
April 14, 2015RFC THG 2014-05-24.v2

HDF5 Compression Demystified

Why it sometimes doesn’t seem to work?

Elena Pourmal

The purpose of this document is to help the HDF5 users with troubleshooting problems
with HDF5 filters, especially with compression filters. The document assumes that the
reader knows HDF5 basics, is aware of the compression feature in HDF5 and is seeking
information on how to use it effectively. We refer the reader who is not familiar with
the feature to the HDF5 Introductory Tutorial [1], and the other documentation cited in
the Reference section of this document.

Table of Contents
1	 INTRODUCTION	 2

2	 SUMMARY: WHY HDF5 COMPRESSION SOMETIMES DOESN’T WORK	 3

3	 HOW TO DETECT THAT A COMPRESSION FILTER WAS NOT CONFIGURED IN	 4
3.1	 How the HDF5 library configuration may miss a compression filter	 4
3.2	 How does the HDF5 library behave in the absence of a filter	 5
3.3	 How to determine if the HDF5 library was configured with a compression filter needed	 6

3.3.1	 Examine the hdf5lib.settings file	6
3.3.2	 Examine the H5pubconf.h header file	 7
3.3.3	 Check the HDF5 library’s binary	 7
3.3.4	 Check the compiler script	 8
3.3.5	 Using HDF5 APIs	 8

4	 HOW TO USE HDF5 TOOLS TO INVESTIGATE MISSING COMPRESSION FILTERS	 10
4.1	 How to use h5dump to examine files with compressed data	 10
4.2	 How to use h5ls and h5debug to find a missing compression filter	 12

5	 WHAT TO DO IF A COMPRESSION FILTER WAS NOT EFFECTIVE	 15
5.1	 Which compression should I use?	 15
5.2	 What else can be done to reduce the size of an HDF5 file	 16

6	 CONCLUSION	 17

REFERENCES	 17

REVISION HISTORY	 18

APPENDIX: EXAMPLE PROGRAM	 19

 Page 1 of 20

April 14, 2015RFC THG 2014-05-24.v2

Introduction
The HDF5 library allows data to pass through a user-defined filter pipeline in order to modify them
during I/O operations. Modification methods (or filters) provided by the HDF5 library, also called
predefined filters, include several types of data compression, data shuffling and checksum generation
[2]. Users can implement their own filters and use them with the HDF5 library [3, 4]. While the
programming model and usage of the filters are straightforward, it is easy, especially for a novice user,
to overlook certain details, including the HDF5 filters properties, and end up with data in an HDF5 file
that is not compressed as they would expect.

This document provides an overview of why compression may not work and presents a few
troubleshooting techniques to help diagnose the underlying issues.

 Page 2 of 20

April 14, 2015RFC THG 2014-05-24.v2

Summary: Why HDF5 compression sometimes doesn’t work
This section provides a short overview of the problem and explains the structure of the rest of the
document.

Sometimes a user finds that HDF5 data was not compressed in the file or that the compression ratio is
very small. This fact itself doesn’t mean that compression “didn’t work”. It rather suggests that
something might have gone wrong when a compression filter was applied. How can one find out?

There are two major reasons why a filter didn’t produce the desired result:

If the filter wasn’t applied at all, there is only one reason: it was not included at compile time when
the library was built or not found at run time for dynamically loaded filters. The absence or presence
of HDF5 predefined filters can be confirmed by examining installed HDF5 files or with the help of
HDF5 API calls (section 3). The absence or presence of all filter types can be confirmed by running
HDF5 command-line utilities, such as h5dump with the –pH flags, on the produced HDF5 files
(section 4).

In particular, section 3.1 talks about configuring the HDF5 library with external and internal filters and
how this configuration may go wrong. The material in section 3.2 explains the HDF5 library’s behavior
in the absence of filters. Section 3.3 shows several ways to establish if a predefined filter is configured
in, by examining the installed HDF5 software including header files and the library binary file. It also
shows how applications can check the availability of any filter at run time and how to avoid creating
files without a filter being applied.

If the library, which was used to create a file, is not available to a user, he/she can use HDF5 command
line tools such as h5dump, h5ls and h5debug to find out if a filter was applied. See section 4 for
details.

