
PERFORMANCE COMPARISON OF COLLECTIVE I/O
AND INDEPENDENT I/O WITH DERIVED DATATYPES

Christian M. Chilan
Kent Yang
2006-6-23

I. Introduction

1. Independent IO and Collective IO

Parallel HDF5 uses the MPI-IO to allow multiple processors to write to one file on
parallel systems. MPI-IO supports two ways of doing this: Independent IO and Collective
IO. Independent IO means that each process does IO independently, while Collective IO
requires all processes to participate when doing IO operations. The advantage of
collective IO is that it allows MPI-IO to do optimization to improve IO performance.
This is because system IO calls on most operating systems can only handle contiguous
data in a file. For non-contiguous data, they must read or write in many small IO
accesses, resulting in very poor IO performance.

Using the independent IO option means that each process does its own IO, so using
independent IO without any optimization is just like doing general IO with many
processes. If an application is only handling contiguous data, this will generally result in
acceptable performance. However, for many applications each process needs to access
noncontiguous data and performance will be poor. On the other hand, the MPI-IO library
can optimize these accesses and improve performance by using the MPI-IO function call
MPI_FILE_SET_VIEW and collective IO. Essentially, MPI-IO will assemble a big
contiguous IO collectively by combining the noncontiguous data layout of each process.
This is explained in greater detail in Chapter 3 of Using MPI-2[4].

As a very simple example, suppose we have four processes with each process’s view of
the data as follows:

P0’s view

P1’s view

P2’s view

P3’s view

When doing independent IO, since the each process’s view is noncontiguous, writing
what is essentially four blocks on the above chart will require 8 individual IO access to
the disk. However, when using collective IO, the IO access to the disk can be illustrated
as follows:
P0 P1 P2 P3

This layout is contiguous. With an appropriate parallel file system, the previous 8 IOs can
become a single IO operation. In real applications, of course, collective IO in MPI-IO can
handle much more complicated cases.

In the current version of HDF5 I/O operations can be carried out in independent or
collective mode, corresponding to the access types provided by MPI-IO.

2. Collective VS collective IO

In the world of parallel HDF5, sometimes “collective” and “collective IO” are used
interchangeably. However, “collective IO” is a small subset of “collective”. In fact,
“collective IO” really boils down to two MPI-IO functions: <MPI_File_write_all> and
<MPI_File_read_all> within parallel HDF5. There are dozens of collective calls in the
MPI world.

II. Independent I/O with Derived Datatype

1. Another I/O Option

MPI-IO also provides another technique called data-sieving technique [6] to improve
performance with independent I/O. This technique provides a buffer to hold several non-
contiguous, non-interleaved small I/O accesses and hopefully does one I/O in the MPI-IO
layer. This can be illustrated as follows:

P0’s view

P1’s view

Without using data sieving, process 0 may need two IO accesses to do IO independently.
With data sieving, only one IO is needed. However, this performance gain doesn’t come
for free--it requires the application to describe the file layout pattern clearly and pass this
information into the MPI-IO layer. Currently the only way to do this is by using an MPI
derived datatype. Furthermore, there are two restrictions to this approach. The first is that
an MPI collective call, MPI_file_set_view, has to be used to pass the file layout

information to the MPI-IO layer. This means although the application is doing
independent IO it needs to do a collective call beforehand. This means that an application
that wants to use independent IO with data sieving is actually in the “collective mode”
category instead of the “independent mode” category. This is very important in order to
understand why in HDF5 H5FD_MPIO_COLLECTIVE must be set in the MPIO dataset
transfer property list before using independent IO with an MPI derived datatype.
The second restriction to using a derived datatype is that it should NEVER be used for
WRITING the data in the non-contagious interleaved case since this can cause data
corruption!

2. Why not always use collective IO?

Collective IO is not free. Executing a collective IO call may require extra communication
overhead in addition to the collective call MPI_File_set_view. Furthermore, it is very
possible that only a small number of processors will participate in IOs in chunked storage
when an application issues a collective IO request to the HDF5 library. This can be
illustrated in the following chart:

chunk 1 chunk 2

P0 P5 P0

Eight processors are used to do IOs for this dataset, which is divided into four chunks.
Only two processors participate in IOs for each chunk, but the other six processors must
still communicate with them when using collective IO. Depending on different MPI-IO
implementations, it is possible that MPI-IO may also demand the other six processors to
do IOs for this chunk. This is likely to cause poor performance compared with
independent IO.

The purpose of the performance study is to verify whether independent IO with an MPI
derived datatype(DDT) can provide better performance than collective IO inside HDF5.

P1 P6

P3

P4

P7

P8

P5

P1 P6
chunk 3 chunk 4 P3 P7

P4 P8

To summarize the target of comparison, we use the following tables to describe the
performance behaviors of independent IO, independent IO with DDT and Collective IO
among the different file layouts. We will put question marks for the behaviors we don’t
know, and we will try to verify our hypothesis at the end of the table.

 Independent IO Independent IO with

DDT
Collective IO

contiguous Good Good Good
Non-contiguous
non-interleaving

Not Good Good? Good?

Non-contiguous
interleaving

Not Good Not Good? Good

Table 1: Read Performance among different MPI-IO modes

 Independent IO Independent IO with

DDT
Collective IO

contiguous Good Good Good
Non-contiguous
non-interleaving

Not Good Good? Good?

Non-contiguous
interleaving

Not Good Should not use Good

Table 2: Write Performance among different MPI-IO modes

In order to verify this hypothesis, we perform testing with non-interleaved selections in
Bluesky, the NCAR IBM Power4 SP cluster, using two categories.

The first category models the common case in which all the processors of the
communicator participate in the I/O operation. In the second category, we want to
determine the effect on performance of using only a subset of processors out of 64
processors in the communicator. In all tests, we ran the test three times and reported the
best result.

