1	RFC: H5FD_MIRROR
2	Virtual File Driver
3	Matthew Dougherty
4	
5	The functional objective of the Virtual File Driver (VFD) H5FD_MIRROR is to relay local
6	host H5FD_SPLITTER VFD calls to a remote host file system, resulting in identical and
7	simultaneous creation of HDF5 files on both hosts. H5FD_MIRROR consists of three
8	software components each executing as different processes: mirror_S, mirror_R, and
9	scheduler. When an H5FDopen function call occurs, mirror_S sends a service request
10	through the network to scheduler using a pre-defined static network port. This will
11	cause scheduler to assign a new and dedicated network port for mirror_S and
12	mirror_R to communicate on. For every H5FDopen request, scheduler will start one
13	mirror_R process, instructing mirror_R to connect to mirror_S, and perform all
14	subsequent H5FD functions relating to the open HDF5 file on the dedicated network
15	port. Subsequently, mirror_R will invoke H5FD_SEC2 VFD to create the remote HDF5
16	file.
17	
18	1) Introduction
19	
20	In figure one below, the H5FD_SPLITTER VFD has two channels leading to the final H5FD_SEC2
21	VFDs: a local H5FD_SEC2 and a remote H5FD_SEC2. The purpose and restriction of H5FD_MIRROR
22	VFD is to pass write-only H5FD functions across a network using Sockets/TCP.

26

28

29

The remainder of this RFC expands upon the requirements, design analysis, and describes issuesinvolved in the implementation.

27 It should be understood that,

- every H5FDopen causes scheduler to create a dedicated mirror_R process at the remote host, which will manage all H5FD functions subsequent to the specific H5FDopen.
- multiple mirror_R processes may exist at the same time operating on different HDF5 files, by
 different users or applications.
- 3) a user application will normally provide the IP address of the scheduler and its dedicated static
 port in order to request remote services. Therefore, it is possible that file operations in the
 remote abstraction of figure one, can occur concurrently on different remote hosts by the
 same local host application.

Figure 1

Block diagram illustrating the Mirror_VFD design. Blue boxes represent existing code, and yellow boxes
 code that must be designed and implemented.

40

41	2) Operational Methods
42	
43	The H5FD functions supported by Mirror_VFD are:
44	
45	1) H5FDinit_package
46	Configuration of the Mirror_VFD,
47	3) H5FDopen
48	4) H5FDwrite
49	5) H5FDflush
50	6) H5FDset_eoa
51	7) H5FDalloc
52	8) H5FDtruncate
53	9) H5FDclose
54	
55	As a rule, all H5FD functions passed by H5FD_SPLITTER, are passed to the remote H5FD_SEC2
56	without modification. Remedial error management is planned: any errors are either ignored,
57	logged & ignored, or reported as errors requiring manual intervention.
58	
59	2.1) H5FDinit_package(void)
60	
61	This generic function is used by any H5FD VFD to register with H5FD. Through its execution, it
62	initializes the H5FD_MIRROR software and provides internal mirror_S callbacks to H5FD.
63	
64	2.2) Configuration of the Mirror_VFD: H5Pset_fapl_mirror(*char ipa, int np);
65	
66	H5Pset_fapl_mirror allows a user to change the IP address and network port that mirror_S
67	requires to establish scheduler communications. If the " ipa" is null, the default IP address is
68	used (local loopback 127.0.0.1). If " np" is zero, the default network port is used (port 3000).
69	It should be emphasized this does not change any configuration within scheduler , or cause
70	scheduler to execute on any particular remote host. Changing the network port of Scheduler
71	must manually be made within the scheduler . Running scheduler on a remote host must be
72	started manually, which establishes its IP address.
73	
74	2.3) H5FDopen: H5FD_t *(*open)(const char *name, unsigned flags, hid_t fapl,haddr_t maxaddr);
75	
76	The H5FDopen function causes the mirror_S to initiate a connection to scheduler. Scheduler
77	assigns a dedicated port that all future H5FD functions relating to this particular H5FDopen
78	will occur. Scheduler starts the remote mirror_R process instructing the process to connect
79	to the prescribed network port, and begin servicing mirror_S beginning with a new
80	H5FDopen, and subsequent H5FD functions for this HDF5 file. After the network connection is
81	established between mirror_S and mirror_R, mirror_R opens the HDF5 file on the remote
82	host file system using the H5FD_SEC2 VFD. Upon success, H5FD_SEC2 VFD returns the
83	H5FD_t data structure, which is only maintained by mirror_R; that is, the H5FD_t data
84	structure is not sent back to mirror_S.
85	