Effectiveness of compression filters is a complex matter and is not a subject of this document. Section
5 gives a short overview of the problem and provides an example in which the advantages of different
compression filters and their combinations are shown.

Appendix section of the document contains the sample code used to create one of the files discussed
in section 4.

The filter was not applied.1.

The filter was applied but was not effective.2.

 Page 3 of 20

April 14, 2015RFC THG 2014-05-24.v2

How to detect that a compression filter was not configured in
This section examines how it may happen that a filter, including a compression filter, is not available
to an application and describes the behavior of the HDF5 library in the absence of the filter. Then we
discuss how to troubleshoot the problem by checking the HDF5 installation and what an application
can do at run time to check if a filter is available.

How the HDF5 library configuration may miss a compression filter

The HDF5 library uses external libraries for data compression. There are two predefined compression
methods, GZIP (deflate) and SZIP, which can be requested at the HDF5 library configuration
time (compile time). User-defined compression filters and the corresponding libraries are usually
linked with an application, or provided as a dynamically loaded library [3, 4].

GZIP (deflate) and SZIP require the libz.a(so) and libsz.a(so) libraries, respectively, to be
present on the system and to be enabled during HDF5 configuration by with this configure command:

 ./configure –with-zlib=/path… –with-szlib=/path… <other flags>

There is one important difference in the behavior of configure between GZIP(deflate) and
SZIP.

On UNIX systems, when GNU autotools are used to build HDF5, the GZIP(deflate) compression is
enabled automatically, if the zlib library is present on the system in default locations, without
explicitely specifying –with-zlib=/path… For example, if libz.so is installed under
/usr/lib with the header under /usr/include or under /usr/local/lib with the header
under /usr/local/include, the following HDF5 configure command will find the GZIP library and
will configure the compression filter in.

./configure
The SZIP compression should always be requested with the configure flag. Configure will not fail if
libraries supporting the requested compression method are not found, for example, because a
specified path was not correct, or the library is missing.

When the library is built with CMake, GZIP(deflate) and SZIP compression filters are enabled
by default in the source code distribution’s config/cmake/cacheinit.cmake file. See the
CMake installation instructions for locations of the libraries.

If compression is not requested or found at configuration time, the compression method is not
registered with the library and cannot be applied when data is written or read. For example, the
h5repack tool will not be able to remove an szip compression filter from a dataset, if the szip
library was not configured into the library against which the tool was built. The next section discusses
the behavior of the HDF5 library in the absence of filters.

Note that there are four internal predefined filters - nbit, fletcher32, scaleoffset and
nbit. They are enabled by default by both configure and CMake builds. While they can be disabled
intentionally with a configure flag –disable-filters, in practice it is a very rare event.

 Page 4 of 20

April 14, 2015RFC THG 2014-05-24.v2

Therefore, the discussion and the examples in this document will focus mainly on compression
filters, but everything said applies to other missing internal filters as well.

How does the HDF5 library behave in the absence of a filter

By design, the HDF5 library allows applications to create and write datasets using filters that are not
available at creation/write time. This feature makes it possible to create HDF5 files on one system and
to write data on another system where the HDF5 library is configured with or without the requested
filter.

Let’ s recall the HDF5 programming model for enabling filters.

An HDF5 application uses one or more H5Pset_<filter> calls to configure a dataset’s filter pipeline
at its creation time. The excerpt below shows how a deflate filter is added to a pipeline.

 /*

 * Create the dataset creation property list, add the gzip

 * compression filter and set the chunk size.

 */

 dcpl = H5Pcreate (H5P_DATASET_CREATE);

 status = H5Pset_deflate (dcpl, 9);

 status = H5Pset_chunk (dcpl, 2, chunk);

 dset = H5Dcreate (file, DATASET,…, dcpl,…);

For all internal filters (nbit, fletcher32, scaleoffset and nbit) and the external deflate
filter, the HDF5 library does not check if the filter is registered when the corresponding
H5Pset_<filter> is called. The only exception to this rule is H5Pset_szip, which will fail if szip
was not configured in or is configured with a decoder only. Hence, in the example above
H5Pset_deflate will succeed. The specified filter will be added to the dataset’s filter pipeline
and will be applied to any data written to this dataset.

