

Requirement Specifications of an HDF5 File Format
Validation Tool

Albert Cheng

1 Document purpose
This document describes the requirements of functionalities, implementation, tests and
user documents of the project to implement an HDF5 file format validation tool, called
h5chk. The details of design and implementation are covered in a different document.
The following sections describe the requirements of each area of the project.

• Tool Requirements and Functional Specifications
• Implementation Requirements
• Tests Requirements
• Documents Requirements

2 Tool Requirements and Functional Specifications
2.1 Purpose of the h5chk tool
H5chk verifies an HDF5 file against the defined HDF5 File Format Specification
i(referred to as the File Format in this document). An HDF5 file is considered valid if it
does not contradict the File Format; otherwise it is considered as invalid.

2.2 Why is it needed?
HDF5 is a platform independent data file format and can be used for short-term data files
(e.g., application restart files) or long-term data management (e.g., NASA EOS data files).
The HDF5 File Format Specification defines the data model and file format of an HDF5
file. The HDF5 library implements the Application Programming Interface (API)
according to the File Format. It is important that HDF5 files created and modified by the
HDF5 library are fully compliant with the File Format to ensure the data model integrity
and long term compatibility between evolving versions of the HDF5 library.

The HDF Group is also submitting the HDF5 File Format Specification as an ANSI
standard. The standardization process requires us to provide a verification tool that can
confirm whether an HDF5 file conforms to the File Format standard.

The h5chk tool is envisioned to verify that the content of an HDF5 file is encoded
according to the File Format. The verification role makes h5chk act as a watchdog for
the implementation correctness of the HDF5 library. The most likely way to use the
h5chk tool is to verify data files produced by a version of HDF5 library. A positive result
would confirm both the correctness of the data files and also that particular version of
library. Another important use is when a version of HDF5 library rejects a supposedly
valid HDF5 data file, the h5chk can be used to verify the data file. A negative result
would confirm the file is invalid and may even pinpoint the invalid parts. However, a

DRAFT Rev: 2006-04-10 1

positive result would indicate that the data file is a valid HDF5 file but the particular
version of HDF5 library contained implementation errors.

2.3 Functional Requirements
The h5chk tool must be able to read an HDF5 file, verify its content against a version of
the File Format and report if the file is in full compliance with that version of the File
Format. If the h5chk tool considers the file is not compliant with the File Format, it
should report all non-compliance it detects.

2.4 Users Characteristics
The h5chk tool will be used by both HDF5 application users and HDF5 library
developers. For example, application users may use h5chk to verify the data files are
compliant to the File Format to ensure compatibility with different implementations of
the HDF5 library; while library developers may use the tool to confirm the library is
compliant to the File Format.

2.5 User Interface

2.5.1 Standalone tool
The h5chk tool will be a standalone tool with various command line options. It is invoked
as a command and results are printed to the standard output in plain text. It should exit
with the zero code if it detects no error, otherwise non-zero.

2.5.2 Library module
The internal code of h5chk should be organized as library modules with defined public
API’s. Other applications such as MATLIB may call the h5chk API’s with proper
parameters to do the validation.

2.6 What h5chk does not do
First of all, the h5chk tool does not verify if the File Format is correct, logical or
complete. Though during the implementation of the tool, the programmer may detect
deficiencies or even errors in the File Format, the h5chk tool is not meant to do this sort
of analysis.

Secondly, the tool does not verify the correctness of file content that is not specified by
the File Format. An obvious example is that h5chk does not verify the correctness of the
raw data of a dataset. If an application stores the integer values with the wrong signs, for
example, the h5chk tool will not detect that.

Lastly, the h5chk detects and reports errors. It does not correct errors it finds. This means
h5chk only needs read permission to the data file.

DRAFT Rev: 2006-04-10 2

3 Implementation Requirements

3.1 External Libraries and Algorithm Requirements
The h5chk tool code should be totally independent of the HDF5 library and does not use
any HDF5 public or private API calls. It may not link with the HDF5 library or use its
header files but it may use other external libraries (e.g., zlib) that the HDF5 library uses.

