
H5edit with Backup Virtual File Driver
Atomicity Performance Study
Albert Cheng
2014-11-14

[image:]
http://www.HDFGroup.org

		

Page 7 of 9
[bookmark: _Toc244465987]Introduction
This is a study of the performance times of the H5edit tool with Backup Virtual File Drive (VFD) using different levels of the atomicity options on data files of different sizes.

The H5edit[footnoteRef:1] tool is an HDF5 file editor. It supports commands to modify the contents of an existing HDF5 file. It enables HDF5 users to modify an HDF5 file without resorting to technical programming. Its intent is for small-scale modification of the file. Current version can modify the attributes of HDF5 objects such as datasets and groups. [1: H5edit User Guide, v1.2.0]

The need of atomicity
[bookmark: _Toc244465988]It is important to users’ production data files that the H5edit will execute the commands in an atomic manner, that is, it is either all success or no changes if there is any error. Otherwise, the HDF5 data file can be partially changed, which is not necessary desirable for all cases. Worse yet, if the H5edit fails in the middle of a command, the HDF5 file may be left in an unstable state, resulting in a total loss of access to the remaining information in the file. This is not an acceptable behavior for production files.

The H5edit tool creates and maintains a backup copy of the original data file being edited by the tool. The Atomicity option (--atomic) controls the manner the backup copy is managed. In case of user commands errors or system failures, the data file can be recovered from the backup copy by replacing the data file with the backup copy.

When the tool starts, after it has opened the data file successfully, it will make a backup copy of the data file before applying the input commands. If the tool encounters any error, the user may recover the data file from the backup copy.
Levels of atomicity
The H5edit tool provides three levels of atomicity: no, yes, and inc. The no level (--atomic==no) means no backup file is provided at all. This means the user does not care if the data file is partly changed or in an unstable state. He may already have a backup copy of the data file or he does not mind losing the data in the file.

The yes level (--atomic==yes) is the default setting for the H5edit tool and it means the tool makes a backup copy of the data file when it first opens it for editing. If the tool completes the editing session without any failure, it will remove the back up file after closing the data file. If the tool fails or is aborted, though the data file could be in an unstable state, the user may use the backup file to recover the data file.

The third level, inc, (--atomicity==inc) provides a finer level of backup support. One may see that the yes level of atomicity is an all-or-nothing backup support. A user may have completed many H5edit commands but has a minor typo mistake. It is annoying that he would have to redo all the editing commands. The inc (incremental) level instructs the H5edit tool to back up the data file after every successful edit command. This allows the above user to fix only the failed command and continues to complete the editing session.
[bookmark: _Toc244465989]Performance concerns
Since the yes and inc levels of atomicity involve the creation and update of the backup file, they incur extra I/O operations. File I/O operations are expensive comparing to computing. A previous performance study report[footnoteRef:2] of the v1.2.0 of H5edit showed that it takes extra execution time to run the yes and inc atomicity levels to support the backup file for restoration. It takes even more time to support the inc level. The extra time to support the inc level over yes level is proportional to the number of H5edit commands. The previous results are listed under section 3.1 Results of Previous Version (v1.2.0) below. [2: H5edit Atomicity Performance Study, v1.2.0]

To address the performance issue, a Backup VFD is proposed and implemented for the H5edit tool and is released as v1.3.0. A performance study on the v1.3.0 and the results are shown in this report.

[bookmark: _Toc244465990]Performance Tests Setup
[bookmark: _Toc244465991]Time Measurement
The performance test is conducting by running h5edit on data file with different settings of atomicity to measure the impact of maintaining the backup file. The Unix Shell time command is used to measure the execution time of the h5edit session. Though the time command provides only 2 decimal points of execution time in seconds, it is sufficient for the purpose of this performance measurement as the differences of performance are expected to be substantial among the three atomicity levels.
[bookmark: _Toc244465992]Test data file of different sizes
Nine data files of different sizes are selected from files we have collected from NASA data center. They are chosen because each file has a size approximately double of the previous one. Below is a list of their file sizes:

	File name
	File size (MB)
	Original NASA name

	015MB.h5
	15
	SVDNB_npp_d20130727_t0000538_e0002179_b09046_c20130727063722389520_noaa_ops.h5

	038MB.h5
	38
	VSCMO_npp_d20130601_t1200352_e1201594_b08259_c20130601182658726580_noaa_ops.h5

