
October 27, 2017RFC THG 2017-07-07.v6

RFC: H5Sencode/H5Sdecode Format Change

Vailin Choi

John Mainzer

Neil Fortner

Jira issue HDFFV-9947 reported an overflow problem when encoding a dataspace with
selected elements exceeding 2^32 (32 bits integer limit).

This RFC describes the current format of the encoded buffer that causes the overflow
problem and proposes a solution to address the issue.

Introduction
The public routine H5Sencode() encodes a dataspace description into a buffer. The description
contains information about the dataspace message and the dataspace selection. There are four types
of dataspace selections:

The problem documented in jira issue HDFFV-9947 centers on the H5S_SEL_HYPER selection
encoding, in which only 32 bits are used to encode counts and block offsets. Not only has this
become insufficient, but the existing code fails to flag an error when the 32 bit limit is exceeded. On
investigation, we discovered similar issues with H5S_SEL_POINTS encoding.

A further issue springs from the current lack of any mechanism for associating selection encodings
with specific files. This presents a problem when introducing new selection encoding formats, as in
the absence of such a mechanism, there is no way to control the encodings used to match the library
version bounds for the target file. With extended, 64 bit versions of selection encodings, this has
become necessary, and thus this RFC addresses this issue as well.

Except as noted, the changes discussed in this RFC are directed at HDF5 1.12.

H5S_SEL_NONE: nothing selected1)

H5S_SEL_POINTS: sequence of points selected2)

H5S_SEL_HYPER: hyperslab selected3)

H5S_SEL_ALL: entire extent selected4)

 Page 1 of 25

October 27, 2017RFC THG 2017-07-07.v6

Proposed Changes

As intimated in the introduction, both public API and selection encoding changes are needed. In this
section, we address the API changes, leaving file format changes for Section 3 below.

2.1.1 H5Sencode

A new version of H5Sencode() is needed to address the following issues:

With these points in mind, we propose the new API call:

herr_t H5Sencode2(hid_t space_id, void *buf, size_t *nalloc,
hid_t fapl)

Where the first three parameters are the same as the existing H5Sencode() API call, and the fourth
“fapl” parameter is used to control the encoding used via the libver_bounds property. If the
libver_bounds property is missing, H5Sencode2() proceeds as if the libver_bounds
property was set to (H5F_LIBVER_EARLIEST, H5F_LIBVER_LATEST). See Section 2.2 & 2.3 for details on
the encodings used for different libver_bounds settings.

As usual when adding a new version of an existing API, we propose renaming the existing API call
H5Sencode() to H5Sencode1(), and adding the compatibility macro H5Sencode().

Functionally, H5Sencode1() will be identical to H5Sencode2() with libver_bounds set to
(H5F_LIBVER_EARLIEST, H5F_LIBVER_LATEST).

There is no API change for H5Sdecode(), which will be updated to handle the new encoding
formats.

To address the overflow problem, H5Sencode() in HDF5 1.8 must be modified to fail if the 32 bit
limit is exceeded when encoding either offsets or counts in the selection.

The situation is a bit more complicated in HDF5 1.10, as the version 2 hyperslab encoding exists in this
release, and there are three different cases that must be addressed – H5Sencode() proper, region
references, and VDS.

New Public API Routines0.1

The existing public routine H5Sencode() encodes dataspace selection to a buffer but does not
tie the selection to a file or otherwise allow the user to control the encodings used.

●

The file format changes needed to address the 32 bit limitation in turn require us to allow the
user to select the encoding that corresponds to the target file (as specified by file format set in
the file access property list). Failure to do so would prevent the maintenance of forward
compatibility, allowing older versions of the library to decode the buffer.

●

Again for forwards compatibility, we must allow internal library calls that encode dataspace
selections to a buffer to do so according to the file format set in the file access property list.

●

Page 2 of 25

October 27, 2017RFC THG 2017-07-07.v6

For H5Sencode() proper, the issue is that without a new API, the function cannot receive direction
on whether and how to employ the version 2 hyperslab encoding, and thus we must select some
behavior that will cause minimal pain pending the API change in HDF5 1.12. My inclination is to
duplicate the behavior of H5Sencode() in HDF5 1.8, specifically to use only the original 32 bit
selection encodings, and fail if the 32 bit limit is exceeded. This has the twin advantages of being
simple, and ensuring no forward compatibility issues from this quarter. See table 1 below.

