
Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	1	of	29	

RFC:	Onion	VFD			

Songyu	“Ray”	Lu	
John	Mainzer	

Jacob	“Jake”	Smith	

There	is	a	desire	to	introduce	and	track	modifications	to	an	HDF5	file	while	preserving	
or	having	access	 to	 the	 file	as	 it	existed	prior	 to	a	particular	 set	of	modifications.	To	
this	end,	 this	RFC	proposes	an	Onion	Virtual	File	Driver	 (VFD)	as	an	effectively	 in-file	
revision	management	facility.	Users	will	be	able	to	open	a	particular	revision	of	the	file,	
read	from	and	make	modifications	to	the	file,	and	write	to	file	as	a	new	revision.	The	
name	"Onion"	derives	from	a	mnemonic:	the	original	file	exists	with	data	layered	atop	
one	another	from	an	original	file	to	the	most	recent	revision.		

	

1 Introduction					
At	present,	the	HDF5	library	offers	no	support	for	version	control	or	provenance	management1	–	
there	is	no	mechanism	to	store	unique	batches	of	data	in	the	same	logical	file	space,	nor	to	track	
when	or	by	whom	a	particular	modification	was	made.		While	this	is	not	a	significant	deficit	for	most	
HDF5	applications,	it	is	a	major	concern	for	experimental	and	observational	data,	where	the	original	
data	must	be	preserved,	and	any	changes	tracked	and	attributed.		
	
The	primary	reason	for	implementing	this	ourselves	(as	opposed	to,	for	example,	relying	on	an	
external	version	control	program)	is	that	doing	so	will	allow	for	a	significantly	smaller	footprint	on	the	
storage	(e.g.,	disk).	Major	contenders	of	external	programs	such	as	SVN,	Git,	or	Mercurial,	would	
store	each	revision	as	a	full-sized	binary	file	of	the	file	at	the	revision	state	–	this	is	clearly	
unacceptable	with	large	files	(gigabyte-plus	each)	and	many	revisions.	
	
An	obvious	and	powerful	way	to	address	this	use	case	is	to	implement	an	"infinite	undo"	facility	along	
the	lines	of	that	offered	by	some	text	editors.	In	the	context	of	HDF5,	such	a	facility	would	allow	
reconstruction	of	earlier	versions	of	an	HDF5	file	on	an	API	call-by-API	call	basis,	with	each	API	call	
constituting	a	unique	revision	of	the	file.	While	this	is	doable,	implementation	would	be	a	major	
exercise,	and	it	would	add	significant	complexity	to	the	HDF5	library	with	the	obvious	implications	for	
long	term	maintainability.	Thus,	this	paper	presents	a	sketch	design	for	a	simpler	and	cheaper	option.	
	
If	we	make	the	simplifying	assumption	that	it	will	be	sufficient	to	track	changes	on	a	per	file	open-
close	cycle,	the	problem	becomes	much	more	tractable.	More	precisely,	it	will	allow	us	to	address	the	
revision	control	at	a	very	low	level	of	the	HDF5	library,	making	it	transparent	to	the	vast	majority	of	

1	Throughout	the	remainder	of	this	document,	these	terms	–	version	control	and/or	provenance	
management	–	will	be	collectively	referred	to	as	revision	control.	

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	2	of	29	

the	HDF5	code	base.	This	in	turn	will	greatly	reduce	the	implementation	effort	required,	simplify	
long-term	maintenance,	and	allow	us	to	implement	revision	control	as	an	optional	module	in	the	
form	of	a	Virtual	File	Driver.	

2 Basic	Concepts	
We	will	move	forward	with	the	above	assumptions	that	a	virtual	file	driver	(VFD)	is	suitable	for	the	
use	case.	Here	we	discuss	the	notion	of	revisions	and	how	they	interact	with	the	idea	of	a	file	
modified	over	time.	
	
VFDs	present	the	underlying	HDF5	file,	regardless	of	its	backing	store	(how	the	file	is	persistently	
stored),	as	an	extensible	range	of	bytes.	The	driver	is	responsible	for	mapping	a	byte	or	byte-range	in	
the	logical	file	to	the	appropriate	byte	or	bytes	in	the	backing	store.	With	the	Onion	VFD,	rather	than	
having	strictly	one	target	for	a	logical	file	location	"key",	the	target	depends	on	which	revision	is	being	
accessed	–	an	extension	of	the	VFD	concept.	
	
When	writing	new	data	to	the	backing	store,	the	extant	data	is	preserved	and	the	new	data	is	
inserted	in	a	known	way.	This	operation	at	large	is	"copy-on-write",	and	may	be	implemented	in	one	
of	two	ways:	
The	extant	data	is	copied	to	another	location	and	the	replacement	data	takes	its	place,	or	the	extant	
data	remains	in	place	and	the	replacement	data	is	inserted	elsewhere;	in	both	cases,	references	are	
maintained	to	the	location	of	both	extant	and	replacement	data.	Because	of	the	preference	for	
modifying	extant	data	as	little	as	possible,	this	RFC	assumes	the	latter	behavior:	leaving	extant	data	
untouched,	and	inserting	the	replacement	data	elsewhere.	
	
There	will	be	an	original	file	revision	–	either	an	extant	HDF5	file	with	legacy	data	or	a	newly-created	
empty	HDF5	file.	Subsequent	to	the	original	revision,	revisions	will	be	added.	The	file's	logical	state	at	
a	given	revision	will	be	the	"appearance"	of	the	file	from	that	revision	inward,	with	the	content	of	
more	recent	revisions	superseding	any	data	from	earlier	revisions	"below".	An	alternative	mental	
image	to	the	onion	might	be	a	glass	paperweight:	the	appearance	from	the	outside	(i.e.,	the	opened	
revision)	is	a	result	of	all	its	visible	constituent	layers.	

Figure	1.	File	logical	view	with	amendments	color-coded	by	revision.	

Each	revision,	once	committed,	cannot	itself	be	modified	–	rather,	a	subsequent	revision	must	supply	
the	amended	content.	Because	revisions	will	be	hierarchical	and	immutable	once	committed,	it	

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	3	of	29	

becomes	possible	to	reconstruct	the	history	of	a	file,	much	how	an	archaeologist	or	geologist	"goes	
back	in	time"	by	descending	through	layers	of	rock	or	sediment.	It	also	becomes	possible	to	create	
divergent	histories	–	branching,	or	forking	–	within	the	file	by	opening	an	arbitrary	revision	of	the	file	
and	making	modifications	to	it	in	a	new	revision.	This	branching	complicates	the	issue	of	opening	the	
"most	recent"	revision,	as	there	are	now	potentially	multiple	end	states,	but	this	will	likely	be	a	minor	
technical	issue,	discussed	in	§Browsing	Revisions	and	§History	Metadata.	The	user	is	responsible	for	
using	this	feature	correctly2.	
	
There	is	presently	no	design	provision	for	merging	of	divergent	histories.	

Figure	2.	Color-coded	logical	view	of	file	revisions	with	divergent	histories	(branching).	

2.1 Revision	Index	

Integral	to	the	concept	of	the	Onion	VFD	is	the	ability	to	locate	the	"most	recent"	data,	as	seen	from	
the	chosen	revision.	To	achieve	this,	we	will	create	an	index	that	maps	locations	in	the	logical	file	to	
the	correct	bytes	in	the	backing	store.	This	index	must	handle	the	case	where	a	range	of	bytes	read	
from	the	logical	file	is	comprised	of	data	from	multiple	revisions,	possibly	including	the	original	data.	
	
When	the	file	is	opened,	an	archival	index	–	or	"dead"	index	–	will	be	constructed,	which	correctly	
associates	any	given	byte	in	the	logical	file	with	the	appropriate	data	in	the	backing	store.	If	a	given	
byte	is	present	in	the	index,	it	will	be	read	from	the	amended	data	in	the	appropriate	revision;	if	
absent	from	the	index,	it	will	be	read	from	the	original	file	data.	Naturally,	if	the	read	extends	outside	
of	the	logical	file	size,	the	read	is	erroneous	and	must	fail.	
	
When	in	write	mode,	a	second,	working	index	–	or	"live"	index	–	will	also	be	created,	representing	
modifications	to	the	file	since	file-open:	the	new	revision	to	be	written.	This	live	index	is	actively	
updated	as	any	modifications	to	the	file	are	added	or	adjusted.	This	also	adds	an	additional	step	when	
reading	from	the	logical	file,	as	any	byte	present	in	the	live	index	is	by	definition	the	"most	recent"	
and	must	take	precedence	if	it	intersects	with	the	read	range.	

