
October 5, 2011RFC THG 2011-06-14.v3

RFC: Refactor h5dump to Improve Maintenance

Allen Byrne

The code base for h5dump has become bloated and unmanageable because of the
duplication of functions and variables. This document is an overview of the current
problems with the h5dump program and the tools library, followed by a proposal to
refactor the existing h5dump and h5tools library code.

Introduction
The amount of duplicate functions and variables in the h5dump program versus the tools library, and
the single program file packed with every function created, hinders the improvement of the h5dump
program. These issues make the addition of new features very expensive in time and testing. The tools
team has identified five areas of improvement to reduce the amount of duplicate functions and
variables in the h5dump program versus the tools library. The first three issues can be handled
immediately and the final two will need resources assigned. The use of bold names in this document
is to help with cross-referencing of the names in the source code.

First, the h5dump source file should separate the existing functions into three files: ddl, xml, and
program control functionality files. This will make it easier to focus on removing duplicate functions
and variables.

Second, each main program function should create an independent context structure and initialize it
from the global indent variable. This will improve the control over the output interaction with the
dump_function_table functions by aligning the context->indent variable and the global dump_indent
variable.

Third, remove functions in the h5dump code that already exist in the h5tools library. This will allow
other functions to be moved into the h5tools library and simplify the h5dump code program to
concentrate on function control flow. The tools library will concentrate on formatting the output.

Fourth, create and/or update the low-level h5tools_str functions into building block functions. This
will allow more general dump content functionality to be built into the h5tools_dump functions,
which can concentrate on how to display the content.

Finally, before making any changes, add unit testing of the low-level library code and integration
testing of the library dump functions. This testing will help keep future library changes from breaking
the h5dump design.

Motivation
It is necessary to understand why working on a feature or problem in h5dump has become a tedious

 Page 1 of 10

October 5, 2011RFC THG 2011-06-14.v3

undertaking. While the tools library has moved forward with improvements, the h5dump program
layer has remained a jumble of code with an inconsistent and almost indiscernible design. Some
routines handle indentation manually while other routines use interfaces that align with the tools
library, sometimes both in one function. Also the XML processing uses similar functions with
completely different control and seems to be a different program. A function to display a datatype
illustrates this problem; the dump_datatype function in the h5dump source file has a duplicated
function in the tools library, h5tools_dump_datatype. Each calls one function; dump_datatype calls
print_datatype in the h5dump source file and h5tools_dump_datatype calls h5tools_print_datatype
in the tools library. Both print functions are used by other functions; however
h5tools_dump_datatype is never referenced elsewhere, while dump_datatype is used by the
dump_function_table callback function. Fixing a bug in printing a datatype requires knowing which
program flow path produces the problem!

The following graphic is the current interaction between the h5dump program and the tools library.
Given an hdf5 object (from an hdf5 file) the h5dump program processes it using the two control
structures: format_info (h5tool_format_t) and context (h5tools_context_t).

The format structure, h5tool_format_t, members are strings that define the printf() format string
used to print the variables and the element markup. These are set to default values in the h5dump file
functions and can be changed depending on the process.

The h5tools_context_t structure is used to control where to place element rendering in a column
defined output line or group of lines. The member indent_level is manipulated most often and is
initialized by the h5dump functions from the global variable; dump_indent. The number of columns
per indent level is controlled by the h5tool_format_t member; line_indent.

h5dump Current Code Layout

 Page 2 of 10

October 5, 2011RFC THG 2011-06-14.v3

Figure 1 Current Code Layout

Currently, the h5dump functions are concentrated in two locations; h5dump.c and the library file
h5tools.c. Both files have some duplication of functions, variables, defines and the format and context
structures. Only the functions in h5dump.c use the global indentation variable. Also, the h5tools_str.c
file provides string manipulation utility functions to h5dump by the IN/OUT variable: buffer.

Proposed h5dump Refactoring

 Page 3 of 10

October 5, 2011RFC THG 2011-06-14.v3

Figure 2 Refactored Code Layout

Split h5dump.c into three files

To expose the inconsistent use of functions and formatting and identify the dump program flow, group
the common functionality of h5dump into three files; h5dump_main, h5dump_xml, and
h5dump_ddl. The h5dump_main file will consist of the command-line parameter parsing and the
main() function. The main() function, after initialization tasks, decides if ddl or xml formatted text is
output to the screen. Also the main() function decides if just the file information is printed, or if
individual groups/attributes/datasets are printed, or if the root group is printed by default. Splitting
the h5dump file into three files separates the high level dump_function_table callback functions from
the utility dump functions.

 Page 4 of 10

October 5, 2011RFC THG 2011-06-14.v3

Add independent context structures to each high-level function.

The high level functions are those assigned to the callback function table, dump_function_table.
These functions can safely initialize the format and context structures and pass these as parameters to
the utility functions.

