January 23, 2012RFC THG 2011-07-26.v3

RFC: HDF5 File Space Allocation and Aggregation

John Mainzer

The current HDF5 file space allocation and aggregation code places small raw data and
metadata in aggregation blocks place more or less randomly through out the file.
Further, small raw data and metadata aggregation block size is not recorded in the
super block. To support page caching (discussed in the companion page caching RFC),
both of these deficits must be repaired.

This RFC explores the current state of the free list manager and metadata/raw data
aggregator code, and proposes API, file format, and code changes to address the above
issues.

Introduction

Efficient access to small pieces of metadata and raw data within an HDF5 file requires that the actual
I/O operations accessing that data be performed in much larger, and ideally, well-aligned, “pages”,
which can be cached by the HDF5 library. Implementing paged access for small pieces of raw data and
metadata requires that such pieces be allocated in a way that aggregates them into constant-sized
pages within the HDF5 file. For such pages to be read and written efficiently, they must also be
aligned to the block size of the underlying file system (and ideally have size some multiple of the file
system block size).

Any such system for aggregating small raw data and metadata allocations can’t help but affect the
more general issue of file space allocation, de-allocation and re-use.

At present, while the HDF5 library supports both small raw data and metadata aggregation, the
aggregation blocks are not aligned, and may actually vary widely from the specified aggregation block
size. Also, the aggregator block size is not stored in the file, and thus must be set every time the file is
opened - allowing even greater variation.

The objective of this RFC is to propose changes providing the prerequisites for small raw data and
metadata page caching (but not address page caching proper, which is addressed in the companion
Page Caching RFC). Thus the following issues must be addressed:

1) Design of an API for specifying small raw data and metadata aggregator page alignment and
page size at file creation time.

2) Design of new superblock message for storing aggregator page alignment and size. We must
also address the issue of how to deal with a file that has been opened (and modified) by a
version of the HDF5 library that doesn’t understand the new superblock message.

3) Outline modifications to the library’s aggregators and the free list manager needed to
implement aligned small raw data and metadata aggregation. The RFC must also address the

Page 1 of 49

January 23, 2012RFC THG 2011-07-26.v3

follow-on effects of such modifications on file space allocation, de-allocation, and re-use in
general.

4) Discuss the incompatibilities between Single Writer/Multiple Reader (SWMR) metadata writes
and page caching. Outline possible solutions to the problem, and discuss their advantages and
drawbacks.

5) Discuss the incompatibilities between metadata journaling and page caching. Outline possible
solutions to the problem, and discuss their advantages and drawbacks.

File Space Allocation and Aggregation - the Current State of Play

To make sensible recommendations for implementing small raw data and metadata aggregation in
HDF5, one must first have a good understanding of the current small raw data and metadata
aggregators, the free list, and HDF5 file space allocation in general.

Unfortunately, | am not aware of any developer level documentation of these subsystems, and thus |
have found it necessary to review the HDF5 library source code and document the sections relevant to
this RFC.

This has proved a painful exercise. While | hope | have done it well enough for the current design
purposes, the implementer will have to take it further still - and will likely be bitten once or twice in
the process.

This section contains discussions of the small raw data and metadata aggregators in the absence of
the free list managers, in the presence of the free list managers, and of the free list managers proper.

Each of these discussions starts with a conceptual overview of the module in questions, followed by a
detailed examination of the existing code. The detailed discussions are included in the hope that the
implementer will find them useful. Other readers may skip them with impunity.

The developer is advised that the “detailed discussions” skip over many issues though irrelevant to the
design issues at hand. While | may hope that most of these judgment calls will prove correct, some
errors should be expected.

At the level of interest to this RFC, space in an HDF5 file is allocated via calls to HSMF_alloc() and de-
allocated via calls to H5MF_xfree(). This may be a bit of an oversimplification, as other routines may
be used for the purposes (H5MF_try_extend() and possibly H5MF_alloc_tmp() for instance).
However, this selection of routines should be sufficient for design purposes.

As we are interested in small raw data and metadata aggregation and the interaction between the
aggregators and the free space manager, we can also presume that the file space strategy must be one
of:

HS5F_FILE_SPACE_ALL_PERSIST Persistent free space managers, aggregators,
virtual file driver.

HS5F_FILE_SPACE_ALL Non-persistent free space managers,
aggregators,
virtual file driver.
This is the library default

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

HS5F_FILE_SPACE_AGGR_VFD Aggregators, Virtual file driver.

In other words, we may assume that the aggregators will be enabled, that the free space manager
may or may not be enabled, and if it is, it may or may not be persistent.

Small Raw Data and Metadata Aggregation in the Absence of the Free List Manager

We start our outline with the simplest case - small raw data and metadata aggregation without a free
list.

Implementing the changes proposed in this RFC will require an intimate understanding of the existing
aggregator code. While this is discussed in considerable detail, we start with a conceptual overview
that should make the subsequent detailed discussion easier to follow.

Conceptual Overview of Raw Data and Metadata Aggregation in the Absence of the Free List
Manager

At present, HDF5 maintains two aggregators for each file - one for metadata, and the other for small
pieces of raw data. The two aggregators are identical in their operation and supporting data
structures.

From reading the existing aggregator code, | gather that the basic objective is to cluster small raw data
and metadata in the HDF5 file in chunks of roughly alloc_size bytes or greater - with no mixing of raw
data and metadata in any one chunk. Please note the use of the term “roughly”. As shall be seen, the
lower bound on the size of a cluster of small raw data or metadata produced by the aggregator code is
the minimum size (respectively) of a piece of raw data or metadata in HDF5, and the upper bound is
limited only by the order of space allocations and (again respectively) the maximum size of a pieces
raw data or metadata in HDF5.

The behavior of the aggregators is somewhat involved, and is discussed in detail later. However, the
essence of the algorithm employed is outlined below. As the algorithm is the same for both raw data
and metadata, | speak only of space allocation requests in the following discussion, with the
understanding that the request will be for either raw data or metadata, and that we will know which
one it is whenever we need to.

Definitions:
req_size: The size of a small raw data or metadata file space allocation request in bytes.

aggregator: The data structures and code use to allocate small pieces of raw data or metadata. In
the HDF5 library proper, the data structure used for this purpose is struct H5F_blk_aggr_t, the
definition of which is show in the next section. However, for conceptual purposes, we can think of
it as a structure containing the address of the current allocation block (if any), and the length of
the current allocation block.

allocation block: A block of file space allocated to an aggregator, and then subdivided (and possibly
extended) to satisfy small raw data or metadata space allocation requests.

alloc_size: The nominal size of aggregator allocation blocks. This value is user selectable.

Algorithm:

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

1. Onfile creation or open, the small raw data and metadata aggregators are created without
allocation blocks.

2. If a space allocation request is received when the associated aggregator has no allocation
block, processing depends on the size of the request.

a.

If req_size is greater than or equal to alloc_size, simply allocate the desired piece of
metadata at the end of the file, extending the file as necessary. No allocation block is
created in this case.

If req_size is less than alloc_size, test to see if the other aggregator (i.e. the small raw
data aggregator if this is a metadata space request, or the metadata aggregator if this is
a raw data space request) has an allocation block defined, and if so, if it is at the end of
file. If both conditions hold, de-allocate the other aggregators allocation block and
adjust the end of file accordingly. Mark the other aggregator as having no allocation
block.

Allocate an allocation block at the end of the file, assign it to the aggregator, and fulfill
the space request out of that block.

