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1. Purpose 
 
The free-space manager is used to track unused space within a heap or an HDF5 file.  The 
trunk and free-space feature branch differ in the way free space for the file memory is 
handled.  This document reports the performance of free-space manager for the two 
branches. 
 
2. Overview of current Implementation for free-space 
 

• hdf5 trunk  
File memory is allocated and freed via the virtual file layer, which tracks free-space 
sections using a free-list.  The free-list is an unsorted singly-linked list of address/size 
pairs.  File memory allocation request can be of different types such as super block, 
b-tree, raw data, global heap and local heap.  
 
When file memory space is requested, the virtual file layer attempts to find space 
from the corresponding free-list.  It tries to find an exact match if possible; otherwise, 
the best match which is the smallest size that meets the request.  If the free-list cannot 
satisfy the request, the virtual file layer tries to allocate space from the meta/small 
data aggregators or via individual driver’s file allocation.   
 
When unused file memory space is freed, the virtual file layer releases the space to 
the corresponding free-list.  It will either create a new node for the freed block or try 
to merge the freed block with an existing node in the free-list.  The new or adjusted 
node will be inserted at the beginning of the free-list.  The virtual file layer will also 
handle merging of the freed block with the meta/small data aggregator as well as file 
shrinking if the freed block is at the end of file. 
 
Since the trunk uses the unsorted linked-list for tracking free blocks, it takes n 
operations to search for a free block and also n operations for adding a free block to 
the linked-list. 
 
• Free-space feature branch  
File memory is a client of the free-space manager, which uses skip-list to track free 
spaces.  There is free-space manager for each memory allocation request such as 
super block, b-tree, raw data, global heap and local heap.   
 
All free-space sections are tracked by an array of bins, which is hashed on ranges of 
section sizes.  Each bin points to a skip-list, referred to as bin-list, which tracks a 
range of section sizes for that bin.  Each node of a section size in bin-list points to a 
skip-list, referred to as sect-list, which tracks sections with ascending addresses for 
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that size.  See Figure 1 free-space data structures. There is also a separate skip-list, 
referred to as merge-list, which tracks sections of free-space in address order that 
might possibly be merged with neighboring sections. 
 
When file memory space is requested, the file memory layer tries to search for large 
enough space from the free-space manager.  The size of the free-space section is 
hashed to a specific bin-list. If there is a large enough size in bin-list to fulfill the 
request, the free-space manager removes the first section with the lowest address 
from the corresponding sect-list as well as the corresponding section from merge-list.  
Otherwise, the search continues to the next bin.  Also, if a section is found but its size 
is greater than the request, the section with the unused space is re-added to free-space 
pool.  However, if the free-space manager cannot satisfy the request in the end, the 
file memory layer tries to allocate space from the meta/small data aggregators or via 
individual driver’s file allocation.   
 
When unused file memory space is freed, the free-space manager will try merging the 
returned section with its left and right neighboring sections in merge-list. The 
merging operation continues in this fashion with the new merged section until no 
more merging is possible.  It then handles file shrinking if the returned section is at 
the end of file and/or absorption of the returned section with the meta/small data 
aggregator as needed.  The shrinking operation is continued with the last section in 
merge-list until no more shrinking is possible.  In the end, the free-space manager 
inserts the returned section, which may possibly be merged, to the appropriate sect-
list, and then the merge-list.  Or, no insertion is needed if the section is shrunk away.   

 
Table 1 and Table 2 summarize the steps and the respective operations involved in 
allocating space from free-space.  The following observations are noted: 
 

o Total for Table 1 might be less because step #3 is not needed if section 
size exactly fulfills the request.   

o Total for Table 2 might be more because step #2 might be repeated to the 
next bin for up to a maximum of log2 (maximum section size)  times if the 
current bin’s bin-list does not meet the request. 

 
Table 1 

Allocating space from free-space # of operations 
1. Retrieve large enough section from bin-list and sect-list to fulfill request (see Table 2) 2 + log2n 
2. Remove the section from merge-list log2n 
3. Possibly re-add a section of unused space in the section to merge-list, bin-list & sect-list 1 + 4 log2n  
Total 3 + 6 log2n 

 
Table 2 

Retrieving a section from bin-list and sect-list # of operations 
1. Get to the desired hash bin 1 
2. Search bin-list for large enough size to fulfill request log2n 
3. Remove the first section from sect-list 1 
Total 2+ log2n 



 3 

 
Table 3 through Table 6 summarizes the steps and the respective operations involved 
in adding (freeing) space to free-space.  The following observations are noted: 
 

o Total for Table 3 might be less because steps #2 and #3 are not needed if 
the section was shrunk. 

o Total for Table 4 might be less because step #3 is not needed if the 
requested section size node already existed. 

o Total for Table 5 might be less because steps #2, 4 or 6 are not needed if 
the section is not merged or shrunk.  On the other hand, total might be 
more because merging/shrinking might be repeated arbitrary number of 
times as described above. 