Neil would prefer to have it use the 32 bit encodings if possible, but use the version 2 hyperslab
encoding if possible and necessary rather than fail. (Neil: please present your arguments for this
option.) See table 2 below.

For region references, if it is practical to access the libver_bounds setting for the file, we could use the
version 2 hyperslab encoding or not based on this setting. See tables 2 and 3 below.

For VDS, we are already using the version 2 hyperslab encoding in the regular/unlimited case. If I
recall my discussion with Neil correctly, the version 1 encoding must be used for irregular encodings
(and must fail if count or offset exceeds 32 bits as the version 2 hyperslab encoding does not support
irregular selections). For regular encodings, Neil would like the version 1 encoding to be used if there
are less than 4 blocks, and the offsets fit in 32 bits. In all other cases, he would prefer that the version
2 hyperslab be used. Neil’s argument here is that this ensures the most compact representation
possible given the available hyperslab encodings in 1.10. See table 3 below.

Table 1: H5Sencode for hyperslab selection (proposed for 1.10 H5Sencode proper)

version hyperslab

type

H5S_UNLIMITED

in selection specification

offset

	

of blocks

in the selection

1 irregular N/A up to (2^32 – 1) up to (2^32 – 1)

FAIL irregular N/A > (2^32 – 1) > (2^32 – 1)

1 regular no up to (2^32 – 1) up to (2^32 – 1)

FAIL regular no > (2^32 – 1) > (2^32 – 1)

2 regular yes up to (2^64 – 1) N/A

Note: the proposed actions in table 1 above to handle compatibility issues can be mitigated by
informing users with the following:

Do not use H5S_UNLIMITED in the selection.●

Use the public routine H5Sget_select_bounds(space, start, end) to ensure
that the upper bound for the selection does not exceed 32 bits.

●

Page 3 of 25

October 27, 2017RFC THG 2017-07-07.v6

Table 2: H5Sencode for hyperslab selection (proposed for 1.10 earliest format)

version hyperslab

type

H5S_UNLIMITED

in selection specification

offset

	

of blocks

in the selection

1 irregular N/A up to (2^32 – 1) up to (2^32 – 1)

FAIL irregular N/A > (2^32 – 1) > (2^32 – 1)

1 regular no up to (2^32 – 1) up to (2^32 – 1)

2 regular N/A (yes or no) up to (2^64 – 1) N/A

Table 3: H5Sencode for hyperslab selection (proposed for 1.10 latest format)

version hyperslab type H5S_UNLIMITED

in selection specification

offset # of blocks in the
selection

1 irregular N/A up to (2^32 – 1) up to (2^32 – 1)

FAIL irregular N/A > (2^32 – 1) > (2^32 – 1)

1 regular no up to (2^32 – 1) < 4

2 regular N/A (yes or no) up to (2^64 – 1) N/A

Table 4 is proposed for point selections in 1.10.

Table 4: H5Sencode for point selections (proposed for 1.10 earliest and latest format)

version Coordinates in the selection # of points in the selection

1 up to (2^32 – 1) up to (2^32 – 1)

FAIL > (2^32 – 1) > (2^32 – 1)

Page 4 of 25

October 27, 2017RFC THG 2017-07-07.v6

2.1.2 H5Pencode

Unfortunately, the API changes cannot be restricted to H5Sencode(). H5Pencode() encodes properties
on a property list into a buffer, and property lists can include selections via the virtual storage layout
property. Thus similar API changes are required here as well – we propose the new API call:

herr_t H5Pencode2(hid_t plist_id, void *buf, size_t *nalloc,
hid_t fapl)

As before, the first three parameters are the same as the existing H5Pencode() API call, and the
fapl parameter allows the user to control the encoding used for selections via the
libver_bounds property.

Similarly, H5Pencode() must be renamed H5Pencode1() and the H5Pencode()
compatibility macro added.

As any selection encoding will be done via calls to the internal H5S_encode() function, all necessary
functional changes will be implemented by that call.

No API changes are needed for H5Pdecode()

Currently, the library uses the version 1 point selection encoding format to encode point selections
(see section 3 for descriptions of the current and proposed encoding formats for selections).