Note that the aggregator will attempt to satisfy future space allocation requests out of
the remainder of the allocation block just allocated.

3. If a space allocation request is received when the associated aggregator has an allocation block
and there is sufficient space in the allocation block to satisfy the current request, make the
allocation out of the allocator block and update the allocation block address and length
accordingly.

4. If a space allocation request is received when the associated aggregator has an allocation
block, and there is insufficient space in the allocation block to satisfy the request, processing
again depends on the size of the request.

a.

If req_size is greater than or equal to alloc_size, test to see if the allocation block ends
on the end of file. If it does, extend the end of file and the allocation block by req_size,
and then perform the desired allocation out of the allocation block.

If the allocation block does not end on the end of file, simply allocate the desired piece
of file space at the end of file, and leave the aggregator unchanged.

If req_size is less than alloc_size, test to see if the allocation block ends on the end of
file. If it does, extend the end of file and the allocation block by alloc_size, and then
perform the desired allocation out of the allocation block.

If the allocation block does not end on the end of file, proceed as follows:
Discard the existing allocation block.

Test to see if the other aggregator has an allocation block defined, and if it does, if it
is at the end of file. If both conditions hold, de-allocate the other aggregators
allocation block, mark the other aggregator as having no allocation block, and
adjust the end of file.

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

3. Regardless of the results of 2) above, allocate a new aggregator block (of size
alloc_size) for the aggregator associated with the space request at the end of file.
Fulfill the file space request out of this new allocation block, saving the rest for
future allocations.

The above outline leaves out the issue of alignment requirements on space allocations. These in turn
can result in snippets of waste space (which, in the absence of a free list manager, are simply
discarded), and also in slight adjustments in the size of allocation block extensions and/or allocations.

While the alignments issue must be dealt with, | have left it out of the above discussion, as it adds
significant complexity to the algorithm without making significant changes to the end result.

The full details may be seen in the detailed discussion of the code below, or in the code itself.

Conceptual Overview of File Space De-allocation in the Absence of the Free List Manager

Conceptually, de-allocation of raw data or metadata file space in the absence of a free list manager is
very simple.

1. First, check to see if the piece of file space to be freed is at the end of file, and reduce the end
of file accordingly if it is.

2. If this fails, check to see if the piece of space is adjacent to either of the allocation blocks
maintained by the metadata and small raw data aggregators. If it is, and we are currently
configured to allow it, and if the piece of space is the same type (metadata or raw data) as the
aggregator it is adjacent to, add the freed file space to the appropriate allocation block for re-
use.

3. |If this fails, simply discard the freed file space.

As shall be seen, the file space de-allocation code contains a bug that allows creation of a free list
even when free lists are specifically disabled. This bug is described in the detailed discussion below,
but omitted here.

A Detailed Look at Small Raw Data and Metadata Aggregation in the Absence of the Free List
Manager

While the above conceptual overview should give a good understanding of what the small raw data
and metadata aggregators do in the absence of the free list managers, the actual code is more
convoluted. The reason for this is unknown, but at a guess it is the result of hand optimization and
repeated modifications.

This presumption (presence of the small raw data and metadata aggregators and absence of any free
list manager) implies that the file space strategy is H5F_FILE_SPACE_AGGR_VFD.

In this case, H5SMF_alloc () simply calls HSMF_aggr_vfd_alloc(), which, in the case of a metadata
space allocation request, in turn calls H5MF_aggr_alloc() with the file's metadata aggregator listed
at the principle aggregator, and the small raw data aggregator listed as the alternate aggregator. The
parameters are reversed in the event of a raw data space allocation request.

As we will refer to the details of aggregators in what follows, the declaration of the associated

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

H5F_blk_aggr_t structure is shown below:

/* Structure for metadata & "small [raw] data" block aggregation fields */
struct H5F_blk_aggr_t {

unsigned long feature_flag; /* Feature flag type */

hsize_t alloc_size; /* Size for allocating new blocks */

hsize_t tot_size; /* Total amount of bytes aggregated into
block */

hsize_t size; /* Current size of block left */

haddr_t addr; /* Location of block left */

3

The fields of a files small raw data and metadata aggregators are initialized in a call to H5F_new()
during file open or create. The alloc_size fields are initialized to values obtained from the property
list. The feature flag fields are unconditionally set to HSFD_FEAT_AGGREGATE_SMALLDATA (small raw
data aggregator) and H5FD_FEAT_AGGREGATE_METADATA (metadata aggregator) in the same call. All
other fields are initialized to zero.

Considering only the case in which the file space strategy is H5F_FILE_SPACE_AGGR_VFD,
H5MF_aggr_alloc () proceeds as follows:

1. If alignment is generally disabled for the file, or if the size of the request (call it req_size)
exceeds some threshold, disable alighnment for the purposes for this allocation. Note that this
applies only for code in H5MF_alloc() proper - alignment requirements may still be applied in
functions called by H5MF_alloc().

2. If the principal aggregator (call it “aggr”) refers to an allocation block at present, and that
block contains any unallocated file space, calculate the amount of space remaining in the
allocation block that cannot be used due to alignment considerations. Needless to say, this
value will be zero if either there is no current block from which to allocate space, or if
alignment is disabled. Call this value aggr_frag_size.

3. If aggregation is enabled, and req_size plus the aggr_frag_size exceeds the amount of space
remaining in the current allocation block, H5MF_aggr_alloc () must either extend the current
allocation block, or create a new one.

Here there are two subcases, depending on whether req_size exceeds the normal size of an
aggregation block (aggr.alloc_size).

e If req_size is greater than or equal to aggr.alloc_size, the function attempts to extend the
allocation block by req_size plus aggr_frag_size. This is done via a call to
H5FD_try_extend().

If this attempt is successful, the request is satisfied using the block of length req_size
starting at aggr.addr + aggr_frag_size. The total size of the allocation block (aggr.tot_size)
and the address of the beginning of free space in the aggregator block (aggr.addr) are
incremented by req_size plus the aggr_frag_size. Note that the free space remaining in the
aggregation block (aggr.size) remains unchanged.

If this attempt is unsuccessful, test to see if the alternate aggregator (call it “other_aggr”)
has an allocation block defined that is located at the end of file. If it does, free (via
H5FD_free

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

) all remaining unallocated space in the alternate aggregator’s allocation block, and mark
the alternate aggregator as having no allocation block.

Then simply allocate the desired space at the end of the file via H5FD_alloc().

e Ifreq_sizeis less than aggr.alloc_size, the function also attempts to extend the
allocation block - but by a different amount, call it ext_size. Initially, ext_size is set to
aggr.alloc_size. However, if aggr_frag_size is greater than ext_size minus req_size,
ext_size is incremented by the amount by which aggr_frag_size exceeds ext_size minus
req_size.

Once ext_size is determined, the function attempts to extend the allocation block by that
value via a call to H5FD_try_extend().

If this attempt is successful, the base address of the free space in the allocation block
(aggr.addr) is incremented by aggr_frag_size, and the amount of space available in the
allocation block (aggr.size) is incremented by ext_size - aggr_frag_size. Note that the
requested block is not allocated at this time.

If the attempt fails, the function first tests to see if the alternate aggregator (other_aggr) is
located at the end of file. If it is, the function frees (again via H5FD_free()) all remaining
unallocated space in the alternate aggregator’s allocation block, and marks the alternate
aggregator as having no allocation block.

