
September 28, 2015RFC THG 2015-09-15.v2

RFC: File Format Changes in HDF5 1.10.0

The HDF Group

This document gives an overview of the file format changes in HDF5 1.10.0.

The first version of this document contains the proposed changes to the superblock.

When finished, it should contain the overview of all recommended changes to the
HDF5 file format that would be implemented by the HDF5 libraries version 1.10. The
final document can be used to inform the HDF5 users about the file format changes in
1.10 and serve as a high-level checklist for the changes to the HDF5 File Format
Specification document 1.10.0.

1	 Introduction	 3

2	 HDF5 File Format changes to Superblock	 4

2.1	 File Locking	 4

2.2	 SWMR backward compatibility issue	4

2.2.1	 Proposed change to address SWMR-79	 4

2.2.2	 Alternative change to address SWMR-79	 6

2.3	 File Space Management	 7

2.3.1	 Implemented change for File Space Management	 7

2.3.2	 Alternative change for File Space Management	 8

2.4	 Avoid Truncate Feature	 9

2.4.1	 Implemented change for Avoid Truncate	 9

2.4.2	 Alternative change for Avoid Truncate	 10

2.5	 Cache Image Feature	 11

2.5.1	 Implemented change for Cache Image	 11

2.5.2	 Alternative change for Cache Image	 11

3	 HDF5 File Format changes to support new chunk indexing	 12

4	 HDF5 File Format changes to support VDS	 15

5	 Final recommendation: HDF5 File Format changes to be implemented by HDF5 1.10	 17

Revision History	 18

References	 19

 Page 1 of 18

September 28, 2015RFC THG 2015-09-15.v2

Introduction
The HDF5 version 1.10.0 will introduce several new features and bug fixes that require extensions or
modifications to the HDF5 File Format implemented by the HDF5 libraries version 1.8 [1].

Every new feature that required a file format change, implemented the change independently of the
changes done for other features. We need to take a look at all proposed file format changes and
finalize them. The intent of this document is to summarize all proposed changes and to finalize the
HDF5 file format that will be implemented by the HDF5 library versions 1.10.

The document is organized as follows. Section 2 of the document gives an overview of the changes
proposed to the superblock and its extensions, File Space Management, Avoid Truncate, and Cache
Image features. Section 3 documents the changes needed to introduce new chunk indexing structures.
Section 4 describes the file format changes required for VDS.

Recommended final changes are documented in Section 5 and will be documented in the HDF5 File
Format Specification version 1.10.0 (<<<location TBD>>>) when approved.

 Page 2 of 18

September 28, 2015RFC THG 2015-09-15.v2

HDF5 File Format changes to Superblock
This section discusses proposed or currently implemented changes to superblock for File Locking
with/without SWMR, File Free Space Management, Avoid Truncate and Cache Image features.

File Locking

The SWMR enabled library (version 1.10) implements file locking to ensure file consistency. It uses the
file consistency flags field in the superblock (status_flags in H5F_super_t structure) as part of the
mechanism to lock the file, which can be open with or without SWMR access. Please see RFC: File
Locking Under SWMR – Semantics, Programming Model, and Implementation for details.

The file consistency flags field in the superblock is:

SWMR backward compatibility issue

It was brought to The HDF Group developers’ attention that the SWMR enabled HDF5 library cannot
open some HDF5 files created by HDF5 1.8. The issue was reported and documented in JIRA SWMR-
79. Behavior of the library violates The HDF Group backward compatibility policy that requires any
new version of the HDF5 library to read the files created by the previous versions of HDF5.

Performed investigation showed that the earlier versions of HDF5 1.8 may accidently write garbage to
the status_flags field in the superblock. The values stored in status_flags are used by the HDF5 1.10
library to verify that a file can be opened for a specified access. The issue was fixed in the later
versions of HDF5 1.8 and The HDF Group provides the h5clear tool to fix the values stored in the
garbled field, but this solution requires user’s interference that is not always possible. The HDF Group
was asked to provide a solution that would be transparent to the applications.

Proposed change to address SWMR-79

We propose to bump the version of the superblock to 3 when the HDF5 library version 1.10 creates a
file with the latest format. Any other HDF5-based process that opens the file will behave according to
semantics described in the RFC: File Locking Under SWMR – Semantics, Programming Model, and
Implementation. The library will ignore values in status_flags when the version of the superblock is
less than 3.

The current implementation of superblock version

The library determines the superblock version # to use based on whether the file is created with or
without the latest format.