The version 1 point selection encoding format uses:

Table A below shows the current version used to encode point selections. At present when version 1
is used to encode the coordinates or # of points that exceed 32 bits, the encoding is incorrect and the
library fails to flag an error

Table A: H5Sencode for point selections (current)

version Coordinates in the selection # of points in the selection

1 up to (2^32 – 1) up to (2^32 – 1)

We propose adding version 2 as follows:

H5S_SEL_POINTS0.2

32 bits to encode the number of points in the selection●

32 bits to encode the coordinates of the points in the selection●

Use a size of point info field to indicate the size that will be used to encode point info, i.e. the
number of points and the coordinates of points in the selection. The size can be 2, 4 or 8
bytes.

●

Page 5 of 25

October 27, 2017RFC THG 2017-07-07.v6

Tables B and C below list the versions we will use to encode point selections for the earliest and latest
file format respectively.

Table B: H5Sencode for point selections (proposed for earliest format)

version Coordinates in the selection # of points in the selection

1 up to (2^32 – 1) up to (2^32 – 1)

2 up to (2^64 – 1) up to (2^64 – 1)

Table C: H5Sencode for point selections (proposed for latest format)

version Coordinates in the selection # of points in the selection

2 up to (2^64 – 1) up to (2^64 – 1)

Currently, the library uses two encoding formats to encode hyperslab selections:

See table D below for the encoding versions used to encode hyperslab selections. At present when
version 1 is used to encode offset or # of blocks that exceed 32 bits, the encoding is incorrect and the
code fails to flag an error.

Table D: H5Sencode for hyperslab selections (current)

version hyperslab

type

H5S_UNLIMITED

in selection specification

offset # of blocks

in the selection

1 irregular N/A up to (2^32 – 1) up to (2^32 – 1)

1 regular no up to (2^32 – 1) up to (2^32 – 1)

2 regular yes up to (2^64 – 1) N/A

We propose to adding the version 3 hyperslap encoding as follows:

See section 3 on the detailed format description for version 2 points selection info.●

H5S_SEL_HYPER0.3

Version 1●

Uses 32 bits to encode the number of blocks in the selectiono

Uses 32 bits to encode the starting and ending offsets of each block in the selectiono

Version 2●

Uses 64 bits to encode the start/stride/count/block arrays of the selection specificationo

Use a flag field to indicate regular or irregular hyperslab type:●
Page 6 of 25

October 27, 2017RFC THG 2017-07-07.v6

Tables E and F below show the hyperslab encoding versions we will use to encode hyperslab
selections for the earliest and latest file format respectively.

	 Table E: H5Sencode for hyperslab selection (proposed for earliest format)

version hyperslab

type

H5S_UNLIMITED

in selection specification

offset

	

of blocks

in the selection

1 irregular N/A up to (2^32 – 1) up to (2^32 – 1)

1 regular no up to (2^32 – 1) up to (2^32 – 1)

2 regular yes up to (2^64 – 1) N/A

2 regular no up to (2^64 – 1) N/A

3	 irregular N/A up to (2^64 – 1) up to (2^64 – 1)

Table F: H5Sencode for hyperslab selection (proposed for latest format)

version hyperslab type H5S_UNLIMITED

in selection specification

offset # of blocks in the
selection

3 irregular N/A up to (2^64 – 1) up to (2^64 – 1)

3 regular N/A up to (2^64 – 1) N/A

2.4.1 Selection class callback

H5S_select_class_t (defined in H5Spkg.h) requires two functions, serial_size and
serialize, that are used to encode dataspace selections. At present, these callbacks are used by
virtual datasets, and by the region reference code. As both of these applications result in selection
encodings that are incorporated into HDF5 files, the parameter lists of the function types of serial_size
and serialize:

For regular hyperslab, we will use start/stride/count/block arrays to specify selection
info.

o

For irregular hyperslab, we will encode the starting and ending offsets of each block in
the selection.

o

Use a size of offset info field to indicate the size that will be used to encode offset info, i.e.
offset and/or # of blocks in the selection. The size can be 2, 4 or 8 bytes.

