
August	30,	2018	 	 RFC	THG	2018-08-15.v1	

Page	1	of	6	

RFC:	Splitter_VFD			

John	Mainzer	
Binh-Minh	Ribler	

Functionally,	the	objective	of	the	Splitter	VFD	is	to	relay	all	VFD	calls	to	an	underlying	
VFD,	and	also	send	all	write	calls	to	a	second	VFD.	

The	splitter	VFD	is	an	essential	component	of	the	rsync	/	mirror	VFD	prototype	being	
developed	under	the	EOD	contract.		However,	it	is	a	sufficiently	useful	general-purpose	
component	that	it	deserves	its	own	RFC.	

	

1 Introduction					
The	 immediate	motivation	 for	 developing	 the	 splitter	 VFD	 follows	 from	 the	 following	 architectural	
diagram	from	the	rsync	/	mirror	VFD	sketch	design:	

	
Figure	1	Block	diagram	illustrating	the	Mirror	VFD	design.		Blue	boxes	represent	existing	code,	and	yellow	boxes	code	that	must	be	
designed	and	implemented.	

August	30,	2018	 	 RFC	THG	2018-08-15.v1	

Page	2	of	6	

As	can	be	seen	from	the	above	diagram,	the	splitter	VFD	has	two	channels	to	underlying	VFDs.		Call	
the	 channel	 to	 the	VFD	 that	 accesses	 the	 local	 file	 system	 the	R/W	channel,	 and	 the	 channel	 that	
relays	writes	to	the	Mirror	VFD	the	W/O	channel.		With	this	terminology	in	hand,	we	can	summarize	
the	functional	requirements	of	the	of	the	splitter	VFD	as	follows:	

• Pass	all	VFD	calls	to	the	R/W	channel,	and	pass	the	results	back	up	to	the	caller.	

• Pass	the	open,	write,	truncate,	close,	set_eoa,	and	alloc	calls	to	the	W/O	channel	as	well.			

The	 remainder	of	 this	RFC	expands	upon	 the	 above	 requirements,	 and	 the	 issues	 involved	 in	 their	
implementation.	

In	 closing,	note	 that	 there	 is	no	 requirement	 that	 the	VFD	on	 the	W/O	channel	be	 the	Mirror	VFD	
Sender	–	for	testing	purposes,	we	will	use	another	sec2	VFD,	and	one	could	 imagine	using	a	object	
store	based	VFD	to	archive	the	HDF5	file	off	site	as	it	is	generated.	

2 Cycle	of	Operation	
At	the	gross	level,	the	cycle	of	operation	of	the	splitter	VFD	can	be	broken	into	the	following	phases:	

• Configuration	of	the	splitter	VFD	and	the	underlying	VFDS	

• File	Open	

• File	I/O	

• File	Close	

These	phases	are	discussed	in	the	following	sections.	

2.1 Configuration	

Configuring	the	splitter	VFD	 is	mostly	a	matter	of	 telling	the	HDF5	 library	how	to	setup	the	splitter	
VFD	when	opening	the	file,	and	telling	the	splitter	VFD	how	to	setup	the	underlying	VFDs.		This	will	be	
done	via	a	new	splitter	driver	info	property,	which	will	specify:	

1. R/W	channel	VFD	selection	and	configuration	in	the	form	of	a	FAPL	with	the	appropriate	.	

2. W/O	channel	VFD	selection	and	configuration	in	the	form	of	a	FAPL.	

3. File	name	to	pass	to	the	VFD	on	the	W/O	channel	on	file	open.	

4. Error	reporting	configuration	for	the	W/O	channel	

5. Any	splitter	VFD	specific	configuration.	

2.2 File	Open	

The	file	open	process	for	the	splitter	VFD	is	complicated	by	the	fact	that	HDF5	will	frequently	open	a	
file	tentatively,	close	it,	and	then	re-open	it	for	real.			

This	leaves	the	splitter	VFD	with	two	options:	

1) Setup	the	W/O	channel	on	open	–	and	thus	close	and	re-open	it	again	in	many	cases.	

2) Delay	setting	up	the	W/O	channel	until	the	first	actual	I/O	call	is	received	by	the	splitter	VFD.	

August	30,	2018	 	 RFC	THG	2018-08-15.v1	

Page	3	of	6	

While	one	can	make	an	argument	for	either	option	depending	on	the	application,	for	simplicity	in	the	
initial	implementation,	we	will	go	with	the	first	option	for	now	–	with	the	proviso	that	we	may	re-visit	
this	decision.	