When H5Pset_<filter> is called, a record for the filter is added to the dataset’s object header in
the file and information about the filter can be queried with the HDF5 APIs and displayed by HDF5
tools such as h5dump. The presence of filter information in a dataset’s header doesn’t mean that the
filter was actually applied to the dataset’s data, as will be explained later in this document. Section 4
shows how to use h5ls and h5debug tools to determine if the filter was actually applied.

The success of further write operations to a dataset when filters are missing depends on the filter
type.

By design, an HDF5 filter can be optional or required. This filter mode defines the behavior of the
HDF5 library during write operations. In the absence of an optional filter, H5Dwrite calls will succeed
and data will be written to the file, bypassing the filter. A missing required filter will cause H5Dwrite
calls to fail. Clearly, H5Dread calls will fail when filters that are needed to decode the data are
missing.

The HDF5 library has only one required internal filter, Fletcher32 (checksum creation), and
one required external filter, SZIP. As mentioned earlier, only the SZIP compression (H5Pset_szip)

 Page 5 of 20

April 14, 2015RFC THG 2014-05-24.v2

will flag the absence of the filter. If, despite the missing filter, an application goes on to create a
dataset via H5Dcreate, the call will succeed, but the SZIP filter will not be added to the filter
pipeline. This behavior is different from all other filters that may not be present, but will be added to
the filter pipeline and applied during I/O. Please see the discussion in section 3.3.5 on how to
determine if a filter is available and to avoid writing data while the filter is missing.

Developers, who create their own filters, use the “flags” parameter in H5Pset_filter to declare
if the filter is optional or required. One can determine the filter type by calling H5Pget_filter and
checking the value of the “flags” parameter.

For more information on filter behavior in HDF5 see [3].

How to determine if the HDF5 library was configured with a compression filter needed

The previous section described how the HDF5 library could be configured without certain
compression filters and the expected library behavior.

The following subsections explain how to determine if a compression method is configured in the
HDF5 library and how to avoid accessing data if the filter is missing.

Examine the hdf5lib.settings file

In order to check how the library was configured and build, one should examine the
hdf5lib.settings text file found in the lib directory of the HDF5 installation point and search
for the lines that contain the “I/O filters” string. The hdf5lib.settings file is automatically
generated at configuration time when the HDF5 library is built, with configure on UNIX or with CMake
on UNIX and Windows, and it should contain the following lines:

I/O filters (external): deflate(zlib),szip(encoder)

I/O filters (internal): shuffle,fletcher32,nbit,scaleoffset

These lines show the compression libraries configured with HDF5. Here is an example of the same
output when external compression filters are absent:

I/O filters (external):

I/O filters (internal): shuffle,fletcher32,nbit,scaleoffset

Please notice that the same lines in the file generated by CMake look slightly different:

I/O filters (external): DEFLATE ENCODE DECODE

I/O filters (internal): SHUFFLE FLETCHER32 NBIT SCALEOFFSET

“ENCODE DECODE” indicates that both SZIP compression encoder and decoder are present. This
inconsistency between configure and CMake generated files will be removed in a future release.

If the hdf5lib.settings file is not present on the system, then one can examine a public header
file or the library binary file to find out if a filter is present, as is discussed in the next two sections.

Examine the H5pubconf.h header file

In order to find if a filter is present one can also inspect the HDF5 public header file

 Page 6 of 20

April 14, 2015RFC THG 2014-05-24.v2

 installed under the include directory of the HDF5 installation point. If compression and internal
filters are present, the corresponding symbols will be defined as follows:

/* Define if support for deflate (zlib) filter is enabled */
#define H5_HAVE_FILTER_DEFLATE 1

/* Define if support for Fletcher32 checksum is enabled */
#define H5_HAVE_FILTER_FLETCHER32 1

/* Define if support for nbit filter is enabled */
#define H5_HAVE_FILTER_NBIT 1

/* Define if support for scaleoffset filter is enabled */
#define H5_HAVE_FILTER_SCALEOFFSET 1

