14
C
 write(*,*) (data(j,10), j = 1, X_LENGTH)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

June 24, 1998 3-71

HDF User’s Guide

3.7.6 Creating SDS Arrays Containing Non-standard Length Data:
SDsetnbitdataset

Starting with version 4.0r1, HDF provides the routine SDsetnbitdataset, allowing the HDF user
to specify that a particular SDS array contains data of a non-standard length.

SDsetnbitdataset specifies that the data set identified by the parameter sds_id will contain data
of a non-standard length defined by the parameters start_bit and bit_len . Additional informa-
tion about the non-standard bit length decoding are specified in the parameters sign_ext and
fill_one . The syntax of SDsetnbitdataset is as follows:

C: status = SDsetnbitdataset(sds_id, start_bit, bit_len,

sign_ext, fill_one);

FORTRAN: status = sfsnbit(sds_id, start_bit, bit_len, sign_ext,

fill_one)

Any length between 1 and 32 bits can be specified. After SDsetnbitdataset has been called for an
SDS array, any read or write operations will convert between the new data length of the SDS array
and the data length of the read or write buffer.

Bit lengths of all data types are counted from the right of the bit field starting with 0. In a bit field
containing the values 01111011 , bits 2 and 7 are set to 0 and all the other bits are set to 1.

The parameter start_bit specifies the left-most position of the variable-length bit field to be
written. For example, in the bit field described in the preceding paragraph a parameter start_bit

set to 4 would correspond to the fourth bit value of 1 from the right.

The parameter bit_len specifies the number of bits of the variable-length bit field to be written.
This number includes the starting bit and the count proceeds toward the right end of the bit field -
toward the lower-bit numbers. For example, starting at bit 5 and writing 4 bits of the bit field
described in the preceding paragraph would result in the bit field 1110 being written to the data
set. This would correspond to a start_bit value of 5 and a bit_len value of 4.

The parameter sign_ext specifies whether to use the left-most bit of the variable-length bit field
to sign-extend to the left-most bit of the data set data. For example, if 9-bit signed integer data is
extracted from bits 17-25 and the bit in position 25 is 1, then when the data is read back from disk,
bits 26-31 will be set to 1. Otherwise bit 25 will be 0 and bits 26-31 will be set to 0. The sign_ext

parameter can be set to TRUE (or 1) or FALSE (or 0); specify TRUE to sign-extend.

The parameter fill_one specifies whether to fill the "background" bits with the value 1 or 0. This
parameter is also set to either TRUE (or 1) or FALSE (or 0).

The "background" bits of a non-standard length data set are the bits that fall outside of the non-
standard length bit field stored on disk. For example, if five bits of an unsigned 16-bit integer data
set located in bits 5 to 9 are written to disk with the parameter fill_one set to TRUE (or 1), then
when the data is reread into memory bits 0 to 4 and 10 to 15 would be set to 1. If the same 5-bit
data was written with a fill_one value of FALSE (or 0), then bits 0 to 4 and 10 to 15 would be set
to 0.

The operation on fill_one is performed before the operation on sign_ext . For example, using
the sign_ext example above, bits 0 to 16 and 26 to 31 will first be set to the background bit value,
and then bits 26 to 31 will be set to 1 or 0 based on the value of the 25th bit.

SDsetnbitdataset returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters for SDsetnbit-
dataset are specified in Table 3N.

3-72 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

TABLE 3N SDsetnbitdataset Parameter List

3.8 SDS Dimension and Dimension Scale Operations

The concept of dimensions is introduced in Section 3.2.1 on page 20. This section describes SD
interface routines which store and retrieve information on dimensions and dimension scales.
When a dimension scale is set for a dimension, the library stores the dimension and its associated
information as an SDS array. In the following discussion, we will refer to that array (recall
NetCDF) as a coordinate variable or dimension record. The section concludes with consideration
of related data sets and sharable dimensions.

3.8.1 Selecting a Dimension: SDgetdimid

SDS dimensions are uniquely identified by dimension identifiers, which are assigned when a
dimension is created. These dimension identifiers are used within a program to refer to a particu-
lar dimension, its scale, and its attributes. Before working with a dimension, a program must first
obtain a dimension identifier by calling the SDgetdimid routine as follows:

C: dim_id = SDgetdimid(sds_id, dim_index);

FORTRAN: dim_id = sfdimid(sds_id, dim_index)

SDgetdimid takes two arguments, sds_id and dim_index , and returns a dimension identifier,
dim_id . The argument dim_index is an integer from 0 to the number of dimensions minus 1. The
number of dimensions in a data set is specified at the time the data set is created. Specifying a
dimension index equal to or larger than the number of dimensions in the data set causes SDget-
dimid to return a value of FAIL (or -1).

Unlike file and data set identifiers, dimension identifiers do not require explicit disposal. SDget-
dimid returns a dimension identifier or FAIL (or -1). The parameters of SDgetdimid are specified
in Table 3O on page 73.

3.8.2 Naming a Dimension: SDsetdimname

SDsetdimname assigns a name to a dimension. If two dimensions have the same name, they will
be represented in the file by only one SDS. Therefore changes to one dimension will be reflected
in the other. Naming dimensions is optional but encouraged. Dimensions that are not explicitly
named by the user will have names generated by the HDF library. Use SDdiminfo to read existing
dimension names. The syntax of SDsetdimname is as follows:

C: status = SDsetdimname(dim_id, dim_name);

FORTRAN: status = sfsdmname(dim_id, dim_name)

The argument dim_id in SDsetdimname is the dimension identifier returned by SDgetdimid.
The parameter dim_name is a string of alphanumeric characters representing the name for the

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDsetnbitdataset
[intn]

(sfsnbit)

sds_id int32 integer Data set identifier

start_bit intn integer Leftmost bit of the field to be written

bit_len intn integer Length of the bit field to be written

sign_ext intn integer Sign-extend specifier

fill_one intn integer Background bit specifier

June 24, 1998 3-73

HDF User’s Guide

selected dimension. An attempt to rename a dimension using SDsetdimname will cause the old
name to be deleted and a new one to be assigned.

Note that when naming dimensions the name of a particular dimension must be set before
attributes are assigned; once the attributes have been set, the name must not be changed. In other
words, SDsetdimname must only be called before any calls to SDsetdimscale (described in
Section 3.8.4.1 on page 75), SDsetattr (described in Section 3.9.1 on page 85) or SDsetdimstrs
(described in Section 3.10.2.1 on page 97).

SDsetdimname returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDsetdim-
name are described in Table 3O.

TABLE 3O SDgetdimid and SDsetdimname Parameter Lists

3.8.3 Old and New Dimension Implementations

Up to and including HDF version 4.0 beta1, dimensions were vgroup objects (described in Chap-
ter 5, Vgroups (V API), containing a single field vdata (described in Chapter 4, Vdatas (VS API),
with a class name of DimVal0.0 . The vdata had the same number of records as the size of the
dimension, which consisted of the values 0, 1, 2, . . . n - 1, where n is the size of the dimension.
These values were not strictly necessary. Consider the case of applications that create large one
dimensional data sets: the disk space taken by these unnecessary values nearly doubles the size of
the HDF file. To avoid these situations, a new representation of dimensions was implemented for
HDF version 4.0 beta 2 and later versions.

Dimensions are still vgroups in the new representation, but the vdata has only one record with a
value of <dimension size> and the class name of the vdata has been changed to DimVal0.1 to
distinguish it from the old version.

Between HDF versions 4.0 beta1 and 4.1, the old and new dimension representations were written
by default for each dimension created, and both representations were recognized by routines that
operate on dimensions. From HDF version 4.1 forward, SD interface routines recognize only the
new representation. Two compatibility mode routines, SDsetdimval_comp and
SDisdimval_bwcomp, are provided to allow HDF programs to distinguish between the two
dimension representations, or compatibility modes.

3.8.3.1 Setting the Future Compatibility Mode of a Dimension: SDsetdimval_comp

SDsetdimval_comp sets the compatibility mode for the dimension identified by the parameter
dim_id . This operation determines whether the dimension will have the old and new representa-
tions or the new representation only. The syntax of SDsetdimval_comp is as follows:

C: status = SDsetdimval_comp(dim_id, comp_mode);

FORTRAN: status = sfsdmvc(dim_id, comp_mode)

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDgetdimid
[int32]

(sfdimid)

sds_id int32 integer Data set identifier

dim_index intn integer Dimension index

SDsetdimname
[intn]

(sfsdmname)

dim_id int32 integer Dimension identifier

dim_name char * character*(*) Dimension name

3-74 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

The parameter comp_mode specifies the compatibility mode. It can be set to either
SD_DIMVAL_BW_COMP (or 1), which specifies compatible mode and that the old and new dimension
representations will be written to the file, or SD_DIMVAL_BW_INCOMP (or 0), which specifies incom-
patible mode and that only the new dimension representation will be written to file. As of HDF
version 4.1r1, the default mode is backward-incompatible. Subsequent calls to
SDsetdimval_comp will override the settings established in previous calls to the routine.

Unlimited dimensions are always backward compatible. Therefore SDsetdimval_comp takes no
action when the dimension identified by dim_id is unlimited.

SDsetdimval_comp returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of
SDsetdimval_comp are specified in Table 3P on page 74.

3.8.3.2 Determining the Current Compatibility Mode of a Dimension:
SDisdimval_bwcomp

SDisdimval_bwcomp determines whether the specified dimension has the old and new represen-
tations or the new representation only. The syntax of SDisdimval_bwcomp is as follows:

C: comp_mode = SDisdimval_bwcomp(dim_id);

FORTRAN: comp_mode = sfisdmvc(dim_id)

SDisdimval_bwcomp returns one of the three values: SD_DIMVAL_BW_COMP (or 1),
SD_DIMVAL_BW_INCOMP (or 0), and FAIL (or -1). The interpretation of SD_DIMVAL_BW_COMP and
SD_DIMVAL_BW_INCOMP are as that in the routine SDsetdimval_comp.

The parameters of SDisdimval_bwcomp are specified in Table 3P.

TABLE 3P SDsetdimval_comp and SDisdimval_bwcomp Parameter Lists

3.8.4 Dimension Scales

A dimension scale can be thought of as a series of numbers demarcating intervals along a dimen-
sion. One scale is assigned per dimension. Users of netCDF can think of them as analogous to
coordinate variables. In the SDS data model, each dimension scale is a one-dimensional array
with name and size equal to its assigned dimension name and size.

For example, if a dimension of length 6 named "depth" is assigned a dimension scale, its scale is a
one-dimensional array of length 6 and is also assigned the name "depth". The name of the dimen-
sion will also appear as the name of the dimension scale.

Recall that when dimension scale is assigned to a dimension, the dimension is implemented as an
SDS array with data being the data scale. Although dimension scales are conceptually different
from SDS arrays, they are implemented as SDS arrays by the SDS interface and are treated simi-
larly by the routines in the interface. For example, when the SDfileinfo routine returns the number
of data sets in a file, it includes dimension scales in that number. The SDiscoordvar routine
(described in Section 3.8.4.4 on page 81) distinguishes SDS data sets from dimension scales.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDsetdimval_comp
[intn]

(sfsdmvc)

dim_id int32 integer Dimension identifier

comp_mode intn integer Compatibility mode

SDisdimval_bwcomp
[intn]

(sfisdmvc)
dim_id int32 integer Dimension identifier

June 24, 1998 3-75

HDF User’s Guide

3.8.4.1 Writing Dimension Scales: SDsetdimscale

SDsetdimscale stores scale information for the dimension identified by the parameter dim_id .
The syntax of this routine is as follows:

C: status = SDsetdimscale(dim_id, n_values, data_type, data);

FORTRAN: status = sfsdscale(dim_id, n_values, data_type, data)

The argument n_values specifies the number of scale values along the specified dimension. For a
fixed size dimension, n_values must be equal to the size of the dimension. The parameter
data_type specifies the data type for the scale values and data is an array containing the scale
values.

SDsetdimscale returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of this routine are
specified in Table 3Q on page 76.

3.8.4.2 Obtaining Dimension Scale and Other Dimension Information: SDdiminfo

Before working with an existing dimension scale, it is often necessary to determine its characteris-
tics. For instance, to allocate the proper amount of memory for a scale requires knowledge of its
size and data type. SDdiminfo provides this basic information, as well as the name and the num-
ber of attributes for a specified dimension.

The syntax of this routine is as follows:

C: status = SDdiminfo(dim_id, dim_name, &dim_size, &data_type,

&n_attrs);

FORTRAN: status = sfgdinfo(dim_id, dim_name, dim_size, data_type,

n_attrs)

SDdiminfo retrieves and stores the dimension’s name, size, data type, and number of attributes
into the parameters dim_name , dim_size , data_type , and n_attrs , respectively.

The parameter dim_name will contain the dimension name set by SDsetdimname or the default
dimension name, fakeDim[x] , if SDsetdimname has not been called, where [x] denotes the
dimension index. If the name is not desired, the parameter dim_name can be set to NULL in C or an
empty string in FORTRAN-77.

An output value of 0 for the parameter dim_size indicates that the dimension specified by the
parameter dim_id is unlimited. Use SDgetinfo to get the number of elements of the unlimited
dimension.

If scale information is available for the specified dimension, i.e., SDsetdimscale has been called,
the parameter data_type will contain the data type of the scale values; otherwise, data_type will
contain 0.

SDdiminfo returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of this routine are
specified in Table 3Q.

3.8.4.3 Reading Dimension Scales: SDgetdimscale

SDgetdimscale retrieves the scale values of a dimension. These values have previously been
stored by SDsetdimscale. The syntax of this routine is as follows:

C: status = SDgetdimscale(dim_id, data);

FORTRAN: status = sfgdscale(dim_id, data)

3-76 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

SDgetdimscale reads all the scale values and stores them in the buffer data which is assumed to
be sufficiently allocated to hold all the values. SDdiminfo should be used to determine whether the
scale has been set for the dimension and to obtain the data type and the number of scale values for
space allocation before calling SDgetdimscale. Refer to Section 3.8.4.2 on page 75 for a discus-
sion of SDdiminfo.

