RFC: Mapping FITS data to HDF5

Pedro Vicente Nunes, pvn@ncsa.uiuc.edu

Rationale

Just as cars come in many makes and models, scientific data is available in a
wide variety of formats. These range from the "home grown", project-specific
formats to the standard formats of the "Big 3" (FITS, HDF, netCDF). Unlike
cars, where there is rarely a need to transform Toyotas into Chevys, it is often
desirable to convert data from one format into another for archival, transport
and analysis purposes

(Jennings et all, 1995).

FITS is a data format mostly used within the astronomy community, while HDF5 is a
general purpose library and file format for storing scientific data, used in a variety of
communities. This RFC proposes a software tool, named fits2h5, that aims to read a
FITS file and generate a HDF5 file with the corresponding data. Some of HDF5 features
that potentially could be useful in the translation are

e HDF5 allows data to be organized into groups, analogous to UNIX file folders

e HDF5 provides random (fast) access to its data objects

o Data compression

e Chunking. Chunking refers to a storage layout where a dataset is partitioned into
fixed-size multi-dimensional chunks. This has many efficiency advantages when
doing I/0 to the file, particularly in very large files.

e An API that defines a standard for arrays that are to be interpreted as images, with
palette and true color (RGB) support

e The ability to define fill values in the data

e A variety of free and commercial visualization packages that read HDF5.

The goals that fits2h5 tries to achieve are thus, to facilitate the transport of space and
Earth science data between different science disciplines, data analysis packages, and
hardware platforms.

The FITS data format

FITS (Flexible Image Transport System) is a data format widely used within the
astronomy community for transporting, analyzing, and archiving scientific data files.
EITS has a support office page. FITS is primarily designed to store scientific data sets

mailto:pvn@ncsa.uiuc.edu
http://fits.gsfc.nasa.gov/

consisting of multidimensional arrays (images) and 2-dimensional tables organized into
rows and columns of information. Like HDF and HDF5, the underlying goal of FITS is
to provide a standardized, simple, and extensible means to transport data between
computers of different architectures.

A FITS file is comprised of segments called Header + Data Units (HDUs), where the
first HDU is called the "Primary HDU', or "Primary Array'. The primary data array can
contain a N dimensional array of 1, 2 or 4 byte integers or 4 or 8 byte floating point
numbers using IEEE representations.

Any number of additional HDUs may follow the primary array. These additional HDUs
are referred to as FITS "extensions'. Three types of standard extensions are currently
defined:

e Image Extensions contain a N dimensional array of pixels, similar to a primary
array

e ASCII Table Extensions store tabular information with all numeric information
stored in ASCII formats. While ASCII tables are generally less efficient than binary
tables, they can be made relatively human readable and can store numeric
information with essentially arbitrary size and accuracy.

e Binary Table Extensions store tabular information in a binary representation. Each
cell in the table can be an array but the dimensionality of the array must be constant
within a column.

Header Units

Every HDU consists of an ASCII formatted "Header Unit' followed by an optional "Data
Unit'. Each header or data unit is a multiple of 2880 bytes long. If necessary, the header
or data unit is padded out to the required length with ASCII blanks or NULLs depending
on the type of unit.

Each header unit contains a sequence of fixed-length 80-character keyword records
which have the general form:

KEYNAME = value / comment string

The keyword names may be up to 8 characters long and can only contain uppercase
letters A to Z, the digits 0 to 9, the hyphen, and the underscore character. The keyword
name is (usually) followed by an equals sign and a space character in columns 9 and 10
of the record, followed by the value of the keyword which may be either an integer, a
floating point number, a complex value (i.e., a pair of numbers), a character string
(enclosed in single quotes), or a Boolean value (the letter T or F). Some keywords, (e.g.,

COMMENT and HISTORY) are not followed by an equals sign and in that case columns
9 - 80 of the record may contain any string of ASCII text.

Each header unit begins with a series of required keywords that specify the size and
format of the following data unit. A 2-dimensional image primary array header, for
example, begins with the following keywords:

SIMPLE = T/ file conforms to FITS standard
BITPIX = 16 / number of bits per data pixel
NAXIS = 2 / number of data axes

NAXIS1 = 440 / length of data axis 1
NAXIS2 = 300 / length of data axis 2

The required keywords may be followed by other optional keywords to describe various
aspects of the data, such as the date and time of the observation. COMMENT or
HISTORY keywords are also frequently added to further document the contents of the
data file.

The last keyword in the header is always the "END' keyword which has blank value and
comment fields. The header is padded with additional blank records if necessary so that
it is a multiple of 2880 bytes (equivalent to 36 80-byte keywords) long. Note that the
header unit may only contain ASCII text characters ranging from hexadecimal 20 to 7E);
non-printing ASCII characters such as tabs, carriage-returns, or line-feeds are not
allowed anywhere within the header unit.

Data Units

The data unit, if present, immediately follows the last 2880-byte block in the header
unit. Note that the data unit is not required, so some HDUs only contain the header unit.
The image pixels in a primary array or an image extension may have one of 5 supported
data types:

e 8-bit (unsigned) integer bytes

16-bit (signed) integers

32-bit (signed) integers

64-bit (signed) integers

32-bit single precision floating point real numbers
e 64-bit double precision floating point real numbers

Unsigned 16-bit and 32-bit integers are supported by subtracting an offset from the raw
pixel values (e.g., 32768 (2**15) is subtracted from each unsigned 16-bit integer pixel
value to shift the values into the range of a signed 16-bit integer) before writing them to
the FITS file. This offset is then added to the pixels when reading the FITS image to
restore the original values.

