
August 19, 2022 RFC THG 2022-08-19.v1

Page 1 of 5

RFC: Terminal VOL Connector Feature Flags

Dana Robinson
Jordan Henderson

The HDF5 Virtual Object Layer (VOL) provides a powerful abstraction mechanism for
mapping HDF5 API calls to arbitrary storage schemes. Not all terminal VOL connectors
implement all HDF5 API calls, however, and no scheme exists that can be used to

determine if a VOL connector meets an application's needs.

This work proposes a set of VOL connector feature flags that can be used for this
purpose.

1 Introduction

A set of feature flags that describes which HDF5 capabilities a VOL connector implements would solve

two problems:

• Matching HDF5 applications to suitable VOL connectors

• Indicating which tests in the vol-test repository suite should be run for a VOL connector

The first problem is critical – Since there is no standard for what makes an "acceptable" VOL
connector, HDF5 software that uses non-native VOL connectors will need to be able to query

connectors to see if they exhibit the correct functionality.

2 Existing/Related Infrastructure

The H5VL_class_t struct already has a cap_flags field (type: unsigned). The flags that are

currently supported are:

#define H5VL_CAP_FLAG_NONE 0 /* No special connector capabilities */

#define H5VL_CAP_FLAG_THREADSAFE 0x01 /* Connector is threadsafe */

#define H5VL_CAP_FLAG_ASYNC 0x02 /* Connector performs operations asynchronously*/

#define H5VL_CAP_FLAG_NATIVE_FILES 0x04 /* Connector produces native file format */

An application can get a VOL connector's flags using H5VLintrospect_get_cap_flags(). This is
considered a "pass-through VOL connector" API call vs. a user-level API call and is declared in
H5VLconnector_passthru.h.

August 19, 2022 RFC THG 2022-08-19.v1

Page 2 of 5

3 Coarse- or Fine-Grained Flags?

The first topic we need to address is how fine-grained we want the feature flags to be. At the most
fine-grained, there would be one feature flag for most API calls as well as some broader flags like
"creates native HDF5 files". Such a high level of detail would allow very precise mapping of software
to VOL connectors. While applications may not need this level of precision, it would be handy for the
VOL tests, which could definitely make use of it. There are several downsides, though. The first is that
this would be a lot of work to implement, not only at the library and VOL connector levels, but also
for applications, which would have to specify complicated compatibility flags. Another is that we'd
easily exceed the 64 flags we can pack into the largest common unsigned integer type, requiring a
more complicated flag structure and more extensive changes to existing VOL connectors and

applications.

An alternative is to use a more coarse-grained scheme, where flags specify larger chunks of

functionality. This would be much simpler to implement, the flags would likely fit into a single integer
type, and could (mostly) use existing infrastructure. The downside is that applications/tests will not

precisely map their desired functionality to VOL connectors.

4 The Problem of Getting the Flags in the First Place

One problem that we have with VOL connector flags, is that getting them is complicated.

• VOL connectors can be stacked

• Some VOL features are dependent on configuration settings

• Some VOL features may not be known until runtime

The existing feature flags scheme is acceptable for a passthrough VOL connector querying the

underlying connectors, but is not particularly well suited to applications trying to figure out if a
connector stack meets the needs of the software.

There are two reasons for this:

1. API call parameters are more suited for pass-through connectors than applications. For

example, H5VLintrospect_get_cap_flags() takes a void pointer for the info struct.

2. Situational. The existing scheme was designed for passthrough connectors that are in the

midst of opening an object and have access to the object, the fapl, and know about the
underlying VOL connector.

These are basically fixable problems, but fully addressing the second may involve advising
applications to check a connector's flags using either a fapl or connector ID to see if it's even possible
for a VOL connector to meet the application's needs (connectors would have to be configured to emit

"best possible" flags when queried directly), then check the flags again after file create/open.

5 A Proposed Flag Scheme

We're going to start with a more coarse-grained capability flag system. This is mainly in the interest of
simplicity, both in VOL implementation details and in the amount of code applications will have to

August 19, 2022 RFC THG 2022-08-19.v1

Page 3 of 5

write. If a more complicated, fine-grained system proves necessary, we'll cross that bridge when we
come to it.

The proposed scheme simply piggybacks on the existing capabilities flags, albeit with a slight change

to the flags type and moving some components around.

• The cap_flags field will be changed to a uint64_t from an unsigned int to increase the

number of flags from 32 to 64 and so the number of flags is explicit and not system-

dependent1.

• The associated capabilities flags API calls will modified to take uint64_t parameters instead

of unsigned integers.

• The existing capabilities flags will be moved from H5VLconnector.h to H5VLpublic.h.

