
October 5, 2018 RFC THG 2018-08-29.v2

Page 1 of 7

RFC:	H5FD_MIRROR	1
Virtual File Driver 2

Matthew Dougherty 3

	4
The	functional	objective	of	the	Virtual	File	Driver	(VFD)	H5FD_MIRROR	is	to	relay	local	5
host	H5FD_SPLITTER	VFD	calls	to	a	remote	host	file	system,	resulting	in	identical	and	6
simultaneous	creation	of	HDF5	files	on	both	hosts.	H5FD_MIRROR	consists	of	three	7
software	components	each	executing	as	different	processes:	mirror_S,	mirror_R,	and	8
scheduler.	When	an	H5FDopen	function	call	occurs,	mirror_S	sends	a	service	request	9
through	the	network	to	scheduler	using	a	pre-defined	static	network	port.		This	will	10
cause	scheduler	to	assign	a	new	and	dedicated	network	port	for	mirror_S	and	11
mirror_R	to	communicate	on.		For	every	H5FDopen	request,	scheduler	will	start	one	12
mirror_R	process,	instructing	mirror_R	to	connect	to	mirror_S,	and	perform	all	13
subsequent	H5FD	functions	relating	to	the	open	HDF5	file	on	the	dedicated	network	14
port.		Subsequently,	mirror_R	will	invoke	H5FD_SEC2	VFD	to	create	the	remote	HDF5	15
file.	16

	17

1) Introduction	18
	19
In	figure	one	below,	the	H5FD_SPLITTER	VFD	has	two	channels	leading	to	the	final	H5FD_SEC2	20
VFDs:	a	local	H5FD_SEC2	and	a	remote	H5FD_SEC2.	The	purpose	and	restriction	of	H5FD_MIRROR	21
VFD	is	to	pass	write-only	H5FD	functions	across	a	network	using	Sockets/TCP.		22
	23
The	remainder	of	this	RFC	expands	upon	the	requirements,	design	analysis,	and	describes	issues	24
involved	in	the	implementation.			25
	26
It	should	be	understood	that,	27
1) every	H5FDopen	causes	scheduler	to	create	a	dedicated	mirror_R	process	at	the	remote	host,	28

which	will	manage	all	H5FD	functions	subsequent	to	the	specific	H5FDopen. 29
2) multiple	mirror_R	processes	may	exist	at	the	same	time	operating	on	different	HDF5	files,	by	30

different	users	or	applications.		 31
3) a	user	application	will	normally	provide	the	IP	address	of	the	scheduler	and	its	dedicated	static	32

port	in	order	to	request	remote	services.		Therefore,	it	is	possible	that	file	operations	in	the	33
remote	abstraction	of	figure	one,	can	occur	concurrently	on	different	remote	hosts	by	the	34
same	local	host	application. 35

October 5, 2018 RFC THG 2018-08-29.v2

Page 2 of 7

	36
Figure	1	37

Block	diagram	illustrating	the	Mirror_VFD	design.		Blue	boxes	represent	existing	code,	and	yellow	boxes	38
code	that	must	be	designed	and	implemented.	39

40

October 5, 2018 RFC THG 2018-08-29.v2

Page 3 of 7

2)	Operational	Methods	41
	42

The	H5FD	functions	supported	by	Mirror_VFD	are:	43
	44
1) H5FD__init_package	45
2) Configuration	of	the	Mirror_VFD,	46
3) H5FDopen	47
4) H5FDwrite	48
5) H5FDflush	49
6) H5FDset_eoa	50
7) H5FDalloc	51
8) H5FDtruncate	52
9) H5FDclose	53
	54
As	a	rule,	all	H5FD	functions	passed	by	H5FD_SPLITTER,	are	passed	to	the	remote	H5FD_SEC2	55
without	modification.		Remedial	error	management	is	planned:		any	errors	are	either	ignored,	56
logged	&	ignored,	or	reported	as	errors	requiring	manual	intervention.	57

	58
2.1)	H5FD__init_package(void)		59
	60

This	generic	function	is	used	by	any	H5FD	VFD	to	register	with	H5FD.		Through	its	execution,	it	61
initializes	the	H5FD_MIRROR	software	and	provides	internal	mirror_S	callbacks	to	H5FD.	62
	63