2	With	great	power	comes	great	responsibility.	

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	4	of	29	

2.2 Browsing	Revisions	–	a	new	API:	H5FDfctl()	

There	is	one	use	case	that	cannot	be	satisfied	efficiently	with	the	existing	API:	browsing	for	which	
revision	to	open.	
	
In	a	slow	and	crude	fashion,	the	existing	API	could	make	iterative	attempts	at	opening	all	the	
revisions	in	the	file	and	eventually	finding	the	one	desired,	but	for	any	but	the	most	trivial	case	the	
time	to	perform	this	selection	is	unconscionable.	What	the	user	would	want	is	to	'peek'	at	the	
revision	history	of	a	file	before	committing	to	a	particular	open,	and	making	a	decision	based	on	that	
lighter-weight	peek.	
	
Implementing	this	feature	requires	intimate	knowledge	of	the	Onion	implementation,	suggesting	that	
it	belongs	as	part	of	the	driver	itself;	at	best,	an	external	implementation	would	result	in	a	
maintenance	issue,	where	changes	in	the	driver	must	be	addressed	separately.	As	such,	we	will	
introduce	a	new	API	that	can	potentially	be	utilized	by	other	drivers	to	collect	information	about	a	
driver,	or	files	related	to	that	driver,	in	a	generalized	fashion.	With	increasing	cloud-based	storage,	
asking	a	driver	to	query	the	health	of	(or	connection	with)	the	server	or	remote	host	(as	in	the	S3	
VFD)	is	an	obvious	use	case	outside	of	the	Onion	VFD.	

3 Architectural	Options	
We	must	decide	how	to	store	amended	data:	as	runs	of	contiguous	amended	data	or	fixed-size	
verbatim	pages.	We	must	decide	where	to	store	the	revised	information	(and	revision	metadata):	as	
part	of	the	original	file,	or	as	one	single	or	multiple	external	files.	We	must	decide	how	to	organize	
the	amended	data	and	the	revision	metadata	within	the	storage	location.	

3.1 Amended	Data	Blobs:	Pages	over	Runs	

As	minimizing	stored	data	is	a	priority,	an	obvious	first	choice	would	be	to	record	revised	data	as	
contiguous	runs,	merging	amendments	in	working	memory	and	writing	only	exactly	those	amended	
runs	to	the	backing	store.	However,	after	some	analysis,	it	becomes	clear	that	this	approach	incurs	
excessive	overhead	at	runtime.	This	analysis	and	conclusion	is	presented	in	an	appendix.	
	
The	chosen	solution	for	the	first	cut	of	the	Onion	VFD	will	instead	be	to	store	data	as	discrete	'pages'	
of	data	–	blocks	of	a	fixed	number	of	bytes	of	which	at	least	one	byte	has	been	amended	from	a	prior	
revision.	These	pages	will	be	stored	verbatim,	the	entire	contents	of	the	page	–	amended	or	
otherwise	–	present.	While	this	approach	will	use	excess	space	on	the	backing	store	(unmodified	
bytes	in	a	page	will	be	duplicated	between	revisions),	we	anticipate	the	runtime	performance	
improvement	(and	simplicity)	well	worth	the	cost.	
	
This	implementation	may	be	revisited	in	a	later	version	of	the	VFD	if	there	is	sufficient	interest.	

3.2 Storage	Location	

There	are	three	possible	strategies	for	where	to	store	the	onion	data:	
1) Combine	the	entire	revision	history	with	the	original	file	(i.e.,	appended),	or	
2) Store	the	entire	revision	history	in	a	single	separate	file,	or	

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	5	of	29	

3) Scatter	the	revision	history	across	multiple	separate	files	as:	
a. Complete	per-revision		

i. Each	file	represents	a	revision	containing	a	copy	of	all	amended	data	as	seen	
from	that	revision.	

ii. Wastes	a	potentially-vast	amount	of	space	on	backing-store	with	repeated	data	
from	past	revisions,	but	may	improve	read	time	from	the	backing	store	(worst	
case,	read	spans	two	revision	blocks:	original	and	revised	data).	

b. Amended	per-revision	
i. Each	file	represents	a	revision	containing	only	the	data	amended	in	this	

revision.	
ii. Complicates	and	slows	construction	of	the	archival	index;	slows	reads	spanning	

multiple	revisions	(must	open	each	relevant	revision	file	to	access	the	amended	
data).	

c. Individual	amendment	
i. Each	file	represents	a	discrete	blob	of	amended	data,	e.g.,	a	page.	A	revision	

that	amends	100	pages	would	introduce	100	new	(small)	files	to	the	backing	
store,	plus	perhaps	additional	files	for	revision	metadata.	

ii. Much	slower	to	build	the	archival	index	and	to	read	amended	data.	
iii. Never	do	this.	

None	of	the	separate	multiple	file	approaches	are	particularly	attractive	for	obvious	reasons.	In	
addition	to	the	complications	given	for	each	approach,	they	introduce	further	fragility	in	managing	
the	backing	store	–	if	a	user	wishes	to	rename	or	move	an	HDF5	file,	an	arbitrary	number	of	
associated	files	must	also	be	handled.	
	
The	same-file	appended	approach	clearly	has	much	to	recommend	it,	as	it	keeps	only	one	file	on	the	
backing	store,	making	it	easier	to	move	and	maintain,	and	legacy	VFDs	will	still	be	able	to	open	the	
file	(the	history	data	is	appended,	leaving	all	original	data	pristine).	
	
The	separate	single	file	approach	is	also	attractive:	it	leaves	the	original	file	completely	alone,	and	is	
in	some	ways	easier	to	implement	(as	it	"owns"	the	entire	history	file).	As	a	minor	complication,	the	
driver	must	now	track	both	files,	and	the	user	(or	manager	of	the	backing	store)	is	responsible	for	two	
associated	files	on	the	backing	store	instead	of	only	one	file	–	the	HDF5	file	and	the	"onion	file".	
	
For	the	first	cut	of	the	Onion	VFD,	we	will	prioritize	the	separate-single	storage	case.	This	has	the	dual	
benefit	of	simplifying	the	implementation	and	keeping	any	original	file	data	unaltered	in	any	way.		

3.3 History	Metadata	and	Organization	

The	onion	history	is	constructed	out	of	three	primary	elements	in	sequence:	an	identifying	header,	
one	or	more	blocks	of	revision	data,	and	a	whole-history	record.	
	
The	Onion	Header	contains	information	identifying	the	onion-ness	of	the	file,	the	onion	settings,	and	
further	information	required	to	access	the	onion	data.	
	

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	6	of	29	

Each	revision	must	have,	in	addition	to	the	amended	data,	its	own	metadata	in	a	Revision	Record	
consisting	of,	at	a	minimum:	a	representation	of	the	index,	the	revision	ID	of	the	direct	parent,	and	
the	size	of	the	metadata.	To	satisfy	the	provenance	requirements	(i.e.,	provide	time	and	author	
information	about	the	revision),	we	will	also	include	time	of	creation	and	some	form	of	user	ID	to	the	
revision	metadata.	Additional	elements	may	be	added	as	appropriate.	
	
Additionally,	it	also	is	readily	apparent	that	an	abstract	Whole	History	record/summary	is	desirable,	
collecting	the	locations	of	all	the	revision	records	in	one	location.	By	reading	a	whole	history,	locating	
an	arbitrary	revision	becomes	trivial,	and,	if	divergent	histories	are	enabled,	identifying	multiple	
"latest"	revisions	becomes	much	easier.	The	contents	of	the	whole	history	will	include	at	a	minimum:	
count	of	revisions,	and	map	of	revision	ID	to	revision	record	location	for	each	revision.	
	
If	we	assume	that	we	will	want	to	move	bytes	around	in	the	history	file	as	little	as	possible,	it	
becomes	evident	that	each	revision	record	should	be	written	following	the	data	amended	during	that	
revision,	and	that	the	whole	history	should	be	located	at	the	end	of	the	file.	This	allows	for	append-
only	writing	of	the	history	metadata.	
	
The	amended	data	within	the	revision	will	by	default	be	unordered,	written	to	the	backing	store	in	
order	of	creation.	Modified	amended	data	(written	more	than	once	during	a	single	open-close	cycle)	
is	updated	in-place	if	it	already	exists3.	

