
Variable	Length	Data	in	HDF5	Sketch	Design	
Quincey	Koziol	
John	Mainzer	

7/15/19	

INTRODUCTION	

As	demonstrated	in	the	benchmarks	described	in	the	appendix,	the	existing	implementation	of	variable	
length	data	in	HDF5	has	significant	performance	problems.	

In	this	paper,	we	outline	the	current	method	of	storing	variable	length	data,	discuss	the	reasons	for	its	
poor	performance,	and	offer	a	sketch	of	a	proposed	re-implementation.			

Scot	Breitenfeld	wrote	the	above	mentioned	benchmark	to	comparing	performance	of	the	current	
variable	length	data	implementation	with	a	mockup	of	the	proposed	re-implementation.	While	the	
benchmark	does	not	exactly	mimic	the	structure	of	the	proposed	re-implementation,	the	cases	are	
sufficiently	similar	as	to	suggest	significant	performance	gains			

CURRENT	IMPLEMENTATION	OF	VARIABLE	LENGTH	DATA	IN	HDF5	

The	current	implementation	of	variable	length	data	types	stores	each	variable	length	datum	in	the	global	
heap,	and	a	reference	to	the	datum	in	the	dataset	proper.	
	
This	architecture	has	several	problematic	features:	
	

1) The	global	heap	is	treated	as	metadata.		Thus	variable	length	data	reads	and	writes	put	pressure	
on	the	metadata	cache,	and	potentially	force	the	eviction	of	metadata.				Thus	in	the	typical	EOD	
use	case	where	large	amounts	of	variable	length	raw	data	are	written	in	a	short	period	of	time,	
metadata	proper	may	be	squeezed	out	of	the	metadata	cache,	with	the	resulting	performance	
degradation.	
	

2) Variable	length	data	is	not	segregated	by	source	dataset	in	the	global	heap.		Thus	typical	EOD	use	
cases	in	which	writes	to	multiple	datasets	are	interleaved,	will	result	in	related	data	being	
scattered	through	the	global	heap,	resulting	in	obvious	read	inefficiencies.	

	
3) The	global	heap	does	not	support	the	filter	mechanism,	making	it	impossible	to	compress	

variable	length	data.	
	

4) The	global	heap	is	designed	to	support	the	re-use	of	freed	global	heap	space.		As	a	general	rule,	
EOD	data	does	not	require	this	capability,	but	it	must	still	pay	for	it	–	primarily	through	space	and	
time	inefficiencies.		

	
5) Due	to	the	requirement	that	all	operations	that	modify	metadata	be	collective	and	generate	the	

same	stream	of	dirty	metadata	on	each	process,	practically	speaking,	variable	length	data	may	
only	be	written	in	the	serial	version	of	HDF5.	

	



Scot	Breitenfeld	performed	a	number	of	benchmarks	(see	appendix),	comparing	I/O	to	vectors	of	variable	
length	data	with	reads	and	writes	of	the	same	variable	length	data	flattened	and	written	to	a	fixed	size	
vector.		To	facilitate	reads	in	the	latter	case,	the	lengths	(but	not	the	offsets)	of	the	flattened	variable	
length	data	were	stored	in	a	second	vector.	

These	benchmarks	show	the	performance	costs	of	using	the	existing	variable	length	data	implementation,	
and	the	potential	performance	gains	of	flattening	variable	length	data	into	a	vector.		The	following	
proposed	re-implementation	builds	on	this	observation.	

PROPOSED	RE-IMPLEMENTATION	OF	VARIABLE	LENGTH	DATA	IN	HDF5	

At	a	conceptual	level,	the	proposed	re-implementation	of	variable	length	data	in	HDF5	associates	a	
unique,	secondary,	extensible	vector	of	bytes	with	every	data	set	that	contains	variable	length	data.		Each	
variable	length	datum	is	stored	in	the	extensible	vector	of	bytes,	and	represented	in	the	primary	data	set	
by	the	offset	and	length	of	the	variable	length	datum	in	the	extensible	vector.	

Space	in	the	extensible	vector	is	allocated	by	extending	the	vector.		Thus	in	EOD	use	case	in	which	data	is	
stored	as	it	is	generated,	temporally	adjacent	variable	length	data	is	stored	in	adjacent	locations	in	the	
vector	–	allowing	efficient	sequential	data	writes	and	reads.			