2.2)	Configuration	of	the	Mirror_VFD:	H5Pset_fapl_mirror(*char	ipa,	int	np);	64
	65
H5Pset_fapl_mirror	allows	a	user	to	change	the	IP	address	and	network	port	that	mirror_S	66
requires	to	establish	scheduler	communications.		If	the	“ipa”	is	null,	the	default	IP	address	is	67
used	(local	loopback	127.0.0.1).		If	“np”	is	zero,	the	default	network	port	is	used	(port	3000).		68
It	should	be	emphasized	this	does	not	change	any	configuration	within	scheduler,	or	cause	69
scheduler	to	execute	on	any	particular	remote	host.		Changing	the	network	port	of	Scheduler	70
must	manually	be	made	within	the	scheduler.		Running	scheduler	on	a	remote	host	must	be	71
started	manually,	which	establishes	its	IP	address.	72

	73
2.3)	H5FDopen:	H5FD_t	*(*open)(const	char	*name,	unsigned	flags,	hid_t	fapl,haddr_t	maxaddr);	74
	75

The	H5FDopen	function	causes	the	mirror_S	to	initiate	a	connection	to	scheduler.		Scheduler	76
assigns	a	dedicated	port	that	all	future	H5FD	functions	relating	to	this	particular	H5FDopen	77
will	occur.		Scheduler	starts	the	remote	mirror_R	process	instructing	the	process	to	connect	78
to	the	prescribed	network	port,	and	begin	servicing	mirror_S	beginning	with	a	new	79
H5FDopen,	and	subsequent	H5FD	functions	for	this	HDF5	file.		After	the	network	connection	is	80
established	between	mirror_S	and	mirror_R,	mirror_R	opens	the	HDF5	file	on	the	remote	81
host	file	system	using	the	H5FD_SEC2	VFD.		Upon	success,	H5FD_SEC2	VFD	returns	the	82
H5FD_t	data	structure,	which	is	only	maintained	by	mirror_R;	that	is,	the	H5FD_t	data	83
structure	is	not	sent	back	to	mirror_S.		84
	85

October 5, 2018 RFC THG 2018-08-29.v2

Page 4 of 7

2.4)	H5FDwrite:	herr_t		(*write)(H5FD_t	*file,	H5FD_mem_t	type,	hid_t	dxpl_id,	haddr_t	addr,	size_t	size,	const	86
void	*buffer);	87

	88
The	H5FDwrite	function	causes	the	remote	H5FD_SEC2	VFD	to	write	“size”	number	of	bytes	89
from	data	from	“buffer”	to	the	H5FD_t	“file”,	beginning	at	the	HDF5	offset	address	“addr,”	in	90
concert	with	the	data	transfer	properties	defined	by	“dxp_id”.	91
	92
Since	the	Sec2	VFD	doesn’t	use	it,	the	prototype	sender	will	not	transfer	the	dxpl	to	the	93
receiver.	94
	95

2.5)	H5FDflush:	herr_t		(*flush)(H5FD_t	*file,	hid_t	dxpl_id,	hbool_t	closing);	96
	97
H5FD_SEC2	VFD	performs	no	flush	function.		mirror_R	performs	no	other	action.	98

	99
2.6)	H5FDset_eoa:	herr_t		 (*set_eoa)(H5FD_t	*file,	haddr	t)	100
	101

The	H5FDset_eoa	function	causes	the	remote	H5FD_SEC2	VFD	to	set	its	End	of	Address	space	102
as	defined	by	“t”.	103
	104

2.7)	H5FDalloc:	(*alloc)(H5FD_t	*file,	H5FD_mem_t	type,	hsize_t	size)	105
	106
The	H5FDalloc	function	causes	the	remote	H5FD_SEC2	VFD	to	allocate	space	in	the	HDF5	file	107
as	defined	by	“size”	and	memory	“type”.	108
	109
Note	that	the	H5FDalloc()	call	raises	issues	for	the	splitter,	as	there	is	no	requirement	that	110
two	different	VFDs	will	allocate	the	same	space	given	the	same	inputs.		While	this	is	not	an	111
issue	in	the	prototype,	as	we	will	be	using	the	sec2	VFD	on	both	sides,	for	a	production	112
version	we	will	need	lists	of	compatible	VFDs.	113

	114
2.8)	H5FDtruncate:	herr_t		(*truncate)(H5FD_t	*file,	hid_t	dxpl_id,	hbool_t	closing);	115