3.3.1 Page/Block	Alignment	of	History	Metadata	

It may be desirable to align history metadata with a given page boundary (multiple of a power of two),
such as 4096 bytes on Linux systems. To achieve this, all history metadata will have unused padding
bytes following its contents to fill out to the page boundary. At the expense of unused space on the
backing store (on the order of one-half page per revision, plus a partial page with the onion history
header, plus – in the case of a single HDF5+onion file – a partial page between HDF5 and onion data),
this alignment can improve I/O performance on some systems, especially when involving direct I/O4.

3.4 Page	Buffering	

As	an	advanced	design	consideration,	including	some	form	of	page	buffering	may	be	desirable	to	
reduce	latency	between	the	user	and	the	backing	store.	
	
This	will	likely	be	implemented	as	a	separate	"module"	within	the	VFL,	to	be	utilized	freely	by	any	VFD	
which	may	benefit	(such	as	an	optimized	S3	VFD).	
	
This	will	not	be	addressed	in	the	initial	version	of	the	Onion	VFD.	

3	Update-in-place	can	lead	to	data	fragmentation	if	multiple	adjustments	intersect,	resulting	in	slower	
read	performance.	
4	"Direct	I/O	is	a	feature	of	the	file	system	whereby	file	reads	and	writes	go	directly	from	the	
applications	to	the	storage	device,	bypassing	the	operating	system	read	and	write	caches."	
https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/5/html/global_file_system/s1-manage-direct-io	
http://people.redhat.com/msnitzer/docs/io-limits.txt	

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	7	of	29	

4 Implementation	Details	
We	will	proceed	with	the	following	assumptions:	

1. The	VFD	approach	is	suitable,	accepting	its	limitation	of	open-close	cycle	granularity	between	
revisions.	

2. Verbatim	per-page	storage	is	acceptable	for	the	first	pass.	The	simplicity	of	implementation	
has	much	to	recommend	this	approach,	and	the	"wasted	space"	of	repeated	page	data	
between	revisions	can	be	analyzed	to	inform	the	need	to	optimize.	

a. That	the	revision	index	(live	index,	for	write	mode)	will	be	implemented	as	a	hash	
table.	

3. Revision	history	stored	as	a	separate	single,	external	file,	e.g.,	"onion	file",	is	the	priority	for	
the	first	pass.	

a. Implementation	will	provide	for	alternative	architectural	options	as	discussed	in	
§Storage	Location,	but	those	options	may	not	be	supported	initially.	

4.1 Revision	Index	

The	revision	index	(working,	or	live	index)	is	responsible	for	managing	the	association	between	the	
logical	location	of	a	page	(offset	of	start-of-page)	in	file	and	the	"physical"	location	of	the	page's	data	
in	the	backing	store.	If	implementing	amended	data	as	runs,	the	index	must	also	manage	the	size	of	
the	run;	the	paged	approach	uses	the	page	size	as	a	fixed	implicit	run	size.	
		
There	are	two	competing	options	for	the	revision	index:	binary	search	tree	and	hash	table,	the	
deciding	factor	largely	falling	into	the	speed-versus-size	decision	matrix.	We	will	elect	for	speed	and	
ease	of	implementation	for	the	first	version	of	the	Onion	VFD.	
	
Considerations	for	a	binary	search	tree	implementation	of	the	index	is	presented	as	an	appendix.	

4.1.1 Hash	Table	Implementation	of	Revision	Index	

Hash	tables	are	tricky	to	get	right,	but	conceptually	straightforward	and	potentially	very	powerful.	
They	make	sense	as	the	live	index	only	if	using	pages,	where	the	page	ID	of	the	index	entry	is	used	as	
the	hashing	key.	
	
The	current	proposal	for	the	hashing	function	involves	chaining	–	collisions	are	stored	in	a	data	
structure	–	which	will	increase	the	implementation	complexity	somewhat	for	a	potentially	very	fast	
hashing	function	relying	on	bit-shifts:	
	

1) The	size	of	the	hash	table	is	always	a	power	of	2.	
2) 	The	hashing	function	is	Hi	=	i	&	(table_size	-	1),	where	i	is	the	page	number.	
3) Collisions	are	stored	in	a	data	structure	–	e.g.,	linked	list	or	binary	search	tree	–	of	elements.	

a. A	naïve	binary	search	tree	will	degenerate	into	a	linked	list	in	the	worst	case.	True	
fanatics	may	push	for	a	self-balancing	tree	implementation.	Deletion	cannot	occur,	
simplifying	BST	implementation.	However,	a	linked	list	implementation	remains	
simpler.	

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	8	of	29	

4) When	adding	a	new	entry	would	fill	the	table	to	half	or	more	of	its	capacity,	the	table	is	
reallocated	to	the	next	larger	power	of	two	and	its	contents	re-hashed,	and	then	the	entry	is	
inserted.	

4.1.2 Revision	Index	Entry	

While	more	concise	implementations	can	be	envisioned,	creating	a	standard	structure	for	the	index	
entries	that	can	adapt	to	multiple	index	construction	has	much	to	recommend	it;	further,	it	contains	
all	data	about	an	entry	in	a	single	"object"	(contrast	with	a	hash	table	that	maintains	several	
independent	arrays).	

/* --
 * Structure H5FD_onion_revindex_entry
 *
 * Purpose: Stores information about an entry in the revision index.
 * Pointers to this structure are the population of the
 * "live index" used for amended data introduced in write mode.
 *
 * magic: Sanity-checking component, must equal ONION_INDEX_ENTRY_MAGIC to
 * be valid.
 *
 * version: Version number of this structure, informs component membership.
 * Used to future-proof modifications to this structure.
 *
 * logic_page: The page number of the data within the logical file.
 * "Physical offset" of the entry start in the file is the product
 * of page number times page size.
 * This value is used as the hashing key.
 *
 * physic_addr: The offset of the entry start in the backing store.
 *
 * length: Length of the page data.
 * A sanity-checking value, MUST equal the page size set for the
 * onion history.
 *
 * checksum: 32-bit checksum of the amended data in store.
 *
 * file_id: File identifier for the file containing the relevant entry.
 * Exists primarily as a future-proofing consideration in the event
 * of some form of separate multiple file storage of amended data.
 *
 * For the initial implementation, this is utilized as a sanity-
 * check: must be zero (0) if onion history data is stored as
 * part of the HDF5 file (appended to original data), or
 * one (1) if stored as a separate single file.
 * Any other value will be considered invalid.
 *
 * chaining structure info:
 * Pointers to other revision index entry structures. Details TBD.
 * --
 */
struct H5FD_onion_revindex_entry {
 uint32_t magic;
 uint8_t version;

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	9	of	29	

 uint64_t logic_page;
 hoff_t physic_addr;
 uint64_t length;
 uint32_t checksum;
 uint64_t file_id;
 TODO: chaining structure info;
};

4.2 Archival	"Dead"	Index	

Before	committing	the	live	index	to	the	revision	history,	the	revision	"live"	index	is	converted	to	a	
sorted	array,	ordered	by	increasing	logical	address,	and	merged	with	the	previous	archival	index.	This	
sorted,	merged	array	is	written	to	the	file	as	part	of	the	revision	record	and	will	be	read	as	the	
archival	index	for	the	revision5.	
	
On	file	open,	the	revision's	index	is	ingested	"as-is"	as	a	sorted	array.	Locating	an	element	then	
becomes	a	straightforward	binary	search	operation.	

4.3 Onion	File	Access	Property	List	

We	will	use	a	structure	to	put	all	the	driver	configuration	information	into	a	single	element	to	pass	
into	and	out	of	the	FAPL	set-	and	get-driver	routines	H5Pset_fapl_onion()	and	H5Pget_fapl_onion().	

/* --
 * Structure H5FD_onion_fapl_info_t
 *
 * Purpose: Encapsulate info for the Onion driver FAPL entry.
 *
 * magic: "Magic number" identifying struct.
 * Must equal H5FD_ONION_FAPL_MAGIC to be considered valid.
 *
 * version: Future-proofing identifier. Informs struct membership.
 * Must equal H5FD_ONION_FAPL_VERSION_CURR to be considered valid.
 *
 * backing_fapl_id:
 * Backing or 'child' FAPL ID to handle I/O with the
 * underlying backing store. If the onion data is stored as a
 * separate file, it must use the same backing driver as the
 * original file.
 *
 * page_size: Size of the amended data pages. If opening an existing file,
 * must equal the existing page size or zero (0). If creating a
 * new file or an initial revision of an existing file, must be a
 * power of 2.
 *
 * store_mode: Enumerated/defined value identifying where the history data is
 * stored, either in the same file (appended to HDF5 data) or a
 * separate file. Other options may be added in later versions.