In	the	EOD	case,	data	is	seldom	if	ever	modified	after	it	is	written.		Thus	in	this	use	case,	there	is	no	need	
for	any	provision	for	re-using	space	in	the	extensible	vector	when	variable	length	data	is	added,	deleted,	
or	re-sized.		However,	this	capability	is	desirable	in	other	use	cases,	and	is	easily	supported	by	optionally	
associating	a	free	space	manager	with	the	extensible	vector.		Since	this	augmentation	optional,	it	imposes	
no	additional	overhead	on	EOD	use	cases.	

In	his	benchmarks	(appended	to	this	document),	Scot	Breitenfeld	compared	I/O	performance	to	a	vector	
of	variable	length	data	with	that	of	the	same	data	flattened	into	a	vector	with	the	lengths	(but	not	the	
offsets)	stored	in	a	second	vector.		While	his	benchmark	does	not	exactly	mimic	the	proposed	
reimplementation,	the	differences	are	minor,	and	the	speedups	are	significant.		Further,	his	benchmark	
only	writes	one	dataset	at	a	time,	and	thus	avoids	the	interleaving	effect	discussed	in	the	previous	
section.		If	there	is	sufficient	interest	in	variable	length	data	performance	in	HDF5,	his	results	are	
sufficient	to	warrant	a	full	design	effort	and	subsequent	implementation.	

IMPLEMENTATION	DETAILS	TO	BE	ADDRESSED	

While	the	basic	concept	of	the	proposed	re-implementation	of	variable	length	data	in	HDF5	should	be	
clear	enough	at	this	point,	the	devil	is	always	in	the	details.		As	this	document	is	only	a	sketch	design,	we	
content	ourselves	with	pointing	out	major	issues	to	be	addressed,	and	suggesting	likely	solutions.		
Detailed	investigation	of	these	design	issues	is	beyond	the	scope	of	this	paper,	and	must	be	addressed	in	
a	subsequent	RFC.	

TRANSPARENCY	TO	THE	USER	

On	the	one	hand	the	extensible	vector	of	bytes	should	be	hidden	from	the	user	as	an	extra	data	structure	
that	is	created	when	the	primary	data	set	is	created.			



On	the	other	hand,	we	must	allow	the	user	to	configure	the	extensible	vector	of	bytes	to	maximize	
performance	given	the	particulars	of	the	data	set.		Thus,	for	example,	typical	length	and	composition	of	
variable	length	data	will	have	an	effect	on	the	optimal	chunk	size	and	filter	pipeline.	

At	a	guess,	we	will	square	this	circle	by	providing	generally	workable	defaults,	and	the	ability	to	adjust	
them	via	the	DCPL.		

REPRESENTATION	OF	THE	EXTENSIBLE	ARRAY	OF	BYTES	

Absent	a	major	re-design	of	the	HDF5	library,	the	only	generally	plausible	way	of	implementing	the	
extensible	vector	of	bytes	is	as	a	chunked	1	D	data	set.		Management	of	the	chunks	requires	an	index	–	
most	likely	the	existing	extensible	array.				

This	decision	implies	that	we	must	provide	a	mechanism	for	selecting	the	chunk	size	of	the	extensible	
vector	of	bytes,	and	also	for	configuring	the	associated	filter	pipeline	if	desired.	

The	decision	to	use	a	chunked	representation	also	raises	the	question	of	chunk	caching.		At	present,	we	
create	a	separate	chunk	cache	for	each	open	chunked	data	set.		While	this	has	proved	problematic,	
particularly	with	applications	that	open	large	numbers	of	datasets,	it	is	the	obvious	default	in	this	case.		
Note,	however,	that	it	implies	the	creation	of	yet	another	switch	to	allow	the	user	to	select	the	size	of	the	
chunk	cache	for	the	extensible	vector	of	bytes.	

On	the	other	hand,	re-working	the	chunk	cache	is	one	of	the	issues	being	considered	in	the	sparse	chunks	
RFC	–	and	thus	best	we	postpone	this	issue	for	now.	

VARIABLE	LENGTH	DATA	IN	PARALLEL	

In	parallel	HDF5,	we	require	that	all	operations	that	modify	metadata	be	collective,	so	that	all	metadata	
caches	see	the	same	sequence	of	dirty	metadata.		Since	the	current	implementation	of	variable	length	
data	stores	it	as	metadata,	this	requirement	makes	is	effectively	impossible	to	write	variable	length	data	
in	parallel	HDF5.	