The h5chk tool code may adapt some of the algorithms or structures used by the HDF5
library if it is appropriate to do so.

3.2 Platforms Requirements
The h5chk tool should be available for all platforms where the HDF5 library is available.
This requires that the implementation of the tool must be as platform independent as
possible.

3.3 Programming Language Requirements
In order to ensure the h5chk tool is available on most platforms, a commonly available
programming language should be used for the coding. Currently, the C programming
language would be the appropriate choice.

3.4 Runtime Requirements
The h5chk tool should require only a moderate amount of memory to operate. For
example, storing the entire file content in memory is not an acceptable implementation
design. A rule of thumb is that the tool should require runtime memory no more than
20% of the size of the data files that are 1GB or larger.

The tool should require only a moderate amount of execution time to operate. A rule of
thumb is that it should verify a data file in no more than twice the amount of time that the
h5dump tool needs to process the same file.

3.5 Format Grammar driven
It is desirable to implement h5chk as Format Grammar driven, provided the File Format
can be “coded” as some computer language grammar.

3.6 Target File Format Version
The tool should be implemented using version 1.1 of the HDF5 File Format.

4 Test Requirements
Tests should be coded to verify that the h5chk tool works correctly on both valid and
invalid HDF5 data files.

DRAFT Rev: 2006-04-10 3

4.1 Valid HDF5 Files
The h5chk tool should verify all valid HDF5 data files it examines with positive result.
Valid HDF5 files would be created by some file generators or collected from real life
HDF5 applications already in production.

4.1.1 Via File Generator
A set of HDF5 file generators would be written to create valid HDF5 files using various
features of the HDF5 library and components of the File Format. These types of
generated data files provide a systematic coverage of all components of the File Format.
The h5chk tool must verify them to be in compliance to the File Format. Note that the
file generators would be using the HDF5 public API’s and linking with the HDF5 library.

4.1.2 Via Real Life HDF5 Applications
Production data files to be tested by the h5chk tool should be collected from different
HDF5 applications inside and outside of the HDF Group. These types of application data
files, though may possibly not covering all the components of the File Format, have the
important advantage of being real life examples and may contain interesting uses of the
components of the File Format that would be difficult to be produced by file generators.

4.1.3 Test against different versions of HDF5 library
Valid test data files should be created by multiple versions of HDF5 library. At least the
latest official released version and a relatively stable development version of the library
code should be included in this class of tests.

4.2 Invalid HDF5 files
A set of known invalid HDF5 files should be created or collected for this class of tests.
The h5chk tool should reject them and list all the invalid parts or components it can
detect.

4.2.1 Generating invalid HDF5 files
A set of “invalid file generators” should be written to create invalid HDF5 files. This may
involve using the valid file generators to create valid files and then turn them into invalid
files via some kind of binary file editors. Invalid data files can also be produced by using
certain versions of HDF5 library that are known to be incompatible with the File Format.

5 Document Requirements

5.1 User Document
A man page style document should be provided as a user reference manual. It should
describe the functions of the tool and all the command line options it supports. A similar
abbreviated version of the same information should be coded in the tool to be display as a
help page.

DRAFT Rev: 2006-04-10 4

Another man page style document should be provided as a programming manual showing
the definitions of the public API’s of the h5chk library modules.

5.2 Tool Builder Document
A document should be provided to show the instructions of how to configure, build and
execute the h5chk tool. The expected users of this document are system administrators.

5.3 Tool Tester Document
A document should be provided to describe the test data files and the instructions for
running the test suite.

5.3.1 Test Suite Data

5.3.1.1 Valid File Generator
This contains a simple text file of instructions showing how to configure, build and
execute the File Generators.

5.3.1.2 Real Life Production Files
A collection of valid HDF5 files collected from various production applications with a
description for each file showing the following:

• A description of the production application (if privacy is desired, a generic
description is acceptable)

• A brief description of contents of the data file such as approximate numbers of
different HDF5 objects (datasets, groups, datatypes, …), features used (e.g.,
compressions) including any unusual features (e.g., user-defined filter).