Note that it is not possible to read a subset of the scale values. SDgetdimscale returns all of the
scale values stored with the given dimension.

SDgetdimscale returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of this routine
are specified in Table 3Q.

TABLE 3Q SDsetdimscale, SDdiminfo, and SDgetdimscale Parameter Lists

EXAMPLE 12. Setting and Retrieving Dimension Information.

This example illustrates the use of the routines SDgetdimid/sfdimid, SDsetdimname/sfsdm-
name, SDsetdimscale/sfsdscale, SDdiminfo/sfgdinfo, and SDgetdimscale/sfgdscale to set and
retrieve the dimensions names and dimension scales of the SDS created in Example 2 and modi-
fied in Examples 4 and 7.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define SDS_NAME "SDStemplate"
#define DIM_NAME_X "X_Axis"
#define DIM_NAME_Y "Y_Axis"
#define NAME_LENGTH 6
#define X_LENGTH 5
#define Y_LENGTH 16
#define RANK 2

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDsetdimscale
[intn]

(sfsdscale)

dim_id int32 integer Dimension identifier

n_values int32 integer Number of scale values

data_type int32 integer Data type to be set for the scale values

data VOIDP <valid data type>(*) Buffer containing the scale values to be set

SDdiminfo
[intn]

(sfgdinfo)

dim_id int32 integer Dimension identifier

dim_name char * character*(*) Buffer for the dimension name

n_values int32 * integer Buffer for the dimension size

data_type int32 * integer Buffer for the scale data type

n_attrs int32 * integer Buffer for the attribute count

SDgetdimscale
[intn]

(sfgdscale)

dim_id int32 integer Dimension identifier

data VOIDP <valid data type>(*) Buffer for the scale values

June 24, 1998 3-77

HDF User’s Guide

 int32 dim_index, dim_id;
 int32 n_values, data_type, n_attrs;
 int16 data_X[X_LENGTH]; /* X dimension dimension scale */
 int16 data_X_out[X_LENGTH];
 float64 data_Y[Y_LENGTH]; /* Y dimension dimension scale */
 float64 data_Y_out[Y_LENGTH];
 char dim_name[NAME_LENGTH];
 int i, j, nrow;

 /********************* End of variable declaration ***********************/

 /*
 * Initialize dimension scales.
 */
 for (i=0; i < X_LENGTH; i++) data_X[i] = i;
 for (i=0; i < Y_LENGTH; i++) data_Y[i] = 0.1 * i;

 /*
 * Open the file and initialize SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_WRITE);

 /*
 * Get the index of the data set specified in SDS_NAME.
 */
 sds_index = SDnametoindex (sd_id, SDS_NAME);

 /*
 * Select the data set corresponding to the returned index.
 */
 sds_id = SDselect (sd_id, sds_index);

 /* For each dimension of the data set specified in SDS_NAME,
 * get its dimension identifier and set dimension name
 * and dimension scale. Note that data type of dimension scale
 * can be different between dimensions and can be different from
 * SDS data type.
 */
 for (dim_index = 0; dim_index < RANK; dim_index++)
 {
 /*
 * Select the dimension at position dim_index.
 */
 dim_id = SDgetdimid (sds_id, dim_index);

 /*
 * Assign name and dimension scale to selected dimension.
 */
 switch (dim_index)
 {

case 0:status = SDsetdimname (dim_id, DIM_NAME_Y);
 n_values = Y_LENGTH;
 status = SDsetdimscale (dim_id,n_values,DFNT_FLOAT64, \
 (VOIDP)data_Y);

break;
case 1:status = SDsetdimname (dim_id, DIM_NAME_X);

 n_values = X_LENGTH;
 status = SDsetdimscale (dim_id,n_values,DFNT_INT16, \
 (VOIDP)data_X);

break;
default: break;

 }

3-78 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 /*
 * Get and display info about the dimension and its scale values.
 * The following information is displayed:
 *
 * Information about 1 dimension:
 * dimension name is Y_Axis
 * number of scale values is 16
 * dimension scale data type is float64
 * number of dimension attributes is 0
 *
 * Scale values are :
 * 0.000 0.100 0.200 0.300
 * 0.400 0.500 0.600 0.700
 * 0.800 0.900 1.000 1.100
 * 1.200 1.300 1.400 1.500
 *
 * Information about 2 dimension:
 * dimension name is X_Axis
 * number of scale values is 5
 * dimension scale data type is int16
 * number of dimension attributes is 0
 *
 * Scale values are :
 * 0 1 2 3 4
 */

 status = SDdiminfo (dim_id, dim_name, &n_values, &data_type, &n_attrs);
 printf ("Information about %d dimension:\n", dim_index+1);
 printf ("dimension name is %s\n", dim_name);
 printf ("number of scale values is %d\n", n_values);
 if(data_type == DFNT_FLOAT64)
 printf ("dimension scale data type is float64\n");
 if(data_type == DFNT_INT16)
 printf ("dimension scale data type is int16\n");
 printf ("number of dimension attributes is %d\n", n_attrs);
 printf ("\n");
 printf ("Scale values are :\n");
 switch (dim_index)
 {
 case 0: status = SDgetdimscale (dim_id, (VOIDP)data_Y_out);
 nrow = 4;
 for (i=0; i<n_values/nrow; i++)
 {
 for (j=0; j<nrow; j++)
 printf (" %-6.3f", data_Y_out[i*nrow + j]);
 printf ("\n");
 }
 break;
 case 1: status = SDgetdimscale (dim_id, (VOIDP)data_X_out);
 for (i=0; i<n_values; i++) printf (" %d", data_X_out[i]);
 break;
 default: break;
 }
 printf ("\n");
 } /*for dim_index */

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.

June 24, 1998 3-79

HDF User’s Guide

 */
 status = SDend (sd_id);
}

FORTRAN:
 program dimension_info
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 character*11 SDS_NAME
 character*6 DIM_NAME_X
 character*6 DIM_NAME_Y
 integer X_LENGTH, Y_LENGTH, RANK
 parameter (FILE_NAME = ’SDS.hdf’,
 + SDS_NAME = ’SDStemplate’,
 + DIM_NAME_X = ’X_Axis’,
 + DIM_NAME_Y = ’Y_Axis’,
 + X_LENGTH = 5,
 + Y_LENGTH = 16,
 + RANK = 2)
 integer DFACC_WRITE, DFNT_INT16, DFNT_FLOAT64
 parameter (DFACC_WRITE = 2,
 + DFNT_INT16 = 22,
 + DFNT_FLOAT64 = 6)

C
C Function declaration.
C
 integer sfstart, sfn2index, sfdimid, sfgdinfo
 integer sfsdscale, sfgdscale, sfsdmname, sfendacc
 integer sfend, sfselect
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index, status
 integer dim_index, dim_id
 integer n_values, n_attrs, data_type
 integer*2 data_X(X_LENGTH)
 integer*2 data_X_out(X_LENGTH)
 real*8 data_Y(Y_LENGTH)
 real*8 data_Y_out(Y_LENGTH)
 character*6 dim_name
 integer i
C
C**** End of variable declaration ************************************
C
C
C Initialize dimension scales.
C
 do 10 i = 1, X_LENGTH
 data_X(i) = i - 1
10 continue

 do 20 i = 1, Y_LENGTH
 data_Y(i) = 0.1 * (i - 1)
20 continue
C
C Open the file and initialize SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_WRITE)

3-80 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

C
C Get the index of the data set with the name specified in SDS_NAME.
C
 sds_index = sfn2index(sd_id, SDS_NAME)
C
C Select the data set corresponding to the returned index.
C
 sds_id = sfselect(sd_id, sds_index)
C
C For each dimension of the data set,
C get its dimension identifier and set dimension name
C and dimension scales. Note that data type of dimension scale can
C be different between dimensions and can be different from SDS data type.
C
 do 30 dim_index = 0, RANK - 1
C
C Select the dimension at position dim_index.
C
 dim_id = sfdimid(sds_id, dim_index)
C
C Assign name and dimension scale to the dimension.
C
 if (dim_index .eq. 0) then
 status = sfsdmname(dim_id, DIM_NAME_X)
 n_values = X_LENGTH
 status = sfsdscale(dim_id, n_values, DFNT_INT16, data_X)
 end if
 if (dim_index .eq. 1) then
 status = sfsdmname(dim_id, DIM_NAME_Y)
 n_values = Y_LENGTH
 status = sfsdscale(dim_id, n_values, DFNT_FLOAT64, data_Y)
 end if
C
C Get and display information about dimension and its scale values.
C The following information is displayed:
C
C Information about 1 dimension :
C dimension name is X_Axis
C number of scale values is 5
C dimension scale data type is int16
C
C number of dimension attributes is 0
C Scale values are:
C 0 1 2 3 4
C
C Information about 2 dimension :
C dimension name is Y_Axis
C number of scale values is 16
C dimension scale data type is float64
C number of dimension attributes is 0
C
C Scale values are:
C 0.000 0.100 0.200 0.300
C 0.400 0.500 0.600 0.700
C 0.800 0.900 1.000 1.100
C 1.200 1.300 1.400 1.500
C
 status = sfgdinfo(dim_id, dim_name, n_values, data_type, n_attrs)
C
 write(*,*) "Information about ", dim_index+1," dimension :"
 write(*,*) "dimension name is ", dim_name
 write(*,*) "number of scale values is", n_values
 if (data_type. eq. 22) then

June 24, 1998 3-81

HDF User’s Guide

 write(*,*) "dimension scale data type is int16"
 endif
 if (data_type. eq. 6) then
 write(*,*) "dimension scale data type is float64"
 endif
 write(*,*) "number of dimension attributes is ", n_attrs
C
 write(*,*) "Scale values are:"
 if (dim_index .eq. 0) then
 status = sfgdscale(dim_id, data_X_out)
 write(*,*) (data_X_out(i), i= 1, X_LENGTH)
 endif
 if (dim_index .eq. 1) then
 status = sfgdscale(dim_id, data_Y_out)
 write(*,100) (data_Y_out(i), i= 1, Y_LENGTH)
100 format(4(1x,f10.3)/)
 endif
30 continue
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)
 end

3.8.4.4 Distinguishing SDS Arrays from Dimension Scales: SDiscoordvar

The HDF library stores SDS dimensions as data sets. HDF therefore provides the routine SDisco-
ordvar to determine whether a particular data set contains the data of an SDS or an SDS dimen-
sion with dimension scale or attribute assigned to it. The syntax of SDiscoordvar this routine is as
follows:

C: status = SDiscoordvar(sds_id);

FORTRAN: status = sfiscvar(sds_id)

If the data set, identified by the parameter sds_id , contains the dimension data, a subsequent call
to SDgetinfo will fill the specified arguments with information about a dimension, rather than a
data set.

SDiscoordvar returns TRUE (or 1) if the specified data set represents a dimension scale and FALSE

(or 0), otherwise. This routine is further defined in Table 3R.

TABLE 3R SDiscoordvar Parameter List

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDiscoordvar
[intn]

(sfiscvar)
sds_id int32 integer Data set identifier

3-82 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

EXAMPLE 13. Distinguishing a Dimension Scale from a Data Set in a File.

This example illustrates the use of the routine SDiscoordvar/sfiscvar to determine whether the
selected SDS array is a data set or a dimension stored as an SDS array (coordinate variable) (see
discussion in Section 3.8.4) and displays the name of the data set or dimension.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 rank, data_type, dim_sizes[MAX_VAR_DIMS];
 int32 n_datasets, n_file_attr, n_attrs;
 char sds_name[MAX_NC_NAME];

 /********************* End of variable declaration ***********************/

 /*
 * Open the file and initialize the SD interface.
 */
 sd_id = SDstart(FILE_NAME, DFACC_READ);

 /*
 * Obtain information about the file.
 */
 status = SDfileinfo(sd_id, &n_datasets, &n_file_attr);

 /* Get information about each SDS in the file.
 * Check whether it is a coordinate variable, then display retrieved
 * information.
 * Output displayed:
 *
 * SDS array with the name SDStemplate
 * Coordinate variable with the name Y_Axis
 * Coordinate variable with the name X_Axis
 *
 */
 for (sds_index=0; sds_index< n_datasets; sds_index++)
 {
 sds_id = SDselect (sd_id, sds_index);
 status = SDgetinfo(sds_id, sds_name, &rank, dim_sizes, &data_type,
&n_attrs);
 if (SDiscoordvar(sds_id))
 printf(" Coordinate variable with the name %s\n", sds_name);
 else
 printf(" SDS array with the name %s\n", sds_name);

 /*
 * Terminate access to the selected data set.
 */
 status = SDendaccess(sds_id);

 }

 /*
 * Terminate access to the SD interface and close the file.