While	we	will	probably	not	implement	it	immediately,	the	proposed	re-implementation	of	variable	length	
data	offers	the	possibility	of	writing	variable	length	data	in	parallel,	albeit	only	as	collective	write.		We	
could	do	this	as	follows:	

1) On	each	process,	compute	the	total	length	of	the	variable	length	data	to	be	written.	
2) Scatter	/	gather	the	values	from	1)	above,	so	that	each	process	knows	the	amount	of	variable	

length	data	every	process	needs	to	write.	
3) On	each	process,	compute	the	total	number	of	bytes	of	variable	length	data	to	be	written,	and	

collectively	extend	the	extensible	vector	of	bytes	accordingly.	
4) On	each	process,	compute	the	number	of	bytes	of	variable	length	data	to	be	written	by	lower	

rank	processes.		Write	that	processes	variable	length	data	to	the	extensible	vector	of	bytes	
starting	at	the	initial	length	of	the	vector	plus	this	sum.		Update	the	primary	dataset	to	reflect	the	
assigned	locations	of	the	variable	length	data.	

5) Write	the	primary	data	set.	



Needless	to	say,	this	algorithm	could	be	extended	to	allow	compression	via	techniques	similar	to	those	
currently	used	to	implement	compression	in	parallel.	

Note	also	that	this	algorithm	makes	no	allowance	for	free	space	management	in	the	extensible	vector	of	
bytes.		As	all	processes	would	have	to	participate	in	space	allocation/deallocation	for	each	variable	length	
datum,	the	overhead	would	likely	make	this	impractical.		As	mentioned	above,	this	point	is	likely	moot	for	
EOD	use	cases	–	but	possibly	a	significant	limitation	elsewhere.	

Finally,	observe	that	this	approach	is	not	applicable	to	compact	datasets,	as	they	store	raw	data	in	the	
object	header,	and	thus	suffer	the	same	problems	as	the	existing	variable	length	data	implementation	in	
the	parallel	case.	

INTERACTION	WITH	COMPACT	DATASET	LAYOUT	

Implementing	the	extensible	vector	of	bytes	as	a	chunked	dataset	would	seem	to	largely	defeat	the	
purpose	of	compact	datasets	–	although	certainly	no	worse	than	the	existing	implementation.			If	this	
becomes	an	issue,	alternate	implementations	such	as	storing	each	variable	length	datum	as	a	separate	
object	header	message	may	be	worth	considering.		

ACKNOWLEDGEMENTS	

This	material	is	based	upon	work	supported	by	the	U.S.	Department	of	Energy,	Office	of	Science,	
under	Contract	Number	DE-AC02-05CH11231.	
	 	



APPENDIX	

SPARSE 	STORGE 	US ING 	HDF5 	

SPARSE	STORAGE	USE	CASES		

The	issue	of	sparse	data	is	an	important	issue	within	the	fields	of	science	and	engineering,	and	
the	storage	format	of	the	sparse	data	often	plays	a	critical	role	in	I/O	performance.	One	option	in	
storing	sparse	data	is	to	flatten	the	non-zero	entries	into	a	1D	variable	length	(VL)	dataset,	where	
each	variable	length	entry	would	be	contiguous	sections	of	nonzero	element	values	of	the	sparse	
matrix.	The	following	sections	in	this	paper	presents	the	penalty	in	using	VL	datasets	over	a	more	
typical	array	dataset	representation	in	an	HDF5	file.	

BENCHMARKING	VARIABLE	LENGTH	I/O	

THIS	STUDY	REPORTS	HDF5’S	I/O	PERFORMANCE	DIFFERENCE	BETWEEN	USING	A	1D	DATASET	AND	A	1D	DATASET	
COMPOSED	OF	VARIABLE	LENGTH	(VL)	DATATYPES.	THE	VL	DATA	STORED	IN	AN	ARRAY	OF	NATIVE	DATATYPE,	
ABSTRACTLY	REPRESENTED	AS	A	STANDARD	2D	ARRAY	(FIGURE	1A),	WHERE	EACH	ROW	OF	THE	ARRAY	IS	A	VL	
ENTRY,	WAS	STORED	IN	A	1D	DATASET	OF	SIZE	MXN.	FOR	VL	DATATYPE	STORAGE,	THE	VL	DATASET’S	LENGTH	IS	

CONSIDERED	TO	BE:	(1)	THE	SAME	FOR	EACH	ROW,		

FIGURE	1(B),	OR	A	FUNCTION	OF	THE	ROW	NUMBER,		

Figure	1(c).	The	I/O	size	was	increased	by	increasing	m	while	n	is	held	constant	at	4096	for	cases	(a)	and	
(b).	For	case	(c),	the	number	of	rows	was	doubled,	and	the	VL	increases	and	decreases	linearly	as	a	
function	of	the	row	number;	resulting	in	the	same	amount	of	I/O	as	the	(a)	and	(b)	cases.		