In the proposed refactored code, the two structures used to control the output of information from
h5dump; h5tool_format_t and h5tools_context_t, and the #defines should exist only in the tools
library. Each dump_function_table function will create and initialize the independent format and
context structures using the global variable dump_indent (initialized by the main function) to
configure the context indentation. The independent format and context structures can then be used
by the tools library to control formatting of the data or information.

Remove duplicate functions from h5dump.

Moving the dump utility functions into the h5tools library will identify the dump process flow from
the dump output control. Further refactoring out the dump content functions from the h5tools code
should expose the lower level inconsistencies in the library that the dump content functions depend
upon.

Each function moved into the tools library will depend on the formatting and context information
provided by structure passed into the functions. This will require translation of indentation based on
the global variable dump_indent to using the context indentation in the h5tools_context structure.

Create and/or update h5tools_str functions into building block functions.

There is a general data buffer output sequence followed by the dump functions in the h5dump
program and the tools library:

Insert an optional newline and prefix, then append text to the buffer, and conclude with the
rendering of the buffer to the output stream.

This general sequence is usually contained within an element BEGIN/END pair that indicates the type
of information and its bounds. For example, the GROUP object will display as follows with two pairs
(the second pair BLOCK BEGIN/END is the brackets):

…

GROUP “groupname” {

…

}

…

“BEGIN ELEM” “name” “BLOCK BEGIN”

…

“BLOCK END” “END ELEM”

 Page 5 of 10

October 5, 2011RFC THG 2011-06-14.v3

The basic low-level operations in the h5tools_str file only operate on an output buffer using a supplied
output format variable. These operations supply the foundation blocks for the functional operations
to be in the h5tools_dump file. These mid-level functions should contain code blocks that involve the
stream file and the output format passed in from a high-level function in the h5dump program. Utility
functions in h5tools and h5tools_utils should provide functions that support the interface between
these two files, h5tools_str and h5tools_dump. The h5tools_str.c file will still provide string
manipulation utility functions to h5tools_dump by the IN/OUT variable: buffer.

Add unit testing to h5dump functions and tools library functions h5dump uses.

Refactoring the h5dump program by eliminating duplication and moving dump functions to the tools
library creates an urgent need to test the functions in the tools library. During a refactoring trial,
verification of the output created by the refactored code exposed numerous indentation issues and
incorrect data formatting. Had there been unit tests available, many of these issues would not have
existed originally, and will save developer time trying to determine the correct formatting. This unit
testing can be accomplished by beginning with the low-level individual functions in the tools library.
Integration tests can check the parameters and logic that are at a scope above the functions being
tested.

Unit testing should be limited to the functions that do not output information to the generic “FILE
*stream” parameter (usually stdout/stderr). This requirement will simplify the verification of the
functions operation. Later integration testing, similar to current regression tests, can handle the issues
with streams and consider code coverage. The current test implementation has a large degree of
duplication and doesn’t present a cohesive test plan.

Recommendation
The h5dump tool can be made more efficient and allow new features to be easier to implement by
refactoring the existing h5dump and tools library code base.

h5dump.c: Separate the ddl and xml dump functions of the h5dump file into separate files -
this makes removing duplicate functions and variables easier for the developers. After the
reduction of duplicate functions and variables, this separation of concerns will allow
developers to better focus on future improvements.

1.

h5dump_ddl.c/h5dump_xml.c: In each high-level function, add an independent context
structure and initialize it with the global indentation variable. Control interaction with
dump_function_table functions by aligning the context->indent variable and the global
dump_indent variable. Also add an independent format structure and initialize it, usually
mapping the default values supplied in the tools library.

2.

h5dump_ddl.c/h5tools.c: Move the content display functionality into the new h5tools_dump
file in the library. This will simplify the h5dump program to concentrate on function control
flow and the tools library to concentrate on formatting. A future by-product could be the
creation of hdf5 dump APIs in the tools library.

3.

 Page 6 of 10

October 5, 2011RFC THG 2011-06-14.v3

Function Locations (excluding XML named functions)
Original h5dump.c functions (NOTE: tools library functions use h5tools_ prefix)

function File location Refactored location

h5_fileaccess

dump_oid

dump_packed_bits

print_enum

init_prefix

add_prefix

dump_all_cb

dump_extlink

dump_group

dump_named_datatype

dump_dataset

dump_dataspace

dump_datatype

dump_data

dump_dcpl

dump_comment

dump_fcpl

dump_fcontents

dump_attr_cb

leave

usage

table_list_add

table_list_visited

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5tools_dump.c

h5tools_dump.c(print_packed_bits)

h5dump.c

h5dump.c

h5dump_ddl.c

h5dump_ddl.c

h5dump_ddl.c

h5dump_ddl.c

h5dump_ddl.c

h5dump_ddl.c

h5dump_ddl.c

h5dump_ddl.c

h5tools_dump.c

h5tools_dump.c

h5dump_ddl.c

h5dump_ddl.c

h5dump_ddl.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5tools_str.c: Create and/or update the low-level h5tools_str functions into building block
functions - this allows more general content dump functionality to be built into the
h5tools_dump functions, which can concentrate on how to display the content.