	076MB.h5
	76
	IVIIC_npp_d20130601_t1200352_e1201594_b08259_c20130601135659498993_noaa_ops.h5

	123MB.h5
	123
	GDNBO_npp_d20130727_t0000538_e0002179_b09046_c20130727061952493776_noaa_ops.h5

	310MB.h5
	310
	GITCO_npp_d20130601_t1258533_e1300175_b08259_c20130601145518919477_noaa_ops.h5

	549MB.h5
	549
	GDNBO-SVDNB_npp_d20130727_t0052066_e0057470_b09047_c20130801161207019107_XXXX_XXX.h5

	2200MB.h5
	2200
	GDNBO-SVDNB_npp_d20130727_t0035017_e0057470_b09046_c20130731205748151135_XXXX_XXX.h5

[bookmark: _Toc244465993]H5edit Commands applied
Each data file is copied from the common repository to the local working directory. This ensures the same version of the data files is used. This is repeated with all three atomicity levels. The following is the Shell script used to run the performance tests and to collect the results posted by the time command.

for dfile in 015MB.h5 038MB.h5 123MB.h5 2200MB.h5 310MB.h5 549MB.h5; do
 for x in yes no inc; do
 cp data/$dfile $dfile
 rm -f "."$dfile".bck"
 time ./h5edit --atomic $x --command-file t_comm_file1 $dfile
 done
 rm -f $dfile
done

The command file t_comm_file1 contains the following nine H5edit commands. The reason that CREATE commands are used, is to make the HDF5 library more likely to read through all existing metadata, thus going through the whole file.

CREATE /newattrI32BE {H5T_STD_I32BE (1, 2, 3) DATA {11, 12, 21, 22, 31,32}};
CREATE /newattrF64LE {H5T_IEEE_F64LE (2, 2, 2) DATA {0.1E1, 0.2E1, -1.1e2, -1.2e2, 2.1E-3, 2.2E-3, -3.1E-3, -3.2E-2}};
CREATE /newattr1 {H5T_STD_I32BE (1, 2, 3) DATA {11, 12, 21, 22, 31,32}};
CREATE /newattr2 {H5T_STD_I32BE (1, 2, 3) DATA {11, 12, 21, 22, 31,32}};
CREATE /newattr3 {H5T_STD_I32BE (1, 2, 3) DATA {11, 12, 21, 22, 31,32}};
CREATE /newattr4 {H5T_STD_I32BE (1, 2, 3) DATA {11, 12, 21, 22, 31,32}};
CREATE /newattr5 {H5T_STD_I32BE (1, 2, 3) DATA {11, 12, 21, 22, 31,32}};
CREATE /newattr6 {H5T_STD_I32BE (1, 2, 3) DATA {11, 12, 21, 22, 31,32}};
CREATE /newattr7 {H5T_STD_I32BE (1, 2, 3) DATA {11, 12, 21, 22, 31,32}};
[bookmark: _Toc244465994]Platforms measured
The test is conduced in three different platforms, namely Linux 32bit, Linux 64bit and Mac OS X systems. These three platforms are chosen because the NASA users commonly use them.
	Platform type (hostname)
	Machine details

	Linux, CentOS 5.9, i686 (Jam)
	Memory 16GB

	Linux, CentOS 5.9, x86_64 (Koala)
	Memory 12GB

	Mac OS X 10.7.5 (Duck)
	Memory 8GB

[bookmark: _Toc244465995]Results and Analysis
I recall the results of the previous version and compare them with the new results of the current version with Backup VFD.
[bookmark: _Ref277624871][bookmark: _Toc244465996]Results of Previous Version (v1.2.0)
Linux system (jam)
	File Size (MB)
	Atomic=no (Sec)
	Atomic=yes (Sec)
	Atomic=inc (Sec)
	yes/no
	inc/no
	inc/yes

	15
	0.004
	0.302
	0.214
	76
	54
	0.7

	38
	0.003
	0.102
	0.539
	34
	180
	5.3

	123
	0.004
	0.338
	4.676
	85
	1169
	13.8

	310
	0.004
	1.175
	15.142
	294
	3786
	12.9

	549
	0.005
	2.243
	30.339
	449
	6068
	13.5

	2200
	0.004
	56.329
	363.612
	14082
	90903
	6.5

Linux64 system (Koala)
	File Size (MB)
	Atomic=no (Sec)
	Atomic=yes (Sec)
	Atomic=inc (Sec)
	yes/no
	inc/no
	inc/yes