	116
The	H5FDtruncate	function	causes	the	remote	H5FD_SEC2	VFD	to	truncate	the	file	to	a	size	117
defined	by	the	H5FDset_eoa	or	H5FDalloc,	in	concert	with	the	data	transfer	properties	118
defined	by	“dxpl_id”.	If	the	file	is	larger	than	this	size,	any	data	past	the	new	EOF	is	lost.	If	the	119
file	is	shorter,	then	it	is	extended,	and	the	extended	part	padded	as	null	bytes	('\0').		The	file	120
offset	is	not	changed.	121

	122
2.9)	H5FDclose:	herr_t		(*close)(H5FD_t	*file);	123

	124
The	H5FDclose	function	causes	the	remote	H5FD_SEC2	VFD	to	close	the	file	on	the	remote	125
host.	After	which,	the	mirror_S	/mirror_R	network	connection	is	closed,	and	the	mirror_R	126
process	terminates.		127

	128
3)	API	Additions	129

	130

October 5, 2018 RFC THG 2018-08-29.v2

Page 5 of 7

herr_t		(H5Pset_fapl_mirror)(*	char	ipa,	int	sp)	131
	132
Users	may	optionally	override	the	default	IP	address	and	server	port.	133

	134
Future	development	using	fapl	parameters	will	allow	for	adjusting	the	remote	H5FD_SEC2	135
VFD	properties,	scheduler	properties,	or	mirror_R	properties.	136

	137
	138
4)	Implementation	Details	139

	140
The	H5FD_MIRROR	VFD	will	be	prototyped	on	Linux	laptops	utilizing	Sockets/TCP.	141
	142
4.1)	Justification	for	Sockets/TCP	over	Sockets/RDMA	143
	144
Infiniband,	iWarp	and	ROCE	RDMA	were	closely	looked	at.		In	the	long	term	these	methods	offer	145
the	highest	technical	performance	possible,	potentially	by	a	factor	of	10x;	at	the	same	time	being	146
they	are	“zero-copy,	they	require	very	limited	CPU	resources.		Due	to	the	relative	simplicity	in	this	147
prototype	software	implementation	and	project	time	constraints,	Sockets/TCP	was	chosen.		Later	148
on,	should	Infiniband,	iWarp	or	ROCE	RDMA	be	required,	it	should	not	involve	difficult	software	149
changes,	because	many	of	the	RDMA	APIs	verbs	use	the	same	names	and	parameters.	150
	151
4.2)	Sockets/TCP	activity	for	mirror_S	and	mirror_R	152
	153
The	H5FD_SPLITTER	VFD	directs	H5FD	function	calls	to	a	local	hosts	H5FD_SEC2	VFD	and	the	154
H5FD_MIRROR	VFD.		After	mirror_R	is	assigned	a	dedicated	network	port	by	scheduler,	mirror_S	155
establishes	a	connection	and	transmits	the	write-only	H5FD_SPLITTER	VFD	functions	to	mirror_R,	156
beginning	with	H5FDopen.		Each	dedicated	mirror_R	process	will	perform	a	single	HDF5	file	open,	157
and	all	subsequent	H5FD	functions	associated	with	this	H5FDopen,	are	performed	by	the	remote	158
H5FD_SEC2	VFD.	159
	160
Two	types	of	Socket/TCP	interactions	are	planned	for	the	prototype.	The	first	is	to	schedule	an	161
exclusive	network	connection	between	mirror_S,	and	resulting	in	potentially	multiple	mirror_R	162
processes	created	though	schedule	upon	each	H5FDopen.			163
	164
The	second	type	of	connection	is	a	dedicated	network	channel	to	pass	all	H5FD	functions	and	165
related	data.		Most	H5FD	functions	require	only	one	data	transmission	from	mirror_S	to	a	166
mirror_R	to	execute	one	H5FD	function	by	mirror_R	and	H5FD_SEC2	VFD.		The	exception	being	167
the	H5FDwrite	function	because	of	the	write	data	buffer.	This	is	provided	by	a	second	data	168
transmission.	169