	

	

	

	

	

	

	

FIGURE	1	(A)	NATIVE	DATATYPE	DATASET,	(B)	CONSTANT	VL	DATASET,	AND	(C)	VL	DATASET.	

	

	

VL=n	

…	

	{	

	{	m	

n	

(a)	

…		{	m	

	{	

(b)	

VL=f(m)		{	
…	
…		{	m	

(c)	



	

Benchmarking	programs	run	in	four	stages,	where	each	stage	consists	of	a	single	and	separate	run.	The	
four	steps	are:	(1)	Create	and	write	a	1D	dataset,	(2)	create	and	write	a	VL	dataset,	(3)	open	the	HDF5	file	
and	read	the	1D	dataset	and	(4)	open	the	HDF5	file	read	the	1D	VL	dataset.	Unless	noted	otherwise,	these	
four	stages	were	run	eight	times	and	the	average	times	are	reported	in	the	subsequent	sections.		

The	VLtest/t_vlen_bench.c	program	can	be	found	at	https://github.com/brtnfld/mpi_io.git	and	
implements	the	storing	of	VL	datatypes,	Figures	1b	and	1c.	The	VLtest/t_pseudo_vlen_bench.c	uses	a	
dataset	of	the	native	datatype	to	store	the	VL	data,	Figure	1a.	Additionally	for	this	case,	Figure	1a,	the	
length	of	each	variable	is	stored	in	a	sperate	1D	dataset	of	size	m,	and	the	timing	results	presented	below	
also	include	the	IO	associated	with	this	1D	dataset.	

CASE	1	

The	first	case	tries	to	minimize	the	effect	of	the	Linux	file	system	cache.	The	HDF5	library	was	modified	by	
adding	the	option	O_DSYNC	to	the	POSIX		open	function	in	H5FDsec2.c.		Additionally,	the	utility	nocache1	
was	used	to	disable	cache	generation	by	the	benchmark	program.	The	I/O	was	to	a	non-RAID	partition	
(ext4)	on	a	standard	hard	drive	(WDC	WD5003ABYX-18WERA0)	and	for	a	Linux	3.10	kernel.		The	final	
times	reported	were	the	average	over	ten	runs,	Figure	2.	

	Dataset	Size	(MiB)	 	Write	(s)	 	Read	(s)	 VL	Write	(s)	 VL	Read	(s)	
64	 0.45	 0.24	 43.0	 0.43	
128	 0.65	 0.36	 83.6	 0.66	
256	 1.12	 0.81	 168.0	 1.23	
512	 2.06	 1.82	 335.1	 2.19	
1024	 3.78	 3.48	 670.7	 4.05	
2048	 7.23	 7.74	 1343.9	 7.59	
4096	 14.4	 14.6	 2712.7	 15.5	

	

	

																																																													
1	https://github.com/Feh/nocache	
	



	

FIGURE	2	VL	I/O	THROUGHPUT	TO	A	STANDARD	HARDRIVE	FOR	A	NON-PARALLEL	FILESYSTEM	WITH	NO	CACHING	
EFFECTS.		

	

CASE	2	

The	remaining	cases	in	this	report	study	the	performance	I/O	is	to	a	Lustre	file	system.	In	contrast	to	Case	
1,	the	HDF5	library	was	not	modified	and	the	utility	nocache	was	not	used.	The	stripe	size	was	16MB,	and	
the	stripe	count	was	12	on	Edison	(NERSC).		

	Dataset	Size	(MiB)	 	Write	(s)	 	Read	(s)	 VL	Write	(s)	 VL	Read	(s)	
64	 0.072	 0.036	 0.17	 0.13	
128	 0.12	 0.078	 0.25	 0.25	
256	 0.26	 0.16	 0.51	 0.51	
512	 0.51	 0.31	 1.00	 1.01	
1024	 1.09	 0.60	 2.07	 2.03	
2048	 2.22	 1.21	 4.22	 4.16	
4096	 7.63	 2.39	 9.54	 8.60	

	

CASE	3	

The	third	case	used	the	same	parameters	as	case	2,	except	page	buffering	was	enabled	for	two	different	
page	sizes.	Cases	2	and	3	are	summarized	in	Figure	3	and	Figure	4.	