	15
	0.004
	0.037
	0.114
	9
	29
	3.1

	38
	0.004
	0.08
	0.283
	20
	71
	3.5

	123
	0.004
	0.252
	0.874
	63
	219
	3.5

	310
	0.003
	0.387
	2.2
	129
	733
	5.7

	549
	0.009
	0.685
	3.807
	76
	423
	5.6

	2200
	0.008
	22.44
	34.531
	2805
	4316
	1.5

Mac OS X 10.7 system (Duck)
	File Size (MB)
	Atomic=no (Sec)
	Atomic=yes (Sec)
	Atomic=inc (Sec)
	yes/no
	inc/no
	inc/yes

	15
	0.219
	0.512
	0.764
	2
	3
	1.5

	38
	0.286
	0.958
	1.912
	3
	7
	2.0

	123
	0.306
	6.27
	5.455
	20
	18
	0.9

	310
	0.22
	7.009
	14.496
	32
	66
	2.1

	549
	0.3
	11.946
	61.056
	40
	204
	5.1

	2200
	1.331
	126.121
	1207.505
	95
	907
	9.6

Previous Conclusion
It takes more execution times to support the backup file for restoration and the inc level takes even more time than the yes level. The impact depends on the file sizes and platforms. For smaller file size, the operating system’s memory management can mask the disk I/O speed and lessen the increase in execution time. In Linux systems where it employs more aggressive memory management, it can mask the disk I/O of larger files if there is enough memory to keep the files in core.
[bookmark: _GoBack]Results of Current Version with Backup VFD
Linux system (jam)
	File Size (MB)
	Atomic=no (Sec)
	Atomic=yes (Sec)
	Atomic=inc (Sec)
	yes/no
	inc/no
	inc/yes

	15
	0.004
	0.048
	0.076
	12
	19
	1.58

	38
	0.003
	0.113
	0.133
	38
	44
	1.18

	123
	0.004
	0.381
	0.379
	95
	95
	0.99

	310
	0.004
	0.979
	1.108
	245
	277
	1.13

	549
	0.004
	6.717
	1.553
	1679
	388
	0.23

	2200
	0.004
	75.984
	58.674
	18996
	14669
	0.77

[bookmark: _Toc244465999]Linux64 system (Koala)
	File Size (MB)
	Atomic=no (Sec)
	Atomic=yes (Sec)
	Atomic=inc (Sec)
	yes/no
	inc/no
	inc/yes

	15
	0.004
	0.022
	0.031
	6
	8
	1.41

	38
	0.004
	0.059
	0.053
	15
	13
	0.90

	123
	0.004
	0.191
	0.23
	48
	58
	1.20

	310
	0.004
	0.366
	0.488
	92
	122
	1.33

	549
	0.005
	0.594
	0.594
	119
	119
	1.00

	2200
	0.004
	3.806
	3.137
	952
	784
	0.82

[bookmark: _Toc244466002]Mac OS X 10.7 system (Duck)
	File Size (MB)
	Atomic=no (Sec)
	Atomic=yes (Sec)
	Atomic=inc (Sec)
	yes/no
	inc/no
	inc/yes

	15
	0.66
	2.177
	1.617
	3
	2
	0.74

	38
	1.112
	3.551
	4.22
	3
	4
	1.19

	123
	0.748
	12.146
	8.572
	16
	11
	0.71

	310
	0.494
	39.277
	32.956
	80
	67
	0.84

	549
	0.61
	66.297
	60.538
	109
	99
	0.91

	2200
	0.699
	58.055
	33.195
	83
	47
	0.57

Comparison
It takes more execution times to support the backup file for restoration. With the Backup VFD, the inc level takes no more than 58% amount of time than those of the yes level. In many cases, it takes less than 10% more. There are a few cases where the inc level takes less time than the yes level. That does not make sense since the in level does more I/O than the yes level. I would consider them to be “noise” since the measurements are performed in systems when there are other users and activities.
[bookmark: _Toc244466005]Conclusion
The results support that the Backup VFD (Virtual File Driver) does optimize disk I/O operations to reduce the impact of the inc atomicity level. It helps the performance of the H5edit tool, especially when working with large size files.

image10.jpeg
|.u:

The HDF Group

image1.jpeg
|.u:

The HDF Group

image2.jpeg
A

The HDF Group

HSedit with Backup Virtual File Driver
Atomicity Performance Study

[E—