5	This	has	the	effect	of	making	each	revision	index	larger	than	is	strictly	necessary,	but	greatly	
accelerates	time	to	open	the	file.	If	there	is	demand,	we	may	revisit	this	decision	and	prioritize	on-
store	space	requirement.	

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	10	of	29	

 *
 * + H5FD_ONION_FAPL_STORE_MODE_SEPARATE_SINGLE (1)
 * Onion history is stored in a single, separate "onion
 * file". Shares filename and path as hdf5 file (if any),
 * with only a different filename extension.
 *
 * revision_id: Which revision to open. Must be 0 (the original file) or the
 * revision number of an existing revision.
 * Revision ID -1 is reserved to open the most recently-created
 * revision in history.
 *
 * force_write_open:
 * Flag to ignore the write-lock flag in the onion data
 * and attempt to open the file write-only anyway.
 * This may be relevant if, for example, the library crashed
 * while the file was open in write mode and the write-lock
 * flag was not cleared.
 * Must equal H5FD_ONION_FAPL_FLAG_FORCE_OPEN to enable.
 *
 * creation_flags:
 * Flag used only when instantiating an Onion file.
 * If the relevant bit is set to a nonzero value, its feature
 * will be enabled.
 *
 * + H5FD_ONION_FAPL_CREATE_FLAG_ENABLE_DIVERGENT_HISTORY
 * (1, bit 1)
 * User will be allowed to open arbitrary revisions
 * in write mode.
 * If disabled (0), only the most recent revision may be
 * opened for amendment.
 *
 * + H5FD_ONION_FAPL_CREATE_FLAG_ENABLE_PAGE_ALIGNMENT (2, bit 2)
 * Onion history metadata will align to page_size.
 * Partial pages of unused space will occur in the file,
 * but may improve read performance from the backing store
 * on some systems.
 * If disabled (0), padding will not be inserted to align
 * to page boundaries.
 *
 * + <Remaining bits reserved>
 *
 * comment: User-supplied NULL-terminated comment for a revision to be
 * written.
 * Cannot be longer than H5FD_ONION_FAPL_COMMENT_MAX_LEN.
 * Ignored if part of a FAPL used to open in read mode.
 *
 * The comment for a revision may be modified prior to committing
 * to the revision (closing the file and writing the record)
 * with a call to H5FDfctl().
 * This H5FDfctl overwrite may be used to exceed constraints of
 * maximum string length and the NULL-terminator requirement.
 *
 * --

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	11	of	29	

 */
typedef struct H5FD_onion_fapl_info_t {
 uint32_t magic;
 uint8_t version;
 hid_t backing_fapl_id;
 hsize_t page_size;
 uint8_t store_mode;
 uint64_t revision_id;
 uint8_t force_write_open;
 uint8_t creation_flags;
 char comment[H5FD_ONION_FAPL_COMMENT_MAX_LEN + 1];
} H5FD_onion_fapl_info_t;

4.4 H5FDfctl()	Details	

A	new	API	function,	H5FDfctl(),	will	be	added	to	the	VFL.	This	will	allow	any	driver	to	implement	
features	as	appropriate	that	may	not	otherwise	be	possible	with	the	current	API.	The	function's	name	
is	derived	from	conventional	operating	system	calls,	"file	control".	A	new	function	component	will	be	
added	to	the	driver	class,	each	driver	implementing	(or	eliding)	the	feature	as	appropriate.	

/* --
 * Function: H5FDfctl
 *
 * Purpose: Provide a general-purpose interface for driver-defined behavior
 * in interacting with a virtual file handle.
 * --
 */
herr_t H5FDfctl (H5FD_t *handle, uint32_t op_code, const void *input, void *result);

With	the	Onion	VFD,	three	procedures	are	supported:	
1. Retrieve	the	information	about	the	currently-opened	revision	–	inspect	its	record.	
2. Browse	the	onion	revision	history	without	committing	to	opening	any	revision	in	advance.	
3. Modify	revision	comment	before	writing	of	file	(write	mode	only).	

Procedures	one	and	two	are	a	two-step	process,	with	the	first	step	determining	the	size	of	the	buffer	
required	to	store	the	result	and	the	second	step	collecting	the	actual	result	in	the	user-allocated	
buffer.	

4.4.1 Get	Onion	Info	About	Currently-Opened	Revision	

From	the	file	already	opened	at	a	given	revision,	inspect	information	about	the	revision.	

H5FD_t *handle = NULL;
struct H5FD_onion_fctl_info_revision *record_ptr = NULL;
uint64_t size_out = 0;
void *buf = NULL;

/* Get the virtual file handle
*/
H5Fget_vfd_handle(file_id, onion_enabled_fapl_id, &handle);

/* Determine required buffer size

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	12	of	29	

 * Pass in File ID with pointers to
 * IN N/A
 * OUT uint64_t
 */
H5FDfctl (handle, H5FD_ONION_FCTL_OP_REVISION_INFO_SIZE, NULL, &size_out);
HDassert(size_out > sizeof(H5FD_onion_fctl_info_revision));
 /* minimum two bytes extra for empty username and comment strings */

/* Allocate buffer and get info
 * Pass in File ID with pointers to
 * IN uint64_t : size of the user-allocated buffer.
 * OUT void/char : user-allocated buffer for record struct and varlen data.
 */
buf = HDmalloc(size_out);
H5FDfctl (handle, H5FD_ONION_FCTL_OP_REVISION_INFO_GET, &size_out, buf);
record_ptr = (struct H5FD_onion_fctl_info_revision *)buf;
HDassert(record_ptr->magic == RECORD_MAGIC);

/* inspect record components and release resources */
. . .
record_ptr = NULL;
HDfree(buf);
buf = NULL;
handle = NULL;

4.4.2 Browse	Onion	History	

Without	committing	to	opening	a	file,	examine	a	file's	onion	history	to	choose	which	revision	to	open.	

H5FD_t *handle = NULL;
struct H5FD_onion_fctl_info_history_filter hist_filter = {. . .};
struct H5FD_onion_fctl_info_history_size size_out;
struct H5FD_onion_fctl_info_history_size_filter size_filter = {. . .};
struct H5FD_onion_fctl_info_revision *records = NULL;
void *buf = NULL;

handle = H5FDopen("myfile.h5", H5F_ACC_RDONLY, onion_enabled_fapl_id, MAXADDR);

/* Determine required buffer size
 * Pass in FAPL ID with pointers to
 * IN H5FD_onion_fctl_info_history_size_filter
 * OUT H5FD_onion_fctl_info_history_size
 */
size_out.magic = TODO;
size_out.version = TODO;
H5FDfctl(handle, H5FD_ONION_FCTL_OP_HISTORY_SIZE, &size_filter, &size_out);

if (size_out.count > 0) {
 /* Allocate buffer and get info
 * Pass in FAPL ID with pointers to
 * IN H5FD_onion_fctl_info_history_filter
 * OUT char/void pointer to user-allocated buffer
 */
 buf = HDmalloc(size_out.size);

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	13	of	29	

 hist_filter.expected_count = size_out.count;
 H5FDfctl(file_id, H5FD_ONION_FCTL_OP_HISTORY_GET, &hist_filter, buf);
 HDassert(hist.count == size_out.count);

 records = (struct H5FD_onion_fctl_info_revision *)buf;
 HDassert(records[0] && records[0].magic == H5FD_ONION_FCTL_REVISION_INFO_MAGIC);

 . . . /* inspect record components */

 /* Done -- release resources */
 records = NULL;
 HDfree(buf);
 buf = NULL;
}
H5FDclose(handle);
handle = NULL;

4.4.3 Set	or	Update	Revision	Comment	

With	a	file	opened	in	write	mode,	the	user	may	wish	to	update	or	create	a	comment	for	the	revision,	
which	may	have	been	supplied	in	the	FAPL	on	file-open	or	by	a	previous	comment-set	with	H5FDfctl().	
Rather	than	abusing	the	FAPL,	we	will	make	use	of	this	new	API	to	implement	this	feature.	

H5FD_t *handle = NULL;
struct H5FD_onion_fctl_info_comment comment = {. . .};
comment.comment = "ABNORMAL BRAIN DO NOT USE";
comment.len = strlen(comment.comment);
H5Fget_vfd_handle(write_mode_opened_file_id, onion_enabled_fapl_id, &handle);
H5FDfctl(handle, H5FD_ONION_FCTL_OP_COMMENT_SET, &comment, NULL);
handle = NULL;

4.4.4 Onion	Get-Info	Structures	

Structures	are	presented	in	alphabetical	order.	