June 24, 1998 3-83

HDF User’s Guide

 */
 status = SDend(sd_id);
}

FORTRAN:
 program sds_vrs_coordvar
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 parameter (FILE_NAME = ’SDS.hdf’)
 integer DFACC_READ, DFNT_INT32
 parameter (DFACC_READ = 1,
 + DFNT_INT32 = 24)
 integer MAX_VAR_DIMS
 parameter (MAX_VAR_DIMS = 32)
C
C Function declaration.
C
 integer sfstart, sfselect, sfiscvar, sffinfo, sfginfo
 integer sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index, status
 integer rank, data_type
 integer n_datasets, n_file_attrs, n_attrs
 integer dim_sizes(MAX_VAR_DIMS)
 character*256 sds_name
C
C**** End of variable declaration ************************************
C
C
C Open the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_READ)
C
C Obtain information about the file.
C
 status = sffinfo(sd_id, n_datasets, n_file_attrs)
C
C Get information about each SDS in the file.
C Check whether it is a coordinate variable, then display retrieved
C information.
C Output displayed:
C
C SDS array with the name SDStemplate
C Coordinate variable with the name X_Axis
C Coordinate variable with the name Y_Axis
C
 do 10 sds_index = 0, n_datasets-1
 sds_id = sfselect(sd_id, sds_index)
 status = sfginfo(sds_id, sds_name, rank, dim_sizes,
 + data_type, n_attrs)
 status = sfiscvar(sds_id)
 if (status .eq. 1) then
 write(*,*) "Coordinate variable with the name ",
 + sds_name(1:6)
 else
 write(*,*) "SDS array with the name ",
 + sds_name(1:11)

3-84 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 endif
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
10 continue
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)
 end

3.8.5 Related Data Sets

SD data sets with one or more dimensions with the same name and size are considered to be
related. Examples of related data sets are cross-sections from the same simulation, frames in an
animation, or images collected from the same apparatus. HDF attempts to preserve this relation-
ship by unifying their dimension scales and attributes. To understand how related data sets are
handled, it is necessary to understand what dimension records are and how they are created.

In the SD interface, dimension records are only created for dimensions of a unique name and size.
To illustrate this, consider a case where there are three scientific data sets, each representing a
unique variable, in an HDF file. (See Figure 3c.) The first two data sets have two dimensions each
and the third data set has three dimensions. There are a total of five dimensions in the file and the
name mapping between the data sets and the dimensions are shown in the figure. Note that if, for
example, the creation of a second dimension named "Altitude" is attempted and the size of the
dimension is different from the existing dimension named "Altitude", an error condition will be
generated.

As expected, assigning a dimension attribute to dimension 1 of either data set will create the
required dimension scale and assign the appropriate attribute. However, because related data sets
share dimension records, they also share dimension attributes. Therefore, it is impossible to assign
an attribute to a dimension without assigning the same attribute to all dimensions of identical
name and size, either within one data set or related data sets.

FIGURE 3c Dimension Records and Attributes Shared Between Related Data Sets
Data Set A

Latitude Longitude

Altitude

Data Set B Data Set C

Latitude LongitudeLongitudeTime

Latitude Longitude Time Altitude

Dimensions

June 24, 1998 3-85

HDF User’s Guide

3.9 User-defined Attributes

User-defined attributes are defined by the calling program and contain auxiliary information
about a file, SDS array, or dimension. This auxiliary information is sometimes called metadata
because it is data about data. There are two ways to store metadata: as user-defined attributes or as
predefined attributes.

Attributes take the form label=value , where label is a character string containing MAX_NC_NAME

(or 256) or fewer characters and value contains one or more entries of the same data type as
defined at the time the attribute is created. Attributes can be attached to files, data sets, and dimen-
sions. These are referred to, respectively, as file attributes, data set attributes, and dimension
attributes:

• File attributes describe an entire file. They generally contain information pertinent to all
HDF data sets in the file and are sometimes referred to as global attributes.

• Data set attributes describe individual SDSs. Because their scope is limited to an individual
SDS, data set attributes are sometimes referred to as local attributes.

• Dimension attributes provide information applicable to an individual SDS dimension. It is
possible to assign a unit to one dimension in a data set without assigning a unit to the
remaining dimensions.

For each attribute, an attribute count is maintained that identifies the number of values in the
attribute. Each attribute has a unique attribute index, the value of which ranges from 0 to the total
number of attributes minus 1. The attribute index is used to locate an attribute in the object which
the attribute is attached to. Once the attribute is identified, its values and information can be
retrieved.

The data types permitted for attributes are the same as those allowed for SDS arrays. SDS arrays
with general attributes of the same name can have different data types. For example, the attribute
valid_range specifying the valid range of data values for an array of 16-bit integers might be of
type 16-bit integer, whereas the attribute valid_range for an array of 32-bit floats could be of
type 32-bit floating-point integer.

Attribute names follow the same rules as dimension names. Providing meaningful names for
attributes is important, however using standardized names may be necessary if generic applica-
tions and utility programs are to be used. For example, every variable assigned a unit should have
an attribute named "units" associated with it. Furthermore, if an HDF file is to be used with soft-
ware that recognizes "units" attributes, the values of the "units" attributes should be expressed in a
conventional form as a character string that can be interpreted by that software.

The SD interface uses the same functions to access all attributes regardless of the objects they are
assigned to. The difference between accessing a file, array, or dimension attribute lies in the use of
identifiers. File identifiers, SDS identifiers, and dimension identifiers are used to respectively
access file attributes, SDS attributes, and dimension attributes.

3.9.1 Creating or Writing User-defined Attributes: SDsetattr

SDsetattr creates or modifies an attribute for one of the objects: the file, the data set, or the
dimension. If the attribute with the specified name does not exist, SDsetattr creates a new one. If
the named attribute already exists, SDsetattr resets all the values that are different from those pro-
vided in its argument list. The syntax of this routine is as follows:

C: status = SDsetattr(obj_id, attr_name, data_type, n_values, values);

FORTRAN: status = sfsnatt(obj_id, attr_name, data_type, n_values, values)

3-86 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

OR status = sfscatt(obj_id, attr_name, data_type, n_values, values)

The parameter obj_id is the identifier of the HDF data object to which the attribute is assigned
and can be a file identifier, SDS identifier, or dimension identifier. If obj_id specifies an SD inter-
face identifier (sd_id), a global attribute will be created which applies to all objects in the file. If
obj_id specifies a data set identifier (sds_id), an attribute will be attached only to the specified
data set. If obj_id specifies a dimension identifier (dim_id), an attribute will be attached only to
the specified dimension.

The parameter attr_name is an ASCII character string containing the name of the attribute. It rep-
resents the label in the label = value equation and can be no more than MAX_NC_NAME (or 256)
characters. If this is set to the name of an existing attribute, the value portion of the attribute will
be overwritten. Do not use SDsetattr to assign a name to a dimension, use SDsetdimname
instead.

The arguments data_type , n_values , and values describe the right side of the label = value

equation. The argument values contains one or more values of the same data type. The argument
data_type contains any HDF supported data type (see Table 2E on page 14). The parameter
n_values specifies the total number of values in the attribute.

There are two FORTRAN-77 versions of this routine: sfsnatt and sfscatt. The routine sfsnatt
writes numeric attribute data and sfscatt writes character attribute data.

SDsetattr returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDsetattr are fur-
ther described in Table 3S on page 90.

EXAMPLE 14. Setting Attributes.

This example shows how the routines SDsetattr/sfscatt/sfsnatt are used to set the attributes of the
file, data set, and data set dimension created in the Examples 2, 4, and 12.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define FILE_ATTR_NAME "File_contents"
#define SDS_ATTR_NAME "Valid_range"
#define DIM_ATTR_NAME "Dim_metric"

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 dim_id, dim_index;
 int32 n_values; /* number of values of the file, SDS or
 dimension attribute */
 char8 file_values[] = "Storm_track_data";
 /* values of the file attribute */
 float32 sds_values[2] = {2., 10.};
 /* values of the SDS attribute */
 char8 dim_values[] = "Seconds";
 /* values of the dimension attribute */

 /********************* End of variable declaration ***********************/

 /*
 * Open the file and initialize the SD interface.

June 24, 1998 3-87

HDF User’s Guide

 */
 sd_id = SDstart (FILE_NAME, DFACC_WRITE);

 /*
 * Set an attribute that describes the file contents.
 */
 n_values = 16;
 status = SDsetattr (sd_id, FILE_ATTR_NAME, DFNT_CHAR8, n_values,
 (VOIDP)file_values);

 /*
 * Select the first data set.
 */
 sds_index = 0;
 sds_id = SDselect (sd_id, sds_index);

 /*
 * Assign attribute to the first SDS. Note that attribute values
 * may have different data type than SDS data.
 */
 n_values = 2;
 status = SDsetattr (sds_id, SDS_ATTR_NAME, DFNT_FLOAT32, n_values,
 (VOIDP)sds_values);

 /*
 * Get the the second dimension identifier of the SDS.
 */
 dim_index = 1;
 dim_id = SDgetdimid (sds_id, dim_index);

 /*
 * Set an attribute of the dimension that specifies the dimension metric.
 */
 n_values = 7;
 status = SDsetattr (dim_id, DIM_ATTR_NAME, DFNT_CHAR8, n_values,
 (VOIDP)dim_values);

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

FORTRAN:
 program set_attribs
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 character*13 FILE_ATTR_NAME
 character*11 SDS_ATTR_NAME
 character*10 DIM_ATTR_NAME
 parameter (FILE_NAME = ’SDS.hdf’,
 + FILE_ATTR_NAME = ’File_contents’,
 + SDS_ATTR_NAME = ’Valid_range’,
 + DIM_ATTR_NAME = ’Dim_metric’)

3-88 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 integer DFACC_WRITE, DFNT_CHAR8, DFNT_FLOAT32
 parameter (DFACC_WRITE = 2,
 + DFNT_CHAR8 = 4,
 + DFNT_FLOAT32 = 5)
C
C Function declaration.
C
 integer sfstart, sfscatt, sfsnatt, sfselect, sfdimid
 integer sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index, status
 integer dim_id, dim_index
 integer n_values
 character*16 file_values
 real sds_values(2)
 character*7 dim_values
 file_values = ’Storm_track_data’
 sds_values(1) = 2.
 sds_values(2) = 10.
 dim_values = ’Seconds’
C
C**** End of variable declaration ************************************
C
C
C Open the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_WRITE)
C
C Set an attribute that describes the file contents.
C
 n_values = 16
 status = sfscatt(sd_id, FILE_ATTR_NAME, DFNT_CHAR8, n_values,
 + file_values)
C
C Select the first data set.
C
 sds_index = 0
 sds_id = sfselect(sd_id, sds_index)
C
C Assign attribute to the first SDS. Note that attribute values
C may have different data type than SDS data.
C
 n_values = 2
 status = sfsnatt(sds_id, SDS_ATTR_NAME, DFNT_FLOAT32, n_values,
 + sds_values)
C
C Get the identifier for the first dimension.
C
 dim_index = 0
 dim_id = sfdimid(sds_id, dim_index)
C
C Set an attribute to the dimension that specifies the
C dimension metric.
C
 n_values = 7
 status = sfscatt(dim_id, DIM_ATTR_NAME, DFNT_CHAR8, n_values,
 + dim_values)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)

June 24, 1998 3-89

HDF User’s Guide

C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

3.9.2 Querying User-defined Attributes: SDfindattr and SDattrinfo

Given a file, SDS, or dimension identifier and an attribute name, SDfindattr returns a valid
attribute index if the corresponding attribute exists. The attribute index can then be used to retrieve
information about the attribute or its values. Given a file, SDS, or dimension identifier and a valid
attribute index, SDattrinfo retrieves the information about the corresponding attribute if it exists.

The syntax for SDfindattr and SDattrinfo are as follows:

C: attr_index = SDfindattr(obj_id, attr_name);

status = SDattrinfo(obj_id, attr_index, attr_name, &data_type,
&n_values);

FORTRAN: attr_index = sffattr(obj_id, attr_name)

status = sfgainfo(obj_id, attr_index, attr_name, data_type,
n_values)

SDfindattr returns the index of the attribute, which belongs to the object identified by the param-
eter obj_id , and whose name is specified by the parameter attr_name .

The parameter obj_id can be either an SD interface identifier (sd_id), a data set identifier
(sds_id), or a dimension identifier (dim_id). SDfindattr is case-sensitive in searching for the
name specified by the parameter attr_name and does not accept wildcards as part of that name.

SDattrinfo retrieves the attribute’s name, data type, and number of values into the parameters
attr_name , data_type , and n_values , respectively.

The parameter attr_index specifies the relative position of the attribute within the specified
object. An attribute index may also be determined by either keeping track of the number and order
of attributes as they are written or dumping the contents of the file using the HDF dumping utility,
hdp, which is described in Chapter 15, HDF Command-Line Utilities.

SDfindattr returns an attribute index or a value of FAIL (or -1). SDattrinfo returns a value of SUC-

CEED (or 0) or FAIL (or -1). The parameters of SDfindattr and SDattrinfo are further described in
Table 3S on page 90.

3.9.3 Reading User-defined Attributes: SDreadattr

Given a file, SDS, or dimension identifier and an attribute index, SDreadattr reads the values of
an attribute that belongs to either a file, an SDS, or a dimension. The syntax of this routine is as
follows:

C: status = SDreadattr(obj_id, attr_index, values);

FORTRAN: status = sfrattr(obj_id, attr_index, values)

OR status = sfrnatt(obj_id, attr_index, values)

OR status = sfrcatt(obj_id, attr_index, values)

SDreadattr stores the attribute values in the buffer values , which is assumed to be sufficiently
allocated. The size of the buffer must be at least n_values*sizeof (data_type) bytes long,

3-90 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

where n_values and data_type are the number of attribute values and their type. The values of
n_values and data_type can be retrieved using SDattrinfo . Note that the size of the data type
must be determined at the local machine where the application is running. SDreadattr will also
read attributes and annotations created by the DFSD interface.

The parameter obj_id can be either an SD interface identifier (sd_id), a data set identifier
(sds_id), or a dimension identifier (dim_id).

The parameter attr_index specifies the relative position of the attribute within the specified
object. An attribute index may also be determined by either keeping track of the number and order
of attributes as they are written or dumping the contents of the file using the HDF dumping utility,
hdp, which is described in Chapter 15, HDF Command-Line Utilities.

There are three FORTRAN-77 versions of this routine: sfrattr , sfrnatt , and sfrcatt. The routine
sfrattr reads data of all valid data types, sfrnatt reads numeric attribute data and sfrcatt reads
character attribute data.

SDreadattr returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDreadattr are
further described in Table 3S.