/* Define if support for shuffle filter is enabled */
#define H5_HAVE_FILTER_SHUFFLE 1

/* Define if support for szip filter is enabled */
#define H5_HAVE_FILTER_SZIP 1

If a compression or internal filter was not configured, the corresponding lines will be commented out
as follows:

/* Define if support for deflate (zlib) filter is enabled */
/* #undef H5_HAVE_FILTER_DEFLATE */

Check the HDF5 library’s binary

The HDF5 library’s binary contains summary output similar to what is stored in the
hdf5lib.settings file. One can use the UNIX “strings” command to get information about the
configured filters:

% strings libhdf5.a(so) | grep "I/O filters ("

I/O filters (external): deflate(zlib),szip(encoder)

I/O filters (internal): shuffle,fletcher32,nbit,scaleoffset

When compression filters are not configured, the output of the command above will be:

I/O filters (external):

I/O filters (internal): shuffle,fletcher32,nbit,scaleoffset

On Windows one can use the dumpbin /all command and then view and search the output for
strings like “DEFLATE”, “FLETCHER32”, “DECODE”, “ENCODE”, etc.

…..
 10201860: 4E 0A 20 20 20 20 20 20 20 20 20 49 2F 4F 20 66 N. I/O f

 10201870: 69 6C 74 65 72 73 20 28 65 78 74 65 72 6E 61 6C ilters (external

 10201880: 29 3A 20 20 44 45 46 4C 41 54 45 20 44 45 43 4F): DEFLATE DECO

 10201890: 44 45 20 45 4E 43 4F 44 45 0A 20 20 20 20 20 20 DE ENCODE.

 102018A0: 20 20 20 49 2F 4F 20 66 69 6C 74 65 72 73 20 28 I/O filters (

 102018B0: 69 6E 74 65 72 6E 61 6C 29 3A 20 20 53 48 55 46 internal): SHUF

 Page 7 of 20

April 14, 2015RFC THG 2014-05-24.v2

 102018C0: 46 4C 45 20 46 4C 45 54 43 48 45 52 33 32 20 4E FLE FLETCHER32 N

 102018D0: 42 49 54 20 53 43 41 4C 45 4F 46 46 53 45 54 0A BIT SCALEOFFSET.

…..

Check the compiler script

One can also use the compiler scripts, for example, h5cc to verify that a compression library is
present and configured in. Use the “- show” option with any of the compilers scripts found in the bin
subdirectory of the HDF5 installation directory. If found, one will see the –lsz and –lz options
among the linker flags:

$ h5cc -show

gcc -D_LARGEFILE_SOURCE -D_LARGEFILE64_SOURCE -D_BSD_SOURCE -
L/mnt/hdf/packages/hdf5/v1812/Linux64_2.6/standard/lib
/mnt/hdf/packages/hdf5/v1812/Linux64_2.6/standard/lib/libhdf5_hl.a
/mnt/hdf/packages/hdf5/v1812/Linux64_2.6/standard/lib/libhdf5.a -lsz -lz -lrt -ldl
-lm -Wl,-rpath -Wl,/mnt/hdf/packages/hdf5/v1812/Linux64_2.6/standard/lib

Using HDF5 APIs

Applications can check filter availability at run time. In order to check the filter’s availability with the
HDF5 library one has to know the filter ID number (e.g., 1 for deflate) or a corresponding symbol
(e.g., H5Z_FILTER_DEFLATE) and call the H5Zfilter_avail function as shown in the example
below. Use H5Zget_filter_info to determine if the filter is configured to decode data, to encode
data, neither, or both.

 /*

 * Check if gzip compression is available and can be used for both

 * compression and decompression.

 */

 avail = H5Zfilter_avail(H5Z_FILTER_DEFLATE);

 if (!avail) {

 printf ("gzip filter not available.\n");

 return 1;

 }

 status = H5Zget_filter_info (H5Z_FILTER_DEFLATE, &filter_info);

 if (!(filter_info & H5Z_FILTER_CONFIG_ENCODE_ENABLED) ||

 !(filter_info & H5Z_FILTER_CONFIG_DECODE_ENABLED)) {

 printf ("gzip filter not available for encoding and decoding.\n");

 return 1;

 }

 Page 8 of 20

April 14, 2015RFC THG 2014-05-24.v2

H5Zfilter_avail can be used to find filters that are registered with the library or are available via
dynamically loaded libraries, see [4].