/* --
 * Structure: H5FD_onion_fctl_info_comment
 *
 * Purpose: Pass a new revision comment into the working file.
 *
 * magic: 4-byte, semi-unique number identifying this structure.
 * Must equal SYMBOLC_NAME_TODO to be considered valid.
 *
 * version: 4-byte number; future-proofing guard, informs struct membership.
 *
 * len: Length of the comment string.
 *
 * comment: String to use as the new comment.
/* --
struct H5FD_onion_fctl_info_comment {
 uint32_t magic;
 uint32_t version;
 uint64_t len;

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	14	of	29	

 char *comment;
};

/* --
 * Structure H5FD_onion_fctl_info_history_filter
 *
 * Purpose: Supply selection information and criteria to H5FDfctl() for
 * the Onion VFD, when accessing an unopened file.
 *
 * Not present in the initial version, but it stands to reason
 * that the user will expect this 'filter' to do much of the
 * heavy lifting for them; pass in some selection criteria and
 * receive only relevant results.
 * This may be added in a later version.
 * If included, a history-size filter will also be required to
 * repeat the in-call filtering.
 *
 * magic: 4-byte semi-unique "magic" number identifying structure.
 * Must equal SYMBOLIC NAME TODO to be considered valid.
 *
 * version: 4-byte number; future-proofing guard, informs struct membership.
 *
 * expected_count:
 * This should be set to the count returned by the history size
 * result. If the count found when browsing this time,
 * (e.g., the user modified the selection or the
 * file has been modified), the operation should fail in a
 * controlled fashion.
 * --
 */
struct H5FD_onion_fctl_info_history_filter {
 uint32_t magic;
 uint32_t version;
 uint64_t expected_count;
};

/* --
 * Structure: H5FD_onion_fctl_info_history_size
 *
 * Purpose: Store the result of history-size-filter operation.
 * The implementation will walk through the history
 * once, and determine which revisions (if any) match the
 * selection criteria; the count of those revisions and the space
 * required to copy their contents is recorded in this struct.
 *
 * The resulting size will be the size of a record struct times
 * the count of records PLUS the total space required for the
 * variable-length data in those records.
 *
 * The user will be expected to allocate a buffer not smaller than
 * this size and pass it as part of the info_out pointer
 * to obtain the history view.
 *

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	15	of	29	

 * magic: 4-byte semi-unique "magic" number identifying structure.
 * Must equal SYMBOLIC NAME TODO to be considered valid.
 *
 * version: 4-byte number; future-proofing guard, informs struct membership.
 *
 * n_bytes: Number of bytes to contain all the relevant record data.
 *
 * n_revisions: Number of revisions in history.
 * --
 */
struct H5FD_onion_fctl_info_history_size {
 uint32_t magic;
 uint32_t version;
 uint64_t n_bytes;
 uint64_t n_revisions;
};

/* --
 * Structure: H5FD_onion_fctl_info_revision
 *
 * Purpose: A structure representation of the revision record as found
 * on the backing store.
 *
 * Stores the result from the onion info record filter input.
 * Will usually be a region in a user buffer passed into
 * H5FDfctl(), with the residual space storing the
 * variable-length data from the revision record.
 *
 * magic: 4-byte, semi-unique number identifying this structure.
 * Must equal H5FD_ONION_FCTL_REVISION_INFO_MAGIC to be considered
 * valid.
 *
 * version: 4-byte number; future-proofing guard, informs struct membership.
 *
 * revision_id: Revision ID of this revision.
 *
 * parent_revision_id:
 * Revision ID of the immediate parent of this revision.
 * The 'original' revision (revision_id == 0) is a unique case
 * in that its parent revision ID is also 0 (itself). Users
 * must take care to handle this self-reference.
 *
 * time_of_creation:
 * ISO-8601-formatted string (NOT NULL-terminated!) giving the
 * time when the revision was written to the backing store.
 *
 * Granularity is seconds, meaning that more than revision may
 * have identical times of creation.
 *
 * Format: four-digit year, two-digit month, two-digit date,
 * the character capital-T, two-digit hour, two-digit minute,
 * two-digit second, character capital-Z.
 * e.g., '20200418T154712Z' == 18 April 2020, 3:47:12pm GMT

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	16	of	29	

 *
 * user_id: 4-byte user ID of revision creator.
 *
 * username_size:
 * Bytes required to contain the revision creator username.
 *
 * comment_size:
 * Bytes required to contain the revision comment.
 *
 * username: NULL-terminated string of user name.
 *
 * comment: NULL-terminated string of user comment for this revision.
 * Can be empty.
 * --
 */
struct H5FD_onion_fctl_info_revision {
 uint32_t magic;
 uint32_t version;
 uint64_t revision_id;
 uint64_t parent_revision_id;
 char time_of_creation[16]; /* caution: not null-terminated */
 uint32_t user_id;
 uint32_t username_size;
 uint32_t comment_size;
 char *username;
 char *comment;
};

4.5 Additional	Considerations	

4.5.1 Concurrent	Writing	Processes	

To	prevent	multiple	concurrent	writes	(or	writing	processes),	we	will	include	a	flag	in	the	onion	
header	which	"locks"	the	file	once	it	is	opened	write-only.	If	this	is	set,	attempts	to	open	the	file	for	
writing	should	fail.	Provisions	will	be	made	for	error-recovery,	such	that	a	crash	with	the	write-lock	
set	will	not	corrupt	or	permanently	lock	the	file.	

4.5.2 File-Specific	Divergent	History	Setting	

Divergent	history	(branching)	will	be	enabled	or	disabled	"permanently"	upon	onion	creation.	A	flag	
will	be	set	in	the	header	indicating	whether	or	not	forking	histories	are	allowed.	If	allowed,	any	
revision	can	be	opened	for	writing,	and	the	"latest"	shortcut	(revision	ID	-1)	is	not	guaranteed	to	be	
the	desired	tail	(rather,	it	is	the	most	recently-committed	revision);	if	disallowed,	only	the	latest	
revision	may	be	opened	for	writing,	but	the	latest	ID	shortcut	(-1)	always	accesses	the	only	tail.	

4.5.3 Append-Only	Whole-History	Issue	

Implemented	in	a	naïve	fashion,	the	whole-history	will	be	deleted	when	a	writing	process	begins	to	
amend	data	for	a	new	revision.	This	presents	the	problem	of	possible	corruption	(unable	to	access	
the	file	at	all)	in	the	event	of	a	program	or	system	crash.	
	

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	17	of	29	

An	obvious	solution	is	to	skip	over	the	whole-history,	rather	than	overwriting	it.	This	leaves	unused	
whole-histories	scattered	throughout	the	file,	one	following	each	revision	record,	which	will	bloat	the	
file	somewhat.	However,	this	has	the	direct	benefit	of	the	file	always	being	in	a	readable	state	–	the	
address	of	the	Whole	History	in	the	onion	header	is	updated	only	when	a	new	revision	(pages,	
revision	record,	and	new	whole-history)	is	committed	and	written	to	store.	

4.5.4 Modification	of	Original	File	

It	is	conceivable	that	a	user	may,	deliberately	or	otherwise,	open	the	"original"	HDF5	contents	of	an	
oniony	file	in	write	mode	with	a	non-onion	VFD.	
	
In	the	case	of	separate	single	onion	storage,	there	is	nothing	that	can	be	done	–	the	user	will	
overwrite	the	original	data,	effectively	destroying	the	goals	of	onionizing	in	the	first	place.	
	
In	the	second	case,	where	the	onion	history	is	appended	to	the	HDF5	file,	the	Onion	Header	will	be	
part	of	the	superblock	extension	message	–	the	library	will	be	able	to	read	this	and	deduce	that	the	
file	must	not	be	opened	in	write	mode	without	an	Onion	VFD.	

4.5.5 Single-File	Storage	and	Userblock	

With	the	design	proposal	below,	the	Onion	Header	will	occupy	the	Userblock,	which	prefaces	the	
HDF5	file	proper6.	This	is	a	limitation	of	the	onion	implementation:	If	a	file	is	oniony	with	single-file	
storage,	the	Userblock	cannot	be	used	for	another	purpose;	if	the	original	file	already	exists	with	a	
Userblock,	it	cannot	be	made	oniony	with	single-file	storage.	