TABLE 3S SDsetattr, SDfindattr, SDattrinfo, and SDreadattr Parameter Lists

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDsetattr
[intn]

(sfsnatt/
sfscatt)

sd_id, sds_id or
dim_id

int32 integer
SD interface, data set, or
dimension identifier

attr_name char * character*(*) Name of the attribute

data_type int32 integer Data type of the attribute

n_values int32 integer Number of values in the attribute

values VOIDP
<valid numeric data type>(*)/

character*(*)
Buffer containing the data to be written

SDfindattr
[int32]

(sffattr)

sd_id, sds_id or
dim_id

int32 integer
SD interface, data set, or
dimension identifier

attr_name char * character*(*) Attribute name

SDattrinfo
[intn]

(sfgainfo)

sd_id, sds_id or
dim_id

int32 integer
SD interface, data set, or
dimension identifier

attr_index int32 integer Index of the attribute to be read

attr_name char * character*(*) Buffer for the name of the attribute

data_type int32 * integer
Buffer for the data type of the values in the
attribute

n_values int32 * integer
Buffer for the total number of values in the
attribute

SDreadattr
[intn]

(sfrattr/
sfrnatt/
sfrcatt)

sd_id, sds_id or
dim_id

int32 integer
SD interface, data set, or dimension identi-
fier

attr_index int32 integer Index of the attribute to be read

values VOIDP
<valid data type>(*)/

<valid numeric data type>(*)/
character*(*)

Buffer for the attribute values

June 24, 1998 3-91

HDF User’s Guide

EXAMPLE 15. Reading Attributes.

This example uses the routines SDfindattr/sffattr , SDattrinfo/sfgainfo, and SDreadattr/sfrattr
to find and read attributes of the file, data set, and data set dimension created in the Example 14.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define FILE_ATTR_NAME "File_contents"
#define SDS_ATTR_NAME "Valid_range"
#define DIM_ATTR_NAME "Dim_metric"

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, dim_id;
 intn status;
 int32 attr_index, data_type, n_values;
 char attr_name[MAX_NC_NAME];
 int8 *file_data;
 int8 *dim_data;
 float32 *sds_data;
 int i;

 /********************* End of variable declaration ***********************/

 /*
 * Open the file and initialize SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_READ);

 /*
 * Find the file attribute defined by FILE_ATTR_NAME.
 */
 attr_index = SDfindattr (sd_id, FILE_ATTR_NAME);

 /*
 * Get information about the file attribute. Note that the first
 * parameter is an SD interface identifier.
 */
 status = SDattrinfo (sd_id, attr_index, attr_name, &data_type, &n_values);

 /*
 * Allocate a buffer to hold the attribute data.
 */
 file_data = (int8 *)malloc (n_values * sizeof (data_type));

 /*
 * Read the file attribute data.
 */
 status = SDreadattr (sd_id, attr_index, file_data);

 /*
 * Print out file attribute value.
 */
 printf ("File attribute value is : %s\n", file_data);

 /*
 * Select the first data set.
 */

3-92 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 sds_id = SDselect (sd_id, 0);

 /*
 * Find the data set attribute defined by SDS_ATTR_NAME. Note that the
 * first parameter is a data set identifier.
 */
 attr_index = SDfindattr (sds_id, SDS_ATTR_NAME);

 /*
 * Get information about the data set attribute.
 */
 status = SDattrinfo (sds_id, attr_index, attr_name, &data_type, &n_values);

 /*
 * Allocate a buffer to hold the data set attribute data.
 */
 sds_data = (float32 *)malloc (n_values * sizeof (data_type));

 /*
 * Read the SDS attribute data.
 */
 status = SDreadattr (sds_id, attr_index, sds_data);

 /*
 * Print out SDS attribute data type and values.
 */
 if (data_type == DFNT_FLOAT32)
 printf ("SDS attribute data type is : float32\n");
 printf ("SDS attribute values are : ");
 for (i=0; i<n_values; i++) printf (" %f", sds_data[i]);
 printf ("\n");

 /*
 * Get the identifier for the second dimension of the SDS.
 */
 dim_id = SDgetdimid (sds_id, 1);

 /*
 * Find dimension attribute defined by DIM_ATTR_NAME.
 */
 attr_index = SDfindattr (dim_id, DIM_ATTR_NAME);

 /*
 * Get information about the dimension attribute.
 */
 status = SDattrinfo (dim_id, attr_index, attr_name, &data_type, &n_values);

 /*
 * Allocate a buffer to hold the dimension attribute data.
 */
 dim_data = (int8 *)malloc (n_values * sizeof (data_type));

 /*
 * Read the dimension attribute data.
 */
 status = SDreadattr (dim_id, attr_index, dim_data);

 /*
 * Print out dimension attribute value.
 */
 printf ("Dimensional attribute values is : %s\n", dim_data);

 /*

June 24, 1998 3-93

HDF User’s Guide

 * Terminate access to the data set and to the SD interface and
 * close the file.
 */
 status = SDendaccess (sds_id);
 status = SDend (sd_id);

 /*
 * Free all buffers.
 */
 free (dim_data);
 free (sds_data);
 free (file_data);

 /* Output of this program is :
 *
 * File attribute value is : Storm_track_data
 * SDS attribute data type is : float32
 * SDS attribute values are : 2.000000 10.000000
 * Dimensional attribute values is : Seconds
 */
}

FORTRAN:
 program attr_info
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 character*13 FILE_ATTR_NAME
 character*11 SDS_ATTR_NAME
 character*10 DIM_ATTR_NAME
 parameter (FILE_NAME = ’SDS.hdf’,
 + FILE_ATTR_NAME = ’File_contents’,
 + SDS_ATTR_NAME = ’Valid_range’,
 + DIM_ATTR_NAME = ’Dim_metric’)
 integer DFACC_READ, DFNT_FLOAT32
 parameter (DFACC_READ = 1,
 + DFNT_FLOAT32 = 5)

C
C Function declaration.
C
 integer sfstart, sffattr, sfgainfo, sfrattr, sfselect
 integer sfdimid, sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, dim_id
 integer attr_index, data_type, n_values, status
 real sds_data(2)
 character*20 attr_name
 character*16 file_data
 character*7 dim_data
 integer i
C
C**** End of variable declaration ************************************
C
C
C Open the file and initialize SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_READ)

3-94 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

C
C Find the file attribute defined by FILE_ATTR_NAME.
C Note that the first parameter is an SD interface identifier.
C
 attr_index = sffattr(sd_id, FILE_ATTR_NAME)
C
C Get information about the file attribute.
C
 status = sfgainfo(sd_id, attr_index, attr_name, data_type,
 + n_values)
C
C Read the file attribute data.
C
 status = sfrattr(sd_id, attr_index, file_data)
C
C Print file attribute value.
C
 write(*,*) "File attribute value is : ", file_data
C
C Select the first data set.
C
 sds_id = sfselect(sd_id, 0)
C
C Find the data set attribute defined by SDS_ATTR_NAME.
C Note that the first parameter is a data set identifier.
C
 attr_index = sffattr(sds_id, SDS_ATTR_NAME)
C
C Get information about the data set attribute.
C
 status = sfgainfo(sds_id, attr_index, attr_name, data_type,
 + n_values)
C
C Read the SDS attribute data.
C
 status = sfrattr(sds_id, attr_index, sds_data)

C
C Print SDS attribute data type and values.
C
 if (data_type .eq. DFNT_FLOAT32) then
 write(*,*) "SDS attribute data type is : float32 "
 endif
 write(*,*) "SDS attribute values are : "
 write(*,*) (sds_data(i), i=1, n_values)
C
C Get the identifier for the first dimension of the SDS.
C
 dim_id = sfdimid(sds_id, 0)
C
C Find the dimensional attribute defined by DIM_ATTR_NAME.
C Note that the first parameter is a dimension identifier.
C
 attr_index = sffattr(dim_id, DIM_ATTR_NAME)
C
C Get information about dimension attribute.
C
 status = sfgainfo(dim_id, attr_index, attr_name, data_type,
 + n_values)
C
C Read the dimension attribute data.
C
 status = sfrattr(dim_id, attr_index, dim_data)

June 24, 1998 3-95

HDF User’s Guide

C
C Print dimension attribute value.
C
 write(*,*) "Dimensional attribute value is : ", dim_data
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)
C
C Output of this program is :
C
C
C File attribute value is : Storm_track_data
C SDS attribute data type is : float32
C SDS attribute values are :
C 2.00000 10.00000
C Dimensional attribute value is : Seconds
C
 end

3.10 Predefined Attributes

Predefined attributes use reserved names and in some cases predefined data type names. Pre-
defined attributes are categorized as follows:

• Labels can be thought of as variable names. They are often used as keys in searches to find a
particular predefined attribute.

• Units are a means of declaring the units pertinent to a specific discipline. A freely-available
library of routines is available to convert between character string and binary forms of unit
specifications and to perform useful operations on the binary forms. This library is used in
some netCDF applications and is recommended for use with HDF applications. For more
information, refer to the netCDF User’s Guide for C which can be obtained at
http://www.unidata.ucar.edu/packages/netcdf/guidec/ .

• Formats describe the format in which numeric values will be printed and/or displayed. The
recommended convention is to use standard FORTRAN-77 notation for describing the data
format. For example, "F7.2" means to display seven digits with two digits to the right of the
decimal point.

• Coordinate systems contain information that should be used when interpreting or displaying
the data. For example, the text strings "cartesian", "polar" and "spherical" are recommended
coordinate system descriptions.

• Ranges define the maximum and minimum values of a selected valid range. The range may
cover the entire data set, values outside the data set, or a subset of values within a data set.
Because the HDF library does not check or update the range attribute as data is added or
removed from the file, the calling program may assign any values deemed appropriate as
long as they are of the same data type as the SDS array.

• Fill value is the value used to fill the areas between non-contiguous writes to SDS arrays.
For more information about fill values, refer to Section 3.10.5 on page 100.

• Calibration stores scale and offset values used to create calibrated data in SDS arrays. When
data are calibrated, they are typically reduced from floats, double, or large integers into 8-bit

3-96 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

or 16-bit integers and "packed" into an appropriately sized array. After the scale and offset
values are applied, the packed array will return to its original form.

Predefined attributes are useful because they establish conventions that applications can depend
on and because they are understood by the HDF library without users having to define them. Pre-
defined attributes also ensure backward compatibility with earlier versions of the HDF library.
They can be assigned only to data sets and dimensions. Table 3T lists the predefined attributes and
the types of object each attribute can be assigned to.

TABLE 3T Predefined Attributes List

While the following netCDF naming conventions are not predefined in HDF, they are highly rec-
ommended to promote consistency of information-sharing among generic applications. Refer to
the netCDF User’s Guide for C for further information.

• missing_value: An attribute containing a value used to fill areas of an array not intended to
contain either valid data or a fill value. The scope of this attribute is local to the array. An
example of this would be a region where information is unavailable, as in a geographical
grid containing ocean data. The part of the grid where there is land might not have any data
associated with it and in such a case the missing_value value could be supplied. The
missing_value attribute is different from the _FillValue attribute in that fill values are
intended to indicate data that was expected but did not appear, whereas missing values are
used to indicate data that were never expected.

• title: A global file attribute containing a description of the contents of a file.

• history: A global file attribute containing the name of a program and the arguments used to
derive the file. Well-behaved generic filters (programs that take HDF or netCDF files as
input and produce HDF or netCDF files as output) would be expected to automatically
append their name and the parameters with which they were invoked to the history attribute
of an input file.

3.10.1 Accessing Predefined Attributes

The SD interface provides two methods for accessing predefined attributes. The first method uses
the general attribute routines for user-defined attributes described in Section 3.9 on page 85; the
second employs routines specifically designed for each attribute and will be discussed in the fol-
lowing sections. Although the general attribute routines work well and are recommended in most
cases, the specialized attribute routines are sometimes easier to use, especially when reading or
writing related predefined attributes. This is true for two reasons. First, because predefined

HDF Data Object
Type

Attribute Category Attribute Name Description

SDS Array
or
Dimension

Label long_name Name of the array

Unit units Units used for all dimensions and data

Format format Format for displaying dim scales and array values

SDS Array Only

Coordinate System cordsys Coordinate system used to interpret the SDS array

Range valid_range Maximum and minimum values within a selected data range

Fill Value __FillValue Value used to fill empty locations in an SDS array

Calibration

scale_factor Value by which each array value is to be multiplied

scale_factor_err Error introduced by scaling SDS array data

add_offset Value to which each array value is to be added

add_offset_err Error introduced by offsetting the SDS array data

calibrated_nt Data type of the calibrated data

June 24, 1998 3-97

HDF User’s Guide

attributes are guaranteed unique names, the attribute index is unnecessary. Second, attributes with
several components may be read as a group. For example, using the SD routine designed to read
the predefined calibration attribute returns all five components with a single call, rather than five
separate calls.

There is one exception: unlike predefined data set attributes, predefined dimension attributes
should be read or written using the specialized attribute routines only.

The predefined attribute parameters are described in Table 3U. Creating a predefined attribute
with parameters different from these will produce unpredictable results when the attribute is read
using the corresponding predefined-attribute routine.

TABLE 3U Predefined Attribute Definitions

In addition to SDreadattr, SDfindattr and SDattrinfo are also valid general attribute routines to
use when reading a predefined attribute. SDattrinfo is always useful for determining the size of an
attribute whose value contains a string.

3.10.2 SDS String Attributes

This section describes the predefined string attributes of the SDSs and the next section describes
those of the dimensions. Predefined string attributes of an SDS include the label, unit, format, and
coordinate system.

3.10.2.1 Writing String Attributes of an SDS: SDsetdatastrs

SDsetdatastrs assigns the predefined string attributes label, unit, format, and coordinate system to
an SDS array. The syntax of this routine is as follows:

C: status = SDsetdatastrs(sds_id, label, unit, format, coord_system);

FORTRAN: status = sfsdtstr(sds_id, label, unit, format, coord_system)

If you do not wish to set an attribute, set the corresponding parameter to NULL in C and an empty
string in FORTRAN-77. SDsetdatastrs returns a value of SUCCEED (or 0) or FAIL (or -1). Its argu-
ments are further described in Table 3V on page 98.

