
 1

Performance Report for Free-space Manager
Vailin Choi

The HDF Group
9/15/2008

1. Purpose

The free-space manager is used to track unused space within a heap or an HDF5 file. The
trunk and free-space feature branch differ in the way free space for the file memory is
handled. This document reports the performance of free-space manager for the two
branches.

2. Overview of current Implementation for free-space

• hdf5 trunk
File memory is allocated and freed via the virtual file layer, which tracks free-space
sections using a free-list. The free-list is an unsorted singly-linked list of address/size
pairs. File memory allocation request can be of different types such as super block,
b-tree, raw data, global heap and local heap.

When file memory space is requested, the virtual file layer attempts to find space
from the corresponding free-list. It tries to find an exact match if possible; otherwise,
the best match which is the smallest size that meets the request. If the free-list cannot
satisfy the request, the virtual file layer tries to allocate space from the meta/small
data aggregators or via individual driver’s file allocation.

When unused file memory space is freed, the virtual file layer releases the space to
the corresponding free-list. It will either create a new node for the freed block or try
to merge the freed block with an existing node in the free-list. The new or adjusted
node will be inserted at the beginning of the free-list. The virtual file layer will also
handle merging of the freed block with the meta/small data aggregator as well as file
shrinking if the freed block is at the end of file.

Since the trunk uses the unsorted linked-list for tracking free blocks, it takes n
operations to search for a free block and also n operations for adding a free block to
the linked-list.

• Free-space feature branch
File memory is a client of the free-space manager, which uses skip-list to track free
spaces. There is free-space manager for each memory allocation request such as
super block, b-tree, raw data, global heap and local heap.

All free-space sections are tracked by an array of bins, which is hashed on ranges of
section sizes. Each bin points to a skip-list, referred to as bin-list, which tracks a
range of section sizes for that bin. Each node of a section size in bin-list points to a
skip-list, referred to as sect-list, which tracks sections with ascending addresses for

 2

that size. See Figure 1 free-space data structures. There is also a separate skip-list,
referred to as merge-list, which tracks sections of free-space in address order that
might possibly be merged with neighboring sections.

When file memory space is requested, the file memory layer tries to search for large
enough space from the free-space manager. The size of the free-space section is
hashed to a specific bin-list. If there is a large enough size in bin-list to fulfill the
request, the free-space manager removes the first section with the lowest address
from the corresponding sect-list as well as the corresponding section from merge-list.
Otherwise, the search continues to the next bin. Also, if a section is found but its size
is greater than the request, the section with the unused space is re-added to free-space
pool. However, if the free-space manager cannot satisfy the request in the end, the
file memory layer tries to allocate space from the meta/small data aggregators or via
individual driver’s file allocation.

When unused file memory space is freed, the free-space manager will try merging the
returned section with its left and right neighboring sections in merge-list. The
merging operation continues in this fashion with the new merged section until no
more merging is possible. It then handles file shrinking if the returned section is at
the end of file and/or absorption of the returned section with the meta/small data
aggregator as needed. The shrinking operation is continued with the last section in
merge-list until no more shrinking is possible. In the end, the free-space manager
inserts the returned section, which may possibly be merged, to the appropriate sect-
list, and then the merge-list. Or, no insertion is needed if the section is shrunk away.

Table 1 and Table 2 summarize the steps and the respective operations involved in
allocating space from free-space. The following observations are noted:

o Total for Table 1 might be less because step #3 is not needed if section
size exactly fulfills the request.

o Total for Table 2 might be more because step #2 might be repeated to the
next bin for up to a maximum of log2 (maximum section size) times if the
current bin’s bin-list does not meet the request.

Table 1

Allocating space from free-space # of operations
1. Retrieve large enough section from bin-list and sect-list to fulfill request (see Table 2) 2 + log2n
2. Remove the section from merge-list log2n
3. Possibly re-add a section of unused space in the section to merge-list, bin-list & sect-list 1 + 4 log2n
Total 3 + 6 log2n

Table 2

Retrieving a section from bin-list and sect-list # of operations
1. Get to the desired hash bin 1
2. Search bin-list for large enough size to fulfill request log2n
3. Remove the first section from sect-list 1
Total 2+ log2n

 3

Table 3 through Table 6 summarizes the steps and the respective operations involved
in adding (freeing) space to free-space. The following observations are noted:

o Total for Table 3 might be less because steps #2 and #3 are not needed if
the section was shrunk.

o Total for Table 4 might be less because step #3 is not needed if the
requested section size node already existed.

o Total for Table 5 might be less because steps #2, 4 or 6 are not needed if
the section is not merged or shrunk. On the other hand, total might be
more because merging/shrinking might be repeated arbitrary number of
times as described above.