The function then allocates a new allocation block via H5FD_alloc(), and then frees the
remainder of the old one using H5MF_xfree(). aggr.addr is set to the address of the new
block, and aggr.size and aggr.tot_size are set to aggr.alloc_size.

Regardless of whether the attempt to extend the primary aggregator’s allocation block
succeeded, at this point, the primary aggregator should have sufficient space to satisfy the
space request.

Satisfy the space request from the (either new or extended) allocation block. Thus
aggr.addr is returned as the base address of the newly allocated block, aggr.addr is
incremented by req_size, and aggr.size is decremented by req_size.

Regardless of whether req_size is less than aggr.alloc_size or not, some tidying up may be
required.

If either H5SFD_extend() or HSFD_alloc () was used to allocate new space, it is possible that,
as a result of the alighment requirements, a fragment may have been allocated between the
original end of file, and the beginning of the newly allocated block. If this occurred, the
function frees the fragment using H5SMF_xfree().

Similarly, if, due to alignment considerations, a fragment is left between the beginning of the
free space in the primary aggregator’s allocation block and beginning of the newly allocated
block, the function frees this fragment as well, again using H5SMF_xfree().

4, Now consider the case in which aggregation is enabled, an allocation block exists, and the
req_size is less than or equal to aggr.size (the amount of free space remaining in the
aggregator).

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

In this case, the function simply allocates the desired block out of the allocation block,
returning aggr.addr + aggr_frag_size as the base address of the new block, incrementing
aggr.addr by req_size + aggr_frag_size, and decrementing aggr.size by the same value.

As with the cleanup in 3 above, if, due to alignment considerations, a fragment is left between
the beginning of the free space in the metadata aggregator and beginning of the newly
allocated block, the function frees this fragment using HSMF_xfree().

5. Finally, there is the case in which aggregation is disabled. Here, the desired block is simply
allocated at the end of the file via H5FD_alloc (). Any fragment allocated after the desired
block is freed via HSFM_xfree().

A Detailed Look at File Space De-Allocation in the Absence of the Free List Manager

The first point that is striking when examining H5MF_xfree() is the apparent absence of any tests for
the current file strategy. Indeed, under the correct circumstances, H5SMF_xfree() appears to create
free list even when the free list manager is specifically disabled via the file space strategy.

After consulting with Quincey on this matter, it appears that | have stumbled over a bug that should
be repaired in passing when the revised metadata aggregator is implemented. However, for now |
simply describe the current behavior as | understand it - with the understanding that it is incorrect in
this point at least. This bug should be fixed in passing when we implement the new metadata and
small raw data aggregation scheme, and tests should be added to verify the fix.

With the above caveat in mind, H5MF_xfree() proceeds as follows when the file strategy is
H5F_FILE_SPACE_AGGR_VFD.

1. Perform a variety of initial sanity checks. Specifically:

a. Verify that the address of the piece of file space to be freed is defined, and that its
length is greater than zero.

b. Verify that the address of the piece of space to be freed is not zero - the address of
the super block.

C. Verify that the file space to be freed does not intersect with the metadata
accumulator. Recall that the metadata accumulator attempts to buffer adjacent
metadata writes so that they can be combined in a single write operation.

d. Verify that the file space to be freed is not “temporary” file space. Recall that
temporary file space is file space beyond the end of the file that is assigned to
temporary pieces of metadata that should never be written to file.

2. Map the allocation type of the file space to be freed (passed in via the alloc_type parameter)
to the free space type. This is necessary as several different memory types may be handled in
the same free list. Call the free space type fs_type.

3. Check to see if a free space manager has been defined for fs_type.

If it hasn't, first check to see if the file space to be freed is at the end of file. If it is, it can be
freed by simply reducing the EOF. If this fails, check to see if the file space to be freed can be
put into either the metadata or small raw data aggregator for re-use. Note that either of these

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

options allows us to avoid starting up a free space manager.

Test these conditions by calling HSMF_try_shrink(), which performs the tests and does the
free by adjusting the EOF or incorporating the freed file space into an aggregator if possible. If
H5MF_try_shrink() succeeds, exit indicating success.

If HSMF_try_shrink() fails, check to see if the size of the file space to be freed is less than
the fs_threshold field of the files shared instance H5F_file_t. If it is, drop the file space to be
freed on the floor, and exit indicating success.

Finally, if all the above attempts to avoid setting up a free space manager fail, call
H5MF_alloc_open() to setup the free space manager for the desired free space type. As
indicated above, this is a bug when free space managers are disabled.

Observe that the fs_threshold field could be used to prevent allocation of a free space list
when the files strategy is H5SF_FILE_SPACE_AGGR_VFD. However, the value appears to be set
by the user in H5Pset_file_space(), and thus appears to be arbitrary.

4. If we get to this point, a free space manager exists to handle the piece of file space to be
freed.

First, allocate an instance of H5MF_free_section_t, and initialize it so that it describes the
chunk of file space to be freed.

Then, if the size of the piece of file space to be freed is greater than or equal to the
fs_threshold discussed above, call H5FS_sect_add () to add the file space to be freed to the
appropriate free list. Note that H5FS_sec_add () will attempt to merge the newly freed piece
of file space with existing free space in the free list. Depending on whether we choose to
allow pieces of metadata to span metadata aggregation blocks, this may have implications for
this RFC, and may require further investigation.

Otherwise, if the size of the piece of file space to be freed is less than fs_threshold, attempt to
merge it with an existing piece of file space on the appropriate free list via a call to
H5FS_sect_try_merge(). Again, depending on whether we choose to allow pieces of
metadata to span metadata aggregation blocks, the particulars of this attempt may require
further investigation. If the attempt to merge fails, just drop the free space on the floor.

The above discussion of space allocation and de-allocation in the metadata aggregator only case is
very much a first cut. It should be simplified, and focused more narrowly as the proposed design for
metadata data aggregation takes shape.

Small Raw Data and Metadata Aggregation in the Presence of the Free List Manager

As we are not at present concerned with whether a free list is saved to the file or not, for purposes of
this section we do not care whether the file space strategy is either HSF_FILE_SPACE_ALL_PERSIST
or H5F_FILE_SPACE_ALL.

Conceptual Overview of Small Raw Data and Metadata Aggregation in the Presence of the Free List
Manager

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

The algorithm for small raw data and metadata aggregation in the presence of the free list manager is
an extension of the algorithm for allocating metadata in the absence of the free list manager.

Free list managers can be created for a variety of different metadata types. In particular, a free list
manager can specialize in one type of metadata (say B-Tree nodes), several types of metadata, or all
types of metadata. To map a specific kind of metadata to the appropriate free list manager, it is
necessary to map the actual metadata type to the free space type - call this the fs_type of the piece
of metadata to be allocated.

Given this mapping, the revised algorithm for allocating file space can be described at the conceptual
level as follows:

1. If a free list manager does not exist for the free space type of the file space request, create
one.
2. Test to see if the free list manager for the fs_type of the space request contains a block of

adequate size.

a. If it does, satisfy the metadata space request out of this block - trimming off the
excess if necessary, and returning it to the free list manager.

b. If it does not, allocate the desired file space as per the no free list manager algorithm
(above).

Note that in this case, since free space managers are enabled, most if not all pieces of
file space that are discarded by this algorithm in the no free space manager case, are
instead added to the appropriate free list.

As before, | have neglected the complications associated with alignment requirements.