86 87 88	2.4) H5FDwrite: herr_t (*write)(H5FD_t *file, H5FD_mem_t type, hid_t dxpl_id, haddr_t addr, size_t size, const void *buffer);
89	The H5FDwrite function causes the remote H5FD_SEC2 VFD to write " size" number of bytes
90	from data from " buffer" to the H5FD_t " file", beginning at the HDF5 offset address " addr," in
91	concert with the data transfer properties defined by "dxp_id".
92	
93	Since the Sec2 VFD doesn't use it, the prototype sender will not transfer the dxpl to the
94	receiver.
95	
96 07	2.5) H5FDflush: herr_t (*flush)(H5FD_t *file, hid_t dxpl_id, hbool_t closing);
9/	
98 00	HSFD_SEC2 VFD performs no flush function. mirror_R performs no other action.
100	2.6) H5ED set end: horr + $(*cot end)(H5ED + *file haddrt)$
101	
102	The H5EDset_eoa function causes the remote H5ED_SEC2 VED to set its End of A ddress space
103	as defined by "t".
104	
105	2.7) H5FDalloc: (*alloc)(H5FD_t *file, H5FD_mem_t type, hsize_t size)
106	
107	The H5FDalloc function causes the remote H5FD_SEC2 VFD to allocate space in the HDF5 file
108	as defined by "size" and memory "type".
109	
110	Note that the H5FDalloc() call raises issues for the splitter, as there is no requirement that
111	two different VFDs will allocate the same space given the same inputs. While this is not an
112	issue in the prototype, as we will be using the sec2 VFD on both sides, for a production
113	version we will need lists of compatible VFDs.
114	
115	2.8) H5FDtruncate: herr_t (*truncate)(H5FD_t *file, hid_t dxpl_id, hbool_t closing);
116	
11/	The HSFDtruncate function causes the remote HSFD_SEC2 VFD to truncate the file to a size
118	defined by the HSFDset_eoa or HSFDalloc, in concert with the data transfer properties
119	file is shorter, then it is extended, and the extended part padded as pull bytes ('\0'). The file
120	offect is not changed
121	onset is not changed.
122	2 9) HSEDclose: herr. t. (*close)(HSED. t.*file):
123	
125	The H5FDclose function causes the remote H5FD SEC2 VFD to close the file on the remote
126	host. After which, the mirror S/mirror R network connection is closed, and the mirror R
127	process terminates.
128	
129	3) API Additions

134

- herr_t (H5Pset_fapl_mirror)(* char ipa, int sp)
- 133 Users may optionally override the default IP address and server port.
- Future development using fapl parameters will allow for adjusting the remote H5FD_SEC2
 VFD properties, scheduler properties, or mirror_R properties.
- 137 138

139 **4) Implementation Details**

140

144

151

153

- 141 The **H5FD_MIRROR VFD** will be prototyped on Linux laptops utilizing Sockets/TCP.
- 142 143 **4.1) Just**
 - 4.1) Justification for Sockets/TCP over Sockets/RDMA

Infiniband, iWarp and ROCE RDMA were closely looked at. In the long term these methods offer
the highest technical performance possible, potentially by a factor of 10x; at the same time being
they are "zero-copy, they require very limited CPU resources. Due to the relative simplicity in this
prototype software implementation and project time constraints, Sockets/TCP was chosen. Later
on, should Infiniband, iWarp or ROCE RDMA be required, it should not involve difficult software
changes, because many of the RDMA APIs verbs use the same names and parameters.

152 **4.2)** Sockets/TCP activity for mirror_S and mirror_R

The H5FD_SPLITTER VFD directs H5FD function calls to a local hosts H5FD_SEC2 VFD and the H5FD_MIRROR VFD. After mirror_R is assigned a dedicated network port by scheduler, mirror_S establishes a connection and transmits the write-only H5FD_SPLITTER VFD functions to mirror_R, beginning with H5FDopen. Each dedicated mirror_R process will perform a single HDF5 file open, and all subsequent H5FD functions associated with this H5FDopen, are performed by the remote H5FD_SEC2 VFD.

