

RFC: Using SVN branching to improve software development process at
THG

Elena Pourmal, Quincey Koziol
February 9, 2008

Background information

For many years The HDF Group has been developing software using CVS or SVN trunk
for the development of the new features, and branches to maintain the released versions
of the HDF5 library. In the past few years it became clear that this approach doesn’t work
well for both new features development and the HDF5 library maintenance.

Work on the 1.8.0 release showed that this approach is OK for the development process
when we add new features that do not require much prototyping work (for example,
adding new compression like scale-offset or n-bit, or new HL APIs). But for features that
require file format changes, or a lot of prototyping to get the best performance (for
example, metadata caching work, and work on the compact storage and access by
objects’ creation order), adding these kinds of features to the trunk causes source code
instability and delays the delivery of other stable features to our users.

Additionally, our current practices with the release branches also showed deficiency in
addressing HDF5 users’ needs. There is no mechanism to provide official patches and
keep a record of them. For example, in 1.6 branch documentation files reside inside the
source distribution. If we find a bug (say broken link), we can updated our Web pages
with the fixed documentation, but we cannot provide official patched release that will
have this minor change. Another example will be a patch that addresses some specific
platform needs and bugs (VMS or Windows), or specific request from a customer such as
a very minor bug fix in the officially released code, or specific compiler problems, or say
fix for a data corruption bug that doesn’t require a lot of changes to the source. In all
cases mentioned above (except probably the last one) no extensive testing is needed.

To address this problem we usually do one of three things:

• Distribute a patch from the FTP site with the instructions how to apply it
• Provide a snapshot directly to a user that may contain more code that was in the

official release
• Come up with the new unplanned release

Clearly there are a few problems with this approach:

• There is no “official” record for the patch in SVN
• Many users cannot accept snapshots
• It is hard to stick to the release schedule

We propose to review our SVN practices to address the problems with the current
software development and maintenance process.

Proposal

1. We propose to use “feature” branches for new code development.
2. We propose to use “errata” branches to address problems in the release

branches in between maintenance releases.

How does it work?

1. “Feature” branch
Every time we start working on the new feature, a new branch coming out
of the trunk is created. It is developer’s responsibility to test the code in
that branch, to bring back changes from the trunk, and to keep code in
sync with other developers. When the feature is completed, tested and
documented, it can be brought back to the trunk. This approach will give
us more stable code in the SVN trunk, allow us to do a better planning for
the major releases and provide stable snapshots for customers that work in
an agile development environment. This approach will also give us
opportunity to share and to review the code under development from the
first stages, and have more than one person working on a feature.
Developers will need to learn how to work with SVN branching, code
syncing, etc. Quincey’s “Feature Branching in Subversion”
(http://www.hdfgroup.uiuc.edu/internal/QA/software-engineering-at-
THG/Feature-Branching-in-Subversion.txt) document addresses those
issues. Using feature branches is already underway, with the work on
journaling changes to HDF5 metadata proceeding in a feature branch, as is
work to update the FORTRAN API wrappers for the new routines in the
1.8.0 release, and others as well.

2. “Errata” branch

Every time we do a release, “maintenance team” creates an ”errata”
branch off of the release branch, in order to track minor updates to the
released files. Only a small subset of the changes that go into the release
branch in between maintenance releases will end up in the “errata” branch.
The “errata” branch is terminated at the time of the next maintenance
release. Testing of the “errata” branch should be done at the time of the
next “errata” release and in most cases is limited to one-two platforms.

Here are some use cases for the “errata” release:

i. TX3 (Red storm) was unavailable for testing at the time of the

HDF5 1.8.0 release. “Platforms tested” section indicates that
testing was not done on that machine. A few weeks after the
release, Red Storm comes on-line, we test HDF5 1.8.0 release code
and discover that a compiler flag is needed in order to build and
test the library on that machine. Configuration file for Red Storm is
modified in both HDF5 1.8 release and errata branch. After testing
“errata” distribution on the machine, we release HDF5 1.8.0.1 that
has support for XT3.

ii. We have a paying Windows customer who would like us to

support multithreaded static builds of the HDF5 library. Our
current projects in the source code support only single-threaded or
multi-threaded DLLs. We can safely add new projects to “errata”
branch, and release HDF5 1.8.0.2

iii. Missing parameter in a Fortran wrapper was reported in a function
that is critical to ESDIS application. Bug can be quickly fixed for
HDF5 1.8.0.2 and given to the customer.

iv. “=” was used in the IF condition statement instead of “==” causing

data corruption in some rare cases. The change is trivial. We add a
new test to exercise the bug, and run a daily test script for the
branch that tests and builds new binaries. If tests pass, we create
HDF5 1.8.0.3 source tar ball and make it available to the users.
Newsletter will be send informing users about the changes i) –iv)
in the HDF5 1.8.0.3. We also keep binaries and if time permits, we
replace binaries on our FTP server or we inform users that updated
binaries are available on a request.