 
Table 3 

Adding (freeing) space to free-space # of operations 
1. Merge/shrink the section as needed  (see Table 5)  5 + 7 log2n 
2. Insert the section to bin-list and sect-list if not shrunk  (see Table 4) 1 + 3 log2n 
3. Insert the section to merge-list if not shrunk log2n  
Total 6 + 11 log2n 
 

Table 4 
Inserting a section to bin-list & sect-list # of operations 

1. Get to the desired hash bin 1 
2. Search bin-list for section size log2n 
3. Possibly insert new section size to bin-list log2n 
4. Insert the section to sect-list log2n 
Total 1+ 3 log2n 
 

Table 5 
Merging/shrinking a section # of 

operations 
1. Find a less than section to be merged from merge-list log2n 
2. Possibly remove less than section being merged from bin-list & sect-list  (see Table 6) 1+2log2n 
3. Find a greater than section to be merged from merge-list 1 
4. Possibly remove greater than section being merged from bin-list & sect-list (see Table 6) 1+ 2log2n 
5. Find last section to be shrunk from merge-list 1 
6. Possibly remove last section to be shrunk from bin-list & sect-list (see Table 6) 1+ 2log2n 
Total 5 + 7 log2n 
 

Table 6 
Removing a section from bin-list and sect-list # of operations 

1. Get to the desired hash bin 1 
2. Search bin-list for section size log2n 
3. Remove the section from sect-list log2n 
Total 1+ 2 log2n 

 
3. Timing Methodology 
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The library’s internal timer routines, H5_timer_begin() and H5_timer_end(),  are used to 
measure time.  The timer, which calls getrusage(), reports three types of times: user time, 
system time and elapsed time.  User time is “the amount of time spent executing in user 
mode”, while system time is “the amount of time the system (or the processor) spends on 
behalf of the current process”.  Elapsed time is the wall-clock time, which is “the amount 
of time that passes on your wall clock while your process runs.”  Since we are measuring 
the performance of the free-space manager in the library, user and system times are added 
together to get cpu time for this benchmark.  The timer is turned on at the beginning of 
each test when creating the HDF5 file and turns off when the file is closed at the end of 
the test. 
 
4. Testing 
 
Tests are written with the purpose of exercising the usage of the free-space manager.  
When creating groups/datasets/attributes, space will be allocated from available space 
tracked by the free-space manager.  When deleting groups/datasets/attributes, unused 
space will be added to the free-space pool via the free-space manager, which also handles 
merging/shrinking of free-space sections. Also, all the datasets are created with 
H5D_ALLOC_TIME_EARLY so that storage is allocated on creation of the datasets and 
no I/O is involved in reading/writing the datasets. 
 

• Test 1: Creating/deleting groups 
The following test is repeated with sets of 500, 1,000, 5,000, 10,000 and 50,000 
groups. 
 

Create first set of groups;  
Delete odd-numbered groups from the first set 
Create second set of groups 
Delete all groups from the second set 

 
• Test 2: Creating/deleting datasets  

The following test is repeated with sets of 500, 1,000, 5,000, 10,000 and 50,000 
datasets. 
 

Create one set of big datasets 
Delete odd-numbered big datasets 
Create one huge dataset 
Delete the huge dataset 
Create one set of medium datasets 
Delete odd-numbered medium datasets 
Create one set of small datasets 

 
• Test 3: Creating/deleting groups with datasets 

The following test is repeated for sets of 500 and 1,000 groups with the 
corresponding number of datasets.  This test is not done for sets of 5,000, 10,000 
and 50,000 groups/datasets because it takes too long. 
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Create first set of groups with medium datasets 
Delete odd-numbered groups and their datasets in the first set 

 Create second set of groups with small datasets 
 
• Test 4: Creating/deleting attributes  
 (Note that this test cannot be done at this time due to abort problem #2 below)  

 
Create first set of attributes  
Delete odd-numbered attributes from the first set 
Create second set of attributes 
Delete all attributes from the second set 

 
3. Existing problems 
 

The following two problems are encountered when running the performance tests and 
are reported to be fixed: 
  

1. abort for overlapping of raw data with meta data accumulator 
2. abort for exceeding maximum object header message size 

 
5. Results 
 
The following tables list the result for test #1, 2 and 3.   

 
Test 1 

free-space branch 
 (A) 

hdf5 trunk  
(B) 

A versus B 
B/A 

objects cpu time (seconds) cpu time (seconds) # times faster 
500 0.107983 0.118982 1.101859 

1,000 0.230965 0.232964 1.008655 
5,000 1.824721 2.511614 1.376437 

10,000 5.655142 10.02247 1.772276 
50,000 161.09337 643.3811 3.99384 

 
 

Test 2 
free-space branch 

 (A) 
hdf5 trunk  

(B) 
A versus B 

B/A 
objects cpu time (seconds) cpu time (seconds) # times faster 

500 0.189971 0.301954 1.589474 
1,000 0.39194 0.651901 1.663267 
5,000 2.251661 9.32158 4.139868 

10,000 5.684133 44.17526 7.77168 
50,000 102.67842 1,431.526 13.94184 
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Test 3 

free-space branch 
 (A) 

hdf5 trunk  
(B) 

A versus B 
B/A 

objects cpu time (seconds) cpu time (seconds) # times faster 
500 68.17364 786.497 11.53667 

1,000 288.9866 1,0998.77 38.0598 
 
6. Conclusion 
 
As can be seen from the last column of the above tables, the performance of the free-
space feature branch is significantly better than the trunk as the number of objects 
increases.  The result is consistent with the implementation of the free-space manager for 
the two branches.  For n allocation or freeing of free-space, the hdf5 trunk is in the order 
n2 but the feature branch is nlog2n. 
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Figure 1 free-space data structures 
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