The	file	open	procedure	starts	with	a	query	operation	on	the	VFD.		Using	the	splitter	VFD	FAPL	entry,	
determine	the	VFD	on	the	R/W	path,	pass	the	query	to	that	VFD,	and	return	the	results.	

This	should	be	followed	by	an	open	call,	which	should	be	handled	as	follows:	

1) When	the	open	VFD	call	is	received,	first	check	the	flags	to	see	if	the	file	is	being	opened	R/O	–	
if	so,	fail.	

2) Use	the	splitter	VFD	FAPL	entry	in	the	supplied	FAPL	to	determine	the	R/W	channel	VFD.	

3) Relay	the	open	call	to	the	VFD	configured	for	the	R/W	channel,	substituting	the	R/W	channel	
FAPL	ID	for	the	supplied	value.		On	success,	store	the	returned	pointer	to	H5FD_t	as	the	R/W	
channel	VFD.		On	failure,	report	failure	and	exit.	

4) Use	the	splitter	VFD	FAPL	entry	in	the	supplied	FAPL	to	determine	the	W/O	channel	VFD.	

5) Relay	the	open	call	to	the	VFD	configured	for	the	W/O	channel,	substituting	the	file	name	
configured	for	the	W/O	channel	for	the	name	parameter,	and	the	W/O	channel	FAPL	ID	for	
the	supplied	values.		On	success,	store	the	returned	pointer	to	H5FD_t	as	the	W/O	VFD.		On	
error,	ignore	it,	log	it	and	ignore	it,	or	fail	as	configured.	

6) Allocate,	initialize,	and	return	the	instance	of	H5FD_splitter_t	containing	the	data	required	to	
operate	the	splitter	VFD.		As	with	other	VFDs,	the	first	field	in	this	structure	is	an	instance	of	
H5FD_t.	

Note	 that	 the	 above	 does	 not	 address	 cleanup	 of	 errors	 –	which	 should	 be	 handled	 as	 cleanly	 as	
possible.	

2.3 File	I/O	

The	file	I/O	phase	is	relatively	straightforward	–	all	VFD	API	calls	must	be	relayed	to	the	R/W	channel,	
and	the	results	reported	to	the	caller.		In	addition,	write,	truncate,	set_eoa,	and	alloc1	calls	must	be	
relayed	to	the	W/O	VFD	as	well.		Any	errors	on	the	W/O	channel	are	ignored,	logged	and	ignored,	or	
returned	via	the	usual	error	stack	depending	on	configuration.	

2.4 File	Close	

The	file	close	phase	differs	from	the	previous	phases	in	that	the	VFD	close	call	must	be	relayed	to	the	
VFDs	on	both	channels,	regardless	of	the	results.	Proceed	as	follows:	

1) Relay	the	VFD	close	call	to	the	VFD	on	the	R/W	channel,	and	make	note	of	the	results.	

2) If	the	VFD	on	the	W/O	channel	exists,	relay	the	close	call	to	it.		Ignore,	ignore	and	log,	or	
report	any	errors	in	this	operation	as	configured.	

																																																								
1	 The	 set_eoa	 and	 alloc	 calls	 are	necessary,	 as	 they	 set	 the	 EOA.	 	 The	 EOA	 is	 needed	on	 the	W/O	
channel	as	the	truncate	call	does	not	take	a	file	length,	but	instead	truncates	the	file	to	the	current	
EOA.	

August	30,	2018	 	 RFC	THG	2018-08-15.v1	

Page	4	of	6	

3) Free	the	instance	of	H5FD_splitter_t.	

4) Return	the	results	of	the	close	of	the	VFD	on	the	R/W	channel.		

