
February 12, 2015RFC THG 2015-2-12.v1

RFC: H5LTget_hardlinks – High-level API to list all the hard links to
an object

M. Scot Breitenfeld

This RFC introduces a new high-level API for returning all the hard links to an object.

Introduction
When developers truly want to delete an object–and not just delete the link to it from a particular
group–then they need a complete list of all the hard links to the object since an object is deleted from
the file by removing all the hard links to it. The new high-level API H5LTget_hardlinks traverses the file
and returns a list of hard links to the user. Once the list of hard links is obtained, the user can, for
example, use the list to delete all the links to an object. Deleting an object is just one use case for the
new function; this function might also prove useful in HDFView.

Approach
The new high-level routine will take a user-provided file or group identifier and a user-allocated string.
The new API will then use H5Oget_info_by_name to get the hard link information and H5Lvisit to then
find all the hard links by using an operator function. The operator function will get the address of the
hard link and then compare it to the object’s address. If the hard link matches the object then the
hard link is added to the list being returned to the user.

New high-level API routine H5LTget_hardlinks

The signature of H5LTget_hardlinks is defined as follows:

herr_t H5LTget_hardlinks(hid_t loc_id, const char *obj_name, size_t *num_links,
 size_t *buf_size_required, char *buf)

The parameters of H5LTget_hardlinks are defined as follows:

buf can be NULL, meaning that num_links and buf_size_required will be returned so that the user can

loc_id is an identifier of the file or group (IN).●

obj_name is the name of object, relative to loc_id to query (IN).●

num_links is the number of hard links to the object (OUT).●

buf_size_required is the required size for buf (OUT).●
buf is a character string composed of a list of null-terminated
strings for each of the hard links (OUT).

●

 Page 1 of 4

February 11, 2012 RFC THG 2012-2-11.v2

allocate the correct string size. The return value of the function is a negative value if an error occurred.

Fortran 2003 high-level API routine H5LTget_hardlinks_f

The signature of H5LTget_hardlinks_f is defined as follows:

SUBROUTINE H5LTget_hardlinks_f (loc_id, obj_name, error, buf, num_links,
max_string_size)

The parameters of H5LTget_hardlinks_f are defined as follows:

The max_string_size is the minimum size needed in the character length parameter for buf.
Max_string_size returns the maximum string length found in the hard links list, and includes in the
length the space used for the C null character. This is because the C API returns a list of null character
terminated strings and Fortran is passing the Fortran character buffer to the C API to fill directly (i.e.
we are not creating a separate string buffer in C and then copying the C buffer to the Fortran buffer).
Therefore, we need the Fortran buffer size to also include the C null characters. Note, the returned
character buffer will not include the C null character in the Fortran strings. It is important to clarify
the difference between the C and Fortran APIs; the C API is returning a character string containing a
list of null character terminated strings, whereas the Fortran API is returning an array of character
strings. This difference is mainly due to differences in programming preferences/conventions between
Fortran and C.

Usage

INTEGER, INTENT(IN) :: loc_id ! an identifier of the file or group.●

CHARACTER(len=*), INTENT(IN) :: obj_name ! the name of object, relative to loc_id to query.
●

INTEGER, INTENT(OUT) :: error ! Error code: 0 on success and -1 on failure●

CHARACTER(len=*), DIMENSION(*), INTENT(OUT), OPTIONAL:: buf ! list of all the hard links
to the object.

●

INTEGER(size_t), INTENT(INOUT), OPTIONAL :: num_links ! Number of hard links●

INTEGER(size_t), INTENT(INOUT), OPTIONAL :: max_string_size●

 Page 2 of 4

February 11, 2012 RFC THG 2012-2-11.v2

Figure : Example of HDF5 file structure with groups and datasets [1].

The following example uses Figure 1 as the file’s data structure. If a user wishes to delete the
/group2/group2 object:

C -

/* Find the needed size of the buffer and the number of links */ H5LTget_hardlinks(file_id,
"/group2/group2", &num_links, &buf_size_required, NULL)

/* Allocate the string buffer */
hardlinks = HDmalloc(buf_size_required*sizeof(char));

/* Get all the hardlinks to the object */
H5LTget_hardlinks(file_id, "/group2/group2", &num_links, &buf_size_required, hardlinks)

/* Delete the hard links */
js = 0;
for(j = 0; j < buf_size_required ; j++) {
 if(hardlinks[j] == '\0') {
 if(H5Ldelete(file_id, &hardlinks[js], H5P_DEFAULT) < 0)
 	 goto out;
 js = j + 1;
 }
 }

Fortran –

! Find the needed size of the buffer and the number of links
CALL h5ltget_hardlinks_f(file_id, "/group2/group2", errcode, num_links=num_links, &
	 	 	 max_string_size=max_string_size)

! Allocate the string array buffer
ALLOCATE(hardlinks(1:num_links))
ALLOCATE(CHARACTER(len=max_string_size) :: hardlinks)

 Page 3 of 4

February 11, 2012 RFC THG 2012-2-11.v2

! Get all the hardlinks to the object
CALL h5ltget_hardlinks_f(file_id, "/group2/group2", errcode, hardlinks)

Recommendation
Outlined is the high-level API routine H5LTget_hardlinks, which will help to insulate the user from the
burdensome and possibly error prone chore of deleting an object. The API gives the user the
necessary information to successfully delete an object.

Revision History

February 12, 2015: Version 1 circulated for internal comment to interested parties within The HDF
Group.

February 20, 2015 Version 2 circulated for internal comment within The HDF Group.

References

[1] The HDF5 User’s Guide

 Page 4 of 4