Currently there is no HDF5 API call to retrieve a list of all registered filters or dynamically loaded filters.
The default installation directory for HDF5 dynamically loaded filters are
“/usr/local/hdf5/lib/plugin” on UNIX and “%ALLUSERSPROFILE%\hdf5\lib\plugin”
on Windows. One can also check if the environment variable HDF5_PLUGIN_PATH is set on the
system and refers to a directory with available plugins.

1)

 Page 9 of 20

April 14, 2015RFC THG 2014-05-24.v2

How to use HDF5 tools to investigate missing compression filters
In this section we will use the HDF5 command line utilities to examine if a file was created with an
HDF5 library that did or didn’t have a compression filter configured in.

How to use h5dump to examine files with compressed data

One should use the –p flag to display dataset properties including compression filters and the –H flag
to suppress output of the data. The program provided in the Appendix of this document creates a file
called h5ex_d_gzip.h5. The output of h5dump shows that the deflate compression filter was
added to the DS1 dataset filter pipeline at creation time.

$ hdf5/bin/h5dump -p -H *.h5

HDF5 "h5ex_d_gzip.h5" {

GROUP "/" {

 DATASET "DS1" {

 DATATYPE H5T_STD_I32LE

 DATASPACE SIMPLE { (32, 64) / (32, 64) }

 STORAGE_LAYOUT {

 CHUNKED (5, 9)

 SIZE 5018 (1.633:1 COMPRESSION)

 }

 FILTERS {

 COMPRESSION DEFLATE { LEVEL 9 }

 }

 FILLVALUE {

 FILL_TIME H5D_FILL_TIME_IFSET

 VALUE 0

 }

 ALLOCATION_TIME {

 H5D_ALLOC_TIME_INCR

 }

 }

}

}

The output also shows a compression ratio, which is defined as (original size)/(storage size). The size
of the stored data is 5018 bytes vs. 8192 bytes of uncompressed data, a ratio of 1.663. Clearly the
filter was successfully applied.

 Page 10 of 20

April 14, 2015RFC THG 2014-05-24.v2

Now let’s look at what happens when the same program is linked against an HDF5 library that was not
configured with the GZIP library.

Notice that some chunks are only partially filled. 56 chunks (7 along the first dimension and 8 along
the second dimension) are required to store the data. Since no compression was applied, each chunk
has size 5x9x4 = 180 bytes, resulting in a total storage size of 10,080 bytes. With an original size of
8192 bytes, the compression ratio is 0.813 (i.e., less than 1!) and visible in the output below.

$ hdf5/bin/h5dump -p -H *.h5

HDF5 "h5ex_d_gzip.h5" {

GROUP "/" {

 DATASET "DS1" {

 DATATYPE H5T_STD_I32LE

 DATASPACE SIMPLE { (32, 64) / (32, 64) }

 STORAGE_LAYOUT {

 CHUNKED (5, 9)

 SIZE 10080 (0.813:1 COMPRESSION)

 }

 FILTERS {

 COMPRESSION DEFLATE { LEVEL 9 }

 }

 FILLVALUE {

 FILL_TIME H5D_FILL_TIME_IFSET

 VALUE 0

 }

 ALLOCATION_TIME {

 H5D_ALLOC_TIME_INCR

 }

 }

}

}

As discussed in section 3.2, the presence of a filter in an object’s filter pipeline doesn’t imply that it
will be applied unconditionally when data is written.

If the compression ratio is less than 1, compression was not applied. If it is 1, and compression is
shown by h5dump, more investigation is needed and discussed in the next section.

 Page 11 of 20

April 14, 2015RFC THG 2014-05-24.v2

How to use h5ls and h5debug to find a missing compression filter

Filters operate on chunked datasets. A filter may be ineffective for one chunk (e.g., the compressed
data is bigger than the original data), and succeed on another. How can one discern if a filter is missing
or just ineffective (and as a result non-compressed data was written)? Use h5ls and h5debug to
investigate the issue!