3 API	Additions	
The	only	new	API	calls	needed	for	the	splitter	VFD	are	the	get	and	set	routines	for	the	splitter	VFD	
FAPL	 entry.	 	 As	 the	 set	 of	 parameters	 is	 fairly	 large	 and	 will	 likely	 change	 as	 the	 splitter	 VFD	 is	
optimized2,	we	will	package	them	in	the	following	structure:	
/**
 *
 * struct H5F_splitter_vfd_config_t
 *
 * Instances of H5F_splitter_vfd_config_t are used to configure the splitter
 * VFD. Note that the configuration of the underlying VFDs on both the R/W and
 * W/O channels is specified by inserting the appropriate FAPL entries in
 * the R/W and W/O FAPLs respectively.
 *
 * The fields of H5F_splitter_vfd_config_t are discussed below:
 *
 * version: Integer field indicating the version of the H5F_splitter_vfd_config_t
 * structure used. This field must always be set to a known version
 * number. The most recent version of the structure will always be
 * H5F__CURR_SPLITTER_VFD_CONFIG_VERSION.
 *
 * rw_fapl_id: ID of the FAPL containing the VFD selection and configuration data
 * for the R/W channel of the splitter VFD. This FAPL ID is substituted
 * for the supplied FAPL ID when relaying the open command to the R/W
 * channel. It is also used to identify the desired VFD for the R/W
 * channel.
 *
 * wo_fapl_id: ID of the FAPL containing the VFD selection and configuration data
 * for the W/O channel of the splitter VFD. This FAPL ID is substituted
 * for the supplied FAPL ID when relaying the open command to the W/O
 * channel. It is also used to identify the desired VFD for the W/O
 * channel.
 *
 * wo_path: Array of char of length MAX_PATH + 1. It is used to specify the
 * file name with which to replace the name parameter when passing the
 * vfd open call to the W/O channel VFD.
 *
 * log_file_path Array of char of length MAX_PATH+! containing the path of the
 * file in which to record any errors reported by the W/O path. An empty
 * log file path indicates that no log file is desired. Note that this
 * field is ignored if ignore_wo_errs is false, as in that case the
 * usual error reporting mechanism is use.
 *
 * ignore_wo_errs: Boolean flag. If it is set to TRUE, errors on the W/O
 * channel are ignored (and logged if the log file is defined().
 *
 ***/

#define H5F__CURR_SPLITTER_VFD_CONFIG_VERSION 1
																																																								
2	For	example,	in	later	versions	we	may	find	it	useful	to	run	the	R/W	and	W/O	channels	on	separate	
threads	to	minimize	I/O	delay.	

August	30,	2018	 	 RFC	THG	2018-08-15.v1	

Page	5	of	6	

typedef struct H5F_splitter_vfd_config_t {

 int32 version;
 hid_t rw_fapl_id;
 hid_t wo_fapl_id;
 char wo_path[MAX_PATH + 1];
 char log_file_path[MAX+PATH + 1];
 hbool_t ignore_wo_errs;

} H5F_splitter_vfd_config_t;

This	definition	in	hand,	the	signatures	of	the	new	FAPL	management	routines	may	be	give	below:	
herr_t
H5Pset_fapl_splitter(hid_t plist_id, H5F_splitter_vfd_config_t *config_ptr);

herr_t
H5Pget_fapl_splitter(hid_t plist_id, H5F_splitter_vfd_config_t *config_ptr);

4 Implementation	Details	
While	 section	 2	 discussed	 the	 cycle	 of	 operation	 of	 the	 splitter	 VFD	 in	 some	 detail,	 it	 did	 so	 on	 a	
largely	conceptual	level.		This	section	records	details	of	the	actual	implementation	that	are	difficult	or	
time	consuming	to	extract	from	the	source.	

Note	 that	 the	objective	 for	 the	 initial	 implementation	 is	 simply	 to	develop	a	working	prototype	 for	
inclusion	 in	the	rsync	/	Mirror	VFD	prototype.	 	As	such,	we	will	not	be	overly	concerned	optimizing	
performance	at	this	time.	

Remainder	of	this	section	TBD.	

5 Testing	
Initial	tests	can	be	performed	by	configuring	the	splitter	VFD	to	use	the	sec2	driver	on	both	the	R/W	
and	R/O	channels,	writing	a	file,	and	comparing	the	resulting	files,	which	should	be	identical.	

While	this	should	make	a	useful	smoke	check,	more	complete	unit	tests	are	desirable	–	update	the	
RFC	to	suggest	a	suitable	selection.	

6 Recommendation	
Implement	a	simple	version	of	the	splitter	VFD	to	support	a	prototype	of	the	mirror	VFD.	

Acknowledgements	
This	material	is	based	upon	work	supported	by	the	U.S.	Department	of	Energy,	Office	of	Science,	under	
Contract	Number	DE-AC02-05CH11231.

August	30,	2018	 	 RFC	THG	2018-08-15.v1	

Page	6	of	6	

Revision	History					
AUG	18,	2018:	 Version	1	circulated	for	comment.		

	