Conceptual Overview of File Space De-Allocation in the Presence of the Free List Manager

Conceptually, de-allocation of metadata in the presence of the free list manager is almost the same as
that used when free list managers are disabled.

1. First, check to see if the piece of file space to be freed is at the end of file, and reduce the end
of file accordingly if it is.

2. If this fails, check to see if the piece of space is adjacent to either of the allocation blocks
maintained by the metadata and small raw data aggregators. If it is, and if the piece of space
is of the appropriate type, add the freed file space to the allocation block for re-use.

3. If this fails, test to see if a free list manager exists for the free space type of the freed file
space. If it does, add the freed space to the free list manager.

4. If no such manager exists, and the size of the space to be freed exceeds some threshold,
create a manager and add the space to it.

5. Otherwise, discard the space.

A Detailed Look at Small Raw Data and Metadata Aggregation in the Presence of the Free List
Manager

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

When free list managers are enabled, H5MF_alloc() proceeds as follows:

1.

Map the allocation type (passed in via the parameter list) to the free space type. This is
necessary as several different memory types may be handled in the same free list. Call the
free space type fs_type.

Verify that the file space strategy is either H5SF_FILE_SPACE_ALL_PERSIST or
HS5F_FILE_SPACE_ALL. Thisis done via the H5F_HAVE_FREE_SPACE_MANAGER() macro.

Check to see if a free space manager has been defined for fs_type. If it hasn't, call
H5MF_alloc_open() to set up the free space manager for the desired free space type. While
we will go into the particulars of the free space managers later, for now suffice it to say that
H5MF_alloc_open() calls H5FS_open() for the specified free space type, and marks the free
space manager as having been initialized.

Check to see if the free space manager contains a section (i.e. a block of unused file space) of
size sufficient to satisfy the file space request. Do this via a call to H5FS_sect_find(). Blocks
are stored in instances of H5FS_section_info_t - the declaration of which is given below
(from H5FSprivate.h):

/* Free space section info */
struct H5FS_section_info_t {

haddr_t addr; /* Offset of free space section in the address
space */

hsize_t size; /* Size of free space section */

unsigned type; /* Type of free space section (i.e. class) */

H5FS_section_state_t state; /* Whether the section is in "serialized" or

*/
/* "live" form */

Iy
NOTE: At present, there is no difference between H5FS_section_info_t and
H5MF_free_section_t (H5MFpkg.h) - although it is clear from comments that eventually the
latter structure will become a superset of the former, containing the former as its first field.
The exact plans should be investigated before we commit to any design for metadata
aggregation.

H5FS_sect_find() handles some metadata cache entry locking issues, and then calls
H5FS_sect_find_node() to handle the actual search for a suitable block of memory.

If there are no alignment issues, H5FS_sect_find_node() finds the smallest section of free
space that will satisfy the request (in case of ties, the lower address wins) - if such a section
exists. It removes the section (and its associated instance of H5FS_section_info_t - call it
*si_ptr) from the free list, and returns si_ptr to the caller in *node, a parameter to the
function which is an instance of H5FS_section_info_t **.

If alignment is an issue, things are a bit more complicated, as H5FS_sect_find_node () must
find a section of free memory (if it exists), that is large enough to satisfy the request even after
some fragment of the beginning of the block is shaved off to satisfy the alignment
requirement. While the particulars are probably not relevant for the purposes of this RFC, it is
worth noting that if the search is successful, the end result is more or less the same as in the

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

non-aligned case, save that the non-aligned fragment of the chosen section is snipped off and
returned to the free list. The pointer to the instance of H5FS_section_info_t (possibly clipped
for purposes of alignment) is returned in *node as outlined above.

Regardless of alighment issues, if H5FS_sect_find_node() is successful, it passes a pointer to
the unlinked instance of H5FS_section_info_t associated with the chunk of memory back to
H5FS_sect_find(), which after handling some book keeping and unlocking, passes the
pointer back to H5MF_alloc().

5. If HSFS_sect_find() is successful, it returns the address of the section of memory that has
been removed from the free list, possibly after trimming it to the desired size, and adding the
fragment back to the free list.

6. If HSFS_sect_find() is unsuccessful, the desired section of file space is allocated via a call to
H5MF_aggr_vfd_alloc() as discussed in section 2.1.3 above. Note however, that in this case,
the free lists are defined, and thus the various discarded fragments will be inserted onto a free
list instead of being discarded.

A Detailed Look at File Space De-Allocation in the Presence of the Free List Manager

As | understand it, the buggy version of H5MF_xfree() described in section 2.1.4 above behaves
correctly in this case. Thus, until such time as the bug is repaired, this section need only point to
section 2.1.4 above.

Free Space Managers

At the most elementary level the function of the free space managers is trivial - each free space
manager maintains a list of blocks of file space that have been allocated for use as one of the target
file space types, and then released for whatever reason. Adjacent blocks within a free space manager
are combined. Conceptually, the set of free list managers in any open file will cover all possible
memory types without overlap.

When file space of a type managed by the free space managers is requested, the manager responsible
for the target memory type is queried to determine if it contains a suitable block. If it does, the block
is removed from the free list manager, trimmed to size if need be (fragments return to the free list
manager), and the resulting block is returned to the caller. If no such block exists, the request is
satisfied by either the raw data or metadata aggregator, or by extending the file.

While the above is a good thumbnail sketch of what the free list managers do, for purposes of this
document we need a much more detailed understanding of the free list managers. This need is
addressed below. As with the discussions of the raw data and metadata aggregators, the detailed
discussions are included for the implementer, and may be safely skipped by all other readers.

The implementer is advised that the detailed discussions are focused mainly on the data structures
used by the free list managers. The discussions of allocation and de-allocation are much more
cursory, and in many ways repeat material discussed above.

A Conceptual Overview of the Data Structures Used by the Free List Managers

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

The data structures used by the free list managers are quite involved, and as such, the following
overview will be inadequate for implementation purposes. However, it should provide a good
conceptual overview for other readers, and a good starting point for the implementer.

It is suggested that the implementer supplement this section with a careful review the detailed
discussion in section 2.3.4 below. Note, however, that this section too is quite cursory in spots, being
directed only at determining the particulars of the data structures needed for the purposes of this
document. As such, it skips over many details. While | hope that none of these details will bite the
implementer, | can’t swear to it.

At the broadest conceptual level, the function of the free list manager data structures is trivial - they
maintain a list of all blocks of freed file space in such a format as to allow easy identification of
candidate blocks for reuse, for merging newly freed blocks of file space with existing free blocks when
these are adjacent, and for easy save and reload from file. While not addressed in this document, it
should also be mentioned that the free list managers are also employed to manager free space in the
fractal heap - a consideration that appears to have had considerable impact on their design.

Turning to concrete issues, the first point to observe is that HDF5 recognizes six different types of
memory - raw data and five flavors of metadata. To make matters more interesting, the multi file
driver allows each of these types of data to segregated into an individual file and the associated
segment of HDF5 file memory space. Under such circumstances, it is necessary to have a separate
free space manager for each memory type. In contrast, under the more common circumstance in
which all types of memory share a single file and memory space, only one free space manager is
needed for all memory types.

Thus some method of mapping the type of memory being freed or requested to the appropriate free
space manager is the first point to be considered. For file space at least, this is done with a lookup
table that maps the integer associated with a memory type to an integer called the free space type.
This free space type then indexes into an array of base addresses of free space manager data
structures to yield the base address of the data structures of the free space manager to which such
requests should be directed.