Category Attribute Name Data Type Number of Values Attribute Description

Label long_name DFNT_CHAR8 String length Pointer to string

Unit units DFNT_CHAR8 String length Pointer to string

Format format DFNT_CHAR8 String length Pointer to string

Coordinate
System

cordsys DFNT_CHAR8 String length Pointer to string

Range valid_range <valid data type> 2 Pointer to array

Fill Value _FillValue <valid data type> 1 Pointer to fill value

Calibration

scale_factor DFNT_FLOAT64 1 Pointer to scale

scale_factor_err DFNT_FLOAT64 1 Pointer to scale error

add_offset DFNT_FLOAT64 1 Pointer to offset

add_offset_err DFNT_FLOAT64 1 Pointer to offset error

calibrated_nt DFNT_INT32 1 Pointer to data type

3-98 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

3.10.2.2 Reading String Attributes of an SDS: SDgetdatastrs

SDgetdatastrs reads the predefined string attributes label, unit, format, and coordinate system
from an SDS. These string attributes have previously been set by the routine SDsetdatastrs. The
syntax of SDgetdatastrs is as follows:

C: status = SDgetdatastrs(sds_id, label, unit, format,

coord_system, len);

FORTRAN: status = sfgdtstr(sds_id, label, unit, format, coord_system, len)

SDgetdatastrs stores the predefined attributes into the parameters label , unit , format , and
coord_system , which are character string buffers. If a particular attribute has not been set by
SDsetdatastrs, the first character of the corresponding returned string will be NULL for C and 0 for
FORTRAN-77. Each string buffer is assumed to be at least len characters long, including the
space to hold the NULL termination character. If you do not wish to get a predefined attribute of this
SDS, set the corresponding parameter to NULL in C and an empty string in FORTRAN-77.

SDgetdatastrs returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further
described in Table 3V.

TABLE 3V SDsetdatastrs and SDgetdatastrs Parameter Lists

3.10.3 String Attributes of Dimensions

Predefined string attributes of a dimension include label, unit, and format. They adhere to the
same definitions as those of the label, unit, and format strings for SDS attributes.

3.10.3.1 Writing a String Attribute of a Dimension: SDsetdimstrs

SDsetdimstrs assigns the predefined string attributes label, unit, and format to an SDS dimension
and its scales. The syntax of this routine is as follows:

C: status = SDsetdimstrs(dim_id, label, unit, format);

FORTRAN: status = sfsdmstr(dim_id, label, unit, format)

The argument dim_id is the dimension identifier, returned by SDgetdimid, and identifies the
dimension to which the attributes will be assigned. If you do not wish to set an attribute, set the
corresponding parameter to NULL in C and an empty string in FORTRAN-77.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDsetdatastrs
[intn]

(sfsdtstr)

sds_id int32 integer Data set identifier

label char * character*(*) Label for the data

unit char * character*(*) Definition of the units

format char * character*(*) Description of the data format

coord_system char * character*(*) Description of the coordinate system

SDgetdatastrs
[intn]

(sfgdtstr)

sds_id int32 integer Data set identifier

label char * character*(*) Buffer for the label

unit char * character*(*) Buffer for the description of the units

format char * character*(*) Buffer for the description of the data format

coord_system char * character*(*) Buffer for the description of the coordinate system

len intn integer Minimum length of the string buffers

June 24, 1998 3-99

HDF User’s Guide

SDsetdimstrs returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further
described in Table 3W.

3.10.3.2 Reading a String Attribute of a Dimension: SDgetdimstrs

SDgetdimstrs reads the predefined string attributes label, unit, and format from an SDS dimen-
sion. These string attributes have previously been set by the routine SDsetdimstrs. The syntax of
SDgetdimstrs is as follows:

C: status = SDgetdimstrs(dim_id, label, unit, format, len);

FORTRAN: status = sfgdmstr(dim_id, label, unit, format, len)

SDgetdimstrs stores the predefined attributes of the dimension into the arguments label , unit ,
and format , which are character string buffers. If a particular attribute has not been set by SDset-
dimstrs, the first character of the corresponding returned string will be NULL for C and 0 for FOR-
TRAN-77. Each string buffer is assumed to be at least len characters long, including the space to
hold the NULL termination character. If you do not wish to get a predefined attribute of this dimen-
sion, set the corresponding parameter to NULL in C and an empty string in FORTRAN-77.

SDgetdimstrs returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further
described in Table 3W.

TABLE 3W SDsetdimstrs and SDgetdimstrs Parameter Lists

3.10.4 Range Attributes

The attribute range contains user-defined maximum and minimum values in a selected range.
Since the HDF library does not check or update the range attribute as data is added or removed
from the file, the calling program may assign any values deemed appropriate. Also, because the
maximum and minimum values are supposed to relate to the data set, it is assumed that they are of
the same data type as the data.

3.10.4.1 Writing a Range Attribute: SDsetrange

SDsetrange sets the maximum and minimum range values for the data set identified by sds_id to
the values provided by the parameters max and min . The syntax of the routine is as follows:

C: status = SDsetrange(sds_id, max, min);

FORTRAN: status = sfsrange(sds_id, max, min)

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDsetdimstrs
[intn]

(sfsdmstr)

dim_id int32 integer Dimension identifier

label char * character*(*) Label describing the specified dimension

unit char * character*(*) Units to be used with the specified dimension

format char * character*(*) Format to use when displaying the scale values

SDgetdimstrs
[intn]

(sfgdmstr)

dim_id int32 integer Dimension identifier

label char * character*(*) Buffer for the dimension label

unit char * character*(*) Buffer for the dimension unit

format char * character*(*) Buffer for the dimension format

len intn integer Maximum length of the string attributes

3-100 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

SDsetrange does not compute the maximum and minimum range values, it only stores the values
as given. As a result, the maximum and minimum range values may not always reflect the actual
maximum and minimum range values in the data set data. Recall that the type of max and min is
assumed to be the same as that of the data set data.

SDsetrange returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further described
in Table 3X.

3.10.4.2 Reading a Range Attribute: SDgetrange

SDgetrange reads the maximum and minimum valid values of a data set. The syntax of this rou-
tine is as follows:

C: status = SDgetrange(sds_id, &max, &min);

FORTRAN: status = sfgrange(sds_id, max, min)

The maximum and minimum range values are stored in the parameters max and min , respectively,
and must have previously been set by SDsetrange. Recall that the type of max and min is assumed
to be the same as that of the data set data.

SDgetrange returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further described
in Table 3X.

TABLE 3X SDsetrange and SDgetrange Parameter Lists

3.10.5 Fill Values and Fill Mode

A fill value is the value used to fill the spaces between non-contiguous writes to SDS arrays; it can
be set with SDsetfillvalue. If a fill value is set before writing data to an SDS, the entire array is
initialized to the specified fill value. By default, any location not subsequently overwritten with
SDS data will contain the fill value.

A fill value must be of the same data type as the array to which it is written. To avoid conversion
errors, use data-specific fill values instead of special architecture-specific values, such as infinity
and Not-a-Number or NaN.

A fill mode specifies whether the fill value is to be written to all the SDSs in the file; it can be set
with SDsetfillmode.

Writing fill values to an SDS can involve more I/O overhead than is necessary, particularly in situ-
ations where the data set is to be contiguously filled with data before any read operation is made.
In other words, writing fill values is only necessary when there is a possibility that the data set will
be read before all gaps between writes are filled with data, i.e., before all elements in the array
have been assigned values. Thus, for a file that has only data sets containing contiguous data, the

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDsetrange
[intn]

(sfsrange)

sds_id int32 integer Data set identifier

max VOIDP <valid data type> Maximum value to be stored

min VOIDP <valid data type> Minimum value to be stored

SDgetrange
[intn]

(sfgrange)

sds_id int32 integer Data set identifier

max VOIDP <valid data type> Buffer for the maximum value

min VOIDP <valid data type> Buffer for the minimum value

June 24, 1998 3-101

HDF User’s Guide

fill mode should be set to SD_NOFILL (or 256). Avoiding unnecessary filling can substantially
increase the application performance.

For a non-contiguous data set, the array elements that have no actual data values must be filled
with a fill value before the data set is read. Thus, for a file that has a non-contiguous data set, the
fill mode should be set to SD_FILL (or 0) and a fill value will be written to the all data sets in the
file.

Note that, currently, SDsetfillmode specifies the fill mode of all data sets in the file. Thus, either
all data sets are in SD_FILL mode or all data sets are in SD_NOFILL mode. However, when a spe-
cific SDS needs to be written with a fill value while others in the file do not, the following proce-
dure can be used: set the fill mode to SD_FILL , write data to the data set requiring fill values, then
set the fill mode back to SD_NOFILL. This procedure will produce one data set with fill values
while the remaining data sets have no fill values.

3.10.5.1 Writing a Fill Value Attribute: SDsetfillvalue

SDsetfillvalue assigns a new value to the fill value attribute for an SDS array. The syntax of this
routine is as follows:

C: status = SDsetfillvalue(sds_id, fill_val);

FORTRAN: status = sfsfill(sds_id, fill_val)

OR status = sfscfill(sds_id, fill_val)

The argument fill_val is the new fill value. It is recommended that you set the fill value before
writing data to an SDS array, as calling SDsetfillvalue after data is written to an SDS array only
changes the fill value attribute — it does not update the existing fill values.

There are two FORTRAN-77 versions of this routine: sfsfill and sfscfill. sfsfill writes numeric fill
value data and sfscfill writes character fill value data.

SDsetfillvalue returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further
described in Table 3Y on page 102.

3.10.5.2 Reading a Fill Value Attribute: SDgetfillvalue

SDgetfillvalue reads in the fill value of an SDS array as specified by a SDsetfillvalue call or its
equivalent. The syntax of this routine is as follows:

C: status = SDgetfillvalue(sds_id, &fill_val);

FORTRAN: status = sfgfill(sds_id, fill_val)

OR status = sfgcfill(sds_id, fill_val)

The fill value is stored in the argument fill_val which is previously allocated based on the data
type of the SDS data.

There are two FORTRAN-77 versions of this routine: sfgfill and sfgcfill. The sfgfill routine reads
numeric fill value data and sfgcfill reads character fill value data.

SDgetfillvalue returns a value of SUCCEED (or 0) if a fill value is retrieved successfully, or FAIL (or
-1) otherwise, including when the fill value has not been set. The parameters of SDgetfillvalue are
further described in Table 3Y.

3-102 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

3.10.5.3 Setting the Fill Mode for all SDSs in the Specified File: SDsetfillmode

SDsetfillmode sets the fill mode for all data sets contained in the file identified by the parameter
sd_id . The syntax of SDsetfillmode is as follows:

C: old_fmode = SDsetfillmode(sd_id, fill_mode);

FORTRAN: old_fmode = sfsflmd(sd_id, fill_mode)

The argument fill_mode is the fill mode to be applied and can be set to either SD_FILL (or 0) or
SD_NOFILL (or 256). SD_FILL specifies that fill values will be written to all SDSs in the specified
file by default. If SDsetfillmode is never called before SDsetfillvalue, SD_FILL is the default fill
mode. SD_NOFILL specifies that, by default, fill values will not be written to all SDSs in the speci-
fied file. This can be overridden for a specific SDS by calling SDsetfillmode then writing data to
this data set before closing the file.

Note that whenever a file has been newly opened, or has been closed and then re-opened, the
default SD_FILL fill mode will be in effect until it is changed by a call to SDsetfillmode.

SDsetfillmode returns the fill mode value before it is reset or a value of FAIL (or -1). The parame-
ters of this routine are further described in Table 3Y.

TABLE 3Y SDsetfillvalue, SDgetfillvalue, and SDsetfillmode Parameter Lists

3.10.6 Calibration Attributes

The calibration attributes are designed to store calibration information associated with data set
data. When data is calibrated, the values in an array can be represented using a smaller data type
than the original. For instance, an array containing data of type float could be stored as an array
containing data of type 8- or 16-bit integer. Note that neither function performs any operation on
the data set.

3.10.6.1 Setting Calibration Information: SDsetcal

SDsetcal stores the scale factor, offset, scale factor error, offset error, and the data type of the
uncalibrated data set for the specified data set. The syntax of this routine is as follows:

C: status = SDsetcal(sds_id, cal, cal_error, offset, off_err,

data_type);

FORTRAN: status = sfscal(sds_id, cal, cal_error, offset, off_err,

data_type)

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDsetfillvalue
[intn]

(sfsfill/
sfscfill)

sds_id int32 integer Data set identifier

fill_val VOIDP
<valid numeric data type>/

character*(*)
Fill value to be set

SDgetfillvalue
[intn]

(sfgfill/
sfgcfill)

sds_id int32 integer Data set identifier

fill_val VOIDP
<valid numeric data type>/

character*(*)
Buffer for the fill value

SDsetfillmode
[intn]

(sfsflmd)

sd_id int32 integer SD interface identifier

fill_mode intn integer Fill mode to be set

June 24, 1998 3-103

HDF User’s Guide

SDsetcal has six arguments; sds_id , cal , cal_error , offset , off_err , and data_type . The
argument cal represents a single value that when multiplied against every value in the calibrated
data array reproduces the original data array (assuming an offset of 0). The argument offset

represents a single value that when subtracted from every value in the calibrated array reproduces
the original data (assuming a offset of 1). The values of the calibrated data array relate to the
values of the original data array according to the following equation:

orig_value = cal * (cal_value - offset)

In addition to cal and offset , SDsetcal also includes the scale and offset errors. The argument
cal_err contains the potential error of the calibrated data due to scaling; offset_err contains
the potential error for the calibrated data due to the offset.