First, let’s take a look at what kind of information h5ls displays about the dataset DS1 in our example
file, which was written with an HDF5 library that has the deflate filter configured in:

$ h5ls -vr h5ex_d_gzip.h5

Opened "h5ex_d_gzip.h5" with sec2 driver.

/ Group

 Location: 1:96

 Links: 1

/DS1 Dataset {32/32, 64/64}

 Location: 1:800

 Links: 1

 Chunks: {5, 9} 180 bytes

 Storage: 8192 logical bytes, 5018 allocated bytes, 163.25% utilization

 Filter-0: deflate-1 OPT {9}

 Type: native int

We see output similar to h5dump output with the compression ratio at 163%.

Now let’s compare this output with another dataset DS1, this time written with a program
linked against an HDF5 library without the deflate filter present.

$ h5ls -vr h5ex_d_gzip.h5

Opened "h5ex_d_gzip.h5" with sec2 driver.

/ Group

 Location: 1:96

 Links: 1

/DS1 Dataset {32/32, 64/64}

 Location: 1:800

 Links: 1

 Chunks: {5, 9} 180 bytes

 Storage: 8192 logical bytes, 10080 allocated bytes, 81.27% utilization

 Filter-0: deflate-1 OPT {9}

 Page 12 of 20

April 14, 2015RFC THG 2014-05-24.v2

 Type: native int

The h5ls tool shows that the deflate filter was added to the filter pipeline of the dataset DS1. It also
shows that the compression ratio is less than 1. We can confirm by using h5debug that the filter was
not applied at all, and, as a result of the missing filter, the individual chunks were not compressed.

From the h5ls output we know that the dataset object header is located at address 800. We retrieve
the dataset object header at address 800 and search the layout message for the address of the chunk
index B-tree as shown in the excerpt of the h5debug output below:

$ h5debug h5ex_d_gzip.h5 800

Reading signature at address 800 (rel)

Object Header...

…..

Message 4...

 Message ID (sequence number): 0x0008 `layout' (0)

 Dirty: FALSE

 Message flags: <C>

 Chunk number: 0

 Raw message data (offset, size) in chunk: (144, 24) bytes

 Message Information:

 Version: 3

 Type: Chunked

 Number of dimensions: 3

 Size: {5, 9, 4}

 Index Type: v1 B-tree

 B-tree address: 1400

Now we can retrieve the B-tree information:

$ h5debug h5ex_d_gzip.h5 1400 3

Reading signature at address 1400 (rel)

Tree type ID: H5B_CHUNK_ID

Size of node: 2616

Size of raw (disk) key: 32

Dirty flag: False

Level: 0

 Page 13 of 20

April 14, 2015RFC THG 2014-05-24.v2

Address of left sibling: UNDEF

Address of right sibling: UNDEF

Number of children (max): 56 (64)

Child 0...

 Address: 4016

 Left Key:

 Chunk size: 180 bytes

 Filter mask: 0x00000001

 Logical offset: {0, 0, 0}

 Right Key:

 Chunk size: 180 bytes

 Filter mask: 0x00000001

 Logical offset: {0, 9, 0}

Child 1...

 Address: 4196

 Left Key:

 Chunk size: 180 bytes

We see that the size of each chunk is 180 bytes, i.e., compression was not successful. The filter mask
value 0x00000001 indicates that filter was not applied; see [6] for more information on how to
interpret the filter mask.

 Page 14 of 20

April 14, 2015RFC THG 2014-05-24.v2

What to do if a compression filter was not effective
There are several things one can do to improve effectiveness of compression in HDF5:

The h5repack tool can be used to experiment with the data to address items 1 – 3. In order to
address item 4, use the h5stat tool to determine if space is used efficiently in an HDF5 file. The
h5repack tool can be used to reduce the amount of unused space in an HDF5 file.

Which compression should I use?