Table 3

Adding (freeing) space to free-space # of operations
1. Merge/shrink the section as needed (see Table 5) 5 + 7 log2n
2. Insert the section to bin-list and sect-list if not shrunk (see Table 4) 1 + 3 log2n
3. Insert the section to merge-list if not shrunk log2n
Total 6 + 11 log2n

Table 4
Inserting a section to bin-list & sect-list # of operations

1. Get to the desired hash bin 1
2. Search bin-list for section size log2n
3. Possibly insert new section size to bin-list log2n
4. Insert the section to sect-list log2n
Total 1+ 3 log2n

Table 5
Merging/shrinking a section # of

operations
1. Find a less than section to be merged from merge-list log2n
2. Possibly remove less than section being merged from bin-list & sect-list (see Table 6) 1+2log2n
3. Find a greater than section to be merged from merge-list 1
4. Possibly remove greater than section being merged from bin-list & sect-list (see Table 6) 1+ 2log2n
5. Find last section to be shrunk from merge-list 1
6. Possibly remove last section to be shrunk from bin-list & sect-list (see Table 6) 1+ 2log2n
Total 5 + 7 log2n

Table 6
Removing a section from bin-list and sect-list # of operations

1. Get to the desired hash bin 1
2. Search bin-list for section size log2n
3. Remove the section from sect-list log2n
Total 1+ 2 log2n

3. Timing Methodology

 4

The library’s internal timer routines, H5_timer_begin() and H5_timer_end(), are used to
measure time. The timer, which calls getrusage(), reports three types of times: user time,
system time and elapsed time. User time is “the amount of time spent executing in user
mode”, while system time is “the amount of time the system (or the processor) spends on
behalf of the current process”. Elapsed time is the wall-clock time, which is “the amount
of time that passes on your wall clock while your process runs.” Since we are measuring
the performance of the free-space manager in the library, user and system times are added
together to get cpu time for this benchmark. The timer is turned on at the beginning of
each test when creating the HDF5 file and turns off when the file is closed at the end of
the test.

4. Testing

Tests are written with the purpose of exercising the usage of the free-space manager.
When creating groups/datasets/attributes, space will be allocated from available space
tracked by the free-space manager. When deleting groups/datasets/attributes, unused
space will be added to the free-space pool via the free-space manager, which also handles
merging/shrinking of free-space sections. Also, all the datasets are created with
H5D_ALLOC_TIME_EARLY so that storage is allocated on creation of the datasets and
no I/O is involved in reading/writing the datasets.

• Test 1: Creating/deleting groups
The following test is repeated with sets of 500, 1,000, 5,000, 10,000 and 50,000
groups.

Create first set of groups;
Delete odd-numbered groups from the first set
Create second set of groups
Delete all groups from the second set

• Test 2: Creating/deleting datasets

The following test is repeated with sets of 500, 1,000, 5,000, 10,000 and 50,000
datasets.

Create one set of big datasets
Delete odd-numbered big datasets
Create one huge dataset
Delete the huge dataset
Create one set of medium datasets
Delete odd-numbered medium datasets
Create one set of small datasets

• Test 3: Creating/deleting groups with datasets

The following test is repeated for sets of 500 and 1,000 groups with the
corresponding number of datasets. This test is not done for sets of 5,000, 10,000
and 50,000 groups/datasets because it takes too long.

 5

Create first set of groups with medium datasets
Delete odd-numbered groups and their datasets in the first set

 Create second set of groups with small datasets

• Test 4: Creating/deleting attributes
 (Note that this test cannot be done at this time due to abort problem #2 below)

Create first set of attributes
Delete odd-numbered attributes from the first set
Create second set of attributes
Delete all attributes from the second set

3. Existing problems

The following two problems are encountered when running the performance tests and
are reported to be fixed:

1. abort for overlapping of raw data with meta data accumulator
2. abort for exceeding maximum object header message size

5. Results

The following tables list the result for test #1, 2 and 3.

Test 1

free-space branch
 (A)

hdf5 trunk
(B)

A versus B
B/A

objects cpu time (seconds) cpu time (seconds) # times faster
500 0.107983 0.118982 1.101859

1,000 0.230965 0.232964 1.008655
5,000 1.824721 2.511614 1.376437

10,000 5.655142 10.02247 1.772276
50,000 161.09337 643.3811 3.99384

Test 2
free-space branch

 (A)
hdf5 trunk

(B)
A versus B

B/A
objects cpu time (seconds) cpu time (seconds) # times faster

500 0.189971 0.301954 1.589474
1,000 0.39194 0.651901 1.663267
5,000 2.251661 9.32158 4.139868

10,000 5.684133 44.17526 7.77168
50,000 102.67842 1,431.526 13.94184

 6

Test 3

free-space branch
 (A)

hdf5 trunk
(B)

A versus B
B/A

objects cpu time (seconds) cpu time (seconds) # times faster
500 68.17364 786.497 11.53667

1,000 288.9866 1,0998.77 38.0598

6. Conclusion

As can be seen from the last column of the above tables, the performance of the free-
space feature branch is significantly better than the trunk as the number of objects
increases. The result is consistent with the implementation of the free-space manager for
the two branches. For n allocation or freeing of free-space, the hdf5 trunk is in the order
n2 but the feature branch is nlog2n.

 7

Figure 1 free-space data structures

bin_list

section address i

sect_list

section size x

section address j

sect_list

section size y

section address k

section address l

bin_list

bin m bin n