SDsetcal returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further described in
Table 3Z.

3.10.6.2 Reading Calibrated Data: SDgetcal

SDgetcal reads calibration attributes for an SDS array as previously written by SDsetcal. The syn-
tax of this routine is as follows:

C: status = SDgetcal(sds_id, &cal, &cal_error, &offset,

&offset_err, &data_type);

FORTRAN: status = sfgcal(sds_id, cal, cal_error, offset, offset_err,

data_type)

Because the HDF library does not actually apply calibration information to the data, SDgetcal can
be called anytime before or after the data is read. If a calibration record does not exist, SDgetcal
returns FAIL . SDgetcal takes six arguments: sds_id , cal , cal_error , offset , offset_err , and
data_type . Refer to Section 3.10.6.1 for the description of these arguments.

SDgetcal returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDgetcal are
described in Table 3Z.

TABLE 3Z SDsetcal and SDgetcal Parameter Lists

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDsetcal
[intn]

(sfscal)

sds_id int32 integer Data set identifier

cal float64 real*8 Calibration factor

cal_error float64 real*8 Calibration error

offset float64 real*8 Uncalibrated offset

offset_err float64 real*8 Uncalibrated offset error

data_type int32 integer Data type of uncalibrated data

SDgetcal
[intn]

(sfgcal)

sds_id int32 integer Data set identifier

cal float64 * real*8 Calibration factor

cal_error float64 * real*8 Calibration error

offset float64 * real*8 Uncalibrated offset

offset_err float64 * real*8 Uncalibrated offset error

data_type int32 * integer Data type of uncalibrated data

3-104 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

EXAMPLE 16. Calibrating Data

Suppose the values in the calibrated array cal_val are the following integers:

cal_val[6] = {2, 4, 5, 11, 26, 81}

By applying the calibration equation orig = cal * (cal_val - offset) with cal = 0.50 and
offset = -2000.0 , the calibrated array cal_val[] returns to its original floating-point form:

original_val[6] = {1001.0, 1002.0, 1002.5, 1005.5, 1013.0, 1040.5}

3.11 Chunked (or Tiled) Scientific Data Sets

NOTE: It is strongly encouraged that HDF users who wish to use the SD chunking routines first
read the section on SD chunking in Chapter 14, HDF Performance Issues. In that section the con-
cepts of chunking are explained, as well as their use in relation to HDF. As the ability to work with
chunked data has been added to HDF functionality for the purpose of addressing specific perfor-
mance-related issues, you should first have the necessary background knowledge to correctly
determine how chunking will positively or adversely affect your application.

This section will refer to both "tiled" and "chunked" SDSs as simply chunked SDSs, as tiled SDSs
are the two-dimensional case of chunked SDSs.

3.11.1 Making an SDS a Chunked SDS: SDsetchunk

In HDF, an SDS must first be created as a generic SDS through the SDcreate routine, then
SDsetchunk is called to make that generic SDS a chunked SDS. Note that there are two restric-
tions that apply to chunked SDSs. The maximum number of chunks in a single HDF file is 65,535
and a chunked SDS cannot contain an unlimited dimension. SDsetchunk sets the chunk size and
the compression method for a data set. The syntax of SDsetchunk is as follows:

C: status = SDsetchunk(sds_id, c_def, flag);

FORTRAN: status = sfschnk(sds_id, dim_length, comp_type, comp_prm)

The chunking information is provided in the parameters c_def and flag in C, and the parameters
comp_type and comp_prm in FORTRAN-77.

In C:

The parameter c_def has type HDF_CHUNK_DEF which is defined as follows:

typedef union hdf_chunk_def_u {

int32 chunk_lengths[MAX_VAR_DIMS];
struct {
int32 chunk_lengths[MAX_VAR_DIMS];
int32 comp_type;
comp_info cinfo;
} comp;
struct {
int32 chunk_lengths[MAX_VAR_DIMS];
intn start_bit;
intn bit_len;
intn sign_ext;
intn fill_one;
} nbit;
} HDF_CHUNK_DEF

June 24, 1998 3-105

HDF User’s Guide

Refer to the reference manual page for SDsetcompress for the definition of the structure
comp_info .

The parameter flag specifies the type of the data set, i.e., if the data set is chunked or chunked
and compressed with either RLE, Skipping Huffman, GZIP, or NBIT compression methods. Valid
values of flag are HDF_CHUNK for a chunked data set, (HDF_CHUNK | HDF_COMP) for a chunked data
set compressed with RLE, Skipping Huffman, and GZIP compression methods, and (HDF_CHUNK |

HDF_NBIT) for a chunked NBIT-compressed data set.

There are three pieces of chunking and compression information which should be specified:
chunking dimensions, compression type, and, if needed, compression parameters.

If the data set is chunked, i.e., flag value is HDF_CHUNK, then the elements of the array
chunk_lengths in the union c_def (c_def.chunk_lengths[]) have to be initialized to the chunk
dimension sizes.

If the data set is chunked and compressed using RLE, Skipping Huffman, or GZIP methods (i.e.,
flag value is set up to (HDF_CHUNK | HDF_COMP)), then the elements of the array chunk_lengths

of the structure comp in the union c_def (c_def.comp.chunk_lengths[]) have to be initialized
to the chunk dimension sizes.

If the data set is chunked and NBIT compression is applied (i.e., flag values is set up to
(HDF_CHUNK | HDF_NBIT)), then the elements of the array chunk_lengths of the structure nbit in
the union c_def (c_def.nbit.chunk_lengths []) have to be initialized to the chunk dimension
sizes.

The values of HDF_CHUNK, HDF_COMP, and HDF_NBIT are defined in the header file hproto.h .

Compression types are passed in the field comp_type of the structure cinfo , which is an element
of the structure comp in the union c_def (c_def.comp.cinfo.comp_type). Valid compression
types are: COMP_CODE_RLE for RLE, COMP_CODE_SKPHUFF for Skipping Huffman,
COMP_CODE_DEFLATE for GZIP compression.

For Skipping Huffman and GZIP compression, parameters are passed in corresponding fields of
the structure cinfo . Specify skipping size for Skipping Huffman compression in the field
c_def.comp.cinfo.skphuff.skp_size . Specify deflate level for GZIP compression in the field
c_def.comp.cinfo.deflate_level . Valid values of deflate levels are integers from 1 to 9 inclu-
sive.

NBIT compression parameters are specified in the fields start_bit , bit_len , sign_ext , and
fill_one in the structure nbit of the union c_def .

In FORTRAN-77:

The dim_length array specifies the chunk dimensions.

The comp_type parameter specifies the compression type. Valid compression types and their val-
ues are defined in the hdf.inc file, and are listed below.

COMP_CODE_NONE (or 0) for uncompressed data

COMP_CODE_RLE (or 1) for data compressed using the RLE compression algorithm

COMP_CODE_NBIT (or 2) for data compressed using the NBIT compression algorithm

COMP_CODE_SKPHUFF (or 3) for data compressed using the Skipping Huffman compression
algorithm

COMP_CODE_DEFLATE (or 4) for data compressed using the GZIP compression algorithm

The parameter comp_prm(1) specifies the skipping size for the Skipping Huffman compression
method and the deflate level for the GZIP compression method.

3-106 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

For NBIT compression, the four elements of the array comp_prm correspond to the four NBIT
compression parameters listed in the structure nbit . The array comp_prm should be initialized as
follows:

Refer to the description of the union HDF_CHUNK_DEF and of the routine SDsetnbitdataset for
NBIT compression parameter definitions.

SDsetchunk returns either a value of SUCCEED (or 0) or FAIL (or -1). Refer to Table 3AA and Table
3AB for the descriptions of the parameters of both versions.

TABLE 3AA SDsetchunk Parameter List

TABLE 3AB sfschnk Parameter List

3.11.2 Setting the Maximum Number of Chunks in the Cache:
SDsetchunkcache

To maximize the performance of the HDF library routines when working with chunked SDSs, the
library maintains a separate area of memory specifically for cached data chunks. SDsetchunk-
cache sets the maximum number of chunks of the specified SDS that are cached into this segment
of memory. The syntax of SDsetchunkcache is as follows:

C: status = SDsetchunkcache(sds_id, maxcache, flag);

FORTRAN: status = sfscchnk(sds_id, maxcache, flag)

When the chunk cache has been filled, any additional chunks written to cache memory are cached
according to the Least-Recently-Used (LRU) algorithm. This means that the chunk that has
resided in the cache the longest without being reread or rewritten will be written over with the new
chunk.

By default, when a generic SDS is made a chunked SDS, the parameter maxcache is set to the
number of chunks along the fastest changing dimension. If needed, SDsetchunkcache can then be
called again to reset the size of the chunk cache.

comp_prm(1) = value of start_bit

comp_prm(2) = value of bit_len

comp_prm(3) = value of sign_ext

comp_prm(4) = value of fill_one

Routine Name
[Return Type]

Parameter
Parameter Type

Description
C

SDsetchunk
[intn]

sds_id int32 Data set identifier

c_def HDF_CHUNK_DEF Union containing information on how the chunks are to be defined

flag int32 Flag determining the behavior of the routine

Routine Name
Parameter

Parameter Type
Description

FORTRAN-77

sfschnk

sds_id integer Data set identifier

dim_length integer(*) Sizes of the chunk dimensions

comp_type integer Compression type

comp_prm integer(*) Array containing information needed by the compression algorithm

June 24, 1998 3-107

HDF User’s Guide

Essentially, the value of maxcache cannot be set to a value less than the number of chunks cur-
rently cached. If the chunk cache is not full, then the size of the chunk cache is reset to the new
value of maxcache only if it is greater than the current number of chunks cached. If the chunk
cache has been completely filled with cached data, SDsetchunkcache has already been called,
and the value of the parameter maxcache in the current call to SDsetchunkcache is larger than the
value of maxcache in the last call to SDsetchunkcache, then the value of maxcache is reset to the
new value.

Currently the only allowed value of the parameter flag is 0, which designates default operation.
In the near future, the value HDF_CACHEALL will be provided to specify that the entire SDS array is
to be cached.

SDsetchunkcache returns the maximum number of chunks that can be cached (the value of the
parameter maxcache) if successful and FAIL (or -1) otherwise. The parameters of SDsetchunk-
cache are further described in Table 3AC.

TABLE 3AC SDsetchunkcache Parameter List

3.11.3 Writing Data to Chunked SDSs: SDwritechunk and SDwritedata

Both SDwritedata and SDwritechunk can be used to write to a chunked SDS. Later in this chap-
ter, situations where SDwritechunk may be a more appropriate routine than SDwritedata will be
discussed, but, for the most part, both routines achieve the same results. SDwritedata is discussed
in Section 3.5.1 on page 30. The syntax of SDwritechunk is as follows:

C: status = SDwritechunk(sds_id, origin, datap);

FORTRAN: status = sfwchnk(sds_id, origin, datap)

OR status = sfwcchnk(sds_id, origin, datap)

The location of data in a chunked SDS can be specified in two ways. The first is the standard
method used in the routine SDwritedata that access both chunked and non-chunked SDSs; this
method refers to the starting location as an offset in elements from the origin of the SDS array
itself. The second method is used by the routine SDwritechunk that only access chunked SDSs;
this method refers to the origin of the chunk as an offset in chunks from the origin of the chunk
array itself. The parameter origin specifies this offset; it also may be considered as chunk’s coor-
dinates in the chunk array. Figure 3d on page 108 illustrates this method of chunk indexing in a 4-
by-4 element SDS array with 2-by-2 element chunks.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDsetchunkcache
[intn]

(sfscchnk)

sds_id int32 integer Data set identifier

maxcache int32 integer Maximum number of chunks to cache

flag int32 integer Flag determining the default caching behavior

3-108 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

FIGURE 3d Chunk Indexing as an Offset in Chunks

SDwritechunk is used when an entire chunk is to be written and requires the chunk offset to be
known. SDwritedata is used when the write operation is to be done regardless of the chunking
scheme used in the SDS. Also, as SDwritechunk is written specifically for chunked SDSs and
does not have the overhead of the additional functionality supported by the SDwritedata routine,
it is much faster than SDwritedata. Note that attempting to use SDwritechunk for writing to a
non-chunked data set will return a FAIL (or -1).

The parameter datap must point to an array containing the entire chunk of data. In other words,
the size of the array must be the same as the chunk size of the SDS to be written to, or an error
condition will result.

There are two FORTRAN-77 versions of this routine: sfwchnk writes numeric data and sfwcchnk
writes character data.

SDwritechunk returns either a value of SUCCEED (or 0) or FAIL (or -1). The parameters of
SDwritechunk are in Table 3AD. The parameters of SDwritedata are listed in Table 3D on page
32.

TABLE 3AD SDwritechunk Parameter List

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDwritechunk
[intn]

(sfwchnk/
sfwcchnk)

sds_id int32 integer Data set identifier

origin int32 * integer
Coordinates of the origin of the chunk to
be written

datap VOIDP
<valid numeric data type>(*)/

character*(*)
Buffer containing the data to be written

(0,0) (1,0)

(1,1)(0,1)

3

2

1

0

0 1 2 3

X Dimension

Y Dimension

This chunk is in location (0, 0)

June 24, 1998 3-109

HDF User’s Guide

3.11.4 Reading Data from Chunked SDSs: SDreadchunk and SDreaddata

As both SDwritedata and SDwritechunk can be used to write data to a chunked SDS, both
SDreaddata and SDreadchunk can be used to read data from a chunked SDS. SDreaddata is
discussed in Section 3.5.1 on page 30. The syntax of SDreadchunk is as follows:

C: status = SDreadchunk(sds_id, origin, datap);

FORTRAN: status = sfrchnk(sds_id, origin, datap)

OR status = sfrcchnk(sds_id, origin, datap)

SDreadchunk is used when an entire chunk of data is to be read. SDreaddata is used when the
read operation is to be done regardless of the chunking scheme used in the SDS. Also, SDread-
chunk is written specifically for chunked SDSs and does not have the overhead of the additional
functionality supported by the SDreaddata routine. Therefore, it is much faster than SDreaddata.
Note that SDreadchunk will return FAIL (or -1) when an attempt is made to read from a non-
chunked data set.