5 File	Format	Specification	
This	section	describes	the	file	format	of	the	history	data.	The	history	data	is	consistent	between	
storage	as	one	file	(appended	to	the	HDF5	file)	or	in	a	separate	single	file.	All	multi-byte	data	is	stored	
in	little-endian	word	order,	following	the	convention	of	HDF5	file	metadata.	The	contents	of	the	
Onion	data	may	be	page-aligned	on	the	backing,	where	unused	padding	bytes	shifts	data	to	align	with	
a	page	boundary	–	relevant	to	accelerate	I/O	performance	on	some	systems.	

6	TODO:	Pointer	to	documentation	on	Userblock.	

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	18	of	29	

Figure	4.	Visual	overview	of	the	Onion	file	format.	

5.1 Onion	History	Data	Header	Format	

The	Onion	Header	must	be	located	at	offset	zero	(0)	in	the	versioning	file.	If	onion	data	is	stored	as	a	
separate	 single	 file,	 this	 is	 trivial.	 If	 instead	 stored	 in	 the	 HDF5	 file,	 it	 also	 exists	 at	 offset	 zero	
(occupying	the	user	block)	and	is	duplicated	in	the	superblock	extension	message.	

Version	0	(zero)	of	this	header	has	the	following	format:	

byte	 byte	 byte	 byte	

Signature	

Version	number		 Flag	bitfield	

Page	size	

Origin	file	size	(8	bytes)	

…	

Address	of	Whole-History	Record	(8	bytes)	

…	

Size	of	Whole-History	Record	(8	bytes)	

…	

Checksum	

The	fields	of	the	Version	0	Onion	history	data	header	are	described	in	the	following	table.			

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	19	of	29	

Field	Name:	 Description:	

Signature	 Magic	number	 indicating	that	 this	 is	an	Onion	VFD	revision	data	header.	
Must	be	set	to	'OHDH'	(Onion	History	Data	Header).	(4	bytes)	

Version	number	 The	version	number	of	the	format	for	the	versioning	file.	(1	byte)	

Flag	bitfield	 Reserved	space	for	various	binary	flags.	(3	bytes)	

• Write-Lock	Flag	 (1,	bit	1,	bit	55	 in	 file)	 Indicates	whether	 this	 file	
has	been	opened	in	write	mode.	 If	not	zero	(0),	the	file	has	been	
opened	in	write	mode	by	the	Onion	VFD	and	set	this	flag.	This	flag	
should	be	reset	to	zero	when	closed	from	write	mode.	If	not	zero,	
it	 is	 very	 likely	 unsafe	 to	 open	 the	 file	 in	 write	 mode	 due	 to	
possible	interlaced	writing	of	page	data.	

• Branching	 Support	 Flag	 (2,	 bit	 2,	 bit	 54	 in	 file)	 Set	 on	 onion	
instantiation.	If	zero	(0),	only	the	most	recently-created	revision	in	
history	 may	 be	 opened	 in	 write	 mode,	 forcing	 a	 single	 chain	 if	
history	from	origin	to	most	recent	revision.	If	not	zero,	any	revision	
may	be	opened	in	write	mode.	

• Align-to-Page	Flag	(4,	bit	3,	bit	53	in	file)	Set	on	onion	instantiation.	
If	 not	 zero,	 onion	 data	 in	 the	 backing	 file	 will	 be	 aligned	 to	
intervals	of	page	size,	introducing	unused	spaces	within	the	file	as	
necessary.	

• Remaining	bits	reserved.	

Page	size	 Size	of	pages	containing	amended	data.	Must	not	be	modified	after	onion	
instantiation.	(4	bytes)	

Origin	file	size	 Number	of	bytes	in	the	'origin'	canonical	(HDF5)	file.	Required	to	correctly	
write	pages	or	partial	pages	extending	the	logical	file.	(8	bytes)	

Address	 of	 Whole-
History	Record	

The	location	of	the	whole-history	record;	offset	from	start	of	file.	(8	bytes)	

Size	 of	 Whole-History	
Record	

The	size	of	the	whole-history	record	in	bytes.	Whole-History	address	+	size	
must	point	to	the	last	byte	in	the	file.	(8	bytes)	

Checksum	 The	checksum	of	this	header.	(4	bytes)	

5.2 Whole-History	Record	Format	

The	whole-history	record	is	located	in	the	end	of	the	onion	history	file	(which	may	be	the	same	as	the	
original	HDF5	file).	It	contains	the	addresses	of	the	revision	records	in	the	history.	Version	0	(zero)	has	
the	following	format:	

byte	 byte	 Byte	 byte	

Signature	

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	20	of	29	

Version	number		 unused	space	reserved	(3	bytes)	

Number	of	revisions	(8	bytes)	

…	

List	of	Record	Pointers	(variable	size)	

……	

Checksum	

The	fields	of	the	Version	0	whole-history	summary	record	are	described	in	the	following	table:	

Field	Name:	 Description:	

Signature	 'Magic	 number'	 identifying	 this	 structure.	 Must	 equal	 'OWHR'	 (Onion	
Whole-History	Record).	(4	bytes)	

Version	number	 Version	number	of	the	format	for	this	whole-history.	(1	byte)	

Number	of	revisions	 Count	of	all	the	revisions	present	in	the	history.	(8	bytes)	

List	of	record	pointers	 List	of	pointers	to	revision	records	on	store.	(pointer	size	*	count	bytes).	

Checksum	 The	checksum	of	this	header.	(4	bytes)	

5.2.1 Record	Pointer	Format	

The [revision] record pointer has the following format.
byte	 byte	 Byte	 byte	

Physical	address	(8	bytes)	

…	

Record	Size	(8	bytes)	

…	

Checksum	

The	fields	of	the	[revision]	record	pointer	are	described	as	follows.	
	
Field	Name:	 Description:	

Physical	address	 Location	of	the	revision	record	in	the	backing	store	Offset	is	given	from	
start	of	the	file	–	not	necessarily	the	start	of	the	history	data.	(8	bytes)	

Record	size	 Size	in	bytes	of	the	record	in	the	backing	store.	(8	bytes)	

Checksum	 Checksum	of	the	address	and	size.	(4	bytes)	

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	21	of	29	

5.3 Revision	Record	Format	

The	revision	record	for	a	given	revision	is	located	after	the	data	pages	of	the	revision.	It	contains	the	
following	information.	
	

byte	 byte	 Byte	 byte	

Signature	

Version	number	 unused	space	reserved	(3	bytes)	

Revision	ID	(8	bytes)	

…	

Parent	Revision	ID	(8	bytes)	

…	

Time	of	Creation	(16	bytes)	

……	

Logical	file	size	(8	bytes)	

…	

Page	size	

User	ID	

Number	of	index	entries	(8	bytes)	

…	

User	name	size	

Comment	size	

List	of	index	entries	(variable	size)	

……	

User	name	(variable	size)	

……	

Comment	(variable	size)	

……	

Checksum	

The	fields	of	the	revision	record	are	described	in	the	following	table:	

Field	Name:	 Description:	

Signature	 'Magic number' identifying this structure. Must equal 'ORRS' (Onion
Revision Record Signature)

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	22	of	29	

Version	number	 Version number of the revision-record format. (1 byte)

Revision	ID	 Unique ID of the revision. (8 bytes)

Parent	Revision	ID	 Unique ID of the revision of which this is an immediate descendant. (8
bytes)

Time	of	Creation	 A not NULL-terminated ASCII char array of format ISO-8601 for time
and date (from UTC, Coordinated Universal Time) when this record was
written. Format: four-digit year, two-digit month, two-digit date, the
character capital-t (T), two-digit hour, two-digit minute, two-digit second,
character capital-z (Z).
e.g., 20200418T154712Z for 10:47:12am on April 18, 2020 CDT (15:47,
or 3:47:12pm UTC; CDT = UTC-5:00) (16 bytes)

Logical	file	size	 Size	of	the	logical	file	–	equivalent	to	EOF/EOA.	(8	bytes)	

Page	size	 Size	 in	 bytes	 of	 a	 page	 of	 logical	 file	 data.	Must	 equal	 the	 value	 in	 the	
Onion	 History	 Data	 Header;	 duplicated	 here	 for	 sanity-checking	 and	
internal	use.	(4	bytes)	

User	ID	 The	32-bit	value	of	the	UID	that	created	this	version.	(4	bytes)	