●

See section 3 on the detailed format description for version 3 hyperslab selection info.●

Internal library usage of selection encoding0.4

Page 7 of 25

October 27, 2017RFC THG 2017-07-07.v6

typedef herr_t (*H5S_sel_serial_size_func_t)(const H5S_t *space);

typedef herr_t (*H5S_sel_serialize_func_t)(const H5S_t *space,
uint8_t *pp);

must be augmented to allow access to the libver_bounds associated with the target file.

We propose that this be done by adding “H5F_t *f” to the parameter lists of both of these
function types as follows:

typedef herr_t (*H5S_sel_serial_size_func_t)(const H5S_t *space,
H5F_t *f);

typedef herr_t (*H5S_sel_serialize_func_t)(const H5S_t *space,
uint8_t *pp, H5F_t *f);

and propagating the change through the code. This change gives these functions access to the
libver_bounds information in the shared instance H5F_file_t, which is required to select the
appropriate encoding as indicated by the tables referenced below:

2.4.2 Property class callback

Instances of the structure type H5P_genprop_t (defined in H5Ppkg.h) are used to store a variety of
information concerning properties. Of particular interest in this context is the encode field, which
must be set to point to a function of type H5P_prp_encode_func_t (currently defined in H5Ppublic.h).
This callback (along with the prp_decode callback, of type H5P_prp_decode_func_t) is used to encode
and decode properties of the indicated type on the property list.

In the context of virtual storage layout property, this is a problem as H5P__dcrt_layout_enc() calls
H5S_encode() to encode the selections associated with each constituent of the virtual dataset. If
H5S_encode() is to respect the libver_bounds associated with the target file, the FAPL must be passed
to it. However, at present, H5P_prp_encode_func_t does not support any way of passing the FAPL
through. Further, as it is a public type, modifying it would seem to be awkward.

Fortunately, while H5P_prp_encode_func_t and H5P_prp_decode_func_t are currently defined in
H5Ppublic.h, they are not in fact used to register new properties in either H5Pregister1() or
H5Pregister2(). Instead, these callbacks are set to NULL for user defined property list entries.

Thus, we can square this circle by moving the declarations of H5P_prp_encode_func_t and
H5P_prp_decode_func_t to H5Pprivate.h, and adding a udata field to H5P_prp_encode_func_t. The
udata field will be NULL in most cases, but will point to an instance of H5P_enc_cb_ud_t whose sole
field at present is an hid_t which will be set to the fapl_id to be passed through to H5S_encode().

For point selection, see tables B and C in section 2.2.●

For hyperslab selection, see tables E and F in section 2.3●

Page 8 of 25

October 27, 2017RFC THG 2017-07-07.v6

The proposed revised definition of H5P_prp_encode_func_t and H5P_enc_cb_ud_t are shown below.

typedef herr_t (*H5P_prp_encode_func_t)(const void *value, void
**buf, size_t *size, void *udata);

typedef struct H5P_enc_cb_ud_t {

 hid_t fapl_id;

} H5P_enc_cb_ud_t;

As the actual selection encoding is done by H5S_encode(), the behavior is as described above for
H5Sencode().

Also, since the H5S_encode() calls in H5P__dcrt_layout_enc() are exclusively used by VDS (Virtual
Data Sets) in 1.10, the fapl_id via udata from the encode callback is set to latest format so that
the encoding is done as described in table 3 and table 4 for hyperslab and point selections.

Format of Dataspace Description
The following tables illustrate the format of the dataspace description including the new versions
introduced in the previous section.

Layout: Dataspace Description for H5Sencode/H5Sdecode

Byte Byte Byte Byte

Dataspace ID Encode version SizeSizeof_size	 This exists to align table nicely.

	 	 Size of extent

Dataspace message (variable size)

	

Dataspace selection (variable size)

Page 9 of 25

October 27, 2017RFC THG 2017-07-07.v6

Fields: Dataspace Description for H5Sencode/H5Sdecode

Field Name Description

Dataspace ID	 	 The dataspace message ID which is 1.

Encode version H5S_ENCODE_VERSION which is 0.

Sizeof_size The number of bytes used to store the size of an object

Size of extent	 Size of the dataspace message

Dataspace message The dataspace message information. See The Format Specification
for the format of the dataspace message.

Dataspace selection See Dataspace Selection below.