As with SDwritechunk, the parameter origin specifies the coordinates of the chunk to be read,
and the parameter datap must point to an array containing enough space for an entire chunk of
data. In other words, the size of the array must be the same as or greater than the chunk size of the
SDS to be read, or an error condition will result.

There are two FORTRAN-77 versions of this routine: sfrchnk reads numeric data and sfrcchnk
reads character data.

SDreadchunk returns either a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDread-
chunk are further described in Table 3AE. The parameters of SDreaddata are listed in Table 3K
on page 56.

TABLE 3AE SDreadchunk Parameter List

3.11.5 Obtaining Information about a Chunked SDS: SDgetchunkinfo

SDgetchunkinfo is used to determine whether an SDS is chunked and how the chunk is defined.
The syntax of this routine is as follows:

C: status = SDgetchunkinfo(sds_id, c_def, flag);

FORTRAN: status = sfgichnk(sds_id, dim_length, flag)

Currently, only information about chunk dimensions is retrieved into the corresponding structure
element c_def for each type of compression in C, and into the array dim_length in Fortran. No
information on compression parameters is available in the structure comp of the union
HDF_CHUNK_DEF. For specific information on c_def , refer to Section 3.11.1 on page 104.

The value returned in the parameter flag indicates the data set type (i.e., whether the data set is
not chunked, chunked, or chunked and compressed).

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDreadchunk
[intn]

(sfrchnk/sfrcchnk)

sds_id int32 integer Data set identifier

origin int32 * integer(*)
Coordinates of the origin of the chunk to
be read

datap VOIDP
<valid numeric data type>(*)/

character*(*)
Buffer for the returned chunk data

3-110 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

If the data set is not chunked, the value of flag will be HDF_NONE (or -1). If the data set is chunked,
the value of flag will be HDF_CHUNK (or 0). If the data set is chunked and compressed with either
RLE, Skipping Huffman, or GZIP compression algorithm, then the value of flag will be
HDF_CHUNK | HDF_COMP (or 1). If the data set is chunked and compressed with NBIT compression,
then the value of flag will be HDF_CHUNK | HDF_NBIT (or 2).

If the chunk length for each dimension is not needed, NULL can be passed in as the value of the
parameter c_def in C.

SDgetchunkinfo returns either a value of SUCCEED (or 0) or FAIL (or -1). Refer to Table 3AF and
Table 3AG for the description of the parameters of both versions.

TABLE 3AF SDgetchunkinfo Parameter List

TABLE 3AG sfgichnk Parameter List

EXAMPLE 17. Writing and Reading a Chunked SDS.

This example demonstrates the use of the routines SDsetchunk/sfschnk, SDwritedata/sfwdata,
SDwritechunk/sfwchnk, SDgetchunkinfo/sfgichnk, SDreaddata/sfrdata, and SDreadchunk/
sfrchnk to create a chunked data set, write data to it, get information about the data set, and read
the data back. Note that the Fortran example uses transpose data to reflect the difference between
C and Fortran internal storage.

C:
#include "mfhdf.h"

#define FILE_NAME "SDSchunked.hdf"
#define SDS_NAME "ChunkedData"
#define RANK 2

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 flag, maxcache, new_maxcache;
 int32 dim_sizes[2], origin[2];
 HDF_CHUNK_DEF c_def, c_def_out; /* Chunking definitions */
 int32 comp_flag, c_flags;
 int16 all_data[9][4];
 int32 start[2], edges[2];

Routine Name
[Return Type]

Parameter
Parameter Type

Description
C

SDgetchunkinfo
[intn]

sds_id int32 Data set identifier

c_def HDF_CHUNK_DEF * Union structure containing information about the chunks in the SDS

flag int32 * Flag determining the behavior of the routine

Routine Name
Parameter

Parameter Type
Description

FORTRAN-77

sfgichnk
sds_id integer Data set identifier

dim_length integer(*) Sizes of the chunk dimensions

comp_type integer Compression type

June 24, 1998 3-111

HDF User’s Guide

 int16 chunk_out[3][2];
 int16 row[2] = { 5, 5 };
 int16 column[3] = { 4, 4, 4 };
 int16 fill_value = 0; /* Fill value */
 int i,j;
 /*
 * Declare chunks data type and initialize some of them.
 */
 int16 chunk1[3][2] = { 1, 1,
 1, 1,
 1, 1 };

 int16 chunk2[3][2] = { 2, 2,
 2, 2,
 2, 2 };

 int16 chunk3[3][2] = { 3, 3,
 3, 3,
 3, 3 };

 int16 chunk6[3][2] = { 6, 6,
 6, 6,
 6, 6 };

 /********************* End of variable declaration ***********************/
 /*
 * Define chunk’s dimensions.
 *
 * In this example we do not use compression.
 * To use chunking with RLE, Skipping Huffman, and GZIP
 * compression, initialize
 *
 * c_def.comp.chunk_lengths[0] = 3;
 * c_def.comp.chunk_lengths[1] = 2;
 *
 * To use chunking with NBIT, initialize
 *
 * c_def.nbit.chunk_lengths[0] = 3;
 * c_def.nbit.chunk_lengths[1] = 2;
 *
 */
 c_def.chunk_lengths[0] = 3;
 c_def.chunk_lengths[1] = 2;

 /*
 * Create the file and initialize SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_CREATE);

 /*
 * Create 9x4 SDS.
 */
 dim_sizes[0] = 9;
 dim_sizes[1] = 4;
 sds_id = SDcreate (sd_id, SDS_NAME,DFNT_INT16, RANK, dim_sizes);

 /*
 * Fill the SDS array with the fill value.
 */
 status = SDsetfillvalue (sds_id, (VOIDP)&fill_value);

 /*
 * Create chunked SDS.

3-112 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 * In this example we do not use compression (third
 * parameter of SDsetchunk is set to HDF_CHUNK).
 *
 * To use RLE compresssion, set compression type and flag
 *
 * c_def.comp.comp_type = COMP_CODE_RLE;
 * comp_flag = HDF_CHUNK | HDF_COMP;
 *
 * To use Skipping Huffman compression, set compression type, flag
 * and skipping size skp_size
 *
 * c_def.comp.comp_type = COMP_CODE_SKPHUFF;
 * c_def.comp.cinfo.skphuff.skp_size = value;
 * comp_flag = HDF_CHUNK | HDF_COMP;
 *
 * To use GZIP compression, set compression type, flag and
 * deflate level
 *
 * c_def.comp.comp_type = COMP_CODE_DEFLATE;
 * c_def.comp.cinfo.deflate.level = value;
 * comp_flag = HDF_CHUNK | HDF_COMP;
 *
 * To use NBIT compression, set compression flag and
 * compression parameters
 *
 * comp_flag = HDF_CHUNK | HDF_NBIT;
 * c_def.nbit.start_bit = value1;
 * c_def.nbit.bit_len = value2;
 * c_def.nbit.sign_ext = value3;
 * c_def.nbit.fill_one = value4;
 */
 comp_flag = HDF_CHUNK;
 status = SDsetchunk (sds_id, c_def, comp_flag);

 /*
 * Set chunk cache to hold maximum of 3 chunks.
 */
 maxcache = 3;
 flag = 0;
 new_maxcache = SDsetchunkcache (sds_id, maxcache, flag);

 /*
 * Write chunks using SDwritechunk function.
 * Chunks can be written in any order.
 */

 /*
 * Write the chunk with the coordinates (0,0).
 */
 origin[0] = 0;
 origin[1] = 0;
 status = SDwritechunk (sds_id, origin, (VOIDP) chunk1);

 /*
 * Write the chunk with the coordinates (1,0).
 */
 origin[0] = 1;
 origin[1] = 0;
 status = SDwritechunk (sds_id, origin, (VOIDP) chunk3);

 /*
 * Write the chunk with the coordinates (0,1).
 */

June 24, 1998 3-113

HDF User’s Guide

 origin[0] = 0;
 origin[1] = 1;
 status = SDwritechunk (sds_id, origin, (VOIDP) chunk2);

 /*
 * Write chunk with the coordinates (1,2) using
 * SDwritedata function.
 */
 start[0] = 6;
 start[1] = 2;
 edges[0] = 3;
 edges[1] = 2;
 status = SDwritedata (sds_id, start, NULL, edges, (VOIDP) chunk6);

 /*
 * Fill second column in the chunk with the coordinates (1,1)
 * using SDwritedata function.
 */
 start[0] = 3;
 start[1] = 3;
 edges[0] = 3;
 edges[1] = 1;
 status = SDwritedata (sds_id, start, NULL, edges, (VOIDP) column);

 /*
 * Fill second row in the chunk with the coordinates (0,2)
 * using SDwritedata function.
 */
 start[0] = 7;
 start[1] = 0;
 edges[0] = 1;
 edges[1] = 2;
 status = SDwritedata (sds_id, start, NULL, edges, (VOIDP) row);

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);

 /*
 * Reopen the file and access the first data set.
 */
 sd_id = SDstart (FILE_NAME, DFACC_READ);
 sds_index = 0;
 sds_id = SDselect (sd_id, sds_index);

 /*
 * Get information about the SDS. Only chunk lengths and compression
 * flag can be returned. Compression information is not available if
 * NBIT, Skipping Huffman, or GZIP compression is used.
 */
 status = SDgetchunkinfo (sds_id, &c_def_out, &c_flags);
 if (c_flags == HDF_CHUNK)
 printf(" SDS is chunked\nChunk’s dimensions %dx%d\n",
 c_def_out.chunk_lengths[0],
 c_def_out.chunk_lengths[1]);
 else if (c_flags == (HDF_CHUNK | HDF_COMP))
 printf("SDS is chunked and compressed\nChunk’s dimensions %dx%d\n",

3-114 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 c_def_out.comp.chunk_lengths[0],
 c_def_out.comp.chunk_lengths[1]);
 else if (c_flags == (HDF_CHUNK | HDF_NBIT))
 printf ("SDS is chunked (NBIT)\nChunk’s dimensions %dx%d\n",
 c_def_out.nbit.chunk_lengths[0],
 c_def_out.nbit.chunk_lengths[1]);

 /*
 * Read the entire data set using SDreaddata function.
 */
 start[0] = 0;
 start[1] = 0;
 edges[0] = 9;
 edges[1] = 4;
 status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)all_data);

 /*
 * Print out what we have read.
 * The following information should be displayed:
 *
 * SDS is chunked
 * Chunk’s dimensions 3x2
 * 1 1 2
 * 1 1 2 2
 * 1 1 2 2
 * 3 3 0 4
 * 3 3 0 4
 * 3 3 0 4
 * 0 0 6 6
 * 5 5 6 6
 * 0 0 6 6
 */
 for (j=0; j<9; j++)
 {
 for (i=0; i<4; i++) printf (" %d", all_data[j][i]);
 printf ("\n");
 }

 /*
 * Read chunk with the coordinates (2,0) and display it.
 */
 origin[0] = 2;
 origin[1] = 0;
 status = SDreadchunk (sds_id, origin, chunk_out);
 printf (" Chunk (2,0) \n");
 for (j=0; j<3; j++)
 {
 for (i=0; i<2; i++) printf (" %d", chunk_out[j][i]);
 printf ("\n");
 }

 /*
 * Read chunk with the coordinates (1,1) and display it.
 */
 origin[0] = 1;
 origin[1] = 1;
 status = SDreadchunk (sds_id, origin, chunk_out);
 printf (" Chunk (1,1) \n");
 for (j=0; j<3; j++)
 {
 for (i=0; i<2; i++) printf (" %d", chunk_out[j][i]);
 printf ("\n");
 }

June 24, 1998 3-115

HDF User’s Guide

 /* The following information is displayed:
 *
 * Chunk (2,0)
 * 0 0
 * 5 5
 * 0 0
 * Chunk (1,1)
 * 0 4
 * 0 4
 * 0 4
 */

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

FORTRAN:
 program chunk_examples
 implicit none
C
C Parameter declaration.
C
 character*14 FILE_NAME
 character*11 SDS_NAME
 integer RANK
 parameter (FILE_NAME = ’SDSchunked.hdf’,
 + SDS_NAME = ’ChunkedData’,
 + RANK = 2)
 integer DFACC_CREATE, DFACC_READ, DFNT_INT16
 parameter (DFACC_CREATE = 4,
 + DFACC_READ = 1,
 + DFNT_INT16 = 22)
 integer COMP_CODE_NONE
 parameter (COMP_CODE_NONE = 0)
C
C This example does not use compression.
C
C To use RLE compression, declare:
C
C integer COMP_CODE_RLE
C parameter (COMP_CODE_RLE = 1)
C
C To use NBIT compression, declare:
C
C integer COMP_CODE_NBIT
C parameter (COMP_CODE_NBIT = 2)
C
C To use Skipping Huffman compression, declare:
C
C integer COMP_CODE_SKPHUFF
C parameter (COMP_CODE_SKPHUFF = 3)
C
C To use GZIP compression, declare:
C