There is no “one size fits all” compression filter solution. One has to consider several characteristics
such as the type of data, the desired compression ratio vs. encoding/decoding speed, the general
availability of a compression filter, licensing, etc., before committing to a compression filter. This is
especially true for HDF5 data producers. The way data is written will affect how much bandwidth
consumers will need to download data products, how much system memory and time will be required
to read the data and how many data products can be stored on the users system, to name a few.

A comparison of different compression filters is not a subject of this document. However, it is easy to
show that, unless a suitable compression method or an advantageous filter combination is chosen,
applying the same compression filter to different types of data may not achieve the goal and, for
example, reduce HDF5 file size as much as possible.

We looked at one of the NPP EDR product file packaged with it its geolocation information GCRIO-
REDRO_npp_d20030125_t0702533_e0711257_b00993_c20140501163427060570_XXXX_XXX.h5 and
used h5repack to apply three different compressions to the original file:

Then we compared the sizes of the 32-bit floating dataset /All_Data/CrIMSS-EDR-GEO-
TC_All/Height when different types of compression were used, and similarly for the sizes of the
32-bit integer dataset /All_Data/CrIMSS-EDR_All/FORnum. The results are shown in Table 1
below.

Find the compression that is “right” for the type of data and for the objectives one tries to
achieve. For example, SZIP compression is fast but typically achieves smaller compression
ratios for floating point data than GZIP, as was shown in [7]. Which one is the better fit? The
answer will be different for different applications, data providers and data consumers.

1.

Once you have the right compression method, find the right parameters. For example, deflate
compression at level 6 usually achieves a compression ratio comparable to level 9, in less time.

2.

As will be shown in section 5.1, data preprocessing (e.g., shuffling [2]) in combination with
compression can drastically improve the compression ratio.

3.

Look beyond compression. An HDF5 file may contain a substantial amount of unused space.
See discussion in section 5.2.

4.

Deflate compression level 71.

SZIP compression using NN mode and 32-bit block size2.

Data shuffling in combination with the deflate compression level 7 3.

 Page 15 of 20

April 14, 2015RFC THG 2014-05-24.v2

	 	 	 	 	
Data

Original Deflate level 7 SZIP using NN

mode and block-
size 32

Shuffle and
deflate level 7

32-bit floats 1 2.087 1.628 2.56
32-bit integer 1 3.642 10.832 38.20

Table 1: Compression ratio (CR) for different types of compressions when using h5repack

The combination of the shuffle filter and deflate compression level 7 worked well on both floating
point and integer datasets, as shown in the fifth column of Table 1. Deflate compression worked
better than SZIP on the floating point dataset, but not on the integer dataset as shown by the results
in columns three and four. Clearly, if the objective is to minimize the size of the file, different dataset
have to be compressed with different compression methods.

What else can be done to reduce the size of an HDF5 file

Sometimes HDF5 files contain unused space, which can be reduced or eliminated by running
h5repack without changing any storage parameters of the data. For example, running h5stat on the
file GCRIO-
REDRO_npp_d20030125_t0702533_e0711257_b00993_c20140501163524579819_XXXX_X
XX.h5 shows:

Summary of file space information:
 File metadata: 425632 bytes
 Raw data: 328202 bytes
 Unaccounted space: 449322 bytes
Total space: 1203156 bytes

After running h5repack one gets a 10-fold reduction in unaccounted space:

Summary of file space information:
 File metadata: 425176 bytes
 Raw data: 328202 bytes
 Unaccounted space: 45846 bytes
Total space: 799224 bytes

There is also a small reduction in file metadata space.

 Page 16 of 20

April 14, 2015RFC THG 2014-05-24.v2

Conclusion
The most common causes of poor compression in HDF5 files are missing compression filters and use
of inadequate (for the data/objectives) compression filters. Inspection of the installed files, HDF5 APIs
and HDF5 command-line tools such as h5dump, h5ls, h5debug, h5stat and h5repack can be
used to diagnose and fix most problems.

References
The HDF Group. “HDF5 Tutorial”, http://www.hdfgroup.org/HDF5/Tutor/introductory.html 1.

The HDF Group. “HDF5 User’s Guide”, Section 5.4.2
http://www.hdfgroup.org/HDF5/doc/UG/index.html

2.