	

Layout: Dataspace Selection

Byte Byte Byte Byte

Selection Type

Selection Info (variable size)

Fields: Dataspace Selection

Field Name Description

Selection Type	 There are 4 types of selection:

 Value Description

Selection Info Value Description

H5S_SEL_NONE: Nothing Selected0

H5S_SEL_POINTS: Sequence of points selected1

H5S_SEL_HYPER: Hyperslab selected2

H5S_SEL_ALL: Entire extent selected3

See Selection Info for H5S_SEL_NONE0

See Selection Info for H5S_SEL_POINTS1

See Selection Info for H5S_SEL_HYPER2

See Selection Info for H5S_SEL_ALL3

Page 10 of 25

October 27, 2017RFC THG 2017-07-07.v6

Layout: Selection Info for H5S_SEL_NONE

Byte Byte Byte Byte

Version

 Reserved (zero, 8 bytes)

Fields: Selection Info for H5S_SEL_NONE

Field Name Description

Version 	 The version number for the H5S_SEL_NONE Selection info.

The value is 1.

Layout: Selection Info for H5S_SEL_POINTS

Byte Byte Byte Byte

Version

Points Selection Info (variable size)

Fields: Selection Info for H5S_SEL_POINTS

Field Name Description

Version	 The version number for the H5S_SEL_POINTS Selection Info.

The value is either 1 or 2.

Points Selection Info Depending on version:

Version Description

 See Version 1 Points Selection Info.1

 See Version 2 Points Selection Info.2

Page 11 of 25

October 27, 2017RFC THG 2017-07-07.v6

Layout: Version 1 Points Selection Info

Byte Byte Byte Byte

Reserved (zero)

Length

Rank

	 	 	 	 Num Points (4 bytes)

Point #1: coordinate #1 (4 bytes)

:

:

Point #1: coordinate #u (4 bytes)

:

:

:

Point #n: coordinate #1 (4 bytes)

:

:

Point #n: coordinate #u (4 bytes)

Fields: Version 1 Points Selection Info

Field Name Description

Length The size in bytes from Rank to the end of the Selection Info.

Rank The number of dimensions.

Num Points The number of points in the selection

Point #n: coordinate #u The array of points in the selection.

The points selected are #1 to #n where n is Num Points.

The list of coordinates for each point are #1 to #u where u is Rank.

Page 12 of 25

October 27, 2017RFC THG 2017-07-07.v6

Layout: Version 2 Points Selection Info

Byte Byte Byte Byte

	 Size of Point Info	 	 	 This space inserted only to align table nicely

Rank

Num Points

(2, 4 or 8 bytes)

Point #1: coordinate #1

(2, 4 or 8 bytes)

:

:

Point #1: coordinate #u

(2, 4 or 8 bytes)

:

:

:

Point #n: coordinate #1

(2, 4 or 8 bytes)

:

:

Point #n: coordinate #u

(2, 4 or 8 bytes)

Page 13 of 25

October 27, 2017RFC THG 2017-07-07.v6

Fields: Version 2 Points Selection Info

Field Name Description

Size of Point Info The size for point info, which can be 2, 4 or 8 bytes.

Rank The number of dimensions.

Num Points The number of points in the selection.

size of point info indicates the size of this field.

Point #n: coordinate #u The array of points in the selection.

The points selected are #1 to #n where n is Num Points.

The list of coordinates for each point are #1 to #u where u is Rank.

size of point info indicates the size of this field.

Layout: Selection Info for H5S_SEL_HYPER

Byte Byte Byte Byte

Version

Hyperslab Selection Info (variable size)

Fields: Selection Info for H5S_SEL_HYPER

Field Name Description

Version	 The version number for the H5S_SEL_HYPER Selection Info.

The value is 1, 2 or 3.

Hyperslab Selection Info Depending on version:

Version Description

 1 See Version 1 Hyperslab Selection Info

 2 See Version 2 Hyperslab Selection Info

 3 See Version 3 Hyperslab Selection Info	

Page 14 of 25

October 27, 2017RFC THG 2017-07-07.v6

Layout: Version 1 Hyperslab Selection Info

Byte Byte Byte Byte

Reserved

Length

Rank

Num Blocks (4 bytes)

Start offset #1 for block #1 (4bytes)

:

:

Start offset #n for block #1 (4 bytes)

End offset #1 for block #1 (4 bytes)

:

:

End offset #n for block #1 (4 bytes)

:

:

:

Start offset #1 for block #u (4 bytes)

:

:

Start offset #n for block #u (4 bytes)

End offset #1 for block #u (4 bytes)

:

:

End offset #n for block #u (4 bytes)

Page 15 of 25

October 27, 2017RFC THG 2017-07-07.v6

Fields: Version 1 Hyperslab Selection Info

Field Name Description

Length	 The size in bytes from the field Rank to the end of the Selection
Info.