160

Two types of Socket/TCP interactions are planned for the prototype. The first is to schedule an
 exclusive network connection between mirror_S, and resulting in potentially multiple mirror_R
 processes created though schedule upon each H5FDopen.

- 164
 165 The second type of connection is a dedicated network channel to pass all H5FD functions and
 166 related data. Most H5FD functions require only one data transmission from mirror_S to a
 - 167 **mirror_R** to execute one **H5FD** function by **mirror_R** and **H5FD_SEC2 VFD**. The exception being
 - 168 the **H5FDwrite** function because of the write data buffer. This is provided by a second data
 - 169 transmission.
 - 170

171	4.3) The chronology of Sockets events
172	
173	1) The scheduler process is executing on the remote host, monitoring a static network port that
174	is dedicated to receiving mirror_S service requests.
175	2) Upon successful synchronization, scheduler will assign a network port in which further H5FD
176	functions associated with the H5FDopen will be handled.
177	This port number is sent to mirror_S, and to the mirror_R process which scheduler starts.
178	mirror_S and mirror_R then establish an exclusive network connection.
179	5) When mirror_S transmits an H5FDopen function to mirror_R, this causes the remote
180	H5FD_SEC2 VFD to initialize the needed remote H5FD data structures. These data structures
181	are only maintained on the remote host by mirror_R.
182	Subsequent H5FD functions are received by mirror_R and are executed by the remote
183	H5FD_SEC2 VFD.
184	7) When mirror_S transmits a H5FDclose function, the remote H5FD_SEC2 VFD performs the file
185	closure, after which mirror_R closes the network socket and exits the mirror_R process.
186	
187	5) Outstanding issues to be considered further
188	
189	1) How will write buffer sizes impact network performance?
190	2) What network errors might occur and what is the impact operationally?
191	3) What are timeout margins?
192	4) What might be needed for error management?
193	5) What is the need for local/remote file comparisons during H5FD writes or closure?
194	- simplest: byte count comparison of remote and local file sizes, which should be identical.
195	- advanced: file checksum comparison during close.
196	6) Is the use of error detection/error correction plugin filters advised if network errors abound?
197	7) Propose methods if the remote file is corrupted, such as requiring the local HDF5 file to be sent
198	using system level OSI network layer 7 methods (e.g., bbcp) at a later time.
199	8) Need a mechanism for recycling ports after file close.
200	
200	6) Testing
201	of resulting
202	
203	6.1) lest #1 will be performed on a single laptop loaded with Centos operating systems. A local
204	loop back IP address will be used. Test software will be written independent of H5FD_SPLITTER
205	VFD, capable of performing basic write-only H5FD functions to verify general software code
206	reliability.
207	
208	6.2) Test #2 will be performed on two laptops networked with a crossover cable, each loaded
209	with Centos operating systems, and HDF5 libraries with the H5FD changes. The "local host" will
210	perform the standard HDF5 regression test cases. The objective of the test is to evaluate
211	tunctional file drivers simultaneously, by creating identical HDF5 files across the network.
212	

- 6.3) Test #3 will use the same hardware configuration of test #2, but will include the
- 214 **H5FD_SPLITTER VFD** regression test suite. The objective of the test is to evaluate the integrated
- 215 stacked **VFDs** simultaneously creating identical HDF5 files across the network.
- 216

217 7) Recommendation

- 218
- 219 Upon successful testing, it is recommended further software upgrades could be made to the
- 220 networking design optimizing for equipment (e.g., ESnet, SLAC and NERSC), software (e.g., psana)
- and operational facility protocols/permissions. This objective would be to evaluate network high
- 222 performance and needed operational upgrades at the desired user locations.
- 223

224 8) Acknowledgements

- This material is based upon work supported by the U.S. Department of Energy, Office of Science, under Contract Number DE-AC02-05CH11231.
- 227

9) Revision History

229 Oct. 5, 2018: Version 2 circulated for comment.