For superblock version 0 & 1: a 4-byte field starting at byte 20th o

For superblock version 2: a 1-byte field at byte 11th o

When a file is created without the latest format, the library will determine the superblock
version # based on the file access flags:

A.

non-SWMR file access:a)

 Page 3 of 18

September 28, 2015RFC THG 2015-09-15.v2

The library uses version 0 by default. But it will bump the version # based on the existence
of the following file creation properties:

The library will create the superblock extension to store the messages for items (1) to (3)
above.

File without latest format

non-SWMR file access SWMR file access

-- non-default v1 B-tree K value SOHM non-default file space info

v. 0 v. 1* v. 2* v. 2* fail

File with latest format

non-SWMR/SWMR file access

-- non-default v1 B-tree K value SOHM non-default file space info

v. 2 v. 2* v. 2* v. 2*

*indicates superblock extension is used to store the message information

The proposed implementation of superblock version

The library determines the superblock version # to use based on whether the file is created with or
without the latest format.

File with latest format

non-SWMR/SWMR file access

-- non-default v1 B-tree K value SOHM non-default file space info

If non-default v1 B-tree K value is set, the version is set to 1.1)

If shared object header message index (SOHM) is enabled, the version is set to 2. 2)

If non-default file space info is set, the version is set to 2. 3)

SWMR file access: file creation will failb)

When a file is created with the latest format, the library sets superblock version to 2. B.

When a file is created without the latest format, the implementation will be the same as case
#A described in the previous section.

A.

When a file is created with the latest format, the library will set superblock version to 3.B.

 Page 4 of 18

September 28, 2015RFC THG 2015-09-15.v2

v. 3 v. 3* v. 3* v. 3*

Alternative change to address SWMR-79

No alternative solutions were proposed.

 Page 5 of 18

September 28, 2015RFC THG 2015-09-15.v2

File Space Management

The HDF5 library performs file space management activities such as tracking free space and allocating
space to store file metadata and raw data. The library provides 3 file space management strategies
based on 4 mechanisms used to allocate space. Please refer to the <File Space Management User
Guide—TO BE UPDATED> for detailed description.

The mechanisms are:

The strategies are:

To support this feature, the library stores the file space handling information in the File Space Info
message, which is located in the superblock extension.

Implemented change for File Space Management

The information stored in the File Space Info message is listed below:

Free-space managers●

Free-space managers with embedded paged aggregation●

Aggregators●

Virtual file driver●

H5F_FSPACE_STRATEGY_AGGR●

The mechanisms used are free-space managers, aggregators and virtual file drivero

This is the library defaulto

H5F_FSPACE_STRATEGY_PAGE●

The mechanisms used are free-space managers with embedded paged aggregation and
virtual file driver

o

H5F_FSPACE_STRATEGY_NONE●

The mechanisms are free-space managers and virtual file drivero

Message version (1 byte)●

Version is 0o

File space strategy (1 byte)●

The strategies are:o

H5F_FSPACE_STRATEGY_AGGR▪

H5F_FSPACE_STRATEGY_PAGE▪

H5F_FSPACE_STRATEGY_NONE▪

Persisting free-space (1 byte)●

Free-space section threshold (size of lengths)●

 Page 6 of 18

September 28, 2015RFC THG 2015-09-15.v2

Please refer to the HDF5 format specification (TO BE UPDATED) for detailed description of the
message.

Alternative change for File Space Management

PENDING: The library’s default file space strategy might be changed to H5F_FSPACE_STRATEGY_PAGE
depending on the performance result for paged aggregation/page buffering. If that is the case, there
might be changes to superblock version 3 to store the needed information for paged aggregation.

For paged aggregation: file space page size (size of lengths)●

For paged aggregation: page end metadata threshold (2 bytes)●

For paged aggregation: EOF file space section type (1 byte)●

Addresses of 6 free-space managers (size of offsets)●

Exist only when persisting free-spaceo

For paged aggregation: only 3 managers will be definedo

 Page 7 of 18

September 28, 2015RFC THG 2015-09-15.v2

Avoid Truncate Feature

The HDF5 library tracks two pieces of information about the size of an HDF5 file in memory. The “end
of allocation” (EOA) value indicates how much of the file has been allocated for use by some piece of
the HDF5 file format. The “end of file” (EOF) value indicates the location of the highest byte actually
written in the file by the HDF5 library. These two values are frequently not the same during normal
operation of the library. Currently, the library changes the file’s size from its current size (EOF) to the
EOA value before setting the EOF value to the EOA value and stores the [modified] EOF value in the
file’s superblock.