The top level structure in a free list manager’s data structure is an instance of H5FS_t. This structure
contains a large number of fields - however, for purposes of this conceptual overview, there are only
three that are of particular import.

The first of these is the cache_info field, which is an instance of H5AC_info_t. This field, which must
be the first field in the structure, is a structure that contains all fields necessary for managing the
instance of H5FS_t as an entry in the metadata cache.

The second is the sect_cls field, which when initialized, contains a pointer to an array of
H5FS_section_class_t. Each instance of this array appears to contain configuration data and
callbacks for managing a particular class of free space. In the case of free space in the HDF5 file, this

array will always contain exactly one element, whose value is defined in
H5MF_FSPACE_SECT_CLS_SIMPLE.

At this point, a brief digression into terminology is in order. While | may be corrected on this, the free
list managers use the term “section” to describe a piece of free space in the HDF5 file. A section of
free space is specified by its base address and length. Descriptions of sections of free space are stored

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

in instances of H5FS_section_info_t. This structure also contains fields for the section type and
state.

With the notion of the section in hand, we can now discuss how the free list managers store lists of
sections so as to facilitate merging of adjacent sections, and selection of sections for re-use.

The list of sections of free file space currently managed by the free space manager in maintained in a
data structure whose root is an instance of H5FS_sinfo_t. The sinfo field of the top level instance
of H5FS_t points to the free list manager’s instance of H5FS_sinfo_t. Note that H5FS_sinfo_t like
H5FS_t contains an instance of H5AC_info_t named cache_info as its first field. As before, this
allows instance of H5FS_info_t to be managed by the metadata cache. Note that of the structures
discussed in this overview, only H5FS_t and H5FS_sinfo_t contain this field.

Each instance of H5FS_section_info_t managed by the free list manager is indexed by the two data
structures rooted in the instance of H5FS_sinfo_t.

The simplest of these is used to identify sections that can be merged. A skip list serves for this
purpose. Skip lists are a reasonably well known data structure, so | shall not describe them here, but
the effect is to construct a list of all sections under management sorted in increasing address order. As
this list can be searched, inserted into, and deleted from in O(log n) time, this allows easy
identification of candidates for merging. The merge_list field of H5FS_sinfo_t points to this skip
list.

The structure used to support selecting a section to be used in satisfying a space request is
considerably more complex - it can be loosely described as a vector of skip lists of skip lists.

The “vector” in this structure is an array of instances of H5FS_bin_t of length equal to the log base 2
of the maximum size of the HDF5 file. The base address of this array is stored in the bins field of
H5FS_sinfo_t. Sections are mapped to entries in bins array by taking the log base 2 of the size of the
section, and mapping the section to the bin with index equal to the resulting value rounded down.

Each non-empty instance of H5FS_bin_t has an associated skip list pointed to by the bin_list field.
However, the entries in the skip list are not instances of H5FS_section_info_t, nor or they sorted by
address. Instead the entries are instances of H5FS_node_t, each of which contains a list of sections of
a given size. The instances of H5FS_node_t in a skip list are sorted by the size of sections they index.

Each instance of H5FS_node_t has an associated skip list pointed to by its section_list field. This
skip list serves as a container for all sections for which the instance of H5FS_node_t is responsible.
This skip list contains instances of H5FS_section_info_t. All of these sections are of the same size -
and thus this time the skip list is sorted by section base address.

The above should give the reader a good conceptual overview of the data structures used by the free
list managers, and (I hope), also convey a good intuition of how the free list managers operate on
these data structures. If the above is confusing, Figure 1 may be of value. While it doesn’t show many
of the fields of the constituent structures, is does show how they are linked together.

Two points in closing:

First, it is worth repeating that each instance of H5FS_section_info_t that represents a section of
free memory managed by a given free list manager appears in two skip lists - that pointed to by the

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

merge_list field of H5FS_sinfo_t, and that pointed to by the sect_list field of the instance of
H5FS_node_t that manages sections of the indicated size.

Second, it seems that all the constituent structures that appear in the in memory representations of
free list manager data structures are allocated and freed using HDF5 private free lists. The objective
here seems to be to minimize the overhead of repeated calls to malloc()/calloc() and free. The
implementer should take particular note of this, as it will affect debugging strategies.

Figure -- An Overview of the Free Space Manager Data Structures

A Conceptual Overview of File Space Allocation in the Free List Managers

Given a good understanding of the free list manager data structures, the conceptual view of file space
allocation in the Free List Managers becomes almost trivial.

After mapping the desired space type to the appropriate free manager (and initializing it if necessary),
search for the smallest section of free space that will satisfy the space request. Note that alignment
issues may complicate the search. Ties are broken by selecting the section of free space with the
lowest base address. If a candidate is selected, remove it from the free list manager data structures,
clip off any excess space, and return the fragments to the free space manager. Use the resulting piece
of file free space to satisfy the request.

If the free space manager does not contain a suitable section of free space, satisfy the request from
the metadata / raw data aggregator if possible, or by extending the EOF.

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

A Conceptual Overview of File Space De-Allocation in the Free List Managers

Again, a good understanding of the free list manager data structures makes this section almost
unnecessary.

To de-allocate a piece of file space, first see if it is at the end of the file, or if it can be added to one of
the aggregators. If this fails, try to merge any adjacent entries in the free list into the newly freed
section, and then insert the section into the free list.

A Detailed Look at the Free List Manager Data Structures and their Initialization

As with our examination of the raw data and metadata aggregators, for purposes of this discussion,
file space allocation in the presence of the free list managers begins with a call to H5SMF_alloc(). As
we assume that the free list managers are active, the file space strategy must be either
H5F_FILE_SPACE_ALL_PERSIST or H5F_FILE_SPACE_ALL — which implies that both the free list
managers and the raw data and metadata aggregators are active. As we shall be interested in how
free lists are stored and retrieved from file, we assume that the file space strategy is
HS5F_FILE_SPACE_ALL_PERSIST.

Mapping Memory Types to Free Space Types

As the reader likely recalls, at present, there are six file space memory types in HDF5, which are
defined in the H5F_mem_t enumerated type. This type declaration is reproduced below:

typedef enum H5F_mem_t {

H5FD_MEM_NOLIST = -1, /* Data should not appear in the free list.
* Must be negative.
*/
H5FD_MEM_DEFAULT =0, /* Value not yet set. Can also be the
* datatype set in a larger allocation
* that will be suballocated by the library.
* Must be zero.
*/
H5FD_MEM_SUPER =1, /* Superblock data */
H5FD_MEM_BTREE = 2, /* B-tree data */
H5FD_MEM_DRAW = 3, /* Raw data (content of datasets, etc.) */
H5FD_MEM_GHEAP = 4, /* Global heap data */
H5FD_MEM_LHEAP =5, /* Local heap data */
H5FD_MEM_OHDR =6, /* Object header data */
H5FD_MEM_NTYPES /* Sentinel value - must be last */

} H5F_mem_t;

In theory, we can have one free list manager for each memory type, although this is seldom the case.
More commonly, we will have one free list manager, with that manager handling both raw data, and
all the flavors of metadata.

This of course requires some method of mapping memory type to free list type. In the free list
manager code, this is done via the HSMF_ALLOC_TO_FS_TYPE() macro, whose definition is reproduced
below:

#define H5MF_ALLOC_TO_FS_TYPE(F, T) ((H5FD_MEM_DEFAULT == (F)->shared-

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

>fs_type_map[T]) \

? (T) : (F)->shared->fs_type_map[T])
To follow what is going on here, we must start digging into the data structures used to support the
free list managers for each file.