III. Testing with full processor participation

In these tests, we compare the performance of collective I/O and independent I/O access
with derived datatypes for the common case in which all processors participate in the I/O
operations. The configuration and geometry are shown in the following Table 3 and in
Figure 1. The type of each element is a char. The dataset is 2-D, with height equal to
Buffer_dim and length Dset_dim. We explicitly set the Dset_dim equal to the number of
processor multiplied by Buffer_dim so that each processor selects a region of size
Buffer_dim*Buffer_dim.

Ind-dd represents “independent with derived datatype”. Coll represents “collective.” The
aggregate bandwidth(MB/second) is used for performance comparison. This is the y-axis
for figure 2-5.

Test Processors Buffer size per
processor(bytes)
(Buffer_dim)

The whole data size per
processor(bytes)
(Dset_dim)

16, 1K*1K 16 1K x 1K 1K x 16K
16, 2K*2K 16 2K x 2K 2K x 32K
32,1K*1K 32 1K x 1K 1K x 32K

Table3 Test parameters

 m

Figure1 the selection pattern per pro

The shaded area in Figure 1 represen
operation. During the subsequent ope
covers the entire area of the dataset.

The results of our testing are shown i
MB/second) is used for performance
independent I/O access with MPI DD
operations. However, we see that this
becomes much larger than the proces
Dset di
 Buffer dim
Buffer dim

cessor per I/O operation. The shaded area here is the

selection.

ts the processor selection during the first I/O
rations, the shaded area shifts to right so that it

n Figure 2. The aggregate bandwidth (y-axis in
comparison. Note that the benefit of using
T is an improvement in performance in READ
 advantage decreases as the region not selected
sor selection per I/O operation.

0

2

4

6

8

10

12

14

16

18

20

16p,(1Kx1K) 16p,(2Kx2K) 32p,(1Kx1K)

Test

RD coll
WR coll
RD ind-dd
WR ind-dd

Figure 2 Performance of tests with full processor participation

IV. Testing with subset of processors

In these tests, we wanted to determine the performance impact of using only a small
subset of processors to execute I/O operations. The total number of processors is 64 but
the actual number of processors that perform I/O for a given test varies as shown in the x-
axis of Figure 4 and 5.

The selection pattern per processor is shown in Figure 3. The type of each element is an
integer.

2K cols
2K rows
1K cols

Figure 3 the selection pattern per processor
The results of our testing are shown in Figures 4 and 5. As we see, independent access
with derived datatypes always provides better performance than collective access. This is
more evident when the subset of processors is much smaller than the total number of
processors in the communicator.

Read performance

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70

I/O processors

coll
ind-dd

Figure 4 Read performance using a subset of processors for I/O

Write performance

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70

I/O processors

coll
ind-dd

Figure 5 Write performance using a subset of processors for I/O

V. Conclusions

Since we did not find a case in which independent I/O access with derived datatypes
reduces the performance significantly with respect to collective I/O operations, we
believe that it is a valid option to include in HDF5. To use collective I/O inside HDF5 has
some restrictions. For example, the collective I/O cannot be done if the compression filter
or data conversion are enabled inside HDF5. The condition to use independent I/O access
with derived datatypes inside HDF5 is the same as the condition to use collective I/O
inside HDF5.

The magnitude of the performance improvement of independent IO access with derived
datatypes depends on the size of the selection for a given IO operation relative to the
dataset size. Read performance is good when all processors are participating in IO and
can sometimes be 20% better than collective IO. When only small number of processors
participate in IO, the performance of independent I/O access with derived datatype also
improves significantly compared with collective I/O access.

 Independent IO Independent IO with

DDT
Collective IO

Contiguous Good Good Good
Non-contiguous
non-interleaving

Not Good Good(possibly
better than
collective)

Good

Non-contiguous
interleaving

Not Good Not Good? Good

Table 4: Read Performance among different MPI-IO modes

 Independent IO Independent IO with

DDT
Collective IO

Contiguous Good Good Good
Non-contiguous
non-interleaving

Not Good Good(possibly
better than
collective)

Good

Non-contiguous
interleaving

Not Good Should not use Good

Table 5: Write Performance among different MPI-IO modes

Appendix:

The new API for doing independent IO with DDT
Name: H5Pset_dxpl_mpio_collective_opt
Signature:

herr_t H5Pset_dxpl_mpio_collective_opt
(hid_t dxpl_id, H5FD_mpio_collective_opt_t opt_mode)

Purpose:
Applications that set the data transfer property list to H5FD_MPIO_COLLECTIVE can
set a flag in this API to use MPI-IO independent I/O functions inside HDF5. This
API allows control of the low-level type of I/O while maintaining the same
collective interface at the application level.

Description:

This API is an optional API. It should only be used when

 H5FD_MPIO_COLLECTIVE is set through data transfer API H5Pset_dxpl_mpio.
 When the application sets the flag to H5FD_MPIO_INDIVIDUAL_IO, the library
 will use low-level MPI independent I/O functions. Otherwise,
collective I/O functions are used. The library will do collective I/O
if this API is not called.

Valid flags are as follows:

H5FD_MPIO_COLLECTIVE_IO
Use collective I/O access(default)

H5FD_MPIO_INDIVIDUAL_IO
 Use independent I/O access

Parameters:

hid_t dxpl_id in: Data transfer property list identifier
 H5FD_mpio_collective_opt_t opt_mode

in: The flag to determine the usage of collective I/O or independent I/O.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.

	PERFORMANCE COMPARISON OF COLLECTIVE I/O AND INDEPENDENT I/O
	III. Testing with full processor participation
	IV. Testing with subset of processors
	V. Conclusions