As setting the file’s size is fairly expensive, this feature allows the library to not change the file’s size by
storing the EOA value along with the unmodified EOF value in the superblock. To support this
feature, the library stores the file’s EOA information in an EOA message, which is located in the
superblock extension.

Please refer to <<Avoid Truncate documentation>> for detailed description.

Implemented change for Avoid Truncate

The information stored in the EOA message is listed below:

Please refer to the HDF5 format specification (TO BE UPDATED) for detailed description of the
message.

Alternative change for Avoid Truncate

Message version (1 byte)●

Version is 0o

Avoid truncate setting (1 byte)●

The settings are:o

H5F_AVOID_TRUNCATE_OFF▪

H5F_AVOID_TRUNCATE_EXTEND▪

H5F_AVOID_TRUNCATE_ALL▪

EOA value (size of offsets)●

End of file addresses for up to 6 basic allocation types:o

H5FD_MEM_SUPER (superblock data)1.

H5FD_MEM_BTREE (B-tree data)2.

H5FD_MEM_DRAW (raw data)3.

H5FD_MEM_GHEAP (global heap data)4.

H5FD_MEM_LHEAP (local heap data)5.

H5FD_MEM_OHDR (object header data)6.

 Page 8 of 18

September 28, 2015RFC THG 2015-09-15.v2

PENDING: As we are adding superblock version 3, we might revisit the implementation of this feature
to store the EOA value (sec2) in version 3 superblock. For file drivers with multiple file backend, we
might consider putting the EOA values in the Driver Info message in the superblock extension.

 Page 9 of 18

September 28, 2015RFC THG 2015-09-15.v2

Cache Image Feature

When this feature is enabled, the library saves the image of the metadata cache at file closing. When
the file is re-opened, the library reads the saved cache image, decodes and loads its contents into the
metadata cache. Please refer to the <Cache Image documentation> for detailed description.

To support this feature, the library stores the information about the saved image in a Metadata Cache
Image message, which is located in the superblock extension.

Implemented change for Cache Image

The information stored in the Metadata Cache Image message is listed below:

Please refer to the HDF5 format specification (TO BE UPDATED) for detailed description of the
message.

Alternative change for Cache Image

PENDING: When the implementation of the cache image feature is finalized, there might be changes
to the superblock version 3 on EOA/EOF??.

Message version (1 byte)▪

Version is 0o

Address of the cache image block (size of offsets)▪

Length of the cache image block (size of lengths)▪

 Page 10 of 18

September 28, 2015RFC THG 2015-09-15.v2

HDF5 File Format changes to support new chunk indexing
Currently, the library uses version 1 B-tree to index chunked datasets in an HDF5 file with or without
the latest format.

For chunked datasets in an HDF5 file with the latest format, the 1.10 library will use one of the
following indexing types depending on a chunked dataset’s dimension specification and the way it is
extended:

Please refer to the HDF5 format specification (TO BE UPDATED) for detailed description of the indexing
types.

To support these chunk indexing types, the library uses a pair of messages to describe the dataset
layout information in the object header:

Implemented Change for Data Layout Message

The information stored in the version 4 Data Layout message is listed below:

Extensible Array indexing for appending along a specified dimension ●

Version 2 B-tree indexing for appending along multiple dimensions●

Fixed Array indexing for fixed-size datasets●

Implicit indexing for fixed-size datasets with early space allocation and without filters●

Version 4 Data Layout message●

Version 0 Data Storage message●

Message version (1 byte)●

Version is 4o

Layout class (1 byte)●

The classes are: compact, contiguous, chunkedo

Properties specific to each layout class (variable size)●

Contains the following fields:o

Compact: noneo

Contiguous: noneo

Chunked:o

Chunked storage enabled flag (1 byte)▪

Dimensionality (1 byte)▪

Encoded # of bytes for chunk dimensions (1 byte)▪

N dimension sizes (variable size)▪

 Page 11 of 18

September 28, 2015RFC THG 2015-09-15.v2

Please refer to the HDF5 format specification (TO BE UPDATED) for detailed description of the
message.