HDF5 maintains a single instance of struct H5F_file_t for each open HDF5 file. Note that there
should be exactly one such structure for each open file, regardless of how many times that file has
been opened.

The declaration of H5F_file_t is reproduced below. While | have reproduced the entire structure
declaration, only the section entitled “file space allocation information” is of interest to us here. Note
also that we will typically access this structure via the “shared” pointer in the instance of the H5F _t
structure associated with the open file. Unlike the instance of H5F _file_t, which is created once per
open file regardless of how many times it is opened, a new instance of H5F_t is created each time a
file is opened. The idea is that all instances of H5F_t for a given file point to the same instance of
H5F_file_t.

/*
* Define the structure to store the file information for HDF5 files. One of
* these structures is allocated per file, not per H5Fopen(). That is, set of
* H5F_t structs can all point to the same H5F_file_t struct. The “nrefs'
* count in this struct indicates the number of H5F_t structs which are
* pointing to this struct.
*/
typedef struct H5F_file_t {
H5FD_t *1f; /* Lower level file handle for I/0 */
H5F_super_t *sblock; /* Pointer to (pinned) superblock for file */
unsigned nrefs; /* Ref count for times file is opened */
unsigned flags; /* Access Permissions for file */
H5F_mtab_t mtab; /* File mount table */
H5F_efc_t *efc; /* External file cache */

/* Cached values from FCPL/superblock */

uint8_t sizeof_addr; /* Size of addresses in file */
uint8_t sizeof_size; /* Size of offsets in file */
haddr_t sohm_addr; /* Relative address of shared object */

/* header message table */
unsigned sohm_vers; /* Version of shared message table on disk */
unsigned sohm_nindexes; /* Number of shared messages indexes in the table

*/
unsigned long feature_flags; /* VFL Driver feature Flags */
haddr_t maxaddr; /* Maximum address for file */
H5AC_t *cache; /* The object cache */
H5AC_cache_config_t
mdc_initCacheCfg; /* initial configuration for the */

/* metadata cache. This structure is */

/* fixed at creation time and should */

/* not change thereafter. */
hid_t fcpl_id; /* File creation property list ID */
H5F_close_degree_t fc_degree; /* File close behavior degree */
size_t rdcc_nslots; /* Size of raw data chunk cache (slots) */
size_t rdcc_nbytes; /* Size of raw data chunk cache (bytes) */

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

double rdcc_wo; /* Preempt read chunks first? [0.0..1.0]*/
size_t sieve_buf_size; /* Size of the data sieve buffer allocated (in
bytes) */
hsize_t threshold; /* Threshold for alignment */
hsize_t alignment; /* Alignment */
unsigned gc_ref; /* Garbage-collect references? */
hbool_t latest_format; /* Always use the latest format? */
hbool_t store_msg_crt_idx; /* Store creation index for object header
messages? */
unsigned ncwfs; /* Num entries on cwfs list */
struct H5HG_heap_t **cwfs; /* Global heap cache */
struct H5G_t *root_grp; /* Open root group */
H5FO0_t *open_objs; /* Open objects in file */

HS5RC_t *grp_btree_shared; /* Ref-counted group B-tree node info */

/* File space allocation information */

H5F_file_space_type_t fs_strategy; /* File space handling strategy */
hsize_t fs_threshold; /* Free space section threshold */
hbool_t use_tmp_space; /* Whether temp. file space allocation is allowed
*/
haddr_t tmp_addr; /* Next address to use for temp. space in the file
*/
unsigned fs_aggr_merge[H5FD_MEM_NTYPES]; /* Flags for whether free space can
*/
/* merge with aggregator(s) */
H5F_fs_state_t fs_state[H5FD_MEM_NTYPES]; /* State of free space manager for
*/
/* each type */
haddr_t fs_addr[H5FD_MEM_NTYPES]; /* Address of free space manager info for
*/
/* each type */
H5FS_t *fs_man[H5FD_MEM_NTYPES]; /* Free space manager for each file space
type */
HS5FD_mem_t fs_type_map[H5FD_MEM_NTYPES]; /* Mapping of "real" file space type
*/

/* into tracked type */
H5F_blk_aggr_t meta_aggr; /* Metadata aggregation info */
/* (if aggregating metadata allocations) */
H5F_blk_aggr_t sdata_aggr; /* "Small data" aggregation info */
/* (if aggregating "small data" allocations) */

/* Metadata accumulator information */

H5F_meta_accum_t accum; /* Metadata accumulator info */
} H5F_file_t;
Returning to the issue of mapping HDF5 file space types to free list types, we can see that the
fs_type_map[] array in H5F_File_t supports this function in combination with the
H5MF_ALLOC_TO_FS_TYPE() macro. The fs_type_map[] array is initialized via a call to
H5FD_get_fs_type_map() shortly after the instance of H5F_file_t is allocated in H5F_new(). The
H5FD_get_fs_type_map() call is passed through to the underlying Virtual File Driver (VFD), which
initializes the fs_type_map[] array as indicated by the following table:

VFD: fs_type_map initialization:

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

sec2 H5FD_FLMAP_SINGLE
stdio H5FD_FLMAP_SINGLE
core H5FD_FLMAP_SINGLE
family H5FD_FLMAP_SINGLE
mpi H5FD_FLMAP_SINGLE

mpiposix H5FD_FLMAP_SINGLE
split/multi H5FD_FLMAP_DEFAULT

The entry for the split/multi file driver is deceptive. While HSFD_FLMAP_DEFAULT is the value specified
in the fl_map field of the instance of H5FD_class_t associated with the multi file driver,
H5FD_multi_get_type_map() does not use this value, and instead returns the member map
specified in the FAPL. The effect of this is to create one free list type for each file, with said free list
managing all memory types assigned to the file.

Free List Manager Data Structures Proper

Once the memory type is mapped to the free list type, the base address of the data structure for the
target free list manager can be looked up by using the free list type as an index into the fs_man field in
H5F_file_t (see above) at the index indicated by the free space type. Entries in the fs_man field are
NULL if either no free list manager is defined for the corresponding free list type, or if the free list
manager has not yet been created.

While we shall trace through the code that inserts freed file space into the free list managers, and that
attempts to service file space requests using the free list managers shortly, for now the objective is to
survey the data structures used by the free list managers so that their use will be easy to follow when
we get there.

While the data structures maintained by a free list manager can be saved to and reloaded from disk,
they are initially created when a piece of file space is freed, and its memory type maps to a free space
type, which indexes a NULL entry in the fs_man array in the files instance of H5F_file_t. This triggers
a call to H5MF_alloc_start() - which performs some sanity checking and then calls
H5MF_alloc_create(). That function in turn loads an instance of H5FS_create_t with parameters
needed to initialize the free list manager, calls H5FS_create(), and, on success, sets the entry in the
fs_man and fs_state fields of H5F_file_t indexed by the free space to the address of the newly
created free list manager data structures and to H5F_FS_STATE_OPEN respectively.

The definition of H5FS_create_t is reproduced below, followed by the code initializing it in
H5MF_alloc_create().