The other 2 types of standard extensions, ASCII tables and binary tables, contain tabular
information organized into rows and columns.

All the entries within a given column of an ASCII or Binary table extension have the
same datatype. The allowed data formats for an ASCII table column are: integer, single
or double precision floating point value, or character string. Binary table extensions also
support logical (T/F), bit, and complex data formats.

Each entry, or field, in an ASCII table may only contain 1 scalar value. Binary tables are
more flexible and allow N-dimensional arrays of data (either fixed length or variable
length) to be stored within each field. Variable-length arrays are implemented by storing
a pointer in the field of the table which defines the length and byte offset to the start of
the data array which is located in the "heap" area that follows the table proper. The
variable-length-arrays convention is not strictly part of the FITS standard but is widely
used.

Mapping FITS to HDF5

The FITS file is read in a linear fashion using the concept of a HDU position. This is a 1
based index that identifies the position of a HDU in the file. There is an API function
that returns this index

fits_get_hdu_num(fptr, &hdupos); /* Get the current HDU position */

After opening the FITS file, this function returns 1, identifying the position of the
primary HDU. A cycle can be constructed, where in each iteration there is an attempt to
move to the next HDU position using the API function

fits_movrel_hdu(fptr, 1, NULL, &status);

which moves to the next HDU in the file. At each HDU, there is a query to find the type
of HDU (image or table) using the API function

fits_get_hdu_type(fptr, &hdutype, &status);

which returns the HDU type.

Writing the HDFS5 file

At each HDU iteration an HDF5 object is created according to

Type of HDU HDFS5 object

Image Dataset
Dataset with compound type, with the number of fields
Table : .
corresponding to the number of columns in the table
Header Attribute of the HDU group (see below)
Image HDUs

Each of the five FITS Image data types are converted to HDF5 datatypes using the
following table

FITS Image data type HDF5 dataset datatype
8-bit (unsigned) integer H5T_NATIVE_UCHAR
16-bit (signed) integer H5T_NATIVE_SHORT
32-bit (signed) integer H5T_NATIVE_INT
64-bit (signed) integer H5T_NATIVE_LLONG

32-bit single precision

. . HS5T_NATIVE_FLOAT
floating point

64-bit double precision

: : H5T_NATIVE_DOUBLE
floating point

Table HDUs

Allowed values for the data type in ASCII tables are: TSTRING, TSHORT, TLONG,
TFLOAT, and TDOUBLE. Binary tables also support these types: TLOGICAL, TBIT,
TBYTE, TCOMPLEX and TDBLCOMPLEX. The following table shows the
corresponding mapping to HDF5 datatypes:

FITS Table data type HDFS5 datatype
TSTRING H5T_C_S1

TSHORT H5T_NATIVE_SHORT
TLONG H5T_NATIVE_LONG
TFLOAT H5T_NATIVE_FLOAT
TDOUBLE H5T_NATIVE_DOUBLE
TLOGICAL TBD (to be determined)
TBIT TBD

TBYTE TBD

| |

TCOMPLEX TBD
TDBLCOMPLEX TBD

Naming HDF5 objects

This RFC proposes a way to the FITS data to be organized in the HDF5 file.

For each HDU, a group is created with the name "HDU_N", where the "_N" refers to the
index of the object read (1 based).

HDU index Object (group)
1 HDU_1
2 HDU_2
3 HDU_3

Each group would contain either a header and image or a header and table or just a
header.

The FITS data model does not define a name for its objects, which are instead identified
by its position in the file. When creating the corresponding HDF5 objects the following
naming convention is used.

Type of HDU HDF5 object name
Image FITS_IMAGE_N
Table FITS_TABLE_N
FITS Headers

A FITS header is created in the HDF5 file as an attribute of the group HDU. For each
FITS HDU an attribute named 'FITS_HEADER_N' is created, as a compound datatype
with 3 fields: the keyword name, the keyword value, and the keyword comment (all of
which are optional in the FITS header). The fields are of HDF5 string datatype
(H5T_C_S1). The number of elements in the this array (rows) is as many as FITS header
keywords.

For the previous keyword example, one would have this FITS_HEADER_N attribute, the
form on the FITS file as

SIMPLE =T/ file conforms to FITS standard

translated to the HDF5 attribute as

keyword name |keyword value |keyword comment

SIMPLE T file conforms to FITS standard
BITPIX 16 number of bits per data pixel
NAXIS 2 number of data axes

NAXIS1 440 length of data axis 1

NAXIS2 300 length of data axis 2

Usage

The fits2h5 usage is

Jfits2h5 <filename>

where <filename> is the name of an existing FITS file. The output of the program is an
HDF?5 file that has the same name as <filename> with the extension .h5. If the input file
name has an extension (usually .fits or .fit), that is removed. For example

Jfits2h5 file.fits

produces a HDF5 file named file.h5

References

Convert: Bridging the Scientific Data Format Chasm. (1995) D. G. Jennings, W. D.
Pence. M. Folk. ASP Conference Series, Vol. 77, 1995.

CFITSIO User's Reference Guide, Version 2.5 (2004). HEASARC. Goddard Space Flight
Center, Greenbelt, MD

Last updated

1/24/2006