• If known, the Version of HDF5 library and platform from which the file is created.

5.3.1.3 Invalid HDF5 data files
This consists of a set of invalid HDF5 files with a description for each file showing the
following:

• A description of the process creating the invalid data file. If it is possible or
practical, include the software tools or shell scripts that create the file.

• A brief description of contents of the data file such as approximate numbers of
different HDF5 objects (datasets, groups, datatypes, …), features used (e.g.,
compressions) and a clear description the invalid components of the files.

• If appropriate, an identification of the version of HDF5 library and platform from
which the file is created.

5.3.1.4 Overall Test Instructions
This consists of a text file of instruction describing steps to run the Test Suite and the
expected behavior and output if tests run successfully.

DRAFT Rev: 2006-04-10 5

6 Acceptance Requirements

6.1 Target Platforms
The software delivered should work properly in the following target platforms

• Linux (little endian)
• AIX (big endian)
• Microsoft Windows

6.2 Software to be delivered

6.2.1 The validation tool, h5chk
This consists of the source code files of the h5chk tool with auto-configuration setup such
as configure, Makefile, etc, and the Tool Builder Document. It must be demonstrated that
by following the instructions, one can build the tool in all Target Platforms.

6.2.2 Test Suite Data
This consists of the source code of the test file generators, the test data files and the Tool
Tester Document. It must be demonstrated that by following the instructions, one can
build the file generators, run them to generate test data files that are applicable.

6.2.2.1 Tool Test
It must be demonstrated that by following the instruction in the Tool Tester Document,
one can run the Test Suite as expected in all Target Platforms.

DRAFT Rev: 2006-04-10 6

Appendix

1 Possible extensions of h5chk
Two of the possible extensions of h5chk tool are described here.

1.1 H5repair
It corrects all errors found in the HDF5 file such that the file is valid again. This is not a
simple extension and not all files can be repaired without a substantial loss of the file
content. For example, a trivial but useless implementation of h5repair would be one that
always repairs the corrupted file to contain just the root group.

1.2 H5recover
It salvages a corrupted or damaged HDF5 file by recovering as much file contents as it
can. For example, it may discover isolated datasets which have no connected path with
the root group. It will move them to a “lost+found” group, located in the root group of the
file. Another example is that it discovers a block of raw data but cannot identify the
dataset that owns it. It will move this block of raw data to the “lost+found” group and
creates a new dataset to “own” this block of data. (It should be obvious that the author
has borrowed much from fsck, the well known Unix file system repair tool.)
One difference between this tool and the h5repair above is that h5repair would delete
isolate datasets while h5recover would move them to the lost+found group. It is also
possible to combine the two into one tool of two modes.

2 References

i HDF5 File Format Specification as included in the HDF5 v1.6.5 release source tree, file name as
doc/html/H5.Format.html

DRAFT Rev: 2006-04-10 7

	Document purpose
	Tool Requirements and Functional Specifications
	Purpose of the h5chk tool
	Why is it needed?
	Functional Requirements
	Users Characteristics
	User Interface
	Standalone tool
	Library module

	What h5chk does not do

	Implementation Requirements
	External Libraries and Algorithm Requirements
	Platforms Requirements
	Programming Language Requirements
	Runtime Requirements
	Format Grammar driven
	Target File Format Version

	Test Requirements
	Valid HDF5 Files
	Via File Generator
	Via Real Life HDF5 Applications
	Test against different versions of HDF5 library

	Invalid HDF5 files
	Generating invalid HDF5 files

	Document Requirements
	User Document
	Tool Builder Document
	Tool Tester Document
	Test Suite Data
	Valid File Generator
	Real Life Production Files
	Invalid HDF5 data files
	Overall Test Instructions

	Acceptance Requirements
	Target Platforms
	Software to be delivered
	The validation tool, h5chk
	Test Suite Data
	Tool Test

	Appendix
	Possible extensions of h5chk
	H5repair
	H5recover

	References