Rank The number of dimensions in the dataspace.

Num Blocks The number of blocks in the selection.

Start offset #n for block #u The offset #n of the starting element in block #u.

#n is from 1 to Rank.

#u is from 1 to Num Blocks moving from the fastest changing
dimension to the slowest changing dimension.

End offset #n for block #u The offset #n of the ending element in block #u.

#n is from 1 to Rank.

#u is from 1 to Num Blocks moving from the fastest changing
dimension to the slowest changing dimension.

Page 16 of 25

October 27, 2017RFC THG 2017-07-07.v6

Layout: Version 2 Hyperslab Selection Info

Byte Byte Byte Byte

Flags This space inserted only to align table nicely

Length

Rank

Start #1 (8 bytes)

Stride #1 (8 bytes)

Count #1 (8 bytes)

Block #1 (8 bytes)

:

:

:

Start #n (8 bytes)

Stride #n (8 bytes)

Count #n (8 bytes)

Block #n (8 bytes)

Page 17 of 25

October 27, 2017RFC THG 2017-07-07.v6

Fields: Version 2 Hyperslab Selection Info

Field Name Description

Flags This is a bit field with the following definition. Currently, this is
always set to 0x1.

Bit Description

 0 If set, it is a regular hyperslab, otherwise, irregular.

Length	 The size in bytes from the field Rank to the end of the Selection
Info.

Rank The number of dimensions in the dataspace.

Start #n The offset of the starting element in the block.

#n is from 1 to Rank.

Stride #n The number of elements to move in each dimension.

#n is from 1 to Rank.

Count #n The number of blocks to select in each dimension.

#n is from 1 to Rank.

Block #n The size (in elements) of each block in each dimension.

#n is from 1 to Rank.

Page 18 of 25

October 27, 2017RFC THG 2017-07-07.v6

Layout: Version 3 Hyperslab Selection Info

Byte Byte Byte Byte

Flags Size of Offset Info This space inserted only to align table nicely

Rank

 Offset Info

(variable size)

	

Fields: Version 3 Hyperslab Selection Info

Field Name Description

Flags This is a bit field with the following definition.

Bit Description

 0 If set, it is a regular hyperslab, otherwise irregular.

Size of Offset Info The size for offset info, which can be 2, 4 or 8 bytes.

Rank The number of dimensions in the dataspace.

Offset Info Depending on flag value, see offset info for version 3 regular or
irregular hyperslab.

Page 19 of 25

October 27, 2017RFC THG 2017-07-07.v6

Layout: Offset Info for Version 3 Regular Hyperslab

Byte Byte Byte Byte

Start #1

(2, 4 or 8 bytes)

Stride #1

(2, 4 or 8 bytes)

Count #1

(2, 4 or 8 bytes)

Block #1

(2, 4 or 8 bytes)

:

:

:

Start #n

(2, 4 or 8 bytes)

Stride #n

(2, 4 or 8 bytes)

Count #n

(2, 4 or 8 bytes)

Block #n

(2, 4 or 8 bytes)

Page 20 of 25

October 27, 2017RFC THG 2017-07-07.v6

Fields: Offset Info for Version 3 Regular Hyperslab

Field Name Description

Start #n The offset of the starting element in the block.

#n is from 1 to Rank.

size of offset info indicates the size of this field.

Stride #n The number of elements to move in each dimension.

#n is from 1 to Rank.

size of offset info indicates the size of this field.

Count #n The number of blocks to select in each dimension.

#n is from 1 to Rank.

size of offset info indicates the size of this field.

Block #n The size (in elements) of each block in each dimension.

#n is from 1 to Rank.

size of offset info indicates the size of this field.