3-116 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

C integer COMP_CODE_DEFLATE
C parameter (COMP_CODE_DEFLATE = 4)
C
C
C Function declaration.
C
 integer sfstart, sfcreate, sfendacc, sfend,
 + sfselect, sfsfill, sfschnk, sfwchnk,
 + sfrchnk, sfgichnk, sfwdata, sfrdata,
 + sfscchnk
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index, status
 integer dim_sizes(2), origin(2)
 integer fill_value, maxcache, new_maxcache, flag
 integer start(2), edges(2), stride(2)
 integer*2 all_data(4,9)
 integer*2 row(3), column(2)
 integer*2 chunk_out(2,3)
 integer*2 chunk1(2,3),
 + chunk2(2,3),
 + chunk3(2,3),
 + chunk6(2,3)
 integer i, j
C
C Compression flag and parameters.
C
 integer comp_type, comp_flag, comp_prm(4)
C
C Chunk’s dimensions.
C
 integer dim_length(2), dim_length_out(2)
C
C Initialize four chunks
C
 data chunk1 /6*1/
 data chunk2 /6*2/
 data chunk3 /6*3/
 data chunk6 /6*6/
C
C Initialize row and column arrays.
C
 data row /3*4/
 data column /2*5/
C
C**** End of variable declaration ************************************
C
C
C Define chunk’s dimensions.
C
 dim_length(1) = 2
 dim_length(2) = 3
C
C Create the file and initialize SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_CREATE)

C
C Create 4x9 SDS
C
 dim_sizes(1) = 4
 dim_sizes(2) = 9

June 24, 1998 3-117

HDF User’s Guide

 sds_id = sfcreate(sd_id, SDS_NAME, DFNT_INT16,
 + RANK, dim_sizes)
C
C Fill SDS array with the fill value.
C
 fill_value = 0
 status = sfsfill(sds_id, fill_value)
C
C Create chunked SDS.
C
C In this example we do not use compression.
C
C To use RLE compression, initialize comp_type parameter
C before the call to sfschnk function.
C comp_type = COMP_CODE_RLE
C
C To use NBIT, Skipping Huffman, or GZIP compression,
C initialize comp_prm array and comp type parameter
C before call to sfschnk function
C
C NBIT:
C comp_prm(1) = value_of(sign_ext)
C comp_prm(2) = value_of(fill_one)
C comp_prm(3) = value_of(start_bit)
C comp_prm(4) = value_of(bit_len)
C comp_type = COMP_CODE_NBIT
C
C Skipping Huffman:
C comp_prm(1) = value_of(skp_size)
C comp_type = COMP_CODE_SKPHUFF
C
C GZIP:
C comp_prm(1) = value_of(deflate_level)
C comp_type = COMP_CODE_DEFLATE
C
C
 comp_type = COMP_CODE_NONE
 status = sfschnk(sds_id, dim_length, comp_type, comp_prm)
C
C Set chunk cache to hold maximum 2 chunks.
C
 flag = 0
 maxcache = 2
 new_maxcache = sfscchnk(sds_id, maxcache, flag)
C
C Write chunks using SDwritechunk function.
C Chunks can be written in any order.
C
C Write chunk with the coordinates (1,1).
C
 origin(1) = 1
 origin(2) = 1
 status = sfwchnk(sds_id, origin, chunk1)
C
C Write chunk with the coordinates (1,2).
C
 origin(1) = 1
 origin(2) = 2
 status = sfwchnk(sds_id, origin, chunk3)
C
C Write chunk with the coordinates (2,1).
C
 origin(1) = 2

3-118 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

 origin(2) = 1
 status = sfwchnk(sds_id, origin, chunk2)
C
C Write chunk with the coordinates (2,3).
C
 origin(1) = 2
 origin(2) = 3
 status = sfwchnk(sds_id, origin, chunk6)
C
C Fill second row in the chunk with the coordinates (2,2).
C
 start(1) = 3
 start(2) = 3
 edges(1) = 1
 edges(2) = 3
 stride(1) = 1
 stride(2) = 1
 status = sfwdata(sds_id, start, stride, edges, row)
C
C Fill second column in the chunk with the coordinates (1,3).
C
 start(1) = 0
 start(2) = 7
 edges(1) = 2
 edges(2) = 1
 stride(1) = 1
 stride(2) = 1
 status = sfwdata(sds_id, start, stride, edges, column)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)
C
C Reopen the file and access the first data set.
C
 sd_id = sfstart(FILE_NAME, DFACC_READ)
 sds_index = 0
 sds_id = sfselect(sd_id, sds_index)
C
C Get information about the SDS.
C
 status = sfgichnk(sds_id, dim_length_out, comp_flag)
 if (comp_flag .eq. 0) then
 write(*,*) ’SDS is chunked’
 endif
 if (comp_flag .eq. 1) then
 write(*,*) ’SDS is chunked and compressed’
 endif
 if (comp_flag .eq. 2) then
 write(*,*) ’SDS is chunked and NBIT compressed’
 endif
 write(*,*) ’Chunks dimensions are ’, dim_length_out(1),
 + ’ x’ ,dim_length_out(2)
C
C Read the whole SDS using sfrdata function and display
C what we have read. The following information will be displayed:
C
C
C SDS is chunked

June 24, 1998 3-119

HDF User’s Guide

C Chunks dimensions are 2 x 3
C
C 1 1 1 3 3 3 0 5 0
C 1 1 1 3 3 3 0 5 0
C 2 2 2 0 0 0 6 6 6
C 2 2 2 4 4 4 6 6 6
C
 start(1) = 0
 start(2) = 0
 edges(1) = 4
 edges(2) = 9
 stride(1) = 1
 stride(2) = 1
 status = sfrdata(sds_id, start, stride, edges, all_data)
C
C Display the SDS.
C
 write(*,*)
 do 10 i = 1,4
 write(*,*) (all_data(i,j), j=1,9)
10 continue
C
C Read chunks with the coordinates (2,2) and (1,3) and display.
C The following information will be shown:
C
C Chunk (2,2)
C
C 0 0 0
C 4 4 4
C
C Chunk (1,3)
C
C 0 5 0
C 0 5 0
C
 origin(1) = 2
 origin(2) = 2
 status = sfrchnk(sds_id, origin, chunk_out)
 write(*,*)
 write(*,*) ’Chunk (2,2)’
 write(*,*)
 do 20 i = 1,2
 write(*,*) (chunk_out(i,j), j=1,3)
20 continue
C
 origin(1) = 1
 origin(2) = 3
 status = sfrchnk(sds_id, origin, chunk_out)
 write(*,*)
 write(*,*) ’Chunk (1,3)’
 write(*,*)
 do 30 i = 1,2
 write(*,*) (chunk_out(i,j), j=1,3)
30 continue
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)
 end

3-120 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

3.12 Ghost Areas

In cases where the size of the SDS array is not an even multiple of the chunk size, regions of
excess array space beyond the defined dimensions of the SDS will be created. Refer to the follow-
ing illustration.

FIGURE 3e Array Locations Created Beyond the Defined Dimensions of an SDS

These "ghost areas" can be accessed only by SDreadchunk and SDwritechunk; they cannot be
accessed by either SDreaddata or SDwritedata. Therefore, storing data in these areas is not rec-
ommended. Future versions of the HDF library may not include the ability to write to these areas.

If the fill value has been set, the values in these array locations will be initialized to the fill value.
It is highly recommended that users set the fill value before writing to chunked SDSs so that gar-
bage values won’t be read from these locations.

3.13 netCDF

HDF supports the netCDF data model and interface developed at the Unidata Program Center
(UPC). Like HDF, netCDF is an interface to a library of data access programs that store and
retrieve data. The file format developed at the UPC to support netCDF uses XDR (eXternal Data
Representation), a non-proprietary external data representation developed by Sun Microsystems
for describing and encoding data. Full documentation on netCDF and the Unidata netCDF inter-
face is available at http://www.unidata.ucar.edu/packages/netcdf/ .

The netCDF data model is interchangeable with the SDS data model in so far as it is possible to
use the netCDF calling interface to place an SDS into an HDF file and conversely the SDS inter-
face will read from an XDR-based netCDF file. Because the netCDF interface has not changed
and netCDF files stored in XDR format are readable, existing netCDF programs and data are still
usable, although programs will need to be relinked to the new library. However, there are impor-
tant conceptual differences between the HDF and the netCDF data model that must be understood
to effectively use HDF in working with netCDF data objects and to understand enhancements to
the interface that will be included in the future to make the two APIs much more similar.

1600 ints

2000
ints

In a 1600 by 2000 integer chunked
SDS array with 500 by 500 integer
chunks, a 400 by 2000 integer area
of array locations beyond the
defined dimensions of the SDS
is created (shaded area). These
areas are called "ghost areas".

June 24, 1998 3-121

HDF User’s Guide

In the HDF model, when a multidimensional SDS is created by SDcreate, HDF data objects are
also created that provide information about the individual dimensions — one for each dimension.
Each SDS contains within its internal structure the array data as well as pointers to these dimen-
sions. Each dimension is stored in a structure that is in the HDF file but separate from the SDS
array.

If more than one SDS have the same dimension sizes, they may share dimensions by pointing to
the same dimensions. This can be done in application programs by calling SDsetdimname to
assign the same dimension name to all dimensions that are shared by several SDSs. For example,
suppose you make the following sequence of calls for every SDS in a file:

dim_id = SDgetdimid(sds_id, 0);

ret = SDsetdimname(dim_id, "Lat");
dim_id = SDgetdimid(sds_id, 1);
ret = SDsetdimname(dim_id, "Long");

This will create a shared dimension named "Lat " that is associated with every SDS as the first
dimension and a dimension named "Long" as the second dimension.

This same result is obtained differently in netCDF. Note that a netCDF "variable" is roughly the
same as an HDF SDS. The netCDF interface requires application programs to define all dimen-
sions, using ncdimdef , before defining variables. Those defined dimensions are then used to
define variables in ncvardef . Each dimension is defined by a name and a size. All variables using
the same dimension will have the same dimension name and dimension size.

Although the HDF SDS interface will read from and write to existing XDR-based netCDF files,
HDF cannot be used to create XDR-based netCDF files.

There is currently no support for mixing HDF data objects that are not SDSs and netCDF data
objects. For example, a raster image can exist in the same HDF file as a netCDF data object, but
you must use one of the HDF raster image APIs to read the image and the HDF SD or netCDF
interface to read the netCDF data object. The other HDF APIs are currently being modified to
allow multifile access. Closer integration with the netCDF interface will probably be delayed until
the end of that project.

3.13.1 HDF Interface vs. netCDF Interface

Existing netCDF applications can be used to read HDF files and existing HDF applications can be
used to read XDR-based netCDF files. To read an HDF file using a netCDF application, the appli-
cation must be recompiled using the HDF library. For example, recompiling the netCDF utility
ncdump with HDF creates a utility that can dump scientific data sets from both HDF and XDR-
based files. To read an XDR-based file using an HDF application, the application must be relinked
to the HDF library.

The current version of HDF contains several APIs that support essentially the same data model:

• The multifile SD interface.

• The netCDF or NC interface.

• The single-file DFSD interface.

• The multifile GR interface.

The first three models can create, read, and write SDSs in HDF files. Both the SD and NC inter-
faces can read from and write to XDR-based netCDF files, but they cannot create them. This
interoperability means that a single program may contain both SD and NC function calls and thus
transparently read and write scientific data sets to HDF or XDR-based files.

3-122 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

The SD interface is the only HDF interface capable of accessing the XDR-based netCDF file for-
mat. The DFSD interface cannot access XDR-based files and can only access SDS arrays, dimen-
sion scales, and predefined attributes. A summary of file interoperability among the three
interfaces is provided in the following table.

TABLE 3AH Summary of HDF and XDR File Compatibility for the HDF and netCDF APIs

A summary of NC function calls and their SD equivalents is presented in the following table.

TABLE 3AI NC Interface Routine Calls and their SD Equivalents

Files Created by
DFSD interface

Files Created by
SD interface

Files Written by
NC Interface

HDF HDF NCSA HDF Library
Unidata netCDF

Library

Accessed by DFSD Yes Yes Yes No

Accessed by SD Yes Yes Yes Yes

Accessed by NC Yes Yes Yes Yes

Purpose
Routine Name SD

Equivalent
Description

C FORTRAN-77

Operations

nccreate NCCRE SDstart Creates a file

ncopen NCOPN SDstart Opens a file

ncredef NCREDF Not Applicable Sets open file into define mode

ncendef NCENDF Not Applicable Leaves define mode

ncclose NCCLOS SDend Closes an open file

ncinquire NCINQ SDfileinfo Inquires about an open file

ncsync NCSNC Not Applicable Synchronizes a file to disk

ncabort NCABOR Not Applicable Backs out of recent definitions

ncsetfill NCSFIL Not Implemented Sets fill mode for writes

Dimensions

ncdimdef NCDDEF SDsetdimname Creates a dimension

ncdimid NCDID SDgetdimid Returns a dimension identifier from its name

ncdiminq NCDINQ SDdiminfo Inquires about a dimension

ncdimrename NCDREN Not Implemented Renames a dimension

Variables

ncvardef NCVDEF SDcreate Creates a variable

ncvarid NCVID
SDnametoindex and

SDselect
Returns a variable identifier from its name

ncvarinq NCVINQ SDgetinfo Returns information about a variable

ncvarput1 NCVPT1 Not Implemented Writes a single data value

ncvarget1 NCVGT1 Not Implemented Reads a single data value

ncvarput NCVPT SDwritedata Writes a hyperslab of values

ncvarget NCVGT/NCVGTC SDreaddata Reads a hyperslab of values

ncvarrename NCVREN Not Implemented Renames a variable

nctypelen NCTLEN DFKNTsize Returns the number of bytes for a data type

3-123 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

Attributes

ncattput NCAPT/NCAPTC SDsetattr Creates an attribute

ncattinq NCAINQ SDattrinfo Returns information about an attribute

ncattcopy NCACPY Not Implemented Copies attribute from one file to another

ncattget NCAGT/NCAGTC SDreadattr Returns attributes values

ncattname NCANAM SDattrinfo Returns name of attribute from its number

ncattrename NCAREN Not Implemented Renames an attribute

ncattdel NCADEL Not Implemented Deletes an attribute

3-124 June 24, 1998

National Center for Supercomputing ApplicationsNational Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