The HDF Group. “Filters in HDF5”, http://www.hdfgroup.org/HDF5/doc/H5.user/Filters.html3.

The HDF Group. “HDF5 Dynamically Loaded Filters”,
http://www.hdfgroup.org/HDF5/doc/Advanced/DynamicallyLoadedFilters/HDF5DynamicallyLo
adedFilters.pdf

4.

The HDF Group. “HDF5 Reference Manual”, Property Lists
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-FilterBehavior.

5.

The HDF Group, “HDF5 File Format”, Description of the Filter Mask,
http://www.hdfgroup.org/HDF5/doc/H5.format.html#V1Btrees

6.

The HDF Group. “SZIP compression in HDF products”,
http://www.hdfgroup.org/doc_resource/SZIP/

7.

 Page 17 of 20

http://www.hdfgroup.org/HDF5/Tutor/introductory.html
http://www.hdfgroup.org/HDF5/doc/UG/index.html
http://www.hdfgroup.org/HDF5/doc/H5.user/Filters.html
http://www.hdfgroup.org/HDF5/doc/Advanced/DynamicallyLoadedFilters/HDF5DynamicallyLoadedFilters.pdf
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html
http://www.hdfgroup.org/HDF5/doc/H5.format.html
http://www.hdfgroup.org/doc_resource/SZIP/

April 14, 2015RFC THG 2014-05-24.v2

Revision History

May 27, 2014: Version 1 circulated for comment within The HDF Group.

 Page 18 of 20

April 14, 2015RFC THG 2014-05-24.v2

Appendix: Example program
The example program used to create the file discussed in this document, is a modified version of the
program available at

http://www.hdfgroup.org/ftp/HDF5/examples/examples-by-api/hdf5-examples/1_8/C/H5D/h5ex_d_gzip.c

It was modified to have chunk dimensions not be factors of the dataset dimensions. Chunk
dimensions were chosen for demonstration purposes only and are not recommended for real
applications.

#include <stdlib.h>

#define FILE "h5ex_d_gzip.h5"
#define DATASET "DS1"
#define DIM0 32
#define DIM1 64
#define CHUNK0 5
#define CHUNK1 9 	

int
main (void)
{
 hid_t file, space, dset, dcpl; /* Handles */
 herr_t status;
 htri_t avail;
 H5Z_filter_t filter_type;
 hsize_t dims[2] = {DIM0, DIM1},
 chunk[2] = {CHUNK0, CHUNK1};
 size_t nelmts;
 unsigned int flags,
 filter_info;
 int wdata[DIM0][DIM1], /* Write buffer */
 rdata[DIM0][DIM1], /* Read buffer */
 max,
 i, j;

 /*
 * Initialize data.
 */
 for (i=0; i<DIM0; i++)
 for (j=0; j<DIM1; j++)
 wdata[i][j] = i * j - j;

 /*
 * Create a new file using the default properties.
 */
 file = H5Fcreate (FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

 /*
 * Create dataspace. Setting maximum size to NULL sets the maximum
 * size to be the current size.
 */
 space = H5Screate_simple (2, dims, NULL);

 Page 19 of 20

http://www.hdfgroup.org/ftp/HDF5/examples/examples-by-api/hdf5-examples/1_8/C/H5D/h5ex_d_gzip.c

April 14, 2015RFC THG 2014-05-24.v2

 /*
 * Create the dataset creation property list, add the gzip
 * compression filter and set the chunk size.
 */
 dcpl = H5Pcreate (H5P_DATASET_CREATE);
 status = H5Pset_deflate (dcpl, 9);
 status = H5Pset_chunk (dcpl, 2, chunk);

 /*
 * Create the dataset.
 */
 dset = H5Dcreate (file, DATASET, H5T_STD_I32LE, space, H5P_DEFAULT, dcpl,
 H5P_DEFAULT);

 /*
 * Write the data to the dataset.
 */
 status = H5Dwrite (dset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT,
 wdata[0]);

 /*
 * Close and release resources.
 */
 status = H5Pclose (dcpl);
 status = H5Dclose (dset);
 status = H5Sclose (space);
 status = H5Fclose (file);

 return 0;
}

 Page 20 of 20