	1kiB	page	size.	

	Dataset	Size	(MiB)	 	Write	(s)	 	Read	(s)	 VL	Write	(s)	 VL	Read	(s)	
64	 0.070	 0.038	 0.26	 0.16	
128	 0.12	 0.077	 0.50	 0.34	
256	 0.24	 0.15	 0.94	 0.67	
512	 0.50	 0.29	 1.86	 1.34	
1024	 1.00	 0.59	 3.72	 2.70	
2048	 2.07	 1.15	 7.32	 5.41	
4096	 3.97	 2.38	 15.16	 11.36	

	

1	MiB	page	size.	

	Dataset	Size	(MiB)	 	Write	(s)	 	Read	(s)	 VL	Write	(s)	 VL	Read	(s)	
64	 0.074	 0.039	 0.13	 0.13	
128	 0.12	 0.079	 0.30	 0.26	
256	 0.25	 0.16	 0.53	 0.52	
512	 0.62	 0.30	 1.05	 1.02	
1024	 1.05	 0.61	 3.3	 2.08	
2048	 2.12	 1.20	 6.36	 4.18	
4096	 4.24	 2.38	 14.0	 8.70	

	

	

FIGURE	3	WRITE	BANDWIDTH	ON	LUSTRE.	

No	page	buffering	{	

1kB	page	buffering	{	

1MB	page	buffering	{	



	

FIGURE	4	READ	BANDWIDTH	ON	LUSTRE.	

	

CASE	4	

THIS	CASE	USED	VARIABLE	LENGTH	DATA	FOR	WHICH	THE	LENGTH	INCREASES	AND	THEN	DECREASES	LINEARLY	AS	
A	FUNCTION	OF	THE	ROW,		

Figure	1c.		The	amount	of	data	I/O	is	the	same	as	in	case	3.	Using	a	constant	length	VL	data	has	marginally	
better	I/O	performance	when	compared	to	using	varying	length	VL	data.	

	Dataset	Size	(MiB)	 	Write	(s)	 	Read	(s)	 VL	Write	(s)	 VL	Read	(s)	
64	 0.072	 0.040	 0.31	 0.25	
128	 0.12	 0.077	 0.70	 0.50	
256	 0.25	 0.15	 1.30	 1.00	
512	 0.50	 0.30	 2.55	 2.02	
1024	 1.01	 0.61	 5.10	 4.16	
2048	 2.00	 1.16	 10.48	 8.36	
4096	 4.01	 2.35	 20.61	 16.95	

	

No	page	buffering	{	

1kB	page	buffering	{	

1MB	page	buffering	{	



	

FIGURE	5	CASE	4	FILE	SIZE	RATIO	COMPARISON	WHEN	STORING	A	VL	DATASET	AND	STORING	A	NATIVE	DATATYPE	
DATASET.	

	

	



	

FIGURE	6	I/O	COMPARISION	BETWEEN	CONSTANT	(CASE	B)	AND	VARIABLE	LENGTH	DATA	(CASE	C).		

	

CASE	5	

THIS	CASE	USED	VARIABLE	LENGTH	DATA	DETAILED	IN	CASE	4,		

Figure	1c,	to	study	the	effects	of	page	buffering.		The	amount	of	data	I/O	is	the	same	as	in	case	4.	The	file	
space	page	size	was	set	to	1	MiB,	and	the	page	buffer	size	was	set	to	multiples	of	the	file	space	page	size.	
The	minimum	metadata	and	raw	data	percentage	was	set	to	zero.		Figure	7	to	Figure	10	report	the	effects	
of	page	buffer	for	(1)	writing	native	datatype	dataset,	(2)	reading	a	native	datatype	dataset,	(3)	writing	VL	
dataset	and	(4)	reading	a	VL	dataset.		

	



	

FIGURE	7	EFFECTS	OF	PAGE	SIZE	FOR	NATIVE	DATATYPE	DATASET	WRITE.	

	

FIGURE	8	EFFECTS	OF	PAGE	SIZE	FOR	NATIVE	DATATYPE	DATASET	READ.	



	

FIGURE	9	EFFECTS	OF	PAGE	SIZE	FOR	VL	DATASET	WRITE.	

	

FIGURE	10	EFFECTS	OF	PAGE	SIZE	FOR	VL	DATASET	READ.	