Implemented change for Data Storage message

The information stored in the Data Storage message is listed below:

Chunk indexing type (1 byte):▪

0—Version 1 B-tree indexing●

1—Implicit indexing●

2—Fixed Array indexing●

3—Extensible Array indexing●

4—Version 2 B-tree indexing●

Creation parameters information specific to an indexing type (variable size):▪

Implicit indexing: none●

Fixed Array indexing: 1 byte ●

Extensible Array indexing: 5 bytes ●

Version 2 B-tree indexing: 6 bytes ●

Message version (1 byte)●

Version is 0o

Layout class (1 byte)●

The classes are: compact, contiguous, chunkedo

Properties specific to each layout class (variable size)●

Contains the following fields:o

Compact:o

Size of the raw data (2 bytes)▪

The raw data (variable size)▪

Contiguous:o

Address where the raw data is located (size of offsets)▪

Size of the raw data (size of lengths)▪

Chunked:o

Chunked storage enabled flag (1 byte)▪

Chunk indexing type (1 byte)▪

0—Version 1 B-tree indexingo

 Page 12 of 18

September 28, 2015RFC THG 2015-09-15.v2

Please refer to the HDF5 format specification (TO BE UPDATED) for detailed description of the
message.

Alternative change for Data Layout/Data Storage messages

PENDING: We need to evaluate and decide whether to just use the data layout message or data
layout/storage message pair. For either case, layout/storage information to support new chunk
indexing and VDS will need to be merged.

1—Implicit indexingo

2—Fixed Array indexingo

3—Extensible Array indexingo

4—Version 2 B-tree indexingo

Address (size of offsets) specific to an indexing type:▪

Implicit indexing: address of the dataset chunks o

Fixed Array/Extensible Array/Version 2 B-tree indexing: address where
the indexing information is located; address may be undefined if storage
information for the indexing type is not allocated yet

o

 Page 13 of 18

September 28, 2015RFC THG 2015-09-15.v2

HDF5 File Format changes to support VDS
The VDS feature (Virtual Dataset) allows users to manage data stored across a collection of the HDF5
files in a similar way as if data was stored in a dataset in an HDF5 file. It provides a mapping from
source dataset elements in some source HDF5 files to a set of elements in the VDS. The library stores
the mapping information in the file’s global heap. The Please refer to the <VDS documentation> for
detailed description.

To support this feature, the library modifies the version 4 Data Layout message to store the global
heap ID, which is used to locate the global heap collection containing the VDS mapping information.

Implemented Change for Data Layout Message

The information stored in the version 4 Data Layout message is listed below:

Please refer to the HDF5 format specification (TO BE UPDATED) for detailed description of the

Message version (1 byte)●

Version is 4o

Layout class (1 byte)●

The classes are: compact, contiguous, chunked, virtualo

Properties specific to each layout class (variable size)●

Contains the following fields:o

Compact:o

Size of the raw data (2 bytes)▪

The raw data (variable size)▪

Contiguous:o

Address of the raw data (size of offsets)▪

Size of the raw data (size of lengths)▪

Chunked:	o

Dimensionality (1 byte)▪

Address where the Version 1 B-tree indexing information is located (size of
offsets)

▪

N dimension sizes (4 bytes for each dimension)▪

Virtualo

Address of the global heap collection where the VDS mapping entries are stored
(size of offsets)

▪

Index of the data object within the global heap collection (4 bytes)▪

 Page 14 of 18

September 28, 2015RFC THG 2015-09-15.v2

message.

Alternative Change for Data Layout Message

PENDING: We need to evaluate and decide whether to just use the data layout message or data
layout/storage message pair. For either case, layout/storage information to support new chunk
indexing and VDS will need to be merged.

 Page 15 of 18

September 28, 2015RFC THG 2015-09-15.v2

Final recommendation: HDF5 File Format changes to be implemented by HDF5 1.10
Summary of the recommended changes will be here

 Page 16 of 18

September 28, 2015RFC THG 2015-09-15.v2

Revision History

September 15, 2015: Version 1 sent to authors to fill their sections for file format changes and
extensions.

September 28, 2015: Version 2 sent for internal review.

 Page 17 of 18

September 28, 2015RFC THG 2015-09-15.v2

References
The HDF Group, “HDF5 File Format Specification”
https://www.hdfgroup.org/HDF5/doc/H5.format.html

1.

RFC: File Locking Under SWMR—Semantics, Programming Model, and Implementation2.

<File Space Management User Guide> 3.

<Avoid Truncate documentation>4.

<Cache Image documentation>5.

<VDS documentation>6.

 Page 18 of 18

https://www.hdfgroup.org/HDF5/doc/H5.format.html