Page 21 of 25

October 27, 2017RFC THG 2017-07-07.v6

Layout: Offset Info for Version 3 Irregular Hyperslab

Byte Byte Byte Byte

Num Blocks

(2, 4 or 8 bytes)

Start offset #1 for block #1

(2, 4 or 8 bytes)

:

:

Start offset #n for block #1

(2, 4 or 8 bytes)

End offset #1 for block #1

(2, 4 or 8 bytes)

:

:

End offset #n for block #1

(2, 4 or 8 bytes)

:

:

:

Start offset #1 for block #u

:

:

Start offset #n for block #u

(2, 4 or 4 bytes)

End offset #1 for block #u

(2, 4 or 8bytes)

:

:

End offset #n for block #u

(2, 4 or 8 bytes)

Page 22 of 25

October 27, 2017RFC THG 2017-07-07.v6

Fields: Offset Info for Version 3 Irregular Hyperslab

Field Name Description

Num Blocks The number of blocks in the selection.

size of offset info indicates the size of this field.

Start offset #n for block #u The offset #n of the starting element in block #u.

#n is from 1 to Rank.

#u is from 1 to Num Blocks moving from the fastest changing
dimension to the slowest changing dimension.

size of offset info indicates the size of this field.

End offset #n for block #u The offset #n of the ending element in block #u.

#n is from 1 to Rank.

#u is from 1 to Num Blocks moving from the fastest changing
dimension to the slowest changing dimension.

size of offset info indicates the size of this field.

Layout: Selection Info for H5S_SEL_ALL

Byte Byte Byte Byte

Version

Reserved (zero, 8 bytes)

Fields: Selection Info for H5S_SEL_ALL

Field Name Description

Version 	 The version number for the H5S_SEL_ALL Selection info; the value
is 1.

1)

Page 23 of 25

October 27, 2017RFC THG 2017-07-07.v6

Testing

New Tests
Add the following tests to test/th5s.c:

Existing Tests
Modify the following tests:

test_h5s_encode_exceed32() ●

Verifies selection encoding that exceeds (2^32 – 1) bits is correctly encoded (HDFFV-
9947) with old or new file format setting

o

test_h5s_encode_length ●

Verifies that version 2 hyperslab selection info has encoded the “length” field correctly
(HDFFV-10271)

o

test_h5s_encode_regular_hyper()●

Verifies that the encoding of regular hyperslabs work as specified in this RFC:o

Set up regular hyperslabs so that version 1, 2 or 3 will be used for encoding▪

Set up regular hyperslabs so that 2, 4, or 8 bytes offset size will be used to
encode the selection	

▪

test_h5s_encode_irregular_hyper	●

Verifies that the encoding of irregular hyperslabs work as specified in this RFC:o

Set up irregular hyperslabs so that version 1 or 3 will be used for encoding▪

test_h5s_encode_points●

Verifies that the encoding of point selection work as specified in this RFC:o

Set up point selection so that version 1 or 2 will be used for encoding▪

Set up point selection so that 2, 4, or 8 bytes offset size will be used to encode
the selection

▪

test/th5s.c●

Modify test_h5s_encode() in the file to verify that H5Sencode2() encodes correctly with
old and new file format setting.

o

test/vds.c●

Modify test_api_get_ex_dcpl () in the file to encode property list with H5Pencode2().o

Modify tests in the file to run with old/new file format setting. o

Page 24 of 25

October 27, 2017RFC THG 2017-07-07.v6

Documentation
Add reference manual entries for the new public routines H5Sencode2 and H5Pencode2.

Update reference manual entries for existing public routines H5Sencode and H5Pencode.

Update HDF5 Format Specification for H5Sencode.

Acknowledgements

Revision History

July 07, 2017 Version 0 – initial draft for discussion

July 17, 2017 Version 1—modifications after code review meeting

July 26, 2017 Version 2—modifications after discussion with John Mainzer

August 2, 2017 Version 3—modifications after review by John Mainzer and Neil Fortner

August 16, 2017 Version 4—add H5Pencode2()

September 18, 2017 Version 5—add testing information

October 27, 2017 Version 6—modifications by John: discussions for 1.10 and edits for clarity and
completeness. Modifications made after review by Vailin.

	

test/trefer.c●

Modify test_reference_region() and test_reference_region_1D() to run with old/new
file format setting.

o

enc_dec_plist.c●

Modify tests in the file to run with old/new file format setting. o

Page 25 of 25