Number	 of	 index	
entries	

The	 count	 of	 index	 entries	 for	 this	 revision.	 	 The	 index	 is	 a	 sorted	 list	
based	on	the	logical	address	(page	number	/	offset	start)	in	the	HDF5	file.	
(8	bytes)	

User	name	size	 The	length	of	the	variable-sized	user	name.	(4	bytes)	

Comment	size	 The	length	of	the	variable-size	comment.	(4	bytes)	

List	of	index	entries	 List	of	entries,	each	giving	the	information	required	to	identify	and	locate	
amended	data.	(entry_size	*	count		bytes)	

User	name	 The	user	name	of	variable	size.	(NULL-terminated	string)	

Comment	 The	variable-size	comment.	(NULL-terminated	string)	

Checksum	 The	checksum	of	this	record.	(4	bytes)	

5.3.1 Index	Entry	Format	

The	index	entry	has	the	following	format.	
byte	 byte	 Byte	 byte	

Logical	address	(8	bytes)	

…	

Physical	address	(8	bytes)	

…	

TODO:	Page	Data	Checksum	

Checksum	

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	23	of	29	

The	fields	of	the	index	entry	are	described	as	follows.	
Field	Name:	 Description:	

Logical	address	 Location	of	the	amended	data	within	the	logical	HDF5	file.	(8	bytes)	

Physical	address	 Location	of	 the	amended	data	 in	 the	backing	 store.	Offset	 is	 given	 from	
the	start	of	the	file	–	not	necessarily	the	start	of	the	history	data.	(8	bytes)	

Page	Data	Checksum	 Checksum	of	the	page	data	in	the	store	(raw	bytes).	(4	bytes)	

Checksum	 Checksum	 of	 the	 entry's	 data	 in	 store	 (logical	 and	 physical	 address).	 (4	
bytes)	

6 API	Functions	
Name: H5Pset_fapl_onion
Signature:

herr_t H5Pset_fapl_onion (hid_t fapl_id, const
H5FD_onion_fapl_info_t *onion_fa_info)

Purpose:
Set the provided FAPL to use the Onion VFD with the given configuration.

Description:
H5Pset_fapl_onion sets the file access property list fapl_id to use the Onion virtual
file driver with the given configuration. The info structure may be modified or
deleted after this call, as its contents are copied into the FAPL.

The details of the input info pointer onion_fa_info is discussed in §Onion File
Access Property List with the structure documentation.

Parameters:
hid_t fapl_id IN: File access property list identifier.
const H5FD_onion_fapl_info_t *onion_fa_info IN: Configuration info structure.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_fapl_onion
Signature:

herr_t H5Pget_fapl_onion (hid_t fapl_id, H5FD_onion_fapl_info_t *onion_fa_info)
Purpose:

Retrieve the information of the version control driver.

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	24	of	29	

Description:
H5Pget_fapl_onion retrieves the FAPL information pertaining to the Onion virtual
file driver configuration. If successful, the information as found in the FAPL is
copied into onion_fa_info. The details of the input info pointer onion_fa_info is
discussed in §Onion File Access Property List with the structure documentation.

This function is for use only when accessing an HDF5 file written as a set of files
with the Onion VFD.

Parameters:
hid_t fapl_id IN: File access property list identifier.
H5FD_onion_fapl_info_t *onion_fa_info OUT: Configuration info structure.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5FDfctl
Signature:

herr_t H5FDfctl (const H5FD_t *handle, uint32_t op_code, const void *input,
void *result)

Purpose:
Retrieve the information of a VFD file.

Description:
H5FDfctl() provides a general-purpose interface for driver-defined behavior in
interacting with a virtual file handle.

The details of the op_code, filter and result parameters are necessarily driver-
dependent.

result is passed in by the user and used to collect values returned by the call. The
user is responsible for managing this pointer and any memory region(s) it references.

Parameters:

H5FD_t *handle IN: Virtual File Handle on which to operate.
uint32_t op_code IN: Numeric constant for which operation to perform.
const void *filter IN: Information informing the driver's fctl operation.
void *result OUT: User-allocated buffer for the results of the call.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	25	of	29	

7 Using	the	Onion	VFD	

7.1 Instantiate	Onion	History		

7.1.1 Instantiate	with	No	Existing	HDF5	Origin	

If	storage	mode/target	is	a	separate,	single	file	(onion	file),	a	blank	file	with	.h5	extension	is	created,	
and	all	data	is	written	to	the	onion	file	(sharing	the	file	name,	with	.onion	extension).	
	
If	storage	mode/target	is	the	HDF5	file	(single	file),	a	file	with	.h5	extension	is	created.	Its	contents	
are	exactly	those	of	an	onion	file.	
	
TODO:	should	the	"original	data"	be	written	into	the	.h5	file,	e.g.	as	only	a	superblock	and	userblock	
extension	message?	

7.1.2 Instantiate	from	Existing	HDF5	Origin	

If	storage	mode/target	is	separate,	single	file	(onion	file),	the	original	data	is	untouched,	and	a	new	
file	with	the	same	name	but	.onion	extension	is	created	which	will	contain	the	onion	history.	An	
onion	header	and	"empty"	whole-history	record	is	written	to	the	onion	file,	and	the	empty	whole-
history	record	is	copied	to	the	temporary	location	for	error-recovery	(.onion.recovery	extension?),	as	
with	all	Onion	VFD	write-mode	opens;	this	temporary	recovery	whole-history	record	file	is	deleted	
upon	file	close.	
	
If	the	storage	mode/target	is	the	HDF5	file	(single	file),	the	userblock	extension	message	is	first	
inspected	–	if	it	is	already	set,	the	file	cannot	be	onionized	in	this	manner.	
If	the	userblock	extension	message	can	be	set,	it	is	populated	with	the	onion	header;	the	onion	
header	is	duplicated	at	the	start	of	the	file	(moving	all	existing	file	contents	as	necessary);	the	(empty)	
whole-history	record	is	appended	to	the	file	and	copied	in	the	temporary	recovery	location.	

7.2 Open	File	for	Reading	

1. Verify	that	it	is	an	onionized	file.	

a. Onion	file	may	not	exist.	

b. Userblock	extension	message	may	not	be	set.	

c. Prior	write	may	have	failed,	leaving	whole-history	file.	

2. Open	files	as	appropriate.	

a. Chosen	revision	may	not	exist	(want	15,	only	0..12	exist,	e.g.)	

3. Perform	reads.	

4. Close	files.	

7.3 Open	File	for	Writing	

1. Verify	that	it	is	an	onionized	file.	

a. Onion	file	may	not	exist.	

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	26	of	29	

b. Userblock	extension	message	may	not	be	set.	

c. Prior	write	may	have	failed,	leaving	whole-history	recovery	file.	

2. Open	"origin"	.h5	file	and	.onion	file	as	appropriate.	

a. Chosen	revision	may	not	exist	(want	15,	only	0..12	exist,	e.g.)	

3. Set	write-lock	flag	in	onion	header.	

4. Copy	whole-history	summary	to	temporary	location	on	backing	store.	

5. Commence	modifications	to	file.	

6. Write	revision	record	to	file.	

7. Copy	and	update	whole-history	from	recovery	location	to	end	of	file.	

8. Update	whole-history	address	and	unset	write-lock	flag	in	onion	header.	

9. Close	files.	

8 Recommendation	
The	Onion	VFD	approach	to	revision	control	has	the	advantages	of	relative	simplicity	and	modularity,	
although	its	utility	rests	on	the	presumption	that	file	open-close	cycle	resolution	is	adequate	for	the	
vast	majority	of	applications.	
	
For	the	prototype	 implementation,	storing	revision	history	 in	a	separate	single	file	 is	prioritized	–	 it	
has	 the	 capacity	of	 accommodating	multiple	 versions	 as	well	 as	protecting	 the	original	 data,	while	
avoiding	having	to	create,	open,	or	generally	manage	too	many	files	on	the	filesystem.	

Acknowledgements	
This	material	is	based	upon	work	supported	by	the	U.S.	Department	of	Energy,	Office	of	Science,	under	
Contract	Number	DE-AC02-05CH11231.

Revision	History	
February	10,	2020:	 Version	1	circulated	for	comment	within	The	HDF	Group.		
June	19,	2020:	 Version	2	circulated	for	comment	within	The	HDF	Group.	
October	01,	2021	 Version	3	includes	updated	details	from	actual	implementation.	