• The H5VLget_cap_flags() prototype will move from H5VLconnector_passthru.h to

H5VLpublic.h.

• We'll investigate modifying H5VLget_cap_flags() to take a fapl with a VOL stack instead
of a VOL connector ID. It will also be modified to use the introspect callback instead of just

returning the top-level connector's flags.

• The H5VL_class_t version will be bumped by this change (this change can be combined
with the multi-dataset VOL changes).

In this proposed flag scheme, we're assuming that the number of capabilities flags will not exceed 64.

Given that we're only using half of our bits to cover the entire HDF API, this seems like a reasonable
assumption. If a more fine-grained solution that multiples the flags proves necessary, we're probably

going to have to rework the flags field into something more complicated anyway.

5.1 Proposed Compatibility Flags

Keeping with the existing naming scheme, flags will be named H5VL_CAP_FLAG_<THING> according
to the following table.

<THING> Description

ATTRIBUTE_BASI
C

H5Acreate(_by_name)/delete(_by_name)/exists(_by_name)/

open/close/read/write

ATTRIBUTE_MORE H5Aget_info(_by_name)/get_name/get_space/get_type/

rename(_by_name)

DATASET_BASIC H5Dcreate/open/close/read/write

DATASET_MORE H5Dget_space(_status)/get_type/set_extent

FILE_BASIC H5Fcreate/open/close/is_accessible/delete

FILE_MORE

1 Even though ILP64 and SILP64 systems are rare and it's been decades since 16-bit integers were common.

August 19, 2022 RFC THG 2022-08-19.v1

Page 4 of 5

GROUP_BASIC H5Gcreate/open/close

GROUP_MORE H5Gget_info

LINK_BASIC H5Lexists/delete

LINK_MORE H5Lcopy/move/get_info/get_name/get_val

OBJECT_BASIC H5Oopen/close/exists

OBJECT_MORE H5Ocopy/get_file/get_name/get_type/get_info/incr|decr_ref
count

REFERENCES_BAS
IC

H5Rdestroy, at least one of the OBJ|REG|ATTR_REF flags

REFERENCES_MOR
E

H5Rget_type/ copy/get_file_name

OBJ_REF H5Rcreate_object/open_object

REG_REF H5Rcreate_region/open_region

ATTR_REF H5Rcreate_attr/open_attr

STORED_DATATYP
ES

H5Tcommit/open

CREATION_ORDER H5Pset_(attr|link)_creation_order (as applied to other packages)

ITERATE H5Aiterate, H5Lvisit, et al.

(Specific calls depend on package flags)

STORAGE_SIZE H5Aget_storage_size, et al.

(Specific calls depend on package flags)

BY_IDX H5Adelete_by_idx/get_info_by_idx/get_name_by_idx, et al.

(Specific calls depend on package flags)

GET_PLIST H5Aget_create_plist, et al.

(Specific calls depend on package flags)

FLUSH_REFRESH H5Dflush/refresh, H5Gflush/refresh

EXTERNAL_LINKS H5Lcreate_external

HARD_LINKS H5Lcreate_hard

SOFT_LINKS H5Lcreate_soft

UD_LINKS H5Lcreate_ud

TRACK_TIMES H5Pset_obj_track_times (as applied to other packages)

MOUNT H5F(un)mount, H5G(un)mount

FILTERS Filter pipelines

August 19, 2022 RFC THG 2022-08-19.v1

Page 5 of 5

FILL VALUES Supports dataset fill values

It might also be useful to define useful bitwise OR flag sets. For example, a BASIC flag set might be
used to indicate that a VOL connector could serve as a general purpose VOL connector in common
use cases, such as running IOR.

6 Use By Applications / VOL Test Suite

Utilizing the capabilities flags will be straightforward.

1. Create a desired flag set by combining the capabilities you need using bitwise OR

2. Get the current VOL connector's capability flags

3. Compare required flags with bitwise AND of required and VOL flags

uint64_t req_flags = H5VL_CAP_FLAG_BASIC | H5VL_CAP_FLAG_FILTERS;

uint64_t vol_flags = H5VL_CAP_FLAG_NONE;

H5VLget_cap_flags(plist_id /* or open object */, &vol_flags);

if (req_flags != (req_flags & vol_flags))

 exit(EXIT_FAILURE); /* or skip tests… */

As mentioned earlier in this document, the difficulty here is with passthrough connectors.

Acknowledgements

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative

effort of the U.S. Department of Energy Office of Science and the National Nuclear Security

Administration.

Revision History

August 19, 2022: Version 1 circulated for comment within The HDF Group.