/* Free space creation parameters */
typedef struct H5FS_create_t {
H5FS_client_t client; /* Client's ID */
unsigned shrink_percent; /* Percent of "normal" serijialized size to shrink */
/* serialized space at */

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

unsigned expand_percent; /* Percent of "normal" serialized size to expand */

/* serialized space at */

unsigned max_sect_addr; /* Size of address space free sections are within */

/* (log2 of actual value) */

hsize_t max_sect_size; /* Maximum size of section to track */

} H5FS_create_t;

/* initialization of instance of H5FS_create_t passed to H5FS_create() */
/* by H5MF_alloc_create() */

fs_create.
fs_create.
fs_create
fs_create.
fs_create.

shrink_percent
.expand_percent
max_sect_addr
max_sect_size

= HS5FS_CLIENT_FILE_ID,

H5MF_FSPACE_SHRINK;

H5MF_FSPACE_EXPAND;
1 + H5V_log2_gen((uint64_t)f->shared->maxaddr);
f->shared->maxaddr;

The declaration of H5FS_create() is given below:

H5FS_t * H5FS_create(H5F_t *f,

hid_t dxpl_id,

haddr_t *fs_addr,

const H5FS_create_t *fs_create,

size_t nclasses,

const H5FS_section_class_t *classes[],
void *cls_init_udata,

hsize_t alignment,

hsize_t threshold);

When calling H5FD_create(), H5MF_alloc_create() sets the parameters of H5FS_create() as

follows:
£
dxpl_id
fs_addr
fs_create
nclasses

classes

f (pointer to H5F_t passed into H5MF_alloc_create())

dxpl_id (the DXPL ID passed into HSMF_alloc_create())

NULL

pointer to an instance of H5FS_create_t initialized as shown above.
1

pointer to an array of pointer to H5FS_section_class_t.

This array contains one element, which points to H5MF_FSPACE_SECT_CLS_SIMPLE,
whose definition is reproduced below.

cls_init_udata

alignment

threshold

f (pointer to H5F_t passed into H5MF_alloc_create())
f->shared->alignment

f->shared->threshold

As we will have occasion to refer to them later, the definitions of H5FS_section_class_t and
H5MF_FSPACE_SECT_CLS_SIMPLE are reproduced below:

/* Free space section class info */
typedef struct H5FS_section_class_t {
/* Class variables */

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

const unsigned type; /* Type of free space section */

size_t serial_size; /* Size of serialized form of section */
unsigned flags; /* Class flags */

void *cls_private; /* Class private information */

/* Class methods */
herr_t (*init_cls)(struct H5FS_section_class_t *, void *); /* Routine to
initialize */
/* class-specific settings
*/
herr_t (*term_cls)(struct H5FS_section_class_t *); /* Routine to terminate */
/* class-specific settings */

/* Object methods */
herr_t (*add)(H5FS_section_info_t *, unsigned *, void *); /* Routine called
when */
/* section is about to be added to manager
*/
herr_t (*serialize)(const struct H5FS_section_class_t *,
const H5FS_section_info_t *, wuint8_t *);/* Routine to
serialize */
/* a "live" section into a buffer
*/
H5FS_section_info_t *(*deserialize)(const struct H5FS_section_class_t *,
hid_t dxpl_id, const uint8_t *, haddr_t, hsize_t, unsigned *);
/* Routine to deserialize a buffer into a "live" section */
htri_t (*can_merge)(const H5FS_section_info_t *, const H5FS_section_info_t *,
void *);
/* Routine to determine if two nodes are mergable
*/
herr_t (*merge)(H5FS_section_info_t *, H5FS_section_info_t *, void *);
/* Routine to merge two nodes */
htri_t (*can_shrink)(const H5FS_section_info_t *, void *); /* Routine to
determine */
/* if node can shrink container */

herr_t (*shrink) (H5FS_section_info_t **, void *); /* Routine to shrink
container */
herr_t (*free)(H5FS_section_info_t *); /* Routine to free node */

herr_t (*valid)(const struct H5FS_section_class_t *, const H5FS_section_info_t
*);
/* Routine to check if a section is valid */
H5FS_section_info_t *(*split)(H5FS_section_info_t *, hsize_t);
/* Routine to create the split section */
herr_t (*debug)(const H5FS_section_info_t *, FILE *, int , int);
/* Routine to dump debugging information about a section */
} H5FS_section_class_t;

/* Class info for "simple" free space sections */
H5FS_section_class_t H5MF_FSPACE_SECT_CLS_SIMPLE[1] = {{
/* Class variables */

H5MF_FSPACE_SECT_SIMPLE, /* Section type */
o, /* Extra serialized size */
H5FS_CLS_MERGE_SYM | H5FS_CLS_ADJUST_OK, /* Class flags */
NULL, /* Class private info */

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

1}

/* Class methods */
NULL,
NULL,

/* Object methods */

NULL,

NULL,
H5MF_sect_simple_deserialize,
H5MF_sect_simple_can_merge,
H5MF_sect_simple_merge,
H5MF_sect_simple_can_shrink,
H5MF_sect_simple_shrink,
H5MF_sect_simple_free,
H5MF_sect_simple_valid,
H5MF_sect_simple_split,
NULL,

/* Initialize section class */
/* Terminate section class */

/* Add section */
/* Serialize section */
/* Deserialize section */
/* Can sections merge? */
/* Merge sections */

/* Can section shrink container?*/
/* Shrink container w/section */

/* Free section

*/

/* Check validity of section */
/* Split section node for alignment */
/* Dump debugging for section */

On entry, H5FS_create() performs some sanity checks, and then calls H5FS_new() to allocate the

free list manager data structures.

After some sanity checks, H5FS_new() starts by allocating an

instance of H5FS_t, the base address of will eventually be stored in the fs_man field in the files
instance of H5F_file_t (see above) at the index indicated by the free space type. The definition of
H5FS_t is reproduced below:

/* Free space header info */
struct H5FS_t {
/* Information for H5AC cache functions, _must_ be first field in structure */

H5AC_info_t cache_info;

/* Stored information */

/* Statistics about sections managed */

hsize_t tot_space;
hsize_t tot_sect_count;

hsize_t serial_sect_count;

hsize_t ghost_sect_count;
/* Creation parameters */
H5FS_client_t client;
unsigned nclasses;
unsigned shrink_percent;
unsigned expand_percent;

unsigned max_sect_addr;

/*
/*
/*
/*

/*
/*
/*

/*

Total amount of space tracked
Total # of sections tracked

of serializable sections tracked
of un-serializable sections tracked

Type of user of this free space manager

Number of section classes handled
serialized size */
/* to shrink serialized space at */
serialized size to */

Percent of "normal"

Percent of "normal"

/* expand serialized space at */

/* Size of address space free sections are within

/* (log2 of actual value) */

Maximum size of section to track

/* Address of the section info in the file

Size of the section info in the file
Allocated size of the section info in the file

*/
hsize_t max_sect_size; /*
/* Serialized section information */
haddr_t sect_addr;
hsize_t sect_size; /*
hsize_t alloc_sect_size; /*

*/

*/
*/
*/
*/

*/
*/

*/
*/

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

/* Computed/cached values */

unsigned rc; /* Count of outstanding references to struct */

haddr_t addr; /* Address of free space header on disk */

size_t hdr_size; /* Size of free space header on disk */

H5FS_sinfo_t *sinfo; /* Section information */

unsigned sinfo_lock_count; /* # of times the section info has been locked */
hbool_t sinfo_protected; /* Whether the section info was protected when

locked */
hbool_t sinfo_modified; /* Whether the section info has been modified while