4.

Finally, add unit testing of the low-level library code and integration testing of the library dump
functions. Unit testing will help keep future library changes from breaking the h5dump design.
The h5tools_str.c functions can easily be tested because it only uses a memory buffer for I/O.
The h5tools_dump.c functions will require the stream parameter to be redirected for test
verification.

5.

 Page 7 of 10

October 5, 2011RFC THG 2011-06-14.v3

table_list_free

print_datatype

dump_selected_attr

dump_dims

dump_subsetting_header

dump_fill_value

set_output_file

set_binary_form

set_sort_by

set_sort_order

handle_attributes

parse_hsize_list

parse_subset_params

parse_mask_list

handle_datasets

handle_groups

handle_links

handle_datatypes

parse_command_line

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump_ddl.c

h5tools_dump.c(print_dims)

h5tools_dump.c

h5tools_dump.c (print_fill_value)

h5dump.c

h5dump.c

h5dump.c

h5dump.c

h5dump_ddl.c

h5dump.c

h5dump.c

h5dump.c

h5dump_ddl.c

h5dump_ddl.c

h5dump_ddl.c

h5dump_ddl.c

h5dump.c

Original h5tools.c functions

function File location Refactored location

h5tools_init

h5tools_close

h5tools_fopen

h5tools_dump_dset

h5tools_dump_mem

h5tools_get_native_type

h5tools_get_little_endian_type

h5tools_get_big_endian_type

h5tools_detect_vlen

h5tools_detect_vlen_str

h5tools_is_obj_same

h5tools_dump_simple_data

h5tools_canreadf

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools_dump.c

h5tools_dump.c

h5tools_dump.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools_dump.c

h5tools.c

h5tools_dump.c

h5tools.c

 Page 8 of 10

October 5, 2011RFC THG 2011-06-14.v3

h5tools_can_encode

init_acc_pos

h5tools_dump_datatype

h5tools_print_dataspace

h5tools_print_datatype

h5tools_print_enum

h5tools_dump_init

h5tools_dispaly_simple_subset

h5tools_dump_region_data_blocks

h5tools_dump_region_data_points

h5tools_dump_simple_dset

h5tools_dump_simple_mem

h5tools_dump_simple_subset

h5tools_is_zero

h5tools_ncols

h5tools_print_region_data_blocks

h5tools_print_region_data_points

h5tools_print_simple_subset

h5tools_region_simple_prefix

h5tools_render_element

h5tools_render_region_element

h5tools_simple_prefix

render_bin_output

render_bin_output_region_blocks

render_bin_output_region_data_blocks

render_bin_output_region_data_points

render_bin_output_region_points

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools_dump.c

h5tools_dump.c

h5tools_dump.c

h5tools_dump.c

h5tools_dump.c

h5tools_dump.c

h5tools_dump.c

h5tools_dump.c

h5tools_dump.c

h5tools_dump.c

h5tools_dump.c

h5tools.c

h5tools.c (count_ncols)

h5tools_dump.c

h5tools_dump.c

h5tools_dump.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

h5tools.c

Reference

1)

RFC: Code Refactoring for h5dump at
https://www.hdfgroup.uiuc.edu/RFC/HDF5/tools/h5dump/h5dump_code_refactoring_v2.
pdf

●

 Page 9 of 10

https://www.hdfgroup.uiuc.edu/RFC/HDF5/tools/h5dump/h5dump_code_refactoring_v2.pdf

October 5, 2011RFC THG 2011-06-14.v3

http://www.hdfgroup.org/HDF5/doc/ddl.html

http://www.hdfgroup.org/HDF5/XML/DTD/HDF5-File.dtd

Revision History

June 22, 2011: Version 1 reviewed for comment.

August 31, 2011: Version 1 reordered sections.

September 13, 2011: Version 2 split into two documents

September 19, 2011: Version 2 renumbering of sections to identify five major points.

October 5, 2011 Version 3 added structure appendix and list of functions targeted for
refactoring

October 7, 2011 Removed appendix, best to refer to companion document (in process)

BNF: DDL in BNF for HDF5 at●

XML: Document Type Definition (DTD) for HDF5 at●

 Page 10 of 10

http://www.hdfgroup.org/HDF5/doc/ddl.html
http://www.hdfgroup.org/HDF5/XML/DTD/HDF5-File.dtd