	 	170

October 5, 2018 RFC THG 2018-08-29.v2

Page 6 of 7

4.3)	The	chronology	of	Sockets	events	171
	172
1) The	scheduler	process	is	executing	on	the	remote	host,	monitoring	a	static	network	port	that	173

is	dedicated	to	receiving	mirror_S	service	requests.		174
2) Upon	successful	synchronization,	scheduler	will	assign	a	network	port	in	which	further	H5FD	175

functions	associated	with	the	H5FDopen	will	be	handled.	176
3) This	port	number	is	sent	to	mirror_S,	and	to	the	mirror_R	process	which	scheduler	starts.	177
4) mirror_S	and	mirror_R	then	establish	an	exclusive	network	connection.	178
5) When	mirror_S	transmits	an	H5FDopen	function	to	mirror_R,	this	causes	the	remote	179

H5FD_SEC2	VFD	to	initialize	the	needed	remote	H5FD	data	structures.	These	data	structures	180
are	only	maintained	on	the	remote	host	by	mirror_R.	181

6) Subsequent	H5FD	functions	are	received	by	mirror_R	and	are	executed	by	the	remote	182
H5FD_SEC2	VFD.	183

7) When	mirror_S	transmits	a	H5FDclose	function,	the	remote	H5FD_SEC2	VFD	performs	the	file	184
closure,	after	which	mirror_R	closes	the	network	socket	and	exits	the	mirror_R	process.		185

	186
5)	Outstanding	issues	to	be	considered	further	187
	188
1) How	will	write	buffer	sizes	impact	network	performance?			189
2) What	network	errors	might	occur	and	what	is	the	impact	operationally?	190
3) What	are	timeout	margins?	191
4) What	might	be	needed	for	error	management?	192
5) What	is	the	need	for	local/remote	file	comparisons	during	H5FD	writes	or	closure?	193

- simplest:	byte	count	comparison	of	remote	and	local	file	sizes,	which	should	be	identical.	194
- advanced:	file	checksum	comparison	during	close.	195

6) Is	the	use	of	error	detection/error	correction	plugin	filters	advised	if	network	errors	abound?	196
7) Propose	methods	if	the	remote	file	is	corrupted,	such	as	requiring	the	local	HDF5	file	to	be	sent	197

using	system	level	OSI	network	layer	7	methods	(e.g.,	bbcp)	at	a	later	time.	198
8) Need	a	mechanism	for	recycling	ports	after	file	close.	199

	200
6)	Testing	201

	202
6.1)	Test	#1	will	be	performed	on	a	single	laptop	loaded	with	Centos	operating	systems.		A	local	203
loop	back	IP	address	will	be	used.		Test	software	will	be	written	independent	of	H5FD_SPLITTER	204
VFD,	capable	of	performing	basic	write-only	H5FD	functions	to	verify	general	software	code	205
reliability.	206
	207
6.2)	Test	#2	will	be	performed	on	two	laptops	networked	with	a	crossover	cable,	each	loaded	208
with	Centos	operating	systems,	and	HDF5	libraries	with	the	H5FD	changes.		The	“local	host”	will	209
perform	the	standard	HDF5	regression	test	cases.		The	objective	of	the	test	is	to	evaluate	210
functional	file	drivers	simultaneously,	by	creating	identical	HDF5	files	across	the	network.	211
	212

October 5, 2018 RFC THG 2018-08-29.v2

Page 7 of 7

6.3)	Test	#3	will	use	the	same	hardware	configuration	of	test	#2,	but	will	include	the	213
H5FD_SPLITTER	VFD	regression	test	suite.	The	objective	of	the	test	is	to	evaluate	the	integrated	214
stacked	VFDs	simultaneously	creating	identical	HDF5	files	across	the	network.		215

	216
7)	Recommendation	217
	218

Upon	successful	testing,	it	is	recommended	further	software	upgrades	could	be	made	to	the	219
networking	design	optimizing	for	equipment	(e.g.,	ESnet,	SLAC	and	NERSC),	software	(e.g.,	psana)	220
and	operational	facility	protocols/permissions.		This	objective	would	be	to	evaluate	network	high	221
performance	and	needed	operational	upgrades	at	the	desired	user	locations.		222

	223
8)	Acknowledgements	224
This	material	is	based	upon	work	supported	by	the	U.S.	Department	of	Energy,	Office	of	Science,	under	225
Contract	Number	DE-AC02-05CH11231. 226
	227
9)	Revision	History					228

Oct.	5,	2018:	 Version	2	circulated	for	comment.	229