Appendix:	Amended	Data	as	Contiguous	Runs	
If	the	goal	is	strictly	to	minimize	the	footprint	of	amended	data,	using	runs	is	clearly	the	best	option	–	
storing	only	exactly	the	contiguous	region	of	amended	bytes.	No	additional	data	will	be	stored,	and	
each	amendment	serves	as	a	diff	from	the	previous	revision.	If	two	runs	would	overlap	or	'touch'	in	
working	memory	(write	mode,	e.g.),	then	the	most	recent	data	would	overwrite	any	previous	data	in	
the	run,	and	the	runs	merge	into	a	single	contiguous	run.	
	

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	27	of	29	

In	the	live	index,	each	run	entry	would	have	an	offset	and	range	in	the	logical	file,	mapped	to	a	
location	in	the	backing	store	(its	length	implicit).	The	live	index	would	be	updated	and	consolidated	in	
real	time,	merging	runs	in	a	new	revision	as	necessary	before	committing	the	history,	keeping	the	
index	and	storage	space	at	an	absolute	minimum.	To	be	efficient,	a	binary	search	tree	quickly	
recommends	itself,	allowing	access	in	O(log(N))	–	a	self-balancing	tree,	such	as	from	the	red-black	
family,	is	an	obvious	choice.	
	
However,	consolidating	the	working	data	–	already	tentatively	committed	to	the	file	–	in	real	time	is	
not	trivial,	and	incurs	significant	overhead	in	allocating	space	for	and	copying,	joining,	and	relocating	
run	data.	A	naïve	implementation	might	simply	copy	prior	data	into	a	new	block,	which	results	in	
unused	space	within	the	backing	store	(from	the	original,	partial	copy	of	the	run	data)	–	a	possible	
solution	would	be	to	'defragment'	the	storage	space,	which	would	involve	potentially	many	I/O	
operations	and	be	accordingly	quite	slow.	
	
Due	to	the	endemic	complication	of	reorganizing	working	data	(the	result	of	this	reorganization	being	
a	prime	motivator	for	electing	for	runs),	this	will	not	be	the	approach	chosen	for	the	initial	cut	of	the	
Onion	VFD.	

Appendix:	Binary	Search	Tree	Implementation	of	Revision	Index	
A	binary	search	tree	of	the	revision	index	could	be	implemented	as	a	form	of	self-balancing	tree,	
rather	than	the	hash	table	discussed	above.	A	binary	search	tree	is	uniquely	applicable	to	both	page-	
and	run-based	approaches	(whereas	a	hash	table	is	not).	
	
In	the	case	of	the	paged	approach,	the	data	in	each	node	may	comprise	of	solely	either	the	staring	
offset	of	the	page	in	the	logical	file,	or	the	ID	of	the	page	(i.e.,	page	offset	/	page	size).	A	more	
generalized	approach	would	include	the	length	of	the	entry,	being	either	the	page	size,	multiple	of	
page	size,	or	exact	length	of	the	run.	Note	that	including	page	length	when	each	node	is	exactly	one	
page	introduces	overhead	of	unused	memory	space.	In	any	event,	offset+length	of	a	give	node	k	must	
always	be	less	than	offset	of	node	k+1	(e.g.,	any	byte	offset	in	the	HDF5	file	maps	to	at	most	one	entry	
in	the	tree).	
	
Pros:		

• Smaller	index	size	

o Unlike	a	hash	table,	all	or	near-all	of	its	allocated	memory	is	used	(with	the	uncommon	
removed-but-not-deleted	node,	depending	on	the	implementation,	serving	as	unused	
placeholders/cruft).	

• Accommodates	runs	

o In	both	paged	and	run	data,	it	is	not	difficult	to	consolidate	elements	that	might	
otherwise	require	multiple	hash	table	entries.	An	example	using	the	paged	approach,	a	
single	amendment	that	spans	multiple	consecutive	pages	could	be	recorded	as	a	single	
"run"	of	those	pages	as	a	single	node.		

Cons:	

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	28	of	29	

• Slower	performance	

o Slower	to	access	an	item	in	the	index,	and	much	slower	to	access	an	item	not	in	the	
index.	

o Depending	on	the	implementation,	could	have	further	delay	with	each	node	access	
incurring	overhead	from	cache-misses,	compounded	by	the	O(log2(N))	accesses.	

If	this	approach	is	to	be	implemented,	it	may	require	a	modified	version	of	the	revision	index	entry	
structure.	

Appendix:	Simpler,	Slower	Hash	Table	for	"Live"	Index	
This	alternative	hashing	algorithm	replaces	chaining	with	quadratic	probing,	and	bit-shifts	with	
modulo.	

1) The	size	of	the	hash	table	is	always	prime	–	first	prime	greater	than	a	power	of	2.	
2) The	hash	table	never	has	more	than	half	its	entries	populated.	
3) Hashing	function	is	page	ID	modulo	the	size	of	the	hash	table.	
4) If	a	collision	occurs,	use	quadratic	probing	to	combat	primary	clustering:	'Hi	=	H0+i2	(mod	M)'.	

The	square	operation	may	be	simplified	the	sequential	operation	'Hi-1	+	2*i	-	1	(mod	M)',	
where	the	'mod	M'	operation	also	simplifies	to	'if	Hi	>	M	then	Hi	-=	M'	with	each	iteration.	(H	is	
the	hashing	value,	M	is	the	size	of	the	hash	table.)	

5) When	necessary,	new	table	is	allocated	at	approximately	twice	the	size	(first	prime	greater	
than	the	next	greater	power	of	2)	and	all	extant	entries	are	re-hashed	into	the	new	table;	the	
old	table	is	then	deallocated.	

Appendix:	In-Call	Filtering	for	History	Browsing	with	H5FDfctl()	
Below	is	a	possible	component	extension	to	the	relevant	filters	to	the	call,	which	would	add	a	pointer	
to	this	structure	type	as	part	of	their	definition.	
	
The	implementation	would	restrict	results	of	the	browsing	call(s)	to	revisions	with	revision	record	
data	conforming	to	the	intersection	of	all	user-supplied	criteria,	potentially	greatly	reducing	the	work	
required	by	the	user.	

/* --
 * Structure: H5FD_onion_info_history_selection	
 *
 * Purpose: Encapsulate the filtering criteria used when browsing the
 * Onion whole-history. Intended to be used by the Onion
 * implementation to actively filter results when accessing
 * history data from the file.
 *
 * For the first cut of the Onion VFD, this feature set is
 * unlikely to be fully implemented.
 *
 * magic: 4-byte semi-unique "magic" number identifying structure.
 * Must equal SYMBOLIC NAME TODO to be considered valid.
 *

Oct	01,	2021	 	 RFC	THG	2020-02-10.v3	

Page	29	of	29	

 * version: 4-byte number; future-proofing guard, informs struct membership.
 *
 * time_of_creation:
 * Null-terminated string of formatted ISO-8601 timestamps.
 * Used to find revisions created at a specific time (x),
 * before a specific time (-x), after a specific time (x-),
 * between two given times (x-x), or a combination (x-x, x-).
 * Each timestamp must be fully-formed, but whitespace between
 * entries and the separator characters ('-', ',') is ignored.
 * If the string is empty or malformed, it is ignored.
 *
 * username_regex:
 * Null-terminated regular expression string to select
 * revisions where usernames match the pattern.
 * If the string is empty, it is ignored.
 *
 * creation_user_id:
 * If not zero (0), selects revisions created by the given User ID.
 *
 * comment_regex:
 * Null-terminated regular expression string to select
 * revisions where the comment matches the given pattern.
 * If empty, it is ignored.
 *
 * relation_id: Revision ID of a revision, used with relation_mode to
 * select from the history relative to a given revision ID.
 *
 * relation_mode:
 * One-byte bitmask informing how to interpret relation_id.
 * + ONION_SELECTION_RELATION_NONE (0x00)
 * relation_id is ignored.
 * + ONION_SELECTION_RELATION_CHILDOF (0x01)
 * Find children of relation_id.
 * + ONION_SELECTION_RELATION_PARENTOF (0x02)
 * Find parents of relation_id.
 * + ONION_SELECTION_RELATION_DISJOINT (0x04)
 * Find revisions that are neither parents nor
 * children of relation_id -- revisions that are
 * part of any other branch in the history.
 * Only meaningful if divergent histories enabled.
 * --
 */
struct H5FD_onion_info_history_selection {
 uint32_t magic;
 uint32_t version;
 char *time_of_creation;
 char *username_regex;
 uint32_t creation_pid;
 char *comment_regex;
 uint64_t relation_id;
 uint8_t relation_mode;
};