*/
/* locked */
H5AC_protect_t sinfo_accmode; /* Access mode for protecting the section info */
size_t max_cls_serial_size; /* Max. additional size of serialized form of
section */
hsize_t threshold; /* Threshold for alignment */
hsize_t alignment; /* Alignment */

/* Memory data structures (not stored directly) */

H5FS_section_class_t *sect_cls; /* Array of section classes for this free list
*/
I
The instance of H5FS_t is allocated via a call to HSFL_CALLOC(). While this seems to indicate that
HDF5 will normally maintain a free list of instances of H5FS_t so as to avoid the overhead of repeated
calloc() and free() calls, for most practical purposes, this should be the same as regular calloc()
call. Thus, except as specified, all fields are initialized to ® or NULL. After storing the newly allocated
instance of H5FS_t in the fspace local variable, H5FS_new() proceeds as follows:

1. Set fspace->nclasses equal to the value of the nclasses parameter (1 in this case).

2. Set fspace->sect_cls equal to H5FL_SEQ_MALLOC(H5FS_section_class_t, nclasses).
The H5FL_SEQ_MALLOC() macro is defined as follows:

#define H5FL_SEQ_MALLOC(t,elem) \
(t *)H5FL_seq_malloc(&(H5FL_SEQ NAME(t)),elem H5FL_TRACK_INFO)

with the H5FL_SEQ_NAME () macro being defined as:
#define H5FL_SEQ_NAME(t) H5_##t##_seq_free_list
and the H5FL_TRACK macro being either undefined, or defined as:
#define H5FL_TRACK_INFO ,_ FILE_ , FUNC, __ LINE__

Depending on whether H5FL_TRACK is defined. Thus, assuming that HSFL_TRACK is
undefined, the above macro resolves to:

(H5FS_section_class_t JH5FL_seqg_malloc(&(H5_
H5FS_section_class_t_seq_free_list), \
nclasses)
or, since we know that nclasses is 1:
(H5FS_section_class_t JH5FL_seq_malloc(&

(H5_H5FS_section_class_t_seq_free_list),1)

After some sanity checking, the call to H5FL_seq_malloc()

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

resolves to:

H5FL_blk_malloc(&(((&(H5_H5FS_section_class_t_seq_free_list))->queue),

(&(H5_H5FS_section_class_t_seq_free_list))->size *
1);

H5FL_blk_malloc() is one of a group of functions that maintain free lists of dynamically

allocated blocks of memory using instances of H5FL_blk_head_t. The objective seems to be to

avoid the performance overhead occasioned by heavy use of the usual malloc() and free()

library calls. This seems like overkill for file level free list managers, which are created at most

eight times in a file open/close cycle, and usually only once. However, the free list managers

are also used for the fractal heaps, and there may be an issue there.

In any case, the net effect of all the above is to allocate an instance of H5FS_section_class_t
and store its address in fspace->sect_cls. For now at least, | don't see the need to
investigate this further.

3. Copy the single instance H5FS_section_class_t in the array of same pointed to by the
classes parameter into the instance of H5FS_section_class_t pointed to by fspace-
>sect_cls. Note that if an initialization routine were specified in the provided instance of
H5FS_section_class_t, it would be called here. The function also sets fspace-
>max_cls_serial_size equal to the maximum of the serial_size fields of the supplied array of
instances for H5FS_section_class_t. As this array of length one in this case, and the
serial_size field of its one element contains zero, this is also a NO-OP in the case at hand.

4. Perform the following initializations:

/* Initialize non-zero information for new free space manager */
fspace->addr = HADDR_UNDEF;

fspace->hdr_size = H5FS_HEADER_SIZE(f);

fspace->sect_addr = HADDR_UNDEF;

5. Return the address of the new instance of H5FS_t.

After H5FS_new() returns the address of the newly allocated and partially initialized instance of
H5FS_t, H5FS_create() stores the address in fspace and proceeds as follows:

1. Perform the following initializations from the instance of H5FS_create_t passed to
H5FS_create() in the fs_create parameter:

/* Initialize creation information for free space manager */
fspace->client = fs_create->client;

fspace->shrink_percent = fs_create->shrink_percent;
fspace->expand_percent fs_create->expand_percent;
fspace->max_sect_addr fs_create->max_sect_addr;
fspace->max_sect_size fs_create->max_sect_size;

Given the initialization of the fs_create parameter given above, these initialization resolve to:

fspace->client = H5FS_CLIENT_FILE_ID;

fspace->shrink_percent = H5MF_FSPACE_SHRINK;

fspace->expand_percent = H5MF_FSPACE_EXPAND;

fspace->max_sect_addr 1 + H5V_log2_gen((uint64_t)f->shared->maxaddr);
fspace->max_sect_size f->shared->maxaddr;

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

2. Initialize the alignment and threshold fields of *fspace with the values of the parameters of
the same name as follows:

fspace->alignment
fspace->threshold

alignment;
threshold;

Given the values passed in, these initializations resolve to:

fspace->alignment
fspace->threshold

f->shared->alignment;
f->shared->threshold;

3. If the fs_addr parameter is not NULL, allocate space for the free space header in the file and
insert the header into the metadata cache. Since the fs_addr parameter is NULL in this case,
this is a NO-OP. Since the file space strategy is H5SF_FILE_SPACE_ALL, we have to allocate file
space for the free list manager eventually. However, it seems that we don’t do this here.

4. Set the reference count field in *fspace to 1 as follows:
fspace->rc = 1;

If the comments in the code are to be believed, this may be an error, as the reason given for
the operation is fact that we have just inserted the new instance of H5FS_t in the metadata
data cache. However, this has not been done, since the fs_addr parameter is NULL.

5. Return the address of the newly allocated and initialized instance of H5FS_t to the caller.

Popping back up the call stack, when H5FS_create() reports success and returns the newly allocated
and initialized instance of H5FS_t, H5MF_alloc_create() stores the address in f->shared-
>fs_man[type], and sets f->shared->fs_state[type] = H5F_FS_STATE_OPEN. Here, type is the
free space type of the newly allocated and initialized free space manager.

At this point, one might be forgiven for expecting the free space manager data structures to be fully
initialized. However, that is not the case, as the data structure appears to be created lazily. Thus to
continue our examination of the free list manager data structures, we must look at what happens
when an entry is inserted into the free list.

To do this, we return to H5MF_xfree(), and follow the thread from where the function attempts to
insert a block of freed file space into the free list. This process starts with a call to
H5MF_sect_simple_new(). This function takes as parameters the base address and size of the piece
of file space to be freed, and proceeds as follows:

1. Allocate a new instance of H5SMF_free_section_t via a call to the HSFL_MALLOC() macro, and
saving the address of the new instance in the sect local var.

The definition of the H5FL_MALLOC() calls is as follows:

/* Allocate an object of type 't' */
#define H5FL_MALLOC(t) (t *)H5FL_reg_malloc(&(H5FL_REG_NAME(t))
H5FL_TRACK_INFO)

The definition of the HSFL_REG_NAME() macro is:
#define H5FL_REG_NAME(t) H5_##t##_reg_free_list

As the reader may recall, the HSFL_TRACK_INFO macro resolves to the empty string when
H5FL_TRACK is undefined, and thus the call to HSFL_MALLOC() given below:

Page 41 of 49

January 23, 2012RFC THG 2011-07-26.v3

sect = H5FL_MALLOC(H5MF_free_section_t);

normally resolves to:

Page 41 of 49